
A High-Level Notation for NM Appl. Proc. INET'94 / JENC5 A. Brites et al.

A High-Level Notation For The Specification Of Network Management Applications

Alfredo C. S. C. Brites <snmp@mercurio.uc.pt>

Paulo A. F. Simões <psimoes@mercurio.uc.pt>

Paulo M. C. Leitão <pleitao@mercurio.uc.pt>

Edmundo H. S. Monteiro <edmundo@mercurio.uc.pt>

Fernando P. L. Boavida Fernandes <boavida@mercurio.uc.pt>

Abstract in order to select the most appropriate for the
problem under study [2]. In this development stage,
the main issue is functionality in its broadest sense;
the process used to accomplish this functionality
and the related details are of minor importance.

The standardisation and the subsequent
widespread use of open network management
services and protocols has not lightened the
tremendous burden of the developers of network
management tools and applications. One of the
main problems consists of bridging the gap between
the low-level management functionality provided by
network management protocols like SNMP or
CMIP and the elaborate functionality desired in
most network management tools/applications [1].

Another important requirement in this field is
flexibility, in order to provide the means to easily
introduce changes in the network management
applications. This points to the necessity of network
management tools that can interpret user
specifications, which, in turn, requires a way to
write these specifications.

This paper presents the main aspects of a
project that is being developed at the Computer
Communications Laboratory of the University of
Coimbra, that addresses the problems of specifying
and implementing open network management
applications in an easy, rapid and versatile way.

The above mentioned high-level functionalities
are not directly supported by the existing network
management services and protocols (SNMP [3],
SNMPv2 [4], and CMIP [5]) since they only
provide the basic mechanisms to retrieve and
manipulate management information, and to trigger
actions on managed entities [6]. Their focus is on
the low-level processes necessary to accomplish
those mechanisms, not on the possible uses for
them. Clearly, these are not the sort of issues which
should concern the prototype/application developer.
He/she needs an appropriate environment to test
his/her ideas in a simple and comfortable manner,
without wasting efforts in needless details.

The project is based on the definition and use of
a high level notation for the specification of
network management applications, that frees the
applications developer from the details of network
management communication protocols and provides
the necessary abstractions that enable him/her to
concentrate on the desired solutions. In addition,
the proposed notation can be used as a common
language for the developers of network
management tools, as a way to rapidly specify
prototype applications and, possibly, in the
development of network management application
compilers.

I.A Specification of network management
applications

The proposed approach attempts to fill the gap
between the functionality supplied by current open
network management APIs/frameworks [7] [8] and
the one needed by the applications developer,
through the definition of a high-level notation for
the Specification of Network Management
Applications (SNMA notation). The notation is
generic enough to be used in a broad range of
contexts, providing a powerful prototyping and
development environment. It represents a first step
towards a full network management applications
generator.

I. Overview

This section provides an overview of the
developed notation, covering its purpose, main
characteristics, architecture and possible uses.
Subsequent sections of this paper will present the
basic syntax rules, a specialised module directed
towards fault-management applications, and an
example of the use of that specialised module.

One of the main requirements in the network
management field is to be able to rapidly develop
prototype implementations. This ability enables a
network manager to do a preliminary study on the
feasibility of a set of solutions for a given situation.
The objective is to compare a set of functionalities

The SNMA notation incorporates the following
key features:

• It provides a high-level means to represent
management information. Such representation

561-1

A High-Level Notation for NM Appl. Proc. INET'94 / JENC5 A. Brites et al.

hides the process used to gather the information
(i. e., the communications protocol) and the
related details.

between objects, which is a considerably richer
concept than considering objects alone. There are
also some incorporated features reflecting the
nature of the addressed problem, such as time
indexing and the presence of an implicit agent set
in every variable.

• It supports a means for defining and
manipulating high-level entities such as
relations between objects, events and actions.

Since the interface supplied by the BSR is very
general, its level is still too low for
prototype/application specification. In order to
incorporate higher level objects reflecting concepts
used in specific, although commonly used tasks and
to avoid an excessive task orientation for the BSR,
an extension mechanism was envisaged: each broad
need commonly felt in Network Management (e.g.,
fault-management) is addressed by a specialised
syntax module, where entities related to particular
needs are modelled. Rather than trying to define a
general notation capable of covering all imaginable
functionalities, each specialised module is restricted
to a specific area, making it possible to define
deeper features. Moreover, since the design is
modular, a new syntax module can be added
without having to redefine existing ones.

A compromise had to be found in the definition
of this notation: a too generalist approach would
have lacked the capability to manipulate useful
objects for specific although frequently used
management tasks; a task-oriented notation would
have not been sufficiently flexible to accomplish
the intended objectives. This compromise was
achieved by the adoption of a layered approach
(figure 1).

The Basic Syntax Rules (BSR) layer was
developed in order to provide a common level of
functionality to all the tools built upon this model.
Its role is twofold:

• To hide low level communications details
from the user.

• To provide a clean high level interface for
management information manipulation,
conceptually distant from the one supplied by
the network management protocol (in this case,
the SNMP protocol).

Specialised modules are already defined for the
following areas:

- Monitoring/fault-management.This specialised
module, used by an application called Vigilante,
will be described later;

In this layer, the management information
gathering process is not modelled in a request-
response fashion. Instead, the adopted interface is
very close to that of a classic programming
language: the existing entities are typed variables
(mapped to MIB objects) and a set of operations
which can be performed on them. These operations
can be used, for instance, to define relations

- Network parameters visualisation;

- Gathering and statistical processing of
management information.

A specialised module oriented towards
accounting management is currently being
developed.

Basic Syntax Rules

SNMP framework

Specialized
Module

Specialized
Module

Specialized
Module

Prototype specifications / Applications

BSR layer

SNMP layer

Functionality layer

Agent Agent
Agent Agent

Figure 1: SNMA notation architecture

561-2

A High-Level Notation for NM Appl. Proc. INET'94 / JENC5 A. Brites et al.

II. Basic Syntax Rules a specific column instance and/or a specific agent.
For instance, if col_var is a columnar variable,
col_var:[neptune].3.4.1 represents its
value for the line identified as "3.4.1" at the agent
whose name is neptune.

The BSR layer of the SNMA notation provides
both an uniform representation for available
management information and a way to define new
entities from relationships between existing objects.

Since an expression may be evaluated across
several agents, MIB table rows and time instances,
there is a 3-dimensional evaluation space as shown
in figure 2.

Several important issues were addressed in the
syntax definition. Clearly, it must be possible for
applications to gather and process management
information coming from more than one agent. It is
important to include a facility to refer to data polled
in past instants in order to track variations over
time. It is also important to provide a flexible
treatment to columnar SNMP objects.

Another feature supported by the BSR is the
capability to refer to information regarding the
applications' functioning parameters whose values
can not be known in advance (e. g. , the "current
agent set" or the "number of polls done so far").
This information is referenced by a name starting
with the @ symbol and is designated as special
variable.

The most basic element comprising an
expression is a MIB object. These objects are
referred by its textual name; the BSR layer maps
this name to the corresponding low level
representation and processes it as a typed variable.
Such objects are always associated with an agent
set: a reference to an object means "the object's
value in all the agents of the current agent set". The
definition of the agents comprising the current
agent set is application dependent: for instance, in
some applications it may be defined interactively
while others, due to their nature, may not
incorporate such facility.

Finally the BSR provide a standard function set
which may take expressions as arguments. One
example of such a function is strlen(), whose
argument is an object of type string, and returns the
length of its argument. Each application is allowed
to define new functions, thereby extending the
standard set.

Besides providing a means to reference SNMP
information, the BSR layer also provides a way to
define new high-level objects from numerical and
logical expressions comprising existing MIB
objects and previously defined expressions. This
feature is very important since these relationships
provide an "added-value" to MIB objects.

An object reference may optionally include a
time index in order to reference its past values. In
general, var[n] represents the value of var n
polls ago.

Expressions may include columnar variables
(rather than instances of columnar variables), which
refer to all rows of their respective tables. Since
such variables do not represent a single value, a
need is created for the expression to be evaluated
across all agents and/or table rows to which it
relates. Note that this expansion is performed
automatically in run-time. It is also possible to refer

As an example of a high-level object defined
using the BSR consider the received bytes rate of
an interface. Keeping in mind that the MIB-II
object ifInOctets is a columnar object (one
instance per agent interface) that yields the number
of octets received so far [9], the expression

(ifInOctets - ifInOctets[1]) /
@PollInterval

TABLE ROWS

SNMP AGENTS

POLLING INSTANTS

Figure 2: BSR 3-dimensional nature

means, according to the BSR, "the received octets
rate for every interface of each agent of the current
agent set". This expression illustrates several BSR
features:

• Agent set expansion;

• Columnar objects expansion;

• Time indexing (ifInOctets[1] means
"the value of ifInOctets in the previous
poll");

• Special variables (@PollInterval).

561-3

A High-Level Notation for NM Appl. Proc. INET'94 / JENC5 A. Brites et al.

III. The Vigilante monitoring functionality, by allowing for the
generic definition of abnormal situations; however,
there are other aspects of fault management
functionality that should be "user-definable" if the
described philosophy is to be consistently adopted.
For instance, the user should be allowed to define
corrective actions to undertake upon detection of
fault situations. Also, it would be desirable to
implement asynchronous fault detection capabilities
that are outside the scope of the BSR, namely, the
asynchronous detection of trap-PDU arrivals.

As was already pointed out, the BSR are
intended to be "generic", i.e. the syntax alone is not
specialised enough to provide a means for solving
concrete problems in a given network. Instead, it is
aimed at offering the possibility of being used in a
broad range of contexts and needs.

The SNMA notation offers a potential work
basis for the development of management
applications that will use the representation
capabilities offered by the BSR. This section
describes an application called Vigilante that has
been developed using these capabilities.

Thus, there was a need for a complete
"functionality definition" syntax. A script-like
"Fault Management Specification Syntax" (FMSS)
was therefore defined. The FMSS is a specialised
module that extends the Basic Syntax Rules, so as
to allow the user to write a full "functionality
specification" for the Vigilante.

The Vigilante is an application directed towards
fault management. It uses a manager-defined
specification written with the BSR notation to
detect abnormal situations in the following manner.
The notation is used to represent assertions (i.e.
logical conditions) that describe "faults" in a
network. Those conditions are expressions
involving relationships between SNMP variables
across the network. The SNMP variables are
periodically polled to find out their current values,
so as to subsequently compute the expression result.
If a condition corresponding to a fault is met, the
Vigilante will undertake the specified corrective
action.

The conjunction of the Vigilante with a concrete
user specification gives rise to a specific
management application. Within the described
paradigm, the Vigilante by itself does not
accomplish fault management tasks; only when
provided with an appropriate user specification
does it achieve a (flexible) fault management
functionality. This model, which represents a step
towards the automatic generation of applications, is
diagramatically illustrated in figure 3.

The nature of the BSR implies that the
representation of abnormal conditions is flexible
enough to span a broad range of fault detection
needs, thereby rendering the Vigilante potentially
useful in a multitude of fault management contexts.

The corner-stone of this approach is the
flexibility provided by the high-level syntaxes used.
This allows for the fast and easy definition of fault
management application prototypes, in accordance
to the overall objectives of the presented work.

A "user-defined functionality" philosophy was
adopted, in order to make the most out of the
potential for genericity that the BSR entail. Thus,
the user is required to input the assertions that will
yield the monitoring capabilities he/she desires, a
concept opposed to the use of context-specific,
hard-wired fault management features.

Bearing in mind what has been put forward, the
potential uses for the Vigilante are:

• To respond to simple fault and performance
management needs, by defining concrete
user specifications directed to the handling of
those needs.

• To support the development of more advanced
management systems, allowing the rapid testing
of potential solutions for undesirable situations.

Of course, the BSR by themselves do not allow
the user to completely define the Vigilante's
functionality. They permit a user-defined

USER

SPECIFICATION

FUNCTIONALITY

VIGILANTE

ACHIEVEDBSR
MONITORING

FMSS

Figure 3: Vigilante's working paradigm

561-4

A High-Level Notation for NM Appl. Proc. INET'94 / JENC5 A. Brites et al.

IV. An Example Of A User Specification
For The Vigilante

• Actions definition

Actions are constructs that model an activity.
An action is defined by specifying its name and the
parameters necessary to fully describe it.

The following example shows how a Network
Administrator or an Applications Developer can use
the Vigilante to achieve a specific management
functionality. The desired behaviour is to detect all
"defective" interfaces in SNMP-agents across a
network which is formed by SNMP-agents named
"agent1", "agent2", ... , "agentn".

This example uses two types of actions: an
SNMP-set action and a log action:

- SNMP-Set action

This action is named turn_off. It simply sets
the value of the MIB variable ifAdminStatus to
DOWN therefore turning off the monitored interface.

Interfaces will be considered "defective" when
their input packet errors exceed a threshold
corresponding to 10% of the total input packets,
with an accumulated total of at least 20 such errors.

- Log action

Its purpose is to register an event occurrence in
a file. In this example, such an action is triggered
whenever a "defective interface event" is detected
(see bellow). It invokes the registration (on a log
file) of a text string containing the agent where the
defective interface was detected
(@hit_location) and the ifDescr and
ifInErrors variables value on the agent and
table row where that event occurred. A typical
output for this action is:

Each interface is to be analysed every 15
seconds, to see if it crosses the error threshold.

In case the total number of errors exceeds 200,
the interface is to be turned off. Also, a file named
vigilante.log is to be produced, containing a
description of every "defective interface" detection.

The presented problem requires that an
expression describing a "defective interface" be
written. For this purpose, the following columnar
MIB-II variables (assumed to be supported by all
the SNMP-agents in the network) will be used:

Defective interface: Ethernet0
Agent: venus
Number of Errors: 25

ifInErrors: number of input packets in error
Defective interface: Serial2

ifInPkts: total number of input packets Agent: neptune
Number of Errors: 39ifDescr: strings with interface descriptions

ifAdminStatus:
 current interface status (0 = down, 1 = up)

<...>

<...>

These columnar variables all belong to the MIB-
II table ifTable, in which each row contains
information on a particular interface of the SNMP-
agent where the table resides.

Although not illustrated in this example, it is
possible to define other action types. The
possibilities include but are not limited to:

- trouble-ticket generation (Ticket action).The expression that describes a defective
interface can be expressed using the Basic Syntax
Rules as (for p% input error threshold and q
accumulated errors):

- launching of independent processes
(Execute action).

- writing past values of specified expressions
in a file in order to be processed off-line by
other applications (Snapshot action).(ifInPkts-ifInPkts[1])*p/100 <

ifInErrors-ifInErrors[1] &
ifInErrors>=q • Procedure definition

A procedure construct is basically a sequence of
actions. Several flow- and thread-control
mechanisms are available. The presented procedure
is named react. When invoked it triggers the
unconditional execution of the message action
and, if the number of input errors (@ifInErrors)
is greater than 200, the execution of the turn_off
action.

The complete user-input specification is
presented in figure 4 (using the values 10 for p and
20 for q).

The presented example illustrates some of the
constructs supported by the FMSS: actions,
procedures and events. Their roles in the example
are described bellow.

561-5

A High-Level Notation for NM Appl. Proc. INET'94 / JENC5 A. Brites et al.

Anything following a '#' is a comment.

GENERAL PARAMETERS
{
agent-set agent1, agent2, <...> agentn # network composition
log-file vigilante.log # log file name
}

DIRECTIVE FOR C-STYLE PRE-PROCESSOR
$INCLUDE definitions_file # file with useful

constant definitions

ACTION DEFINITION (SNMP-SET ACTION)
SNMP-sets turn_off {

ifAdminStatus=DOWN # turn off defective interface
}

ACTION DEFINITION (TEXT LOGGING ACTION)
Log message {

log a message about defective interface
eols(1)
"Defective interface:"
@ifDescr # interface descriptor at last error location
tabs(1)
"Agent: "
@hit_location # agent name at last error location
tabs(1)
"Number of errors:"
@ifInErrors # number of errors at last error location

}

PRE-PROCESSOR MACRO THAT FIGURES OUT WHETHER
ANY INTERFACE EXCEEDS p% INPUT ERRORS THRESHOLD

$DEFINE ERRORS(p) (ifInPkts-ifInPkts[1])*p/100 < ifInErrors-ifInErrors[1]

note that ifInErrors[1] means
"ifInErrors 1 polling period ago"

ERROR PROCEDURE FOR DEFECTIVE INTERFACE DETECTION
PROCEDURE react {

1 message # log the message
2 if @ifInErrors>200 then turn_off # conditionally turn off

the detected interface
}

"EVENT DEFINITION" FOR DEFECTIVE INTERFACE DETECTION
POLLED-EVENT detect {

construct that binds synchronous condition
monitoring definition to a corrective procedure

condition ERRORS(10) & ifInErrors>=20 # assertion for
detecting defective interfaces

poll-period 15 # 15 second period for polling

procedure react # do this if condition holds

}

Figure 4: user Specification Example

561-6

A High-Level Notation for NM Appl. Proc. INET'94 / JENC5 A. Brites et al.

• Event definition underlying protocol environment (SNMP or CMIP)
and the development of network management
application compilers capable of taking advantage
of the presented notation. These constitute two
challenging areas that can lead to the real openness
and to a high availability of network management
tools and applications.

An important construct of the FMSS is the
event since it may be used to model a fault
situation. Its main fields are the fault definition and
the procedure to execute when the fault occurs.

According to the fault situation nature, there are
two classes of events: synchronously monitored
(polled events) and asynchronously monitored. In a
polled event, the fault situation is described by a
condition (defined according to the BSR) that is
periodically tested. For asynchronously monitored
events the fault situation corresponds to the arrival
of a specified number of traps comprising a defined
set of characteristics. This class of events is not
present in the example.

VI. References

[1] Michael L. Kornegay, "Toward Useful - and
Standardized - SNMP Management
Applications", The Simple Times, vol. 2, no. 2,
pp. 1-4, March/April 1993.

[2] Allan Leinwand, Karen Fang, "Network
Management: a Practical Perspective".
Addison-Wesley Publishing Company, New
York, 1993.

The presented polled event is named detect.
When it is activated, the defined condition is tested
every 10 seconds (poll-period field). If the
condition is verified, the procedure specified in
the procedure field is executed.

[3] Jeffrey D. Case, Mark S. Fedor, Martin L.
Schoffstall, James R. Davin, "A Simple
Network Management Protocol", Request for
Comments 1157, DDN Network Information
Center, SRI International, May 1990.V. Conclusions And Future Work

[4] Jeffrey D. Case, Keith McCloghrie, Marshall T.
Rose, Steven Waldbusser, "Introduction to
version 2 of the Internet-standard Network
Management Framework", Request for
Comments 1441, SNMP Research Inc., Hughes
LAN Systems Inc., Dover Beach Consulting
Inc., Carnegie Mellon University, April 1993.

This paper presented the basic ideas behind a
project that addresses the development of a high
level notation for the specification of network
management applications. The notation is being
successfully used at the University of Coimbra as a
common language for the development of network
management tools and prototype applications.

[5] ISO/IEC 9596-1:1991 - Information technology
- Open Systems Interconnection - Common
management information protocol - Part 1:
Specification, Ed. 2, International Organization
for Standardization, International
Electrotechnical Comission, 1991.

The proposed notation has the intent to bridge
the gap between the basic mechanisms offered by
the common network management protocols/APIs
and the high-level functionality required by
network management applications.

The paper highlighted the simple but powerful
syntax rules of the notation, that enable an
application developer to easily write complex
expressions and object relations, and to define new
objects from numerical and logical expressions,
freeing him/her of the low-level details of network
management services and protocols. In addition, the
capability to use specialised syntax modules was
illustrated with the presentation of a specification
for a fault-management application.

[6] Marshall T. Rose, "The Simple Book - An
Introduction to Management of TCP/IP-based
Internets", Prentice-Hall International Inc.,
1991.

[7] Barry Bruins, "Windows SNMP: an SNMP API
for MS Windows Applications", The Simple
Times, vol. 2, no. 3, pp. 1-3, May/June 1993.

[8] Aiko Pras, Jacques Togtema, "SNMPv2 at
Twente University", The Simple Times, vol. 3,
no. 1, pp. 1-4, February 1994.The presented work opens a wide field for

research and development activities in network
management. At the moment, several specialised
syntax modules are being developed as well as a set
of tools that can interpret specifications written
according to the proposed notation. Although these
are very interesting activities, there are still two
highly promising areas to address: the development
of a notation that would be independent of the

[9] Marshall T. Rose, "Management Information
Base for Network Management of TCP/IP-based
Internets: MIB-II", Request for Comments 1213,
Performance Systems International, March
1991.

561-7

A High-Level Notation for NM Appl. Proc. INET'94 / JENC5 A. Brites et al.

Acknowledgement towards a M.S. degree in Information Systems and
Technologies. His current research interests include
network management, expert systems and
intelligent networks.

The work presented in this paper has been
partially funded by JNICT (Junta Nacional de
Investigação Científica e Tecnológica) under
contract number PBIC/C/TIT/1219/92. Edmundo Monteiro is Research Assistant and

Lecturer at the Electrical Engineering Department
of the University of Coimbra where he has been
involved in research in computer networks for the
past nine years. Currently he is working towards a
Ph.D. degree. He participates in RARE activities as
a member of the Working Group on Lower Layer
Technologies (WG-LLT) since 1987, and in the
Portuguese Academic Network RCCN since its
foundation. His current research interests include
network interconnection, performance, congestion
control and routing.

Author Information

Alfredo Brites is a software engineer for the
Portuguese ALCATEL Software Center in Cascais.
He received his B.S. degree in Informatics
Engineering in 1993 from the University of
Coimbra, where he worked on network
management research. He his currently interested in
the OSI network management framework and the
TMN network management concept.

Fernando Boavida is a Professor at the
University of Coimbra, Portugal, where he is the
leader of the Computer Communications Group. He
received the B.S. degree in Electrical Engineering
in 1982, the M.S. degree in Telecommunications in
1986, and the PhD degree in Informatics in 1990,
all from the University of Coimbra, Portugal. He is
the chairman of the Portuguese National Standards
Organization Technical Committees on
Telecommunications and Data Communications.
He participates in RARE activities and is a member
of EWOS EGLL. His current research interests
include network management, protocols for high-
speed networks, internetworking, and performance
evaluation of protocols. Mr. Boavida is a member
of IEEE.

Paulo Simões is involved in research in
computer networks at the Computer
Communications Laboratory of the University of
Coimbra. He received his B.S. degree in
Informatics Engineering in 1993 from the
University of Coimbra, where he is currently
working towards a M.S. degree in Information
Systems and Technologies. His current research
interests include network management, distributed
decision support systems and high-speed networks.

Paulo Leitão is a member of the research team
in computer networks at the Computer
Communications Laboratory of the University of
Coimbra. He received the B. S. degree in
Informatics Engineering from the University of
Coimbra in 1993, where he is currently working

561-8

