
1

Traffic Management

Karlsson, G., Roberts, J., Stavrakakis, I. (Eds), Alves, A., Avallone, S., Boavida, F.,
D’Antonio, S., Esposito, M., Fodor, V., Gargiulo, M., Harju, J., Koucheryavy, Y., Li,
F., Marsh, I., Mas Ivars, I., Moltchanov, D., Monteiro, E., Panagakis, A., Pescapè, A.,

Quadros, G., Romano, S., Ventre, G.

1 Introduction

Not written yet.

2 Traffic theory and flow aware networking

We argue here that traffic theory should be increasingly used to guide the design of the
future multiservice Internet. By traffic theory we mean the application of mathematical
modeling to explain the traffic-performance relation linking network capacity, traffic
demand and realized performance. Traffic theoretic considerations lead us to argue that
an effective QoS network architecture must be flow aware.

Traffic theory is fundamental to the design of the telephone network. The traffic-
performance relation here is typified by the Erlang loss formula which gives the prob-
ability of call blocking,

�
, when a certain volume of traffic, � , is offered to a given

number of circuits, � : ��� �����	��
 �	�����������
� �

�
������

The formula relies essentially only on the reasonable assumption that telephone calls
arrive as a stationary Poisson process. It demonstrates the remarkable fact that, given
this assumption, performance depends only on a simple measure of the offered traffic,
� , equal to the product of the call arrival rate and the average call duration.

We claim that it is possible to derive similar traffic-performance relations for the
Internet, even if these cannot always be expressed as concisely as the Erlang formula.
Deriving such relations allows us to understand what kinds of performance guarantees
are feasible and what kinds of traffic control are necessary.

It has been suggested that Internet traffic is far too complicated to be modeled using
the techniques developed for the telephone network or for computer systems [1]. While
we must agree that the modeling tools cannot ignore real traffic characteristics and that
new traffic theory does need to be developed, we seek to show here that traditional
techniques and classical results do have their application and can shed light on the
impact of possible networking evolutions.

2

Folowing a brief discussion on Internet traffic characteristics we outline elements of
a traffic theory for the two main types of demand: streaming and elastic. We conclude
with the vision of a future flow aware network architecture built on the lessons of this
theory.

2.1 Statistical characterization of traffic

Traffic in the Internet results from the uncoordinated actions of a very large population
of users and must be described in statistical terms. It is important to be able describe
this traffic succinctly in a manner which is useful for network engineering.

The relative traffic proportions of TCP and UDP has varied little over at least the
last five years and tend to be the same throughout the Internet. More than 90% of bytes
are in TCP connections. New streaming applications are certainly gaining in popularity
but the extra UDP traffic is offset by increases in regular data transfers using TCP. The
applications driving these document transfers is evolving, however, with the notable
impact over recent years first of the Web and then of peer to peer applications.

For traffic engineering purposes it is not necessary to identify all the different ap-
plications comprising Internet traffic. It is generally sufficient to distinguish just three
fundamentally different types of traffic: elastic traffic, streaming traffic and control traf-
fic. Elastic traffic corresponds to the transfer of documents under the control of TCP
and is so-named because the rate of transfer can vary in response to evolving network
load. Streaming traffic results from audio and video applications which generate flows
of packets having an intrinsic rate which must be preserved by limiting packet delay and
loss. Control traffic derives from a variety of signalling and network control protocols.
While the efficient handling of control traffic is clearly vital for the correct operation of
the network, its relatively small volume makes it a somewhat minor consideration for
traffic management purposes.

Fig. 1. Traffic on an OC192 backbone link.

Observations of traffic volume on network links typically reveal intensity levels (in
bits/sec) averaged over periods of 5 to 10 minutes which are relatively predictable from

3

day to day (see Figure 2.1). It is possible to detect a busy period during which the traffic
intensity is roughly constant. This suggests that Internet traffic, like telephone traffic,
can be modelled as a stationary stochastic process. Busy hour performance is evaluated
through expected values pertaining to the corresponding stationary process.

The traffic process can be described in terms of the characteristics of a number of
objects, including packets, bursts, flows, sessions and connections. The preferred choice
for modeling purposes depends on the object to which traffic controls are applied. Con-
versely, in designing traffic controls it is necessary to bear in mind the facility of char-
acterizing the implied traffic object. Traffic characterization proves most convenient at
flow level.

A flow is defined for present purposes as the unidirectional succession of packets
relating to one instance of an application (sometimes referred to as a microflow). For
practical purposes, the packets belonging to a given flow have the same identifier (e.g.,
source and destination addresses and port numbers) and occur with a maximum sepa-
ration of a few seconds. Packet level characteristics of elastic flows are mainly induced
by the transport protocol and its interactions with the network. Streaming flows, on the
other hand, have intrinsic (generally variable) rate characteristics that must be preserved
as the flow traverses the network.

Flows are frequently emitted successively and in parallel in what are loosely termed
sessions. A session corresponds to a continuous period of activity during which a user
generates a set of elastic or streaming flows. For dial-up customers, the session can be
defined to correspond to the modem connection time but, in general, a session is not
materialized by any specific network control functions.

The arrival process of flows in a backbone link typically results from the superposi-
tion of a large number of independent sessions and has somewhat complex correlation
behaviour. However, observations confirm the predictable property that session arrivals
in the busy period can be assimilated to a Poisson process.

The size of elastic flows (i.e., the size of the documents transferred) is extremely
variable and has a so-called heavy-tailed distribution: most documents are small (a few
kilobytes) but the number which are very long tend to contribute the majority of traffic.
The precise distribution clearly depends on the underlying mix of applications (e.g.,
mail has very different characteristics to MP3 files) and is likely to change in time as
network usage evolves. It is therefore highly desirable to implement traffic controls such
that performance is largely insensitive to the precise document size characteristics.

The duration of streaming flows also typically has a heavy-tailed distribution. Fur-
thermore, the packet arrival process within a variable rate streaming flow is often self-
similar [2, Chapter 12]. As for elastic flows, it proves very difficult to precisely describe
these characteristics. It is thus again important to design traffic controls which make
performance largely insensitive to them.

2.2 Traffic theory for elastic traffic

Exploiting the tolerance of document transfers to rate variations implies the use of
closed-loop control to adjust the rate at which sources emit. In this section we assume
closed-loop control is applied end-to-end on a flow-by-flow basis using TCP.

4

TCP realizes closed loop control by implementing an additive increase, multiplica-
tive decrease congestion avoidance algorithm: the rate increases linearly in the absence
of packet loss but is halved whenever loss occurs. This behavior causes each flow to
adjust its average sending rate to a value depending on the capacity and the current set
of competing flows on the links of its path. Available bandwidth is shared in roughly
fair proportions between all flows in progress.

A simple model of TCP results in the following well-known relationship between
flow throughput � and packet loss rate � :

� � � �
 constant
RTT � � �

where RTT is the flow round trip time (see [3] for a more accurate formula). This for-
mula illustrates that, if we assume the loss rate is the same for all flows, bandwidth is
shared in inverse proportion to the round trip time of the contending flows.

To estimate the loss rate one might be tempted to deduce the (self-similar, multi-
fractal) characteristics of the packet arrival process and apply queuing theory to derive
the probability of buffer overflow. This would be an error, however, since the closed-
loop control of TCP makes the arrival process dependent on the current and past conges-
tion status of the buffer. This dependence is captured in the above throughput formula.

The formula can alternatively be interpreted as relating � to the realized throughput
� . Since � actually depends on the set of flows in progress (each receiving a certain
share of available bandwidth), we deduce that packet scale performance is mainly de-
termined by flow level traffic dynamics. It can, in particular, deteriorate rapidly as the
number of flows sharing a link increases.

Consider the following fluid model of an isolated bottleneck link where flows arrive
according to a Poisson process. Assume that all flows using the link receive an equal
share of bandwidth ignoring, therefore, the impact of different round trip times. We
further assume that rate shares are adjusted immediately as new flows begin and existing
flows cease.

The number of flows in progress in this model is a random process which behaves
like the number of customers in a so-called processor sharing queue [4]. Let the link
bandwidth be � bits/s, the flow arrival rate � flows/s and the mean flow size � bits. The
distribution of the number of flows in progress is geometric:

���
	 � flows �
 ������ � � � �
where

�
���� �� is the link utilization. The expected response time � ��� � of a flow of
size

�
is:

� ��� ��

�

� ������ � �
From the last expression we deduce that the measure of throughput

� �� ��� � is indepen-
dent of flow size and equal to � ������� � .

It is well known that the above results are true for any flow size distribution. It is
further shown in [5] that they also apply with the following relaxation of the Poisson
flow arrivals assumption: sessions arrive as a Poisson process and generate a finite suc-
cession of flows interspersed by think times; the number of flows in the session, flow

5

sizes and think times are generally distributed and can be correlated. Statistical band-
width sharing performance thus depends essentially only on link capacity and offered
traffic.

Notice that the above model predicts excellent performance for a high capacity link
with utilization not too close to 100%. In practice, flows handled by such links are
limited in rate elsewhere (in the access network, by a modem,...). The backbone link is
then practically transparent with respect to perceived performance.

Fig. 2. Depiction of flow throughput for 90% link load.

The above model of ideally fair bandwidth sharing usefully illustrates two inter-
esting points which turn out to be more generally true. First, performance depends
primarily on expected traffic demand (in bits/second) and only marginally on parame-
ters describing the precise traffic process (distributions, correlation). Second, backbone
performance tends to be excellent as long as expected demand is somewhat less than
available capacity. The latter point is illustrated in Figure 2.

The figure depicts the throughput of flows traversing a bottleneck link of capacity
10 Mbps under a load of 90% (i.e., flow arrival rate � average flow size = 9 Mbps), as
evaluated by ns2 simulations. Flows are represented as rectangles whose left and right
coordinates correspond to the flow start and stop time and whose height represents
the average throughput. The flow throughput is also represented by the shade of the
rectangle: the lightest grey corresponds to an average rate greater than 400 Kbps, black
corresponds to less than 20 Kbps. In Figure 2, despite the relatively high load of 90%,
most flows attain a high rate, as the model predicts.

In overload, when expected demand exceeds link capacity, the processor sharing
queue is unstable: the number of flows in progress increases indefinitely as flows take
longer and longer to complete while new flows continue to arrive. Figure 3 shows a
rectangle plot similar to Figure 2 for an offered load equal to 140% of link capacity. The
rectangles tend to become black lines since the number of competing flows increases
steadily as the simulation progresses.

6

In practice, instability is controlled by users abandoning transfers, interrupting ses-
sions or simply choosing not to use the network at all in busy periods. The end result is
that link capacity is inefficiently used while perceived throughput performance becomes
unacceptable, especially for long transfers [6]. An effective overload control would be
to implement some form of proactive admission control: a new flow would be rejected
whenever the bandwidth it would receive falls below a certain threshold. Figure 4 is the
rectangle plot of the bottleneck link under 140% load with the application of admission
control. Flow throughput is maintained at around 100 Kbps represented by the medium
grey colour of the rectangles.

Fig. 3. Depiction of flow throughput for 140% link load.

Fig. 4. Depiction of flow throughput with admission control.

The above traffic theory does not lead to an explicit traffic-performance relation
showing how a provider can meet precise throughput guarantees. In fact, consideration

7

of the statistical nature of traffic, the fairness bias due to different round trip times and
the impact of slow-start on the throughput of short flows suggests that such guarantees
are unrealizable. A more reasonable objective for the provider would be to ensure a link
is capable of meeting a minimal throughput objective for a hypothetical very large flow.
This throughput is equal to � ������ � , even when sharing is not perfectly fair.

2.3 Traffic theory for streaming traffic

We assume that streaming traffic is subject to open-loop control: an arriving flow is
assumed to have certain traffic characteristics; the network performs admission control,
only accepting the flow if quality of service can be maintained; admitted flows are
policed to ensure their traffic characteristics are indeed as assumed.

The effectiveness of open-loop control depends on how accurately performance can
be predicted given the characteristics of audio and video flows. To discuss multiplex-
ing options we first make the simplifying assumption that flows have unambiguously
defined rates like fluids. It is useful then to distinguish two forms of statistical multi-
plexing: bufferless multiplexing and buffered multiplexing.

In the fluid model, statistical multiplexing is possible without buffering if the com-
bined input rate is maintained below link capacity. As all excess traffic is lost, the over-
all loss rate is simply the ratio of expected excess traffic to expected offered traffic, i.e.,
E
	 ����� � � ��� � E

	 ��� � where
���

is the input rate process and � is the link capacity. It is
important to notice that this loss rate only depends on the stationary distribution of the
combined input rate but not on its time dependent properties.

The level of link utilization compatible with a given loss rate can be increased by
providing a buffer to absorb some of the input rate excess. However, the loss rate real-
ized with a given buffer size and link capacity then depends in a complicated way on
the nature of the offered traffic. In particular, loss and delay performance turn out to be
very difficult to predict when the input process is self-similar (see [2, p. 540]). This is
a significant observation in that it implies buffered multiplexing leads to extreme diffi-
culty in controlling quality of service. Even though some applications may be tolerant
of quite long packet delays it does not appear feasible to exploit this tolerance. Simple
errors may lead to delays that are more than twice the objective or buffer overflow rates
that are ten times the acceptable loss rate, for example.

An alternative to meeting QoS requirements by controlled statistical multiplexing
is to guarantee deterministic delay bounds for flows whose rate is controlled at the net-
work ingress. Network provisioning and resource allocation then relies on results from
the so-called network calculus [7]. The disadvantage with this approach is that it typi-
cally leads to considerable overprovisioning since the bounds are only ever attained in
unreasonably pessimistic worst-case traffic configurations. Actual delays can be orders
of magnitude smaller.

Bufferless statistical multiplexing has clear advantages with respect to the facility
with which quality of service can be controlled. It is also efficient when the peak rate
of an individual flow is small compared to the link rate because high utilization is com-
patible with negligible loss

Packet queuing occurs even with so-called bufferless multiplexing due to the coin-
cidence of arrivals from independent inputs. While we assumed above that rates were

8

well defined, it is necessary in practice to account for the fact that packets in any flow
arrive in bursts and packets from different flows arrive asynchronously. Fortunately, it
turns out that the accumulation of jitter does not constitute a serious problem, as long
as flows are correctly spaced at the network ingress [8].

Fig. 5. Bandwidth sharing between streaming and elastic flows.

Though we have discussed traffic theory for elastic and streaming traffic separately,
integration of both types of flow on the same links has considerable advantages. By
giving priority to streaming flows, they effectively see a link with very low utilization
yielding extremely low packet loss and delay. Elastic flows naturally benefit from the
bandwidth which would be unused if dedicated bandwidth were reserved for streaming
traffic and thus gain greater throughput. This kind of sharing is depicted in Figure 5.

It is generally accepted that admission control must be employed for streaming
flows to guarantee their low packet loss and delay requirements. Among the large num-
ber of schemes which have been proposed in the literature, our preference is clearly
for a form of measurement-based control where the only traffic descriptor is the flow
peak rate and the available rate is estimated in real time. A particularly simple scheme
is proposed by Gibbens et al. [9]. In an integrated network with a majority of elastic
traffic, it may not even be necessary to explicitly monitor the level of streaming traffic.

2.4 A flow aware traffic management framework

The above considerations on traffic theory for elastic and streaming flows lead us to
question the effectiveness of the classical QoS solutions of resource reservation and
class of service differentiation [10]. In this section we outline a possible alternative
flow aware network architecture.

It appears necessary to distinguish two classes of service, namely streaming and
elastic. Streaming packets must be given priority in order to avoid undue delay and
loss. Bufferless multiplexing must be used to allow controlled performance of streaming
flows. Packet delay and loss are then as small as they can be providing the best quality

9

of service for all applications. Bufferless multiplexing is particularly efficient under the
realistic conditions that the flow peak rate is a small fraction of link capacity and the
majority of traffic using the link is elastic.

Elastic flows are assumed to fairly share the residual bandwidth left by the priority
streaming flows. From results of the processor sharing model introduced above, we
deduce that the network will be virtually transparent to flow throughput as long as
overall link load is not too close to one. This observation has been confirmed by NS
simulations of an integrated system [11].

Per flow admission control is necessary to preserve performance in case demand ex-
ceeds link capacity. We advocate applying admission control similarly to both streaming
and elastic flows. If elastic traffic is in the majority (at least 90% at present), the admis-
sion decision could be based simply on a measure of the bandwidth currently available
to a new elastic flow. If relative streaming traffic volume increases, an additional crite-
rion using an estimation of the current overall streaming traffic rate could be applied as
envisaged in [9].

Implementation of flow aware networking obviously requires a reliable means of
identifying individual flows. A flow identifier could be derived from the usual microflow
5-tuple of IPv4. A more flexible solution would be to use the flow label field of the IPv6
packet header allowing the user to freely define what he considers to constitute a ‘flow’
(e.g., all the elements of a given Web page).

Flow identification for admission control would be performed ‘on the fly’ by com-
paring the packet flow identifier to a list of flows in progress on a controlled link. If the
packet corresponds to a new flow, and the admission criteria are not satisfied, the packet
would be discarded. This is a congestion signal to be interpreted by the user, as in the
probe-based admission schemes discussed in Section XX. If admissible, the new flow
identifier is added to the list. It is purged from the list when no packet is observed in a
certain timeout interval.

Admission control preserves the efficiency of links whose demand exceeds capac-
ity. Rather than rejecting excess flows, a more satisfactory solution would be to choose
an alternative route. This constitutes a form of adaptive routing and would consider-
ably improve network robustness and efficiency compared to that currently offered by
Internet routing protocols.

Admission control can be applied selectively depending on a class of service associ-
ated with the flow. Regular flows would be rejected at the onset of congestion, premium
flows only if congestion even then degrades to some higher degree. This constitutes a
form of service differentiation with respect to accessibility.

Note finally that all admitted flows have adequate quality of service and are there-
fore subject to charging. A simple charging scheme is appropriate based on byte count-
ing without any need to distinguish different service classes: streaming flows experience
negligible packet loss and delay while elastic flows are guaranteed a higher overall
throughput.

10

3 An IP Service Model for the Support of Traffic Classes

3.1 Introduction

The project that led to the development of the IP service model presented in this text
started with the development of a metric for evaluating the quality of service in packet
switched networks. Such a metric, presented in [12] and hereafter named QoS metric,
is aimed at measuring quantifiable QoS characteristics [13] in communication systems,
as throughput, transit delay or packets loss. It is especially tailored to the intermediary
layers of communication systems, namely the network layer. During the metric develop-
ment some ideas arose and were subsequently refined, progressively leading to a novel
IP service model.

The central idea behind the proposed model is still to treat the traffic using the
classical best effort approach, but with the traffic divided into several classes instead
of a single class. This corresponds to a shift from a single-class best-effort paradigm
to a multiple-class best-effort paradigm. In order to do this, a strategy which dynami-
cally redistributes the communication resources is adopted, allowing classes for which
degradation does not cause a significant impact to absorb the major part of congestion,
thereby relieving the remaining classes.

Classes are characterized by traffic volumes, which can be potentially very different,
and can be treated better or worse inside the communication system according to their
needs and to the available resources. This means that classes may suffer better or worse
loss levels inside the network and their packets may experience bigger or smaller transit
delays. The model’s capacity to differentiate traffic is achieved by controlling the transit
delay and losses suffered by packets belonging to different classes, through the dynamic
distribution of processing and memory resources. The bandwidth used by the traffic is
not directly controlled, because the characteristics of the model make it unnecessary.

3.2 Service Model

The model proposal discussed here follows the differentiated services architecture [14]
and considers that traffic is classified into classes according to its QoS needs. The cen-
tral idea is still to treat the traffic using the best effort approach, but with the traffic
divided into several classes instead of a single one. Thus, traffic is still treated as well
as possible, but that now means different things according to the considered class.

In order to do that, a strategy is adopted which dynamically redistributes the com-
munications resources, allowing classes for which degradation does not have a signifi-
cant impact to absorb the major part of it, thereby relieving the remaining ones.

The model’s capacity to differentiate traffic is achieved by controlling the transit
delay and losses suffered by packets of the different classes (which is the goal of the
dynamic distribution of resources). The bandwidth used by the traffic is not controlled.
Given the characteristics of the model, this kind of control is not necessary (and not
possible either).

In fact, as one of the main goals of the model is to avoid complexity, traffic spec-
ifications and explicit resource reservations are not considered. As a result, it is not
possible to anticipate the bandwidth used by the different classes and, consequently, it

11

does not make sense to base a strategy of differentiation on the active control of this
QoS characteristic. Classes are characterized by very different volumes, which can be
treated better or worse inside the communication system. This means that classes may
suffer better or worse loss levels inside the network and their packets may experience
bigger or smaller transit delays. Consequently, this model exerts its action controlling
these two characteristics.

The proposed IP service model is based on the following three main components:

– network elements, comprising the resources and mechanisms that implement the
multiple-class-best-effort service;

– dynamic QoS-aware routing, which accounts for the routing of traffic taking into
account its QoS needs;

– communications system management, which accounts for the dimensioning and
operability of the communication system, including traffic admission control func-
tions, the main goal of which is to avoid scenarios of extreme high load.

The model presented here proposes the evolution of the single-class-best-effort paradigm,
currently used in the Internet, into a multiple-class-best-effort paradigm. One of the
most important challenges for building such a paradigm, given that the framework of
this proposal is the IETF DS model, is the definition of a PHB able to rule the behaviour
of network elements, named D3 PHB.

In general terms, traffic is divided into classes according to their sensitivity to transit
delay and packets loss degradation. As a result of network elements behaviour, traffic
with higher sensitivity to degradation is protected at the expense of less sensitive traffic.
Thus, the idea is to dynamically and asymmetrically redistribute the degradation among
the different classes, protecting some classes at the expense of others – hence the name
D3, which stands for Dynamic Degradation Distribution.

The strategy for this effect is built on measuring continuously the quality of ser-
vice given to each traffic class and, according to the obtained measures, adjusting the
mechanisms responsible for packet processing dynamically. The question is which cri-
terion should be used for a degradation distribution among classes that is considered
reasonable or sensible?

The QoS metric mentioned above is particularly adequate for this purpose, as shown
below. The metric’s main principle is to evaluate the impact of the variations of QoS
characteristics (not the QoS characteristics variations themselves) in one or the other
direction with respect to the normal range of values. The metric defines degradations
and superfluity zones which, in turn, define how the impact varies with QoS character-
istics variations. It defines such zones for each QoS characteristic (e.g. transit delay or
packets loss) and for each traffic flow or traffic class. Through the aggregation of finer
measurements (e.g. the ones corresponding to a given QoS characteristic of a given
flow) it is possible to construct broader measures (e.g. measurements corresponding to
a given traffic class, constituted by a combination of a given set of QoS characteristics).

The D3 PHB was first presented in [15], from which Figure 6 has been extracted.
In this figure (upper left corner), an example is presented of three classes with different
sensitivity to transit delay degradation – high, medium and low, respectively.

The network elements’ main goal is to guarantee that the impact of the transit delay
and packet loss degradation on the applications is the same for all the three classes (to

12

facilitate the presentation let us consider for now transit delay only). Therefore, network
elements must control the transit delay suffered by packets of the three different classes
in such a way that the congestion indexes related to this QoS characteristic are the same
for all classes. Considering again Figure 6 as a reference, suppose that for a certain load
level, which happens in the instant of time t1, this impact is evaluated by the index value
CI
���

. Then, the transit delays suffered by the packets of each class are, from the most to
the least sensitive, d1, d2 and d3, respectively.

Fig. 6. Congestion indexes for three traffic classes with different sensitivity to delay degradation.

In a more formal manner, the above mentioned goal means that the following equa-
tion holds for any time interval [t

�
, t
�
�
�
]:

�������	��
���	��� ���� ����� 	 ��� � ��� �
� �
 �������	��
���	��� ���� ����� 	 ��� � ��� �

� �
 � � �
�������	�
����	��� ���� ����� 	 ��� � ��� �
� �
 �������	� ��� ����� 	 ��� � ��� �

� � � (1)

Exactly the same reasoning should be made if packet losses, instead of transit delay,
are used as the QoS characteristic for evaluating the degradation of quality of service.
In this case the formula which applies to any time interval [t

�
, t
�
�
�
] is the following:

�������	��
���	��� � "! ��� 	 ��� � ��� �
� �
 �������	��
���	��� � "! ��� 	 ��� � ��� �

� �
 � � �
��� ���	��
���	��� � "! ���
	 � � � � � �

� �
 ��� ���	� "! ��� 	 � � � � � �
� � � (2)

Thus, equations 1 and 2 establish the formal criterion which rules the network ele-
ments’ behaviour in respect to the way IP packets are treated. Through its simultaneous
application, network elements control, in an integrated way, the transit delay and loss
level suffered by the different classes.

13

To understand the way traffic from classes more sensitive to degradation is, in fact,
protected from less sensitive traffic, let us consider again Figure 7. Its upper left corner
represents a load situation that corresponds, as seen before, to a congestion index equal
to CI

���
.

Suppose that at a given instant of time, t2, the load level to which the network ele-
ment is submitted, rises. The impact of the degradation felt by the different applications
(which generate traffic for the different classes) will also rise. The mechanisms of the
network element will adjust themselves taking into account the criterion for resource
distribution, that is, the values of such an impact (the congestion indexes) must be equal
for all the classes. As can be seen in Figure 7 (right side), this corresponds to transit de-
lays from the most to the least sensitive class of d’1, d’2 and d’3, respectively.

It is possible to see clearly in the figure that the value of (d’1-d1) is lower than the
value of (d’2-d2) which, in turn, is lower than the value of (d’3-d3). Thus, the increase
in transit delay suffered by packets of the different classes, when the load grows, is
lower for classes that are more sensitive to transit delay degradation and greater for
less sensitive classes. Hence, the degradation that happened at t2 was asymmetrically
distributed among the different classes, the major part of it being absorbed by the ones
less sensitive to degradation. Summing up, more sensitive classes are in fact protected
at the expense of less sensitive classes, which is one of the most important goals of this
proposal.

Finally, it is important to say that the control of the way in which some classes are
protected at the expense of others, or even of the degradation part effectively absorbed
by less sensitive classes, is materialized through the definition of the degradation sen-
sitivity for each class (or, which is the same, through the definition of the size of each
degradation zone).

3.3 An implementation of the D3 per-hop behaviour

It order to test the ideas put forward in the proposed IP service model, it was decided to
build a prototype of the D3 PHB. This section describes this prototype.

The packet scheduler The basic idea of the work described in this section was the in-
tegration of the characteristics of the work-conserving (WC) and non-work-conserving
(NWC) disciplines in one single mechanism, in order to obtain a new packet scheduler,
which was simple but very functional – considering the characteristics of the PHB it
would have to support – and able to effectively overcome the difficulties revealed by
the experiments referred to in the previous sub-section.

Such a scheduler was first described in [16]. Figure 7 – extracted from that paper –
presents the logical diagram of the scheduler. This figure shows the scheduler organised
into two modules that reflect two stages of the controller’s development.

Taking DEQUEUE TIME as the instant of time after which the controller may pro-
cess the next packet in a certain queue, XDELAY as the period of time that must pass
between the processing of two consecutive packets in a certain queue (that is to say, the
minimum time that a packet must wait in its queue), and TEMPO as the current system
time, this is, concisely, how the scheduler works:

14

Fig. 7. Logical diagram of the scheduler implemented at LCT.

– it sequentially visits (round-robin) each IP queue, meaning, each class;
– on each visit it compares TEMPO against the value of the variable DEQUEUE TIME

that characterises the queue; if the first is greater than the second, the packet at the
head of the queue is processed;

– on each visit it updates, if necessary, the queue’s DEQUEUE TIME (which is done
by adding the value of the variable XDELAY1 to TEMPO);

– for the most important class (the reference class), XDELAY is zero, which means
that the scheduler behaves as a WC one. For all the other classes XDELAY will be
greater than zero and will reflect the relative importance of each class. In this way,
in these cases, the controller behaves as a NWC controller.

The packet dropper Having developed the packet scheduler, the next challenge be-
came the conception of an integrated solution to control the loss of packets. In this text
it has been referred to as the packet dropper (as opposed to the packet scheduler). In
reality, the construction of the model demands far more that one packet dropper. It de-
mands an active queue management strategy that allows not only an intelligent drop of
the packets to be eliminated, but also an effective control of the loss level suffered by
the different classes (without this, the operational principle of equality of the congestion
indexes related to losses cannot be accomplished).

The queue management system was first presented in [17]. In general terms, the
present system involves the storing of packets in queues and their discarding when nec-
essary. It is composed of two essential modules – the queue length management module
(QLMM) and the packet drop management module (PDMM) � The network element’s
general architecture, including the queue management system and the packet scheduler,
is presented in Figure 8.

1 X DELAY means the time, in � s, that the packet must wait in its queue.

15

Fig. 8. Network element’s general architecture [15].

3.4 Tests made to the D3 PHB implementation

The tests made to the D3 implementation can be subdivided into three main groups:
robustness tests, performance tests and functional tests. During the development of the
work presented here, tests pertaining to each of these groups were carried out.

The tests were carried out using both the QoStat tool [18] and netiQ’s Chariot tool
[19]. QoStat is a graphical user interface tool with the following characteristics:

– Graphical and numerical real-time visualisation of all values pertaining to the pro-
vision of quality of service by network elements, such as transit delay, number of
processed packets, number of dropped packets per unit of time, queues’ length, and
used bandwidth.

– On the fly modification of all QoS-related operational parameters of network ele-
ments, such as maximum queue lengths, WFQ/ALTQ queue weights, virtual and
physical queue limits, sensitivity of classes to delay degradation, and sensitivity of
classes to loss degradation.

The tests made to the packet scheduler whose objective was to perform a first evaluation
of the differentiation capability of the prototype, clearly showed the effectiveness of the
scheduler. The tests’ description and their results are presented in [16].

One example is the test carried out over a small isolated network composed of
two source hosts independently connected through a router (with the new scheduler
installed) to a destination host. All the hosts were connected through 100 Mbps Fast
Ethernet interfaces and configured with queues with a maximum length of 50 packets.
Two independent UDP flows composed of 1400 bytes packets were generated at the

16

Fig. 9. left) Average IP transit delay (over 1-sec intervals); right) Number of packets sent per
second

maximum possible rate, using the two different source hosts. They were associated to
two different classes.

The general test strategy was the following: to set the X DELAY associated with
class 12 to zero, to vary the X DELAY associated with class 3 (qostat tool was used
to dynamically change those values, at the end of each 25 seconds time interval3, from
0, to 10, 15, 50 and 200). Moreover, each 25 sec interval was divided into two parts.
During the first part the scheduler module 2 (see Figure 7)4 was activated; in the second
part module 2 was deactivated.

Figure 9 shows the results of such a test. Its left part shows the average transit delay
of packets at IP level, measured over 1-second time intervals. The right part the number
of packets sent by the output interface per 1-second interval.

It is apparent that for the referred conditions the scheduler is able to differentiate
traffic. It is also evident the importance of the scheduler module 2. Without the action
of that module the scheduler is not able to differentiate traffic.

Tests made to the packet dropper, or, more precisely, on the active queue manage-
ment system, were carried out in two distinct phases. In the first phase, the queue length
management module (QLMM) was tested. The second phase tested the packet dropper
management module (PDMM). These tests are presented in [15, 17] and they will be
summed-up here.

Reference [16] presents tests that pertain to a scenario where the sensitivity to transit
delay degradation is kept constant and the sensitivity to loss degradation varies over
time. A variety of tests were performed. The results of one of these tests (using two
classes) are shown in Figure 10 (fixed DSLOPE � ! ��� � � 5, equal to 20

!
for one of the

flows and to 70
!

for the other).

2 Whose queue is named q1 in the figures.
3 We did not use class 2 in the tests. As we are only using traffic of classes 1 and 3 the measured

values of class 0 are always null.
4 This module guarantees that no packet can be processed, under any circumstances, before its

DEQUEUE TIME has come, even if there is only one class with outstanding packets.
5 DSLOPE (Degradation Slope)

17

Fig. 10. Tests results in the following scenario: fixed DSLOPElosses, equal to 20� for the q2 flow
and to 70 � for the q1 flow; delay sensitivity varied over time.

It is possible to observe that, under these conditions, the behaviour is as expected.
The number of packets that get processed per unit of time, which is a complement of
the number of dropped packets per unit of time, is constant and consistent with the
respective loss class sensitivity, DSLOPE � ! ��� � � . This happened in spite of the fact that
transit delay was made to vary over time.

3.5 Conclusions and further work

One of the main objectives of the work presented in this paper was the conception of
an IP service model based on the so called multiple-class-best-effort (mc-be) paradigm.
This model is intended to deal with traffic classes taking into account their specific QoS
needs, while still treating them as well as possible (without leaving aside the actual IP
technology).

The applications do not have to specify the characteristics of the traffic they gener-
ate, nor explicitly request the QoS levels they need. Under heavy load conditions in the
communication system (i.e. when performance degradation is likely to happen), they
receive a better or worse treatment according to the traffic class they have chosen. This
reflects the sensitivity to degradation pre-configured for each class, namely, the traffic
sensitivity to delay degradation and the traffic sensitivity to the degradation of the level
of packet losses.

The work presented here has strategically focused on the network element. This was
achieved through the conception of a Per Hop Behaviour (PHB) capable of supporting
the referred to model (the D3 PHB – Dynamic Degradation Distribution), and by the
construction of the respective prototype.

The tests carried out on the prototype showed a very promising behaviour with
regard to its capacity for differentiating the treatment applied to the classes in a coher-
ent and controllable way. However, in order to characterise and evaluate the presented
model in a more precise manner, it is clear that the prototype must be further tested, us-
ing network load conditions closer to those which actually happen inside IP networks.
The development of other components of the model also fits into future work, namely,

18

the development of the QoS-based routing component and the traffic admission control
component which, as referred to above, are currently being developed at the LCT-UC
[20–22].

Meanwhile, there is a set of contributions that stand out, as results of the work pre-
sented in this text: (1) a metric for the evaluation of QoS in IP networks; (2) an IP
service model that supports the mc-be paradigm; (3) a PHB that supports the model,
specifically considering the network element – the D3 PHB; (4) an implementation of
such a PHB model involving the building of a packet scheduler and a queuing manage-
ment system, which work together towards the D3 purposes.

4 Probe–based admission control in IP networks

4.1 Introduction

Today’s new applications on the Internet require a better and more predictable ser-
vice quality than what is possible with the available best–effort service. Audio-visual
applications can handle limited packet loss and delay variation without affecting the
perceived quality. Interactive communication in addition requires stringent delay re-
quirements. For example, IP telephony requires roughly speaking a maximum of 150
ms one–way delay that needs to be kept during the whole call.

The question of whether to provide the required service quality by over–provisioning
network resources, or by admission control and reservation schemes, has been dis-
cussed extensively in the last years. In [23], Breslau and Shenker compare network
performance and cost with over–provisioning and reservation. Considering non–elastic
applications, their analysis shows that the amount of incremental capacity needed to
obtain the same performance with a best–effort network as with a reservation–capable
network diverges as capacity increases. Reservation retains significant advantages in
some cases over over–provisioning, no matter how inexpensive the capacity becomes.
Consequently, efficient reservation schemes can play an important role in the future
Internet.

The IETF has proposed two different approaches to provide quality of service guar-
antees: Integrated Services (IntServ) [24] and Differentiated Services (DiffServ) [25].
IntServ provides three classes of service to the users: The guaranteed service (GS) of-
fers transmission without packet loss and bounded end-to-end delays by assuring a
fixed amount of capacity for the traffic flows [26]; the controlled load service (CLS)
provides a service similar to a best–effort service in a lightly loaded network by pre-
venting network congestion [27]; and, finally, the best–effort service lacks any kind of
QoS assurances.

In the IntServ architecture, GS and CLS flows have to request admission from the
network using the resource reservation protocol RSVP [28]. RSVP provides unidirec-
tional per–flow resource reservations. When a sender wants to start a new flow, it sends
a path message to the receiver. The message traverses all the routers in the path to the re-
ceiver, which replies with a resv message indicating the resources needed at every hop.
This resv message can be denied by any router in the path, depending on the availability
of resources. When the sender receives the resv message, the network has reserved the

19

required resources along the transmission path and the flow is admitted. IntServ routers
thus need to keep per–flow states and must process per–flow reservation requests, which
can create an unmanageable processing load in the case of many simultaneous flows.
Consequently, the IntServ architecture provides excellent quality in the GS class, and
tight performance bounds in the CLS class, but has known scalability limitations.

The second approach for providing QoS in the Internet, the DiffServ architecture,
puts much less burden on the routers, thus providing much better scalability. DiffServ
uses an approach referred to as class of service (CoS), by mapping multiple flows into
two default classes. Applications or ingress nodes mark packets with a DiffServ code
point(DSCP) according to their QoS requirements. This DSCP is then mapped into
different per–hop behaviors (PHB) at each router on the path, like expedited forward-
ing [29], or assured forwarding [30]. The routers additionally provide a set of priority
classes with associated queues and scheduling mechanisms, and they schedule packets
based on the per–hop behavior.

The drawback of the DiffServ scheme is that as it does not contain admission con-
trol. The service classes may be overloaded and all the flows belonging to that class
may suffer increased packet loss. To handle overload situations, DiffServ relies on ser-
vice level agreements (SLA) between DiffServ domains, which establish the policy
criteria, and define the traffic profiles. Traffic is policed and smoothed at ingress points
according to the SLA. Traffic that is out of profile (i.e. above the upper bounds of ca-
pacity usage stated in the SLA) at an ingress point has no guarantees and can be either
dropped, over charged, or downgraded to a lower QoS class. Compared to the IntServ
solution, DiffServ improves scalability at the cost of a less predictable service to user
flows. Moreover, DiffServ eliminates the possibility to change the service requirements
dynamically by the end user, since it would require signing a new SLA. Thus providing
of quality of service is almost static.

Both IETF schemes provide end–to–end QoS with different approaches and thus
with different advantages and drawbacks. Recent efforts focus on combining both schemes,
like RSVP aggregation [31], the RSVP DCLASS object [32], or the proposal of the in-
tegrated services over specific link layer working group (ISSLL) to provide IntServ over
DiffServ networks [33], that builds on RSVP as signaling protocol but uses DiffServ to
actually share the resources among the flows.

4.2 Per–hop Measurement Based Admission Control Schemes

Recently, a set of measurement–based admission control schemes has appeared in the
literature. These schemes follow the ideas of IntServ, with connection admission control
algorithms to limit network load, but without the need of per–flow states and exact
traffic descriptors. They use some worst–case traffic descriptor, like the peak rate, to
describe flows trying to enter the network, and then to base the acceptance decision in
each hop on real–time measurements of the individual or aggregate flows.

All these algorithms focus on provisioning resources at a single network node and
follow some admission policy, like complete partitioning or complete sharing. The com-
plete partitioning scheme assumes a fixed partition of the link capacity for the different
classes of connections. Each partition corresponds to a range of declared peak rates,
and the partitions cover together the full range of allowed peak rates without overlap.

20

A new flow is admitted only if there is enough capacity in its class partition. This pro-
vides a fair distribution of the blocking probability amongst the different traffic classes,
but it risks lowering the total throughput if some classes are lightly loaded while oth-
ers are overloaded. The complete sharing scheme, on the contrary, makes no difference
among flows. A new flow is admitted if there is capacity for it, which may lead to a
dominance of flows with smaller peak rate. To perform the actual admission control,
measurement–based schemes use RSVP signaling.

The idea of measurement based admission control is further simplified in [34]. In
this proposal the edge routers decide about the admission of a new flow. Edge routers
passively monitor the aggregate traffic on transmission paths, and accept new flows
based on these measurements.

An overview of several MBAC schemes is presented in [35]. This overview reveals
that all the considered algorithms have similar performance, independently of their al-
gorithmic complexity. While measurement–based admission control schemes require
limited capabilities from the routers and source nodes, compared to traditional admis-
sion control or reservation schemes, like RSVP, they show a set of drawbacks: Not all
proposed algorithms can select the target loss rate freely, flows with longer transmis-
sion paths experience higher blocking probabilities than flows with short paths, and
flows with low capacity requirements are favored over those with high capacity needs.

4.3 Endpoint Admission Control Schemes

In the recent years a new family of admission control solutions has been proposed
to provide admission control for controlled–load like services, with very little or no
support from routers. These proposals share the common idea of endpoint admission
control: A host sends probe packets before starting a new session and decides about
the flow admission based on statistics of probe packet loss [36, 37], explicit congestion
notification (ECN) marks [38–40], delay or delay variation [41–43]. The admission
decision is thus moved to the edge nodes, and it is made for the entire path from the
source to the destination, rather than per–hop. Consequently, the service class does
not require explicit support from the routers, other than one of the various scheduling
mechanisms supplied by DiffServ, and possibly the capability of marking packets.

In most of the schemes the accuracy of the probe process requires the transmission
of a large number of probe packets to provide measurements with good confidence.
Furthermore, the schemes require a high multiplexing level on the links to make sure
that the load variations are small compared to the average load.

A detailed comparison of the different endpoint admission control proposals is given
in [44], showing that the performance of the different admission control algorithms
is quite similar, and thus the complexity of the schemes may be the most important
design consideration. The following sections briefly summarize the three main sets of
proposals.

Admission control based on probe loss statistics In the proposal from Karlsson et
al. [36, 37, 45, 46] the call admission is decided based on the experienced packet loss
during a short probe phase, ensuring that the loss ratio of accepted flows is bounded.

21

Delay and delay jitter are limited by using small buffers in the network. Probe packets
and data packets of accepted flows are transmitted with low and high priority respec-
tively, to protect accepted flows from the load of the probe streams. The probing is done
at the peak rate of the connection and the flow is accepted if the probe packet loss rate
is below a predefined threshold. This procedure ensures that the packet loss of accepted
flows is always below the threshold value.

Admission control based on ECN marks The congestion level in the network in the
proposal from F. Kelly et al. [39] and T. Kelly [40] is determined by the number of
probe packets received with ECN marks by the end host. In this case, probe packets
are transmitted together with data packets. To avoid network overload caused by the
probes themselves the probing is done incrementally in probe rounds that last approx-
imately one RTT, up to the peak rate of the incoming call. ECN–enabled routers on
the transmission path set the ECN congestion experienced bit when the router detects
congestion, e.g., when the buffer content exceeds a threshold or after a packet loss [38].
The call is accepted if the number of marked packets is below a predefined value. This
proposal suggests that by running appropriate end–system response to the ECN marks,
a low delay and loss network can be achieved.

The call admission control is coupled with a pricing scheme [47]. In this case users
are allowed to send as much data as they wish, but they pay for the congestion they
create (the packets that are marked). In this congestion pricing scheme the probing pro-
tocol estimates the price of a call, that is compared with the amount the end–system is
willing to pay. The scheme does not provide connections with hard guarantees of ser-
vice; it merely allows connections to infer whether it is acceptable to enter the network
or not.

Admission control based on delay variations Bianchi et al. [43, 48] (first version
published in [42]) propose to use measurements on the variation of packet inter–arrival
time to decide about call admission, based on the fact that a non–negligible delay jitter
can be observed even for accepted loads well under the link capacity. The admission
control is designed to support IP telephony, thus it considers low and constant bit rate
flows. The probe packets are sent at a lower priority than data packets. The probing
phase consists of the consecutive transmission of a number of probe packets with a
fixed inter–departure time. A maximum tolerance on the delay jitter of the received
probe packets is set at the receiving node, and the flow is rejected immediately if the
condition fails for one probe packet. The maximum tolerance on the delay jitter and the
number of probe packets transmitted regulates the maximum level of accepted load on
the network links. This maximum load is selected in a way such that the packet loss
probability and end–to–end delay requirements for the accepted calls are met.

4.4 PBAC: Probe–Based Admission Control

As an example, we discuss the endpoint admission control procedure based on packet
loss statistics in detail [36, 37, 45, 46]. This solution offers a reliable upper bound on

22

the packet loss for the accepted flows, while it limits the delay and delay jitter by the
use of small buffers in the routers.

The admission control is done by measuring the loss ratio of probe packets sent at
the peak rate of the flow and transmitted with low priority at the routers. The scheduling
system of the routers consequently has to differentiate data packets from probe packets.
To achieve this, two different approaches are possible. In the first one there are two
queues, one with high priority for data and one with low priority for probe packets (see
Figure 11). In the second approach, there is just one queue with a discard threshold for
the probes. Considering the double–queue solution the size of the high priority buffer
for the data packets is selected to ensure a low maximum queuing delay and an accept-
able packet loss probability, i.e., to provide packet scale buffering [49]. The buffer for
the probe packets on the other hand can accommodate one packet at a time, to ensure
an over–estimation of the data packet loss. The threshold–queue can be designed to
provide similar performance, as it is shown in [45], and the choice between the two
approaches can be left as a decision for the router designer.

Figure 12 shows the phases of the PBAC session establishment scheme. When a host
wishes to set up a new flow, it starts by sending a constant bit rate probe at the maximum
rate the data flow will require. The probing time is chosen by the sender from a range
of values defined in the service contract. This range forces new flows to probe for a
sufficient time to obtain a sufficiently accurate measurement, while it prohibits them
from performing unnecessarily long probes. The probe packet size should be small
enough so that there are sufficient number of packets in the probing period to perform
the acceptance decision. When the host sends the probe packets, it includes the peak
bit rate and the length of the probe, as well as a packet and flow sequence number in
the data field of each packet. With this information the end host can perform an early
rejection, based on the expected number of packets that it should receive not to surpass
the target loss probability. The probe contains a flow identifier to allow the end host to
distinguish probes for different sessions. Since one sender could open more than one
session simultaneously, the IP address in the probes is not enough to differentiate them.
When the probe process finishes, the sender starts a timer with a value over two times
the expected round trip time. This timer goes off in case the sender does not receive
an acknowledgement to the probe. The timer allows the sender to infer that none of
the probe packets went through or the acknowledgement packet with the acceptance
decision from the receiver got lost. The sender assumes the first scenario and backs off
for a long period of time, still waiting for a possible late acknowledgement. In case a late
acknowledgement arrives the sender acts accordingly and cancels the backoff process.

Upon receiving the first probe packet for a flow, the end host starts counting the
number of received packets and the number of lost packets (by checking the sequence
number of the packets it receives). When the probing period finishes and the end host
receives the last probe packet, it compares the probe loss measured with the target loss
and sends back an acknowledgement packet accepting or rejecting the incoming flow.
This acknowledgement packet is sent back at high priority to minimize the risk of loss.
If the decision is positive, the receiver starts a timer to control the arrival of data packets.
The value of this timer should be slightly more than two RTTs. If this timer goes off,
the host assumes that the acceptance packet has been lost and resends it.

23

8

Packet Buffers

8

Packet Buffers

Threshold
2 packets

Data

Probes
+ Low + High

priority

High
priority

Low
priority

Low + High
priority

Threshold Queue
Scheme

Double Queue
SchemePacket Buffers

2Probes

Data

The queueing scheme of the CLS

Fig. 11. The queueing system.

ACK

ACK

new
session

new
session

new
session

NACK

Probe

Probe

Probe

Probe

ACK

Data

Data

Data

Measurement
Probe length

Ploss < Ptarget

Measurement
Probe length

Ploss < Ptarget

Backoff
time

Probe length

Measurement

Measurement

Probe length

Ploss < Ptarget

Ploss > Ptarget

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

Fig. 12. The probing procedure.

Finally, when the sending host receives the acceptance decision, it starts sending
data with high priority, or, in the case of a rejection, it backs off for a certain amount
of time, before starting to probe again. In subsequent tries, the sender host can increase
the probe length, up to the maximum level allowed, so that a higher accuracy on the
measurement is achieved. There is a maximum number of retries that a host is allowed to
perform before having to give up. The back off strategy and the number of retries affect
the connection setup time for new sessions and should be carefully tuned to balance the
acceptance probability with the expected setup delay.

The acceptance threshold is fixed for the service class and is the same for all ses-
sions. The reason for this is that the QoS experienced by a flow is a function of the
load from the flows already accepted in the class. Considering that this load depends
on the highest acceptance threshold among all sessions, by having different thresholds
all flows would degrade to the QoS required by the one with the less stringent require-
ments. The class definition also has to state the maximum data rate allowed to limit the
size of the sessions that can be set up. Each data flow should not represent more than a
small fraction of the service class capacity (in the order of 1%), to ensure that statistical
multiplexing works well.

A critical aspect of end–to–end measurement based admission control schemes is
that the admission procedure relies on common trust between the hosts and the network.
If this trust is not present, security mechanisms have to protect the scheme. First, as
end hosts decide about the admission decision based on measurements performed in
the network, their behavior has to be monitored to avoid resource misuse. Second, as
information on the call acceptance has to be transmitted from the receiving node to
the source, intruder attacks on the transmission path altering this information have to
be avoided. The specific security mechanisms of the general end–to–end measurement
based admission control schemes can be addressed in different ways that are out of the
scope of this overview, but a simple cryptographic scheme has been proposed in [50].

Application to Multicast A solution to extend the idea of end-to-end measurement
based admission control for multicast communication is presented in [46]. The pro-

24

posed scheme builds on the unicast PBAC process. The admission control procedure
assumes a sender–based multicast routing protocol with a root node (rendez-vous point)
implemented. The root node of the multicast tree takes active part in the probing process
of the admission control, while the rest of the routers only need to have the priority–
based queueing system to differentiate probes and data, as in the original unicast PBAC
scheme.

In order to adapt the admission control for multicast communication two multicast
groups are created: one for the probe process and one for the data session itself. Senders
first probe the path until the root node of the multicast tree, and start to send data if
accepted by this node. The probe from the sender is continuously sent to the root node,
and is forwarded along the multicast tree of the probe group whenever receivers have
joined this group.

Receivers trying to join the multicast data group first join the probe group to perform
the admission control. They receive the probe packets sent by the sender node and
forwarded by the root node, and decide about the admission based on the packet loss
ratio. If the call is accepted the receiver leaves the probe group and joins the data group.
Consequently, receivers have to know the addresses of both the probe and the data
multicast group to take part in the multicast communication.

The unicast PBAC scheme is thus extended for multicast operation without addi-
tional requirements on the routers. The procedure to join a multicast group is receiver
initiated to allow dynamic group membership. The scheme is defined to support many
simultaneous or non–simultaneous senders, and it is well suited to multicast sessions
with a single multimedia stream or with several layered streams.

4.5 Summary

This chapter presents an overview on probe–based admission control schemes. These
solutions provide call admission control for CLS–like services. The admission control
process is based on actively probing the transmission path from the sender to the re-
ceiver and deciding about the call acceptance based on end–to–end packet loss, packet
marking on delay jitter statistics. As only the end nodes, sender and receiver, take active
part in the admission control process, these mechanisms are able to provide per–flow
QoS guarantees in the current stateless Internet architecture.

5 A component-based approach to QoS monitoring

The offering of Quality of Service (QoS) based communication services faces several
challenges. Among these, the provisioning of an open and formalized framework for the
collection and interchange of monitoring and performance data is one of the most im-
portant issues to be solved. Consider, for example, scenarios where multiple providers
are teaming (intentionally or not) for the construction of a complex service to be sold
to a final user, such as in the case of the creation of a Virtual Private Network infras-
tructure spanning multiple network operators and architectures. In this case, failure to
provide certain required levels in the quality parameters should be met with an imme-
diate attribution of responsibility across the different entities involved in the end-to-end
provisioning of the service.

25

The same is also true in cases apparently much simpler, such as, for example, where
a user is requiring a video streaming service across a single operator network infras-
tructure. In these situations there is also a need for mechanisms to measure the received
quality of service across all of the elements involved in the service provisioning chain:
the server system, the network infrastructure, the client terminal and the user applica-
tion.

In described scenarios, the service and its delivery quality are negotiated through a
contract, named Service Level Agreement (SLA), between a user and a service provider.
Such a service provider is intended as an entity capable to assemble service contents as
well as to engineer network and server side resources. The subscription of a Service
Level Agreement implies two aspects, only apparently un-related: first, the auditing of
the actual satisfaction of current SLA with the service provider; second, the dynamic
re-negotiation of the service level agreements themselves.

As far as the first aspect, we can reasonably forecast that as soon as communica-
tion services with QoS or other service-related guarantees (e.g. service availability) are
available, and as soon as users start to pay for them, it will be required to verify whether
or not the conditions specified in the SLA are actually met by the provider. With refer-
ence to the second aspect, indeed, re-negotiation of QoS has been always accepted as
an important service in performance guaranteed communications, strongly connected to
critical problems such as the efficiency of network resource allocation, the end-to-end
application level performance, and the reduction of communication costs. For exam-
ple we might consider a scenario where the quality of service received by a distributed
application can be seen as influenced by several factors: the network performance, the
server load and the client computational capability. Since those factors can be varying in
time, it is logical to allow applications to modify Service Level Agreements on the ba-
sis of the QoS achievable and perceivable at the application layer. We therefore believe
that the possibility to modify the existing QoS based agreements between the service
provider and the final user will assume an important role in Premium IP networks. Such
networks provide users with a portfolio of services thanks to their intrinsic capability
to perform a service creation process while relying on a QoS-enabled infrastructure. In
order to allow the SLA audit and re-negotiation a framework for the monitoring of the
received Quality of Service is necessary.

In this document, we propose a novel approach to the collection and distribution of
performance data. The idea which paves the ground to our proposal is mainly based on
the definition of an information document, that we called Service Level Indication (SLI).
The SLI-based monitoring framework is quite simple in its formulation; nonetheless it
brings in a number of issues, related to its practical implementation, to its deployment
in real-life scenarios, and to its scalability in complex and heterogeneous network in-
frastructures. Some of these issues will be highlighted in the following, where we will
also sketch some possible guidelines for deployment, together with some pointers to
potential innovative approaches to this complex task.

The document is organized as follows. The reference framework where this work
has to be positioned is presented in Section 5.1 . In Section 5.2 we introduce QoS
monitoring issues in SLA-based infrastructures. In Section 5.3 we illustrate the data
export process. Section 5.4 explains some implementation issues related to the proposed

26

framework. Finally, Section 5.5 provides some concluding remarks to the presented
work.

5.1 Reference Framework

This section introduces the general architecture proposed for the dynamic creation, pro-
visioning and monitoring of QoS based communication services on top of Premium
IP networks [51][52]. Such an architecture includes key functional blocks at the user-
provider interface, within the service provider domain and between the service provider
and the network provider. The combined role of these blocks is to manage user’s access
to the service, to present the portfolio of available services, to appropriately config-
ure and manage the QoS-aware network elements available in the underlying network
infrastructure, and to produce monitoring documents on the basis of measurement data.

Main components of the proposed architecture are the following: (i) Resource Me-
diator(s): it has to manage the available resources, by configuring the involved nodes.
Each service can concern different domains and then different Resource Mediators.
Now, the Resource Mediator also has to gather basic monitoring data and export it;
(ii) Service Mediator(s): it is in charge of creating the service as required from the
user, using the resources made available by one or more Resource Mediators. It has to
map the SLA from the Access Mediator into the associated Service Level Specification
(SLS) [4] to be instantiated in cooperation with the Resource Mediator(s); (iii) Access
Mediator(s): it is the entity that allows the users to input their requests to the system.
It adds value for the user, in terms of presenting a wider selection of services, ensuring
the lowest cost, and offering a harmonised interface: the Access Mediator presents to
the user the currently available services.

5.2 A Monitoring Document: the Service Level Indication

Computer networks are evolving to support services with diverse performance require-
ments. To provide QoS guarantees to these services and assure that the agreed QoS is
sustained, it is not sufficient to just commit resources since QoS degradation is often
unavoidable. Any fault or weakening of the performance of a network element may re-
sult in the degradation of the contracted QoS. Thus, QoS monitoring is required to track
the ongoing QoS, compare the monitored QoS against the expected performance, de-
tect possible QoS degradation, and then tune network resources accordingly to sustain
the delivered QoS. In SLA-based networks it becomes of primary importance the avail-
ability of mechanisms for the monitoring of service performance parameters related to
a specified service instance. This capability is of interest both to the end-users, as the
entities that ‘use’ the service, and to the service providers, as the entities that create,
configure and deliver the service. QoS monitoring information should be provided by
the network to the user application, by collecting and appropriately combining perfor-
mance measures in a document which is linked to the SLA itself and which is conceived
following the same philosophy that inspired the SLA design: i) clear differentiation of
user-level, service-level and network-level issues; ii) definition of lean and mean in-
terfaces between neighbouring roles/components; iii) definition of rules/protocols to

27

appropriately combine and export information available at different levels of the archi-
tecture.

In Premium IP networks, the service provisioning is the result of an agreement be-
tween the user and the service provider, and it is regulated by a contract. The SLA is
the document resulting from the negotiation process and establishes the kind of service
and its delivery quality. The service definition stated in the SLA is understood from
both the user and the service provider, and it represents the service expectation which
the user can refer to. Such SLA is not useful to give a technical description of the ser-
vice, functional to its deployment. Therefore, a new and more technical document is
needed. The Service Level Specification document derives from the SLA and provides
a set of technical parameters with the corresponding semantics, so that the service may
be appropriately modelled and processed, possibly in an automated fashion. In order to
evaluate the service conformance to specifications reported in SLA and SLS documents,
we introduce a new kind of document, the Service Level Indication. By mirroring the
hierarchical structure of the proposed architecture, it is possible to distinguish among
three kinds of SLIs: (i) Template SLI, which provides a general template for the creation
of documents containing monitoring data associated to a specific service; (ii) Technical
SLI, which contains detailed information about the resource utilization and/or a techni-
cal report based on the SLS requirements. This document, which pertains to the same
level of abstraction as the SLS, is built by the Resource Mediator; (iii) User SLI, i.e. the
final document forwarded to the user and containing, in a friendly fashion, information
about the service conformance to the negotiated SLA. The User SLI is created by the
Service Mediator on the basis of the SLS, the Template SLI and the Technical SLI.

The service monitoring has to be finalized to the delivery of one or more SLI doc-
uments. In the SLI issue, multiple entities are involved, as network elements, content
servers, and user terminals. Involving all these elements has a cost: it is due to the us-
age of both computational and network resources, needed for information analysis and
distribution. This cost depends on both the number of elements involved and the infor-
mation granularity. From this point of view, monitoring may be under all perspectives
considered as a service, for which ad hoc defined pricing policies have to be specified
and instantiated. More precisely, drawing inspiration from the concept of metadata, we
might hazard a definition of monitoring as a metaservice, i.e. a ‘service about a ser-
vice’. This definition is mainly due to the fact that a monitoring service cannot exist
on its own: monitoring is strictly linked to a pre-existing service category, for which it
provides some value-added information. Therefore we will not consider a standalone
monitoring service, but we will rather look at it as an optional clause of a traditional
service, thus taking it into account in the SLA negotiation phase.

5.3 Data Export

In the context of SLA-based services the following innovative aspect has to be con-
sidered: in order to allow users, service providers and network operators to have infor-
mation about QoS parameters and network performance the need arises to export data
collected by measuring devices. To this purpose, the concept of data model has to be in-
troduced. Such model describes how information is represented in monitoring reports.

28

As stated in [53], the model used for exporting measurement data has to be flexible with
respect to the flow attributes contained inside reports.

Since the service and its quality are perceived in a different fashion depending on
involved actors (end user, service provider, network operator), there is a need to define
a number of documents, each pertaining to a specific layer of the architecture, suitable
to report information about currently offered service level. As far as data reports, we
have defined a set of new objects aiming at indicating whether measured data, related
to a specific service instance, is in accordance with the QoS level specified in the SLA.

With reference to our architecture, it is possible to identify the components respon-
sible for the creation of each of the monitoring documents (Figure 13).

Such documents are then exchanged among the components as described in the
following, where we choose to adopt a bottom-up approach:

1. at the request of the Service Mediator, the Resource Mediator builds the Technical
SLI document on the basis of data collected by the measuring devices. The fields
it contains are directly derived from those belonging to the SLS and are filled with
the actual values reached by the running service. The resulting document is sent to
the Service Mediator;

2. thanks to the Technical SLI received from the Resource Mediator, the Service Me-
diator is capable to evaluate the service quality conformance with respect to the
requests formulated through the related SLS. It can be interested in such infor-
mation both for its own business and in order to gather data for the creation of a
complete report in case a user requests one;

3. at the user’s request, the Service Mediator, exploiting data contained in a Technical
SLI, produces a further report indicating the QoS level as it is perceived by the end
user. The document it is going to prepare is derived from a service specific template
(the so-called SLI Template), which provides an abstraction for the measurement
results in the same way as the SLA Template does with respect to the service pa-
rameters. Such a document, hereby called User SLI, is ready for delivery to the end
user;

4. the Access Mediator receives the User SLI from the Service Mediator, puts it in
a format that is compliant with both the user’s preferences and the user’s terminal
capabilities and forwards it to the end user.

5.4 Implementation Issues

Upper Layers A Service Mediator can add to the service offer the monitoring option.
If this is the case, two different strategies are possible. In the first scenario, the Service
Mediator evaluates the resource usage for monitoring service as a fixed cost. Such a
cost will be taken into account when the quotation is prepared. This strategy does not
modify the business process related to the specific service since the user’s request to
monitor its own SLA uniquely implies a fixed add-on to the service quotation. Such
an add-on depends upon the business strategies of both the Service Mediator and the
Resource Mediator.

In the second scenario, the Service Mediator shows two different quotations to the
user: the first one related to the service instance selected by the user, the second one

29

Service
Mediator

Access
MediatorUser

Resource
Mediator

QoS-capable
Network

TechnicalSLI

Collected

Measures

TechnicalSLI

TemplateSLI

SLS

UserSLI
Formatted
UserSLI

Measures

Measures

Measures

Measures

Fig. 13. Measurement data export.

regarding the monitoring activity. This solution introduces a scenario in which the ne-
gotiation of the SLA monitoring metaservice is considered. Interactions between the
Access Mediator and the Service Mediator can be formalized through the same busi-
ness process as that describing “traditional” services, such as VoD, VPN, and VoIP.
Such a business process includes the following business transactions:

1. checking the service availability
2. submitting a quotation request
3. accepting a service quotation
4. issuing the purchase order

The definition of business processes can benefit from the availability of a standard
proposal coming from the electronic business research community, named ebXML [54].
A detailed description of the application of the ebXML framework to the mediation
architecture may be found in [55].

Lower Layers In Section 5.3 we have defined the roles of components in the creation of
models to export measurement data. In particular, it is the responsibility of the Service
Mediator to produce the User SLI intended to provide users with a high-level indication
of the compliance (or not) of the delivered service to the negotiated SLA. The Resource
Mediator, on the other hand, has to create the Technical SLI, which has the same fields
as the corresponding SLS. These fields are filled by the Resource Mediator with the
values resulting from the measurement activities.

At this point, the need arises to provide the Resource Mediator with monitoring data
coming from the network devices so that it may be able to build the Technical SLI. In
the proposed architecture the Resource Mediator is in charge of managing the whole
underlying network for each domain (i.e. Autonomous System - AS) [56]. In particular,
in the service configuration phase, it has to analyze the SLS, received from the Ser-
vice Mediator, in order to select the subset of information related to its own domain.
Such a subset is passed to the Network Controller, which translates it into a form that

30

is compliant with the specific network architecture adopted (MPLS, Diffserv, etc.). The
rest of the SLS is forwarded to the next peer Resource Mediator en-route towards the
destination. If the user selects the monitoring option during the SLA negotiation, this
choice does not modify the usual sequence of interactions concerning the service cre-
ation and configuration. In fact, once received from the Resource Mediator the subset
of information contained in the SLS, the Network Controller translates it into a set of
policy rules and, acting as a Policy Decision Point (PDP), sends policies to the under-
lying Policy Enforcement Points (PEPs), by exploiting the COPS protocol [57]. Upon
the reception of a new policy, the PEP forwards it to the Device Controller, which pro-
duces configuration commands for the network device as well as rules enabling it to
distinguish the traffic flow to be measured. Then, the Device Controller is able to ap-
propriately configure the traffic control modules (e.g. allocation and configuration of
queues, conditioners, markers, filters, etc.) and to perform the measurement activities.

Figure 14 depicts the policy framework components, distinguishing among the fol-
lowing abstraction layers: (i) NI-DI: Network Independent - Device Independent; (ii) ND-
DI: Network Dependent - Device Independent; (iii) ND-DD: Network Dependent - De-
vice Dependent.

$XWRQRPRXV 6\VWHP

3(33(33(3

'HYLFH� &RQWUROOHU
COPS API

'HYLFH� &RQWUROOHU
COPS API

'HYLFH� &RQWUROOHU
COPS API

3,%3,%3,%

7UDIILF� &RQWURO
TC API

7UDIILF� &RQWURO
TC API

7UDIILF� &RQWURO
TC API

COPS COPS COPS

1&
�3'3�

506/6V

1'35

5RXWHU5RXWHU5RXWHU

50

1H[W�KRS
$6

SLS

6/6

SLS = Service Level Specification

RM=Resource Mediator

NC = Network Controller

PDP = Policy Decision Point

PEP = Policy Enforcement Point

PIB = Policy Information Base

NDPR = Network Dep. Policy Repository

50� /D\HU
��� � � � � � � 	
 � � � 	
 � 	 �
� � � � ��� 	
 � � � 	
 � 	 �

50� /D\HU
��� � � � � � � 	
 � � � 	
 � 	 �
� � � � ��� 	
 � � � 	
 � 	 �

1&� /D\HU
��� � � � � � � � � � 	
 � 	 �
� � � � ��� 	
 � � � 	
 � 	 �

1&� /D\HU
��� � � � � � � � � � 	
 � 	 �
� � � � ��� 	
 � � � 	
 � 	 �

'HYLFH�/D\HU
��� � � � � � � � � � 	
 � 	 �
� � � � ��� � � � 	
 � 	 �

'HYLFH�/D\HU
��� � � � � � � � � � 	
 � 	 �
� � � � ��� � � � 	
 � 	 �

Fig. 14. Overview of the policy framework components.

Metering Approaches Several solutions are available in order to allow Device Con-
trollers to make measurements on the traffic flows at controlled devices.

Our solution is based on the use of the SNMP protocol, which permits to obtain
performance data without any traffic injection (passive measurement). In this case, an
SNMP client interacts with an SNMP agent located at the device in order to obtain
measures about throughput and packet loss on a device interface. The main advantage
of such a solution is the capability to obtain information about every network device that

31

supports the SNMP standard protocol. If involved devices are routers or switches made
by Cisco, it is possible to exploit a particular Cisco IOS functionality, named NetFlow.

Exporting Data When the Device Controller, acting as a meter, obtains data about the
controlled device, it has to forward it to the Resource Mediator. Using this raw data, the
Resource Mediator can build the Technical SLI.

The Resource Mediator is able to create such an end-to-end document thanks to the
interactions among the involved components, as described below:

1. The Device Controller sends the measurement results to the Policy Enforcement
Point, e.g. using the COPS protocol [58]. This approach perfectly mirrors the policy-
based architecture used at service configuration time.

2. Each PEP forwards received data to the Network Controller, which acts as a collec-
tor of measurement data from different measurement points;

3. Finally, the Resource Mediator, by gathering information from both its Network
Controller and adjacent Resource Mediator, can build the Technical SLI. Such a
document contains information about end-to-end performance metrics related to
the traffic flow specified in the SLS.

5.5 Discussion and Conclusions

In this work, we have presented a component-based architecture for QoS measurement
and monitoring. It is clear that the provisioning of such feature is particularly com-
plex and critical, since it involves the coordination and orchestrated operation of a large
number of elements, separately owned and managed along what we have called the
provisioning chain from the service location to the end user. We therefore foresee a
number of issues to be faced: for some of them we believe a solution can be already
provided, while for others the discussion is still wide open. We briefly mention here the
main facets of the general issue of QoS monitoring, focusing on the networking infras-
tructure. First of all, the collection of monitoring data from the network elements. This
issue is clearly related to both technical and business aspects. As far as the first ones, the
work ongoing in the area of policy based management of network elements is providing
a technical framework in which the control and configuration of network nodes will be
much more straightforward than that currently achievable through the traditional SNMP
based approach. However, it is clear that for global communication infrastructures in-
volving large number of nodes with a huge number of active connections we do have a
problem of scalability with respect to the collection and delivery of performance data.
In spite of this, we believe that there are features in the existing network architectures
that might be exploited to reduce at least this problem. For example, in Diffserv based
network architectures monitoring of Service Level Agreements can be performed usu-
ally per traffic classes and not per single traffic flows, and could be normally limited to
the ingress and egress points of a domain. More detailed performance data collections
(in terms of specific flows or network elements) could be triggered only in the presence
of specific demands from the involved parties or in the case of anomalies. As far as the
business aspects, i.e. those related to the business nature of the provisioning of com-
munication services, we can mention here the one we believe is the most important:

32

trust. In global networks, large scale infrastructures will be managed by a multitude of
different operators, each managing a separate network domain. Quality of Service will
therefore be an issue involving a number of parties, each responsible only for the ser-
vice provided in the domain that it directly manages. Such parties will be obliged, at the
same time, to compete and to cooperate with peering entities. Can we foresee a scenario
where such performance data will be openly (albeit in a controlled way) available? We
believe that rather than being an obstacle to the deployment of a common framework
for SLA monitoring, trust will be an important trigger for it, if not a prerequisite. In
fact, we can expect that no operator will start charging for premium services involv-
ing infrastructures owned by others without a formal, standardized way for exchanging
performance data about the communication services offered to and received from other
operators.

A further issue is related to the devising of a common quality of service measure-
ment framework. It is clear that performance data should be provided in a way that is
independent of both the network architecture offering the service and the application
service demanding it. Our proposal is a first attempt in this direction.

6 Deterministic delay guarantees under the GPS scheduling
discipline

Under the GPS scheduling discipline traffic is treated as an infinitely divisible fluid. A
GPS server that serves N sessions is characterized by N positive real numbers

� � � � � � �
���

,
referred to as weights. These weights affect the amount of service provided to the ses-
sions (or, their bandwidth shares). More specifically, if � � ��� ����� denotes the amount of
session � traffic served in a time interval

��� ��� � then the following relation will hold for
any session � that is continuously backlogged in the interval

��� ��� � ; session � is consid-
ered to be backlogged at time � if a positive amount of that session traffic is queued at
time � .

� � ��� �	���
��
 ��� �	���

� � �
�
 ��
 � ��� � � � �

�
(3)

The Generalized Processor Sharing (GPS) scheduling discipline has been widely
considered to allocate bandwidth resources to multiplexed traffic streams. Its effective-
ness and capabilities in guaranteeing a certain level of Quality of Service (QoS) to the
supported streams in both a stochastic ([59–61]) and deterministic ([62–65]) sense have
been investigated.

In this subchapter the single node case is considered and sessions (sources) are
assumed to be

� � � � � leaky bucket constrained and to have a stringent delay require-
ment. Such sessions are referred to as QoS sensitive sessions in the sequel; the triplet� � � � � � �	� � � is used in order to characterize the QoS sensitive session � , where � � , � � and
� �

represent the burstiness, the long term maximum mean arrival rate and the delay
requirement of session � , respectively.

In the first part of the subchapter the problem of Call Admission Control (CAC) is
considered. CAC plays a key role in provisioning network resources to meet the QoS
requirements of traffic. It has the function of limiting the amount of traffic accessing

33

the network and can have an important impact on network performance. A CAC algo-
rithm is described which fully exploits the bandwidth sharing mechanism of GPS and
determines the optimal weights

�
directly from the QoS requirements of the sessions.

Nevertheless, the use of GPS scheduling discipline can lead to inefficient use of re-
sources even if the optimal CAC scheme is employed. In the second part of the subchap-
ter a service paradigm is described according to which each session is “represented” by
two entities – referred to as session components – in the GPS server. Each session’s
component is assigned a weight and it is served by the GPS server. The work provided
by the GPS server to the components of a session is mapped back to the original session.
It turns out that the proposed service scheme leads to resource utilization improvement.

Related Work The GPS scheduling discipline has been introduced in [62], [63] where
bounds on the induced delay have been derived for single node and multiple nodes
systems, respectively. These (loose) delay bounds have a simple form allowing for the
solution of the inverse problem, that is, the determination of the weight assignment
for sessions demanding specific delay bounds, which is central to the Call Admission
Control (CAC) problem.

Tighter delay bounds have been derived in [65] and in [64] (also reported in [66]).
These efforts have exploited the dependencies among the sessions -due to the com-
plex bandwidth sharing mechanism of the GPS discipline- to derive tighter performance
bounds. Such bounds could lead to a more effective CAC and better resource utilization.
The inverse problem in these cases, though, is more difficult to solve. For example, the
CAC procedure presented in [64] employs an exhaustive search having performance
bound calculations as an intermediate step. Specifically, the maximum delay experi-
enced by the sessions is determined for a weight assignment and the assignment is
modified trying to maximize an objective function. While the search in [64] terminates
after a finite number of steps, it does not guarantee that an acceptable assignment does
not exist if not found.

The fairness oriented nature of GPS scheduling discipline, which follows directly
from its definition, makes GPS an appealing choice for a best effort environment, or
more precisely for an environment where fairness is the main concern. Some arguments
on why fairness is not necessarily the main concern even in a best effort environment
may be found in [67] where some state dependent scheduling policies aiming to de-
crease loss and / or delay jitter by “sacrificing” fairness are presented.

Modifications / extensions of the GPS scheduling discipline include ([68], [69],
[70]). In [68] Service Curve Proportional Sharing (SCPS) has been proposed. It is a
generalization of GPS, according to which the (constant) weighting factors used by the
GPS are replaced with well defined varying weights. In [69] a less complex imple-
mentation is proposed for the special case of piecewise linear service curves. In [70] a
modification of the GPS scheduling discipline, aiming to improve the QoS provided to
adaptive sessions is presented, according to which each session is assigned two weights;
one weight determines its guaranteed rate and the other weight determines its target rate.

34

6.1 Optimal CAC Algorithm

The optimal CAC algorithm for the GPS scheduling discipline has been derived in [71]
by considering a mixed traffic environment in which the bandwidth resource controlled
by the GPS server is assumed to be shared by a number of QoS sensitive streams and
best effort traffic. This system will be referred to as a Best Effort Traffic Aware Gener-
alized Processor Sharing (BETA-GPS) system.6 The Best Effort Traffic Aware (BETA)
GPS system is depicted in figure 15. The BETA-GPS server capacity ��� is assumed
to be shared by

�
QoS sensitive sessions with descriptors

� � � � � � �	� � � ���
 � � � � � �
�

and best effort traffic represented by an additional session. Each session is provided a
buffer and the input links are considered to have infinite capacity. Generally, the task

�

Fig. 15. The BETA-GPS system

of CAC is to determine whether the network can accept a new session without causing
QoS requirement violations. In the case of a GPS scheduler it should also provide the
server with the weight assignment which will be used in the actual service of the admit-
ted calls. A CAC scheme for a GPS server is considered to be optimal if its incapability
to admit a specific set of sessions implies that no

�
assignment exists under which the

server could serve this set of sessions (respecting all QoS requirements).
An optimal CAC scheme for the BETA-GPS system should seek to maximize the

amount of service provided to the (traffic unlimited) best effort session under any arrival
scenario and over any time horizon, while satisfying the QoS requirement of the (traffic
limited) QoS sensitive sessions. That is, it should seek to maximize the normalized7

weight assigned to the best effort traffic (
��� �), while satisfying the QoS requirement of

QoS sensitive sessions. Obviously, maximizing the weight assigned to the best effort
traffic is equivalent to minimizing the sum of weights assigned to the QoS sensitive
sessions.

Optimal CAC Scheme for the BETA-GPS system In the sequel only the rationale
of the optimal CAC algorithm is described and a numerical example is provided; the
detailed algorithm may be found in [71].

The CAC problem for a GPS system is simplified in view of the following Theorem
(Theorem 3, [62]): If the input link speed of any session � exceeds the GPS service

6 In a system where only QoS sensitive sessions are present the existence of an extra session
may be assumed and the presented algorithm be applied (see [71]).

7 Without loss of generality, it is assumed that
����	��
� ��� ���������

35

rate, then for every session � , the maximum delay ���� and the maximum backlog
� ��

are achieved (not necessarily at the same time) when every session is greedy starting at
time zero, the beginning of a system busy period. It is noted that a GPS system busy
period is defined to be a maximal time interval during which at least one session is
backlogged at any time instant in the interval. A session � is characterized as greedy
starting at time

�
if it sends the maximum allowable amount of traffic starting at time�

and an all-greedy GPS system is defined as a system in which all the sessions are
greedy starting at time 0, the beginning of a system busy period.

The aforementioned theorem implies that if the server can guarantee an upper bound
on a session’ s delay under the all greedy system assumption this bound would be valid
under any (leaky bucket constrained) arrival pattern. Thus, in the framework of the CAC
problem it is sufficient to examine only all greedy systems.

It [71] it has been shown that a given acceptable
�

assignment is converted to the
optimal one if each QoS sensitive session’s busy period is expanded as much as its QoS
would permit, starting from the set of QoS sensitive sessions that empty their backlog
first in order.8 This implies that in order to determine the optimal

�
assignment it is

sufficient to allocate to the QoS sensitive sessions such weights that their QoS would
be violated if their busy periods were expanded.

In order to determine these optimal weights the CAC algorithm of [71] emulates the
all greedy system and examines the QoS sensitive sessions at all time instants coinciding
with either the delay bound or the backlog clearing time of some session; these time
instants are referred to as checkpoints in [71]. For each QoS session the algorithm
computes two quantities (two potential weights); the minimum weight that is necessary
for the QoS requirements of the session to be met up to the specific time instant and
the weight that is necessary for the QoS requirements of the session to be met after the
specific time instant, denoted as

���� ���
�� and
� �� ���
�� at the checkpoint

�
 ,respectively.
If

���� ���
 � � � �� ���
 � session � is assigned a weight
� �
 ���� ���
 � , since this is the

minimum weight that could be assigned; else the specific session is examined again
at the next checkpoint. In order to apply the aforementioned procedure the algorithm
keeps track of the bandwidth that is available to the still backlogged sessions (a greedy
(� � � � �) constrained session requires a rate equal to

� �
after it empties its backlog, and

thus, the additional (compared to
� �

) bandwidth that the session utilizes until it empties
its backlog is shared among the still backlogged sessions in proportion to their weight).

Next a numerical example is provided, where the optimal CAC scheme for the
BETA-GPS system is compared with the effective bandwidth-based CAC scheme. De-
terministic effective bandwidth ([72]) can be used in a straightforward way to give a
simple and elegant CAC scheme for the GPS scheduler. A similar approach is followed
in [61] for the deterministic part of their analysis. The deterministic effective bandwidth
of a

� � � � � � �	� � � session is given by � �	�
��
������� � � ������ �
�
. It is easy to see that the re-

quirements of the QoS sensitive sessions are satisfied if they are assigned weights such

that
� � � �
�� ������

(� ����
���� �!��
� � �!��

�#" ����%$ �'&�(
).

8 A � assignment is characterized as acceptable if it is feasible (that is
����	��
 � ��) �)and delivers

the required QoS to each of the supported QoS sensitive sessions; a � assignment is character-
ized as more efficient than another if the sum of � ’s

����	��
 � � under the former assignment is
smaller than that under the latter.

36

Two traffic mixes are considered which are denoted as Case 1and Case 2 in Table 1
where the parameters of the sessions for each case are provided. All quantities are con-
sidered normalized with respect to the link capacity C. In order to compare the optimal

Table 1. Sessions under investigation

Case 1 �
 ��� ���
Case 2 �
 ��� ���� � 0.04 0.16 0.04 0.64� � 0.01 0.01 0.04 0.01� � 1 4 4 16� �
	�	� 0.04 0.04 0.04 0.04

CAC algorithm with the effective bandwidth-based CAC scheme the following scenario
is considered. The effective bandwidth-based CAC scheme admits the maximum num-
ber of sessions under the constraint that a nonzero weight remains to be assigned to
best effort traffic. From Table 1 it can be seen that the effective bandwidth of each QoS
sensitive session is 1/25 of the server’s capacity (which is considered to be equal to the
link capacity (� �
 �)), implying that for the BETA-GPS system at most 24 QoS
sensitive sessions can be admitted under the effective bandwidth-based CAC scheme.
This means that

� ��� � � � ��
 ��� must hold and that the best effort traffic is as-
signed weight equal to 0.04 for each such triplet (

� �
,
� � and

��
denote the number of

admitted sessions of type
� �

,
� � and

��
respectively).

For each triplet
� � � � � � � �� � , � ��� � � � ��
 ��� , the weight assigned to the

best effort traffic by the optimal CAC scheme is computed. The results are illustrated in
figure 16.

�

Case 1
�

Case 2

Fig. 16. Weight assigned to the best effort traffic according to the (1) optimal CAC (2) effective
bandwidth-based CAC scheme, both under the constraint �
 � � � � � � ����� . The minimum
guaranteed rate to the best effort traffic is � �������

37

Decomposition
module

Service
module module

Service mapping

session’s j traffic

session’s i traffic

traffic replica
session’s k

LT component

traffic replica

GPS
CG

LT component
session’s i

traffic replica

real buffers

session’s j

B component

B component

Real System

best effort traffic

session’s k traffic

traffic replica
best effort

Virtual System

PSfrag replacements

� � � � � � � � � �
� � � � � � � 	 � �

� � � � � � � 	 � �

� � � � � � � � � � 	 � �
� � � �
 � � � � 	 � �

� � � � �
� � �
 �

 � � � � � � �
 � �
 � � � �

 � � � �

 � � � �

� � � � � � � � � �
� � � � � � � � � � 	 � �
� � � �
 � � � � 	 � �

� � � � �
� � �
 �

� � �

 � � � � � � �
 � �
 � � � �

 � � � �

 � � � �

� � � � � � � 	�� � � �

 � � � �

 � � � �

 � � � � �

 � � � � �

Fig. 17. The DS-system

6.2 Decomposition-based Service (DS-) Scheme

According to the Decomposition-based Service (DS-) scheme, which is depicted in fig-
ure 17, sessions are not served directly by the GPS scheduler. The GPS scheduler is
employed by a Virtual System which is provided with an exact replica of each session’s
traffic. In the Virtual System some of the sessions (replicas) are decomposed into two
components, by engaging properly dimensioned leaky buckets, one for each session.
These two components are buffered in separate virtual buffers and are assigned weights
in proportion to which they are served by the GPS scheduler. The real traffic of a ses-
sion is served at any time instant at a rate equal to the sum of the service rates of its
components in the Virtual System.

The Virtual System is necessary (that is, the decomposition can not be applied di-
rectly on the original sessions) so that the real traffic of each session remains in a com-
mon buffer in order to avoid “packet reordering”; that is, to ensure that each session’s
traffic leaves the system in the order it arrived. The Virtual System may be considered
to consist of three modules (see figure 17): (a) the decomposition module responsible
for the decomposition of the replicas of the sessions (b) the service module responsible
for determining the service provided to each session’s components, and (c) the service
mapping module which maps the service provided to the sessions components back to
the original sessions.

Each session ��� � � � � � � �	� � � may be considered as the superposition (aggregation)
of two component sessions ��� ��� � � � � � ��� � � � �	� � � and ��� � � � � � � � � � ��� ��� � � , � � � � �
 � � �

38

� � � � � , which will be referred to as the Long Term (LT) and the Bursty (B) component
of session � , respectively.

For the decomposition of session � a
� � � � ��� � � � � leaky bucket, with � � � � � � ��� � � ,

is employed. Session � traffic (replica) traverses the
� � � � ��� � � � � leaky bucket; the part of

the traffic that finds tokens is considered to belong to the LT-component of session � and
the rest of session’s traffic is considered to belong to the B-component of the session.
Both components of session � have t he same delay constraint � �

as the original session
� .

It is noted that not all the sessions are necessarily decomposed into two components;
only the sessions that fulfill the criteria described in section 6.2 are decomposed (and
� � � � � , � � � ���
 � � � � � � � � , are determined). Sessions which are not decomposed are
represented by only one component (session traffic replica) in the service module of the
Virtual System.

CAC for the DS-system The following Claim, whose proof may be found in [73]
shows that in order to develop a CAC scheme for the DS-system it suffices to develop a
CAC scheme for the Virtual System, since a schedulable traffic mix for the Virtual Sys-
tem is also schedulable for the DS-system whose central element is the Virtual System
itself.

Claim. If the components of a session are served by the service module of the Virtual
System in such a way that their QoS requirements are satisfied and the real session is
served at any time instant at a rate equal to the sum of the service rates of its compo-
nents, then the QoS requirements of the session are also satisfied.

Let � denote the original traffic mix requesting service by the DS-system. Let ���
denote the traffic mix served by the service module of the Virtual System; ��� is obtained
from � by replacing sessions whose replicas are decomposed in the decomposition
module of the Virtual System by their components; the service module of the Virtual
System serving ��� is equivalent to (does not differ in any way from) the BETA-GPS
system serving ��� (see Figures 15 and 17). Thus, the Virtual System may be considered
as a BETA-GPS system with a tunable input (under the constraints that the envelopes of
the sessions components have a predefined form and the sum of the envelopes of each
session components is equal to the envelope of the original session). Consequently, the
CAC scheme for the Virtual System (or equivalently the DS-system) may be considered
as a CAC scheme for a system similar to the BETA-GPS system with an extra degree
of freedom (an extra dimension in the design space), which is the ability to determine
sessions components. The CAC scheme for the DS-system that has been derived in

Table 2. Sessions parameters

session id � 1 2 3� � 10.95 5.45 10.95� � 0.05-1 0.05-1 0.05-1� � 12 24 36

39

10
−1

10
0

10
−1

10
0

10
−1

10
0

ρ
1

ρ
2

ρ
3

PSfrag replacements

Fig. 18. BETA-GPS system employing the op-
timal CAC scheme for the BETA-GPS

10
−1

10
0

10
−1

10
0

10
−1

10
0

ρ
1

ρ
2

ρ
3

PSfrag replacements

Fig. 19. DS-system employing the D CAC
scheme

[73] and is referred to as the D CAC scheme (Decomposition-based Call Admission
Control scheme) is a generalization of the optimal CAC scheme for the BETA-GPS, in
the same way as the DS-system is a generalization of the BETA-GPS system. It may be
considered as consisting of two distinct functions: (a) one responsible for determining
which sessions of the original traffic mix will be decomposed in the Virtual System and
the exact form of their components, and (b) one responsible for determining the weight
assignment for the sessions components. The optimal CAC scheme for the BETA-GPS
is employed for the determination of the weight assignment of the session components.
The other function, which is responsible for determining the session components is
such that a session replica is decomposed in the Virtual System only if (and in such a
way that) this decomposition: (a) leads to better (or at least not worse) resource utiliza-
tion, and (b) the session is assigned a total weight (sum of the weights of the session
components) no greater than if it were not decomposed.

These conditions imply that the decomposition procedure is such that it leads to a
traffic mix ��� – starting from a traffic mix � – for which the optimal CAC scheme
for the BETA-GPS returns total weights for the components of any session that are
typically smaller and never larger than those identified by applying the optimal CAC
scheme for the BETA-GPS to the original traffic mix � . This allows a typically greater
and never smaller weight to be assigned to the best effort traffic, for the traffic mixes that
are schedulable in the BETA-GPS system. In addition, some traffic mixes that are not
schedulable by the GPS in the BETA-GPS system, can be admitted in the DS-system
(whose service module is a GPS server), and thus, the transformation of � to � � may
be considered to lead to an indirect expansion of the schedulability region of GPS.

The details of the D CAC scheme may be found in [73]. In the sequel a numerical
example is provided that demonstrates the improvement in resource utilization that can
be achieved by employing the DS-system. The considered traffic mix consists of three
sessions whose parameters are shown in Table 2. ��� and ��� are kept constant while� � takes values between 0.05 and 1 (the step is equal to 0.02). The link capacity is
assumed to be equal to 1. In figure 18 the maximum long term rate of session 3 (�
),
such that the traffic mix is schedulable, is depicted as a function of ��� and �� for the
BETA-GPS system employing the optimal CAC scheme for the BETA-GPS . In figure
19 the corresponding plot is given for the case of the DS-system employing the D CAC
scheme.

40

7 MPEG Traffic Modeling at the Frame and GoP Levels Using
GBAR and D-BMAP Processes

7.1 Introduction

Modern broadband telecommunications networks are intended to deliver traffic gener-
ated by multimedia applications. Video-on-Demand (VoD) is an example of such ap-
plications. Traffic generated by VoD servers must be delivered to destinations using
a certain network technology. To provide an adequate quality of service (QoS), some
quality control mechanisms have to be implemented in the network.

It is well known that uncompressed video information can easily throttle the avail-
able bandwidth. In order to achieve efficient transmission of such traffic, video infor-
mation must be compressed and encoded in accordance with one of the existing com-
pression algorithms. Today, one of the most used algorithms is MPEG.

Modeling of variable bit rate (VBR) videotraffic has become an important issue
since it provides the starting point for both theoretical analysis and engineering design.
The source models of different types of videotraffic are needed to design and study the
network performance and also to predict the QoS that a particular video application
may experience at different levels of network congestion [74, 75].

A number of video source models have been proposed in literature. Recently, most
attention has been paid to MPEG traffic modeling using discrete- and continuous-time
Markov chains [76, 75]. Such models produce an excellent approximation of both the
histogram of frame sizes and the autocorrelation function (ACF) of the empirical data
but they are computationally inefficient because the construction of these Markov mod-
ulated processes from empirical data involves the so-called inverse eigenvalue problem
[76, 75]. This drawback restricts their use in simulation studies where it is necessary to
produce the model ”on the fly”.

Firstly, we propose a novel frame level two-step MPEG modeling algorithm that
emulates the behavior of a single MPEG-1 elementary video stream. The proposed
algorithm captures well the distribution of frame sizes and the ACF at frame level.

Then, based on the special case of the D-BMAP process, we model the smoothed
traffic from the single MPEG source. Based on the statistical analysis of MPEG traffic
at the group of pictures (GoP) level we propose to limit the state space of the modulat-
ing Markov chain of the D-BMAP process such that it now employs only four states.
The limited state space allows us to decrease the complexity of the algorithm while the
necessary accuracy is retained. Our D-BMAP model is simple enough, captures both
the histogram of relative frequencies and the ACF of a single smoothed MPEG traf-
fic source, allows an analytical evaluation of the queuing systems and can be used in
simulation studies.

It should be noted that in modeling MPEG traffic we focus on MPEG data, ignoring
auxiliary information: the sequence header, packet headers etc.

The rest of the section is organized as follows. In the next subsection we briefly
outline MPEG traffic. Then we consider our modeling methodology. In Section 7.3
we present a GBAR(1) MPEG traffic model. Section 7.4 provides an MPEG traffic
methodology based on the D-BMAP process. Conclusions are drawn in the last section.

41

7.2 MPEG Traffic

MPEG traffic is characterized by high peak rates and drastic short-term rate changes.
These features cause losses within node buffers or remarking within traffic conditioners.
To deal with these problems to some extent we assume that MPEG traffic is smoothed
at the group of pictures (GoP) level as follows:

��� ��� �

�
�

� ���	�
� � � � � � � ��

� � � � �
 � �� � !�� � � � � �
� � �
 �� � �� � � � � � � �

� � (4)

where N is the number of frames, � � !�� is the length of the GoP, X(n) denotes the sizes
of individual frames and

� � ��� � denotes the sizes of the smoothed sequence. In our
study GoP has (12,3,2) structure [77] and we can only use those smoothing patterns
whose length is divisible by 12. We set m=12.

The outlined approach does not require any computational resources during the
transmission of video, provides a deterministic delay and efficiently employs the frame
structure of MPEG traffic. This approach can thus be used in VoD systems.

7.3 VoD Traffic Models

The GBAR(1) modeling algorithm has a two-step structure. Heyman in [78] shows that
the model of MPEG traffic at frame level must incorporate three strongly auto- and
cross-correlated processes. These are I-frame process, P-frame process and B-frame
process. Therefore, we should take into account the correlation structure of empirical
data. At the first step of the proposed algorithm we use the property that I-frames are
coded autonomously without reference to preceding or following frames, and, therefore
we can state that the sizes of I-frames are independent of the sizes of P- and B-frames.
Based on this we propose to model the I-frame generation process as an independent
stochastic process. In order to accomplish this we use the GBAR(1) process. The se-
quence of sizes of I-frames that is obtained during the first step is used together with
intra-GoP correlation information as initial data for the second step of the algorithm.

Before discussing the details of the algorithm we point out the necessary prerequi-
sites. As has been shown in [79] the distribution of intra-frame sizes at the output of
an H.261 codec can be approximated by a negative-binomial distribution and its con-
tinuous equivalent - the gamma distribution. The intra-frame coding scheme utilized by
H.261 codecs is almost identical to that used for I-frame coding in the MPEG standard.
Therefore, we can expect that the gamma distribution will provide a good approxima-
tion for the I-frame sizes. To prove this we compared an empirical I-frame size distri-
bution and the gamma distribution for the pattern “Star Wars” by the quantile-quantile
statistical analysis. We used the following parameter values: shape parameter was set to
3.0 and scale parameter was set to 2.6E-5. These parameters were derived directly from
the empirical distribution. We have noticed in [80] that such an approach gives a good
approximation for the empirical data.

The property that allows us to proceed from the I-frame generation process to an
MPEG aggregate frame generation process is a strong dependence between I-frame
sizes and B- and P-frame sizes within the same GoP. This property was discovered by

42

Lombardo et al. [81, 82], clearly explained in [76] and later were called ”intra-GoP
correlation”.

I-frame Process In order to represent the I-frame generation process we propose to use
the GBAR(1) process. It was originally presented by Heyman [78], where it was used
as the approximation model for the frame size distribution of H.261 codec. The main
distinctive feature of the process appears in the geometrical distribution of its ACF.
This property allows us to model the ACF of the empirical data that exhibits some sort
of short range dependence (SRD) behavior. Moreover, the marginal distribution of the
frame size sequence is a gamma distribution.

Let � ��� � � � be a random variable with a gamma distribution with shape parameter�
and scale parameter � , and let � � � ��� � be a random variable with a beta distribution

with parameters � and � . The GBAR(1) process is based on two well-known results: the
sum of independent random variables � ��� � � � and � ��� � � � is a � ��� ��� � � � random
variable, and the product of independent random variables � ��� � � �	� � and � ��� � � � is
a � ��� � � � random variable.

Thus, if we denote � ��� � � �

 � �
�
,
 �
 � ��� � ����� � and � �
�� ������ � � � and

if they are mutually independent, then
 �
�
 �
 � �
� � � � is a stationary stochastic

process �
 � � �
 � � � � � � �
�

with marginal distribution � ��� � � � . The ACF is geometrical
and given by ���
 ��� � � � . Parameters

�
and � can be directly estimated from empirical

data. Assume that the ACF is above zero for sufficiently large lag k: ����
 � � then the
following equation holds

�
 � � and
�

is obtained.
Random variables with gamma or beta distributions generate non-integer values

because they are continuous. Since the number of bits in the frame is a discrete random
variable we round the values obtained from this process to the nearest integer.

Approximation of Intra-GoP Correlation In order to approximate the intra-GoP cor-
relation structure and to obtain sizes of P- and B-frames, the algorithm proposed in
[76] can be used. The algorithm is intended to clarify the dependency between the
mean value and the standard deviation of I-frames and the sizes of appropriate P- or
B-frames. These dependencies are determined as follows:

� 	
 �
���� ����� � � � 	
 �
�� � � ��� � �
 $ ��� � � � � (5)

where
� 	
 � is the mean value of the appropriate frame (P or B), � 	
 � is the standard

deviation of the P- or B-frames, and
� �

is the size of the I-frame. Results are shown
in [76, 80–82] where it was shown that these dependencies can be approximated by
straight lines.

The mean value and the standard deviation given by (5) serve as initial parame-
ters for certain probability distributions. These probability distributions will allow us
to obtain B- and P-frame sizes holding the I-frame size constant (or, more precisely,
an interval of I-frame sizes). Note that in this case, the output values will vary even
for constant I-frame size. This property of the model emulates the behavior of the real
codecs.

43

Approximation of B- and P- frame sizes It has been shown that histograms of the
B- and P-frame sizes corresponding to a certain I-frame size can be approximated by
a gamma distribution [81, 82]. The ACF of the P- and B-frame generation processes
holding the I-frame size constant have the SRD property only. Since the GBAR process
captures well all of the properties mentioned here we use this process as a model for P-
and B-frame generation processes [80].

7.4 Traffic Modeling at the GoP Level

To model the smoothed traffic at the GoP level from the single MPEG source we pro-
pose to use the D-BMAP process. In each state of the modulating Markov chain of this
process we can use an arbitrary distribution and the ACF of the process can be made to
constitute a good approximation of the empirical ACF.

Consider general characteristics of the D-BMAP process. Let � � ��� � � �
 � � � � � � �
�

be the D-BMAP arrival process. In accordance with D-BMAP, the number of arriving
packets in each interval is modulated by an irreducible aperiodic discrete-time Markov
chain (DTMC) with M states. Let D be the transition matrix of this process. Assume
that the stationary distribution of the modulating DTMC is given by the vector

�� �
. We

define the D-BMAP process as a sequence of matrices � �
���� ���
 � � � � � � � , each of
which contains probabilities of transition from state to state with �
 ��� � ��� � � � � arrivals
respectively [83]. Note that the number of arrivals in real models is always bounded.

Let the vector
��
�
 � � � ��� � � � � � ��� � � be the mean rate vector of the D-BMAP

process. The input rate process of the D-BMAP � � � � � ���
 ��� � � � � �
�

is defined by
��� � � � ���
 ��� � � � � �

�
with � � � �
 � � while the Markov chain is in the state i at the

time slot n [80]. The ACF of the rate process is given by [83]:

� � � � �
 �
��� ��	� ��
 � � �� �

 �
 �� �����
� � � � � �
�� ��� �� �

��� �� � � ����
� � � � � �
�� ��� ���� � �
 � ��� � � � � � (6)

where � � is the �
� �

eigenvalue of � ,
�� �
� and

�� � � are the eigenvectors of D and
����

is a
vector of ones.

Note that the ACF of the rate process consists of several geometric terms. Such be-
havior produces a good approximation of empirical ACFs that exhibit near geometrical
sum decays [76, 84]. The number of geometrical terms composing the ACF depends
on the number of eigenvalues which, in turn, depends on the number of states of the
DTMC [85]. Thus, by varying the number of states of the modulating Markov chain we
can vary the number of geometrical terms composing the ACF.

ACF Approximation In order to approximate the empirical ACF of MPEG traffic at
the GoP level from the single MPEG source we use the method originally proposed in
[76]. Particularly, we minimize the error of ACF approximation � by varying the values

44

of coefficients
� � � �
 � � ���
 � ��� � � � � �

�
for each

�
 � � � � � � � in accordance with:

� � ����
 �
���

� �� � � � � � ��� � � � �
����	� �
 � � �� � ��� � � � � �
 � ��� � � � � � (7)

where i is the lag, ��� is the lag when the empirical ACF reaches the confidential interval,
and � � ��� � � � is the value of the ACF for lag i.

We note that we do not consider here those cases when
� ��� . This is because

with the increasing of the number of coefficients, which approximate the empirical
ACF, the number of eigenvalues also increases and, therefore, the state space of the
modulating Markov chain expands significantly. Thus, it is wise to keep the state space
as small as possible and, from this point of view,

�
 � presents the best trade-off
between the accuracy of the approximation of the empirical ACF and the simplicity of
the modulating Markov chain. Note that with

�
 � the number of states of modulating
Markov chain of the D-BMAP process may not exceed three.

At this stage the only approximation error is induced. This is the error of ACF
approximation � � � � by two geometrically distributed terms.

Approximation by the Input Rate Process The construction of Markov modulated
processes from empirical data involves a so-called inverse eigenvalue problem. It is
known that the general solution of this problem does not exist. However, it is possible
to solve such problems when some limitations on the form of the eigenvalues are set
[76, 75].

Our limitation is that the eigenvalues should be located in the
� � � � � fraction of the

X axis. Note that one part of limitation
� �
	 � � 	 � �#" � is already fulfilled since all

eigenvalues of the one-step transition matrix of an irreducible aperiodic Markov chain
are located in the

	 � � � � � fraction of X axis [85]. The second part ��� � � 	 � �#" � should
be fulfilled by the solution of the inverse eigenvalue problem.

We propose to construct the D-BMAP arrival process from two simple D-BMAP
processes with a two-state modulating Markov chain. Let � � � � � ���
 � � � � � � �

�
be the

D-BMAP arrival process, which models the smoothed traffic from an MPEG source,
and � � � ��� � � � ���
 � � � � � � �

�
be the empirical process of GoP sizes. � ��

��� � � � � �

� � � � � � �

�
and � �� �

� � � � ���
 � � � � � � �
�

are two simple two-state D-BMAP processes
(switched D-BMAP, SD-BMAP).

It is known that the rate process of simple an SD-BMAP can be statistically char-
acterized by the triplet

� � 	 � � �
 � � � [86], where
� 	 � � is the mean arrival rate of the

process,
 is the variance of the D-BMAP process and � is the real eigenvalue of the
modulating Markov chain which is not zero [85]. However, in order to define the rate
process of the SD-BMAP, we should provide four parameters

� � � ��� � � � � � � , where � �

and � � are the mean arrival rates in state 1 and state 2 respectively,
�

is the probability
of transition from state 1 to state 2 and

�
is the probability of transition from state 2 to

state 1.
If we choose � �

as the free variable [76] with constraint � � � � 	 ��
���
� to satisfy

��� � 	 �
[86], we can obtain the other variables from the following equations [76,

45

86]:

� �

� 	 � � � � �
� � � � �

���� � � � � 	 � � � � � �
� � � � � � �

���� � � � � � � � 	 � ���
� � � � � (8)

Therefore, if we set �
���

 � � , � �
�

 � � ,

� 	 � �
 � 	 ��
���
� � � 	 �� �

�
� , and

choose �
���
�

and � �
�

�
such that �

���
� � � 	 ��

���
� and � �

�
� � � 	 �� �

�
� we get both SD-

BMAP arrival processes whose superposition gives us the D-BMAP process with the
same ACF and mean arrival rate as the empirical data. The one-step transition matrix
of the superposed process is given by the Kronecker product of composing processes
�
 �

��� � � �
�
.

It is clear from (8) that there is a degree of freedom when we choose the parameters
�

���
�

and � �
�

�
. Moreover, the additional degree of freedom arises when we choose the

values of
� 	 ��

���
� and

� 	 �� �
�
� . Thus, there is an infinite number of D-BMAP arrival

processes with the same mean arrival rate
� 	 � � ��� � which approximate the empirical

ACF with error � .
We also note that from the definition of the Kronecker product it follows that the

eigenvalues of the matrix D which is the Kronecker product of matrices ��
���

and �
 �
�

with respective eigenvalues �
���
� ���
 � ��� � � � � � , and � �

�
� ��
 � � � � � � ��� , has eigenvalues

which are given by � �
 �
���
��� �

�
� � �
 � ��� � � � � ��� � � � � � . Therefore, there is an additional

error in the empirical ACF approximation, which is caused by only one eigenvalue
�
���
� � �

�
� of the superposed process, since the one-step transition matrix of a two-state ir-

reducible aperiodic Markov chain possesses two eigenvalues and one of them is always
1. Therefore, the error of the ACF approximation can be expressed precisely:

� � � ��
 �
���

� �� �	� � � � ��� � � � �
�

�
� �
 � � ��� � ��� � � � (9)

where �
 �
���
� � �

�
�

.

Approximation of Relative Frequencies of GoP sizes Note that the above mentioned
derivation of the D-BMAP process restricts us to the mean arrival rate and the ACF
and does not take into account the histogram of relative frequencies of GoP sizes. To
have assurance that both the histogram and ACF are matched we should assign the PDF
of GoP sizes to each state of the 4-state modulating DTMC such that the whole PDF
matches the histogram of GoP sizes.

Assume that the histogram of relative frequencies has m bins. Therefore, each PDF
in each state of the modulating Markov chain should have not less than m bins. Since
the stationary probabilities of the modulating Markov chain of the D-BMAP process
are known for each PDF the following set of equations should hold:�� � � � � �

�

 ��� � � �
��
 � � ���
 �

��

 � �

� �
�

 ��� �� � �
��

�
�
��

 � � �

�

 ��� �
 � � (10)

where
 � � � � � � � � � �
 � ��� � � � ��� � is the number of histogram bins, � � ���
 ��� � and
�
�

 ��� � are the relative frequency and probability respectively corresponding to the

� �

46

bin in the �
� �

state of the modulating Markov chain, �
�

is the mean arrival rate in state
i and

�
is the length of histogram intervals.

Note that we have only
� � � � � � � equations while there are � � unknowns. We also

should note that in general, if the Markov chain has M states and there are � histogram
bins the number of unknowns is

� � and we have only � � � � equations. It is seen that
with the increasing the number of states of the modulating Markov chain the complexity
of the task increases rapidly. This is the additional reason why we should keep the state
space of the modulating Markov chain as small as possible.

In order to get values of �
�

 ��� � � �
 � ��� � � � ���
 � � � � � � � � � we propose to use the

random search algorithm. In accordance with this algorithm we should firstly choose
the necessary error of the approximation of histogram of relative frequencies � and
then assign the PDF to each state of the 4-state modulating Markov chain to yield (10).
Note that the time the algorithm takes to find the suitable solution depends on the error

� .

7.5 Modeling Results

We have applied both algorithms [80, 84] to all traces from the MPEG trace archive
[77] and found that it matches both the histogram of relative frequencies of GoP sizes
and empirical ACF fairly well. In order to compare the model with empirical data we
generated exactly the same amount of I-, P-, B- and GoP sizes as the empirical traces.
Here we present a discussion of comparison studies between both models and “Star
Wars” trace given in [80, 84].

In order to compare the distribution function of the models with corresponding his-
tograms of relative frequencies (I-, P- and B-frame sizes for frame level and GoP sizes
for GoP level) we have performed a chi-square statistical test. The test has shown that
the statistical data of GoP sizes belong to the PDF of the D-BMAP model given a level
of significance of 0,05 and statistical data of I-, P- and B-frame sizes belong to corre-
sponding distribution functions of the GBAR(1) model given a level of significance of
0,1.

Considering the ACF behavior we note that up to lag 50-100 the empirical ACF
and the ACF of the GBAR model are close to each other. Later, the ACF of the model
quickly decays to zero. With the increasing of p parameter the correlation has a strong
trend to rise for all lags. Thus, the model overestimates the ACF up to lag 80 and,
consequently, is not able to give a good approximation for larger lags. At the frame level
the D-BMAP model approximates the behavior of the empirical ACF of GoP sizes well
for any lag.

One of the major shortcomings of the GBAR(1) model stems from the fact that the
real data trace contains several frames with a very high number of bytes. The model
can approximate this property in case of small values of p parameter, which will lead to
underestimation of the ACF for large lags. There is a trade-off between two properties
of the model: the distribution of frame sizes and the ACF. One possible solution is the
careful choice of p values.

47

7.6 Conclusions

In this section we have considered the modeling of an MPEG-1 video elementary stream
at the output of the codec. We propose two MPEG traffic models aimed at different
MPEG logical levels: frame and group of pictures (GoP) levels.

On the frame level we proposed an extension of a modeling methodology proposed
in [78] and [76]. We have used a two-step approach in order to model the video frames
sequence. At the first step we approximate the I-frames generation process by a GBAR
process. The second step consists of the approximation of frame sizes based on both the
output of the GBAR process and intra-GoP correlations. The proposed algorithm pro-
vides a simple model of the MPEG source based on three cross-correlated processes.
The algorithm captures well both the distribution of frame sizes and the ACF of empiri-
cal data. The GBAR model is fast, computationally efficient and captures well the SRD
behavior of the ACF and the distribution of frame sizes. It can be used in simulation
studies where there is a need to generate MPEG traffic “on the fly“.

The GBAR process needs only a few parameters, which can be estimated directly
from the analysis of empirical data. This is a big advantage of the GBAR source model
compared to other models of video traffic sources.

Our model at the GoP level is a refinement of the model originally proposed in [76].
The model of smoothed MPEG traffic at the GoP level from a single MPEG source is
based on a special type of D-BMAP process. Based on the statistical analysis of MPEG
traffic at the GoP level we limited the state space of the modulating Markov chain of the
D-BMAP process. The limited state space allows us to decrease the complexity of the
algorithm while the necessary accuracy of the approximation is retained. The D-BMAP
model captures both the histogram of relative frequencies and the empirical ACF of a
single smoothed MPEG traffic source. In addition, it is simple enough and can easily be
used in simulation studies even when it is necessary to generate the model “on the fly“.
The model is useful for both analytical evaluation of queuing systems and simulation
studies.

8 An Open Architecture for Diffserv-enabled MPLS networks

8.1 Introduction

The Internet has quickly evolved into a very critical communications infrastructure,
supporting significant economic, educational and social activities. Simultaneously, the
delivery of Internet communication services has become very competitive and end-users
are demanding very high quality services from their service providers. Consequently,
performance optimization of large scale IP networks, especially public Internet back-
bones, has become an important problem. This problem is addressed by traffic engi-
neering, which encompasses the application of technology and scientific principles to
the measurement, characterization, modeling and control of Internet traffic. Enhancing
the performance of an operational network, at both the traffic and resource levels, are
major objectives of Internet traffic engineering; this is accomplished by addressing traf-
fic oriented performance requirements, while utilizing network resources economically
and reliably. Traffic engineering deals essentially with the selection of optimal paths

48

that different flows should follow in order to optimize resource utilization and satisfy
each flow’s requirements. Historically, effective traffic engineering has been difficult to
achieve in public IP networks, due to the limitations of legacy IGPs, which are adapta-
tions of shortest path algorithms where costs are based on link metrics. This can easily
lead to unfavorable scenarios in which some links become congested while others re-
main lightly loaded [87].

The development and introduction of Multi-Protocol Label Switching (MPLS) [88]
has opened new possibilities to address some of the limitations of IP systems concerning
traffic engineering. Although MPLS is a relatively simple technology (based on the
classical label swapping paradigm), it enables the introduction of traffic engineering
function in IP networks because of its support of explicit LSPs, which allow constraint-
based routing (CBR) to be implemented efficiently. For this reason, MPLS currently
appears as the best choice to implement traffic engineering in IP networks [89].

It is clear, however, that in modern IP networks, the need for supporting flows with
different QoS requirements would demand additional mechanisms, such as those that
perform policing on the incoming traffic, classify packets in different service classes
and assure them the required quality of service. The introduction of appropriate packet
scheduling disciplines and of architectures for differentiating services, such as Diffserv
[90], can be used for this purpose. When MPLS is combined with Diffserv and ex-
plicit routing, we have a powerful architecture which allows both traffic engineering
and quality of service provisioning. The interoperability between MPLS and Diffserv
has already been the subject of studies from the Internet community and the resulting
architecture is defined in RFC 3270 [91].

Believing in the benefits of a Diffserv-enabled MPLS architecture, this paper presents
an experimental approach to the study of the interoperability between the Diffserv and
MPLS paradigms. Few implementations currently exist of both architectures and most
of them represent proprietary solutions, with device-specific contaminations. With re-
spect to Diffserv, two different open source implementations have been considered,
based respectively on the FreeBSD and Linux operating systems. The former is the
ALTQ [92] package developed at the Sony Research Laboratories in Japan; the latter
is the Traffic Control (TC) [93][94] module. Such modules basically make the funda-
mental traffic control components available, which are needed in order to realize the
Diffserv paradigm: classifiers, schedulers, conditioners, markers, shapers, etc. As far
as MPLS, a brand new package running under Linux has been utilized [95]. In order
to gain experience with this platform and to evaluate the performance overhead due to
pushing/popping the MPLS label some measurements have been performed, shown in
Sect. 2.

The testbed set up at the University of Naples makes use of the Linux implementa-
tions of both Diffserv and MPLS to analyze four different scenarios (best effort, Diff-
serv, MPLS and Diffserv over MPLS), in order to appreciate the efficiency of Diffserv in
traffic differentiation and to evaluate the interoperability between MPLS and Diffserv.
Section 3 describes the experimental testbed, while Sect. 4 shows the results obtained
from experimentations and draws a comparison among the four different scenarios.

We point out that the trials described in this paper are carried out by statically con-
figuring each router, while a dynamic configuration is required to serve each incoming

49

service request as it arrives (it is necessary to update policers and filters, create a new
LSP if it is the case, etc.). Therefore, the next step is to develop an infrastructure for the
dynamic configuration of routers. Some work in this direction has already been done, as
described in Sect. 5. Conclusions and directions of future work are provided in Sect. 6.

8.2 MPLS: Protocol Overhead

This section presents an analysis of the overhead introduced by the MPLS encapsula-
tion; for this purpose, two Linux PCs were put on a hub and a client-server application
was used to measure the round-trip-time of packets.

We present here only the results obtained generating UDP traffic; more details can
be found in [96]. Figure 20 compares the mean RTT (in microseconds) for each of the 10
trials carried out in the plain IP case and in the MPLS case, for a packet length of 1000
bytes. The first thing to note is that the mean RTT in the MPLS case is always greater
than the one in the IP case; this means that the insertion and the extraction of a label
introduce a certain overhead. Now we want to focus on how much greater this overhead
is and how it changes with the varying of the packet size. The second graph of Figure
20 shows the percentage difference between the mean RTTs (calculated over all the 10
trials) in the two cases, for three packet lengths (10, 100 and 1000 bytes). This graph
shows that the percentage difference decreases when the packets size increases. This
behavior can be explained considering that, increasing the packet size, the transmission
time (protocol independent) increases while the processing time (protocol dependent)
remains the same. Thus the protocol dependent component is less and less important
and the difference between the two RTT values tends to diminish.

These measures show that the introduction of MPLS comes with a certain cost,
and thus this effect should be taken into account when we put QoS mechanisms beside
MPLS. To this purpose, in the next sections we examine the performance relative to the
four configurations (best-effort, Diffserv, MPLS and Diffserv-MPLS); first, we need to
describe the experimental testbed.

1440
1460
1480
1500
1520
1540
1560
1580
1600
1620

1 2 3 4 5 6 7 8 9 10

1000 bytes

IP MPLS

Percentage difference

2,45

8,77

3,67

0
1
2
3
4
5
6
7
8
9

10

10 100 1000

Fig. 20. Experimental results: round-trip-times.

50

8.3 The Experimental Testbed

In this section we present a test platform developed at the University of Naples with
the intent of gaining experience from actual trials and experimentations. Such testbed,
shown in Figure 21, is made of Linux routers and closely mimic (apart from the scale
factor) an actual internetworking scenario. It is built of a number of interconnected
LAN subnets, each realized by means of one or more cross-connections between pairs
of routers. For these tests, routers A, B and C represent the QoS-enabled IP infrastruc-
ture whose performance we want to evaluate; host A acts as the traffic generator and
also as a sink. The direct connection from host A to host B was added in order to allow a
precise evaluation of transmission time for the packets: host A just sends data from one
of its interfaces to the other and, provided that network routes have been appropriately
configured, such data flows first to host B (thus crossing the QoS backbone) and then
directly back to host A. Before going into the detailed performance analysis for the four
different configurations (Best Effort, Diffserv, MPLS and Diffserv over MPLS) let us
spend a few words about the traffic pattern we adopted for all of the experiments. We
used Mtools, a traffic generator developed at University of Naples [97][98], which lets
you choose packet dimensions, average transmission rates and traffic profiles (either
deterministic or poisson), also giving a chance to set the Diffserv Code Point (DSCP)
of the generated packets. An interesting feature of Mtools is the capability to repro-
duce the same realization of the packet generation random process, by setting the same
generating seed for different trials. We fed the network with four poisson flows (gener-
ated by host A), each requiring a different Per Hop Behavior (EF, DE, AF11, AF12).
The overall bit rate of the traffic injected into the network is about 3 Mbps. In order
to appreciate the impact of scheduling (and, in the case of Diffserv, also policing) on
the network, we configured all of the routers so to use a Class Based Queuing (CBQ)
scheduler, with a maximum available bandwidth of 2.8 Mbps (as indicated in Figure
21). Since the injected traffic is more than the network can bear, packet losses will be
experienced and we expect them to be uniformly distributed among the various classes
of service only in the best effort and plain MPLS (i.e. MPLS with just one LSP carrying
all the traffic) scenarios. More details on the generated traffic can be found in [99].

Host A

(FreeBSD)

Router A
(Linux) (Linux)

Router C
(Linux)

Host B
(Linux)

Host A

(FreeBSD)

Router A
(Linux)

Router B
(Linux)

Router C
(Linux)

Host B
(Linux)

2.8 Mbps2.8 Mbps 2.8 Mbps

Fig. 21. Testbed used for the trials.

51

In the best effort case, we have just one CBQ class for all of the traffic flows (which
are thus scheduled without taking into consideration the DSCP inside the IP header).
All the available output bandwidth has been assigned to this class.

In the Diffserv scenario, instead, of the available 2.8 Mbps, 0.8 are assigned to the
EF class, 1.0 to AF1 and 1.0 to default traffic (DE). Expedited Forwarding is served in
a first in first out (FIFO) fashion, while the Assured Forwarding and default behavior
queues are managed, respectively, with a Generalized Random Early Discard (GRED)
and a Random Early Discard (RED) algorithm. Referring to [99] for further details, we
only want to point out here that the ingress Diffserv edge router (router A), unlike the
others (routers B and C), has been configured with a policer, whose function is to either
drop or remark out-of-profile packets.

In a pure MPLS network, packets are assigned to the various Label Switched Paths
(LSPs) based on information such as sender’s and receiver’s IP addresses. More specific
fields, such as the DSCP (i.e the Type Of Service byte of the IP header), are completely
ignored. In this scenario we will thus rely on a single LSP to carry all of the traffic flows
that enter the MPLS cloud. This means that all packets will be marked with the same
label and will experience the same treatment.

As opposed to the previous case, the Diffserv over MPLS scenario provides for
MPLS support to Diffserv, that is to say packets are forwarded via MPLS label swap-
ping, but different packet flows (as identified by the DSCP code) are treated in a differ-
ent fashion. This is achieved by inserting additional information into the MPLS header.
Here we will exploit one LSP for EF and DE traffic and a different one for the two AF1
flavors. In the first case, information about the Per Hop Behavior will be encoded in the
EXP bits of the MPLS header, thus creating a so-called E-LSP [91]; on the other hand,
for the Assured Forwarding flows (which have to be scheduled in the same fashion) the
EXP bits carry information related to the drop precedence level (L-LSP). For this trial,
again, router A has to perform policing at its ingress interface.

8.4 Experimental Results

In this section we will show, comment and compare the experimental results we ob-
tained for the four aforementioned scenarios. As a preliminary consideration, please
notice that transmission time is a useful indicator when evaluating performance, since
it contains information related to two fundamental aspects: the time needed to process
packets and the time spent waiting inside queues.

Best Effort Scenario We will start by analyzing the results obtained with the Best
Effort network setup. Since no differentiation is provided in this case, we expect that
all the flows receive more or less the same treatment. This is what actually happens,
as witnessed by the first graph of Figure 22 and the table below, which show the mean
transmission delay for every flow. From the second graph, notice that packet losses are
directly proportional to the different number of sent packets for the flows.

Diffserv Scenario Let us now switch to Diffserv. What we expect now is that the re-
quirements we specified for the single flows are actually met: EF packets should be for-
warded much faster than the others, AF packets should be reliably delivered, while DE

52

Best-effort: mean TX time

BE 0,251 0,25 0,251 0,249
EF AF11 AF12 DE

EF AF
11 AF

12 DE

BE: dropped packets

dropped 99 185 3 453
sent 2807 3204 574 4724

EF AF11 AF12 DE

Fig. 22. Best effort scenario

packets should be treated in a Best Effort fashion. The first graph of Figure 23 reports
mean transmission times, while the second shows the number of dropped packets in the
Diffserv case. The first comment that can be done in this case is that packets belonging
to different flows are definitely treated in a different manner: transmission delays vary
from one class to the other and this was exactly what we envisaged, since Diffserv is
nothing but a strategy to differentiate packets based on their specific requirements. EF
packets are those that endure the smallest delay; AF packets, in turn, experience a reli-
able delivery (as witnessed by the zero packets lost for both AF11 and AF12 classes).
Finally, the DE class is the one which suffers from the highest delay and the greatest
packet losses.

DiffServ: mean TX time

DS 0,015 0,127 0,127 0,444
EF AF11 AF12 DE

EF AF
11 AF

12 DE

DiffServ: dropped packets

dropped 11 0 0 769
sent 2807 3204 574 4725

EF AF11 AF12 DE

Fig. 23. Diffserv scenario

MPLS Scenario In the MPLS scenario all the flows should be treated the same way,
since no differentiation mechanism has been set up and just one LSP is in place. Fig-
ure 24 shows the mean transmission delay and the number of dropped packets for the
MPLS configuration. As the reader will have noticed, such graphs are surprisingly sim-
ilar to those we showed for the Best Effort case. With the enforced network setup the
actual bottleneck is definitely represented by the output interface’s bandwidth, hence

53

the contribution due to packet processing is negligible when compared to the others:
that is why we were not able to appreciate the performance difference between plain IP
and MPLS we observed and measured in Sect. 2.

MPLS: mean TX time

MPLS 0,251 0,251 0,252 0,249
EF AF11 AF12 DE

EF AF
11 AF

12 DE

MPLS: dropped packets

dropped 141 152 2 445
sent 2808 3204 574 4725

EF AF11 AF12 DE

Fig. 24. MPLS scenario

Diffserv over MPLS Scenario Let us finally take a look at the results obtained with
the last configuration, where Diffserv is running over an MPLS backbone. Figure 25
shows how the presence of a Diffserv infrastructure meets the requirements for both EF
and AF flows. By comparing the graphs in Figuer 23 with those in Figure 25 we notice
that the traffic profiles are almost the same in the two scenarios. If you are wondering
why MPLS should be used, since it adds little to network performance in the context
described (i.e. one in which the routing tables dimensions are pretty small), remember
that its major benefit is disclosed as soon as constraint-based routing techniques are
taken into account. Stated in different terms, a comparison based solely on the delay
performance figures is not fair, since a thorough analysis cannot avoid considering the
fact that MPLS enables traffic engineering, by evading traditional (e.g. shortest path)
forwarding, in favor of fully customized routing paradigms.

DS+MPLS: mean TX time

DS+MPLS 0,013 0,12 0,119 0,444
EF AF11 AF12 DE

EF AF
11 AF

12 DE

DS+MPLS: dropped packets

dropped 10 0 0 774
sent 2807 3204 574 4724

EF AF11 AF12 DE

Fig. 25. DS+MPLS scenario

54

8.5 Dynamic Network Configuration

As already underlined, the network configurations of the four scenarios depicted in
the previous section are static and manually enforced. In order to develop a general
framework for the effective negotiation and delivery of services with quality assurance,
it is necessary to realize an infrastructure for the dynamic and automatic configurations
of network elements.

In this section, we briefly outline the building blocks of such an architecture. The
“brain” of this architecture is a centralized element called Network Controller (NC),
whose task is to configure network elements so as to satisfy the conditions included in
the SLSs, which represent the contracts stipulated with the users (SLAs) in technical
terms. NC can make use of two traffic engineering algorithms (one online and the other
offline) in order to perform its task of admitting service requests and determining the
paths their packets should follow. Once the NC has taken its decisions, it must commu-
nicate them to the network elements, so they can be enforced; these communications
take place by means of the COPS (Common Open Policy Service) protocol. COPS de-
fines the set of messages required to send the so-called policies, that is the actions to
perform when certain conditions take place.

The set of policies that constitutes the current network configuration is stored in an
LDAP directory; this enables to store information on a non-volatile support and also
provides a mean for a quick recover of the configuration whenever a network element
should fail and loose its configuration.

The part of the NC which is responsible of the transmission of policies is called,
in the COPS jargon, PDP (Policy Decision Point). The PDP asks the LDAP server
for the policies and sends them to the PEPs (Policy Enforcement Points), which are
processes running on network elements. Each PEP, in its turn, passes these policies
to the Device Controller (DC), which translates them in a set of command to actually
configure the device. The DC is subdivided into three parts: the first one, which installs
filters, markers, policers and packet scheduling disciplines; the second one, which deals
with the creation of E-LSP [91], and the last one, which is responsible of mapping traffic
on the appropriate LSP.

8.6 Conclusions and Future Work

In this paper we summarized the lessons we learned when applying an engineering ap-
proach to the study of state-of-the-art QoS-enabled network architectures. We presented
a number of experiments aimed at investigating network performance in the presence
of either Diffserv, or MPLS, or a hybrid Diffserv/MPLS infrastructure.

As to the future work, we are currently facing the issue of dynamically controlling
such advanced networks, by applying to them a policy-based management paradigm.
The research direction we are most interested in further exploring is related to the real-
ization of a complex architecture for service assurance, capable to take the best out of
the two technologies. A traffic-engineered Diffserv environment (TRADE) is the final
target of this specific research: the major ingredients behind it are a Diffserv-capable
network on top of a traffic-engineered MPLS backbone.

55

8.7 Acknowledgments

This work has been carried out partially under the financial support of the Ministero
dell’Istruzione, dell’Università e della Ricerca (MIUR) in the framework of the FIRB
Project “Middleware for advanced services over large-scale, wired-wireless distributed
systems (WEB-MINDS)”

9 Wide Area Measurements of Voice Over IP Quality

It is well known that the users of real time voice services are sensitive and susceptible
to audio quality. If the quality deteriorates below an acceptable level or is too variable,
users often abandon their calls and retry later. Since the Internet is increasingly being
used to carry real time voice traffic, the quality provided has become, and will remain
an important issue. The aim of this work is therefore to disclose the current quality of
voice communication at end-points on the Internet.

It is intended that the results of this work will be useful to many different com-
munities involved with real time voice communication. Within the next paragraph we
list some potential groups to whom this work might have relevance. Firstly end users
can determine which destinations are likely to yield sufficient quality. When deemed
insufficient they can take preventative measures such as adding robustness, for example
in the form of forward error correction to their conversations. Operators can use find-
ings such as these to motivate upgrading links or adding QoS mechanisms where poor
quality is being reported. Network regulators can use this kind of work to verify the
quality level that was agreed upon, has indeed been deployed. Speech coder designers
can utilise the data as input for a new class of codecs, of particular interest are designs
which yield good quality in the case of bursty packet loss. Finally, researchers could use
the raw data we gathered to investigate questions such as, “is the quality of real time
audio communication on the Internet improving or deteriorating?”.

The structure of the following sections are as follows: Section 9.1 begins with some
background on the quality measures we have used in this work namely, loss, delay
and jitter. Following on from the quality measures section 9.2 gives a description of
the methodology used to ascertain the quality. In section 9.3 the results are presented,
and due to space considerations we condense the results into one table showing the
delay, loss and jitter values for the paths we measured. In section 9.4 the related work is
given, comparing results obtained in this attempt with other researchers’ work. This is
considered important as it indicates whether quality has improved or deteriorated since
those studies. Section 9.5 rounds off with some conclusions and a pointer to the data
gathered.

9.1 What Do We Mean by Voice over IP Quality?

Ultimately, users judge the quality of voice transmissions. Organisations such as ETSI,
ITU, TIA, RCR plus many others have detailed mechanisms to assess voice quality. For
these organisations the particular focus is speech coders. Assigning quality “scores”
involves replaying coded voice to both experienced and novice listeners and asking

56

them to state the perceived quality. Judging the quality of voice data that has been
transmitted across a wide area network is more difficult. The network inflicts its own
impairment on the quality of the voice stream. By measuring the delay, jitter and loss
of the incoming data stream at the receiver, we can provide some indication on how
suitable the network is for real time voice communication.

Therefore the quality of VoIP sessions can often be quantified by network delay,
packet loss and packet jitter. We emphasise that these three quantities are the major
contributors to the perceived quality as far as the network is concerned. The G.114 ITU
standard states the end-to-end one way delay should not exceed 150ms [100]. Delays
over this value adversely effect the quality of the conversation. In an alternative study
Cole and Rosenbluth state that users perceive a linear degradation in the quality up to
177ms [101]. Above this figure the degradation is also linear although markedly worse.
As far as the packet loss is concerned using simple speech coding, e.g. A-law or � -law,
tests have shown that the mean packet loss should not exceed 10% before glitches due to
lost packets seriously affect the perceived quality. Note that a loss rate such as this does
not say anything about the distribution of the losses. As far as the authors are aware of,
no results exist that state how jitter solely can affect the quality of voice communication.
When de-jittering mechanisms are employed, the network jitter is typically transferred
into application delay. The application must hold back a sufficient number of packets
in order to ensure smooth, uninterrupted playback of speech. To summarise, we refer
to the quality as a combination of delay, jitter and loss. It is important to mention we
explicitly do not state how these values should be combined. The ITU E-model [102] is
one approach but others exist, therefore we refer the interested reader to the references
in this section as well as [103] and [104].

9.2 Simulating and Measuring Voice over IP Sessions

Our method to measure VoIP quality is to send pre-recorded calls between globally
distributed sites. Through the modification of our own VoIP tool, Sicsophone, the in-
tervening network paths are probed by a 70 second pre-recorded “test signal”. The goal
of this work is therefore to report in what state the signal emerges after traversing the
network paths available to us. Incidentally, we do not include the signalling phase (i.e.
establishing communication with the remote device) in these measurements, rather we
concentrate solely on the quality of the data transfer.

Nine sites have been carefully chosen with large variations in hops, geographic dis-
tances, time zones and connectivity to obtain a diverse selection of distributed sites. One
limitation of the available sites was they were all located at academic institutions, which
are typically associated with well provisioned networks. Their locations are shown in
the map of Figure 26. The sites were connected as a full mesh allowing us, in theory, to
measure the quality of 72 different Internet paths. In practice, some of the combinations
were not usable due to certain ports being blocked, thus preventing the audio to be sent
to some sites. There were four such cases. Bi-directional sessions were scheduled on an
hourly basis between any two given end systems. Calls were only transferred once per
hour due to load considerations on remote machines.

In Table 3 below we list the characteristics of the call we used to probe the Internet
paths between those indicated on the map. Their locations, separation in hops and time

57

Cooperating Sites in 1998
Cooperating Sites in 2002

Fig. 26. The nine sites used in 2002 are shown with circles. The six depicted with squares show
those that were available to us in 1998, three remained unchanged during the past four years.

zones are given in the results section. As stated the call is essentially a fixed length PCM
coded file which can be sent between the sites, the length of the call and the payload size
were arbitrarily chosen. Over a 15 week period we gathered just over 18,000 recorded
sessions. The number of sessions between the nine sites is not evenly distributed due to
outages at some sites, however we attempted to ensure an even number of measurements
per site, in total nearly 33 million individual packets were received during this work.

A Networking Definition of Delay We refer to the delay as the one way network delay.
One way delay is important in voice communication, particularly if it is not equal in
each direction. Measuring the one way delay of network connections without the use
of synchronised clocks is a non-trivial task. Hence many methods rely on round-trip
measurements and halve the result, hence estimating the one way delay. We measured
the network delay using the RTCP protocol which is part of the RTP standard [105].
A brief description follows. At given intervals the sender transmits a so called “report”
containing the time the report was sent. On reception of this report the receiver records
the current time. Therefore two times are recorded within the report. When returning
the report to the sender, the receiver subtracts the time it put in the report, therefore
accounting for the time it held the report. Using this information the sender can calculate
the round-trip delay and importantly, discount the time spent processing the reports at
the receiver. This can be done in both directions to see if any significant anomalies exist.
We quote the network delay in the results section as they explicitly do not include any
contribution from the end hosts. Therefore it is important to state the delay is not the
end-to-end delay but the network delay. We chose not to include the delay contributed
by the end system as it varies widely from operating system to operating system and

58

Test “signal”
Call duration 70 seconds
Payload size 160 bytes

Packetisation time (ms) 20ms
Data rate 64kbits/sec

With silence suppression 2043 packets
Without silence suppression 3653 packets

Coding 8 bit PCM
Recorded call size 584480 bytes

Obtained data
Number of hosts used (2003) 9

Number of traces obtained 18054
Number of data packets 32,771,021

Total data size (compressed) 411 Megabytes
Measurement duration 15 weeks

Table 3. The top half of the table gives details of the call used to measure the quality of links
between the sites. The lower half provides information about the data which we gathered.

how the VoIP application itself is implemented. The delay incurred by an end system
can vary from 20ms up to 1000ms, irrespective of the stream characteristics.

Jitter - An IETF Definition Jitter is the statistical variance of the packet interarrival
time. The IETF in RFC 1889 define the jitter to be the mean deviation (the smoothed
absolute value) of the packet spacing change between the sender and the receiver [105].
Sicsophone sends packets of identical size at constant intervals which implies that(
 � (�

(the sending times of two consecutive packets) is constant. The difference
of the packet spacing, denoted � , is used to calculate the interarrival jitter. According
to the RFC, the interarrival jitter should be calculated continuously as each packet � is
received. For one particular packet the interarrival jitter �

� � � for the previous packet
� � �

is calculated thus:

�
�
��

� � � � ��� � � � � � ��� � � � �
� � � � ��� .

According to the RFC “the gain parameter 1/16 gives a good noise reduction ratio
while maintaining a reasonable rate of convergence”. As stated earlier buffering due
to jitter adds to the delay of the application. This is therefore not visible in the results
we present. The “real” time needed for de-jittering depends on how the original time
spacing of the packets should be restored. For example if a single packet buffer is em-
ployed it would result in an extra 20ms (the packetisation time) being added to the total
delay. Note that packets arriving with a spacing greater than 20ms should be discarded
by the application as being too late for replay. Multiples of 20ms can thus be allocated
for every packet held before playout in this simple example.

Counting Ones Losses in the Network We calculate the lost packets as is exactly
defined in RFC 1889. It defines the number of lost packets as the expected number

59

of packets subtracted by the number actually received. The loss is calculated using
expected values so as to allow more significance for the number of packets received,
for example 20 lost packets from 100 packets has a higher significance than 1 from 5.
For simple measures the percentage of lost packets from the total number of packets
expected is stated. From above we know that the losses in this work do not include
those incurred by late arrivals, as knowledge of the buffer playout algorithm is needed,
therefore our values are only the network loss. Detailed analysis of the loss patterns is
not given in the results section, we simply state the percentages of single, double and
triplicate losses.

9.3 Results

The results of 15 weeks of measurements are condensed into Figure 27. The table
should be interpreted as an 11x11 matrix. The locations listed horizontally across the
top of the table are the locations configured as receivers, and when listed vertically they
are configured as senders. The values in the rightmost column and bottom row are the
statistical means for all the connections from the host in the same row and to the host
in the same column respectively. For example the last column of the first row (directly
under Mean) the average delay to all destinations from Massachusetts is 112.8ms.

Each cell includes the delay, jitter, loss, number of hops and the time difference
listed vertically in the cell and prefixed by the letters D, J, L, H and T for each of
the connections. The units for each quantity is the delay in milliseconds, the jitter in
milliseconds, the loss in percentage, the hops as reported by traceroute and time differ-
ences in hours. A ‘+’ indicates that the local time from a site is ahead of the one in the
corresponding cell and behind for a ’-’. The values in parenthesis are the standard de-
viations. A NA signifies “Not Available” for this particular combination of hosts. The
bottom rightmost cell contains the mean for all 18054 calls made, both to and from
all the nine hosts involved. The most general observation is the quality of the paths is
generally good. The average delay is just below the ITU’s G.114 recommendation for
the end-to-end delay. Nevertheless at 136ms it does not leave much time for the end
systems encode/decode and replay the voice stream. A small buffer would absorb the
4.1ms jitter and a loss rate of 1.8% is more than acceptable with PCM coding [103].

There are two clear groupings from these results, those within the EU and the US
and those outside. The connections in Europe and the United States and between them
are very good. The average delay between the US/EU hosts is 105ms, the jitter is 3.76ms
and the loss 1.16%. Those outside fair less well. The Turkish site suffers from large de-
lays, which is not surprising as the Turkish research network is connected via a satellite
link to Belgium (using the Geant network). The jitter and loss figures however are low,
5.7ms and 4% respectively. The Argentinian site suffers from asymmetry problems. The
quality when sending data to it is significantly worse than when receiving data from it.
The delay is 1/3 higher, the jitter is more than twice as in the opposite direction and
the loss is nearly four times higher than when sending to it. Unfortunately we could not
perform a traceroute from the host in Buenos Aires due to not having root access with
which to run a traceroute like command, so we cannot say how the route contributed to
these values.

60receiver
Massachusetts Michigan California Belgium Finland Sweden Germany Turkey Argentina Mean

sender
D:38.0 (17.1) D:54.2 (15.8) D:67.1 (15.5) D:97.1 (2.6) D:99.5 (8.5) D:58.4 (5.0) D:388.2 (43.2) D:99.7 (4.9) D:112.8
J:2.4 (1.7) J:2.4 (1.8) J:3.6 (1.5) J:2.5 (1.5) J:3.2 (1.7) J:4.5 (1.4) J:10.4 (4.9) J:19.9 (8.4) J:6.1

Massachusetts * L:0.1 (0.6) L:0.1 (0.9) L:0.1 (0.8) L:0.1 (0.8) L:0.04 (0.2) L:0.0 (0.0) L:4.9 (4.7) L:8.9 (7.2) L:1.2
H:14 (+1) H:19 H:11 H:15 H:21 H:17 (+3) H:20 H:25 H:17
T:0 T:-3 T:+6 T:+7 T:+6 T:+6 T:+7 T:+1

D:36.4 (15.4) D:40.4 (4.5) D:63.5 (4.2) D:88.2 (8.0) D:86.7 (4.7) D:63.6 (8.2) D:358.9 (44.9) D:112.1 (10.6) D:106.2
J:4.7 (0.8) J:4.4 (0.8) J:4.3 (0.7) J:4.1 (0.7) J:5.2 (0.6) J:7.3 (1.9) J:5.6 (1.7) J:18.7 (7.9) J:6.8

Michigan L:0.0(0.2) * L:0.2 (1.1) L:0.0 (0.1) L:0.1 (1.1) L:0.1 (2.2) L:0.2 (0.9) L:3.0 (1.9) L:6.5 (7.0) L:1.3
H:14 (+1) H:20 (+1) H:11 H:17 H:23 H:16 (+1) H:20 H:25 H:18
T:0 T:-3 T:+6 T:+7 T:+6 T:6 T:7 T:+1
D:54.5 (16.7) D:40.6 (5.1) D:81.0 (2.2) D:106.0 (3.0) D:108.0 (2.4) D:81.5 (1.8) D:386.9 (60.5) D:123.9 (12.4) D:122.2
J:2.0 (1.0) J:1.2 (0.6) J:1.6 (0.8) J:1.4 (0.8) J:2.1 (0.9) J:4.9 (1.5) J:5.3 (1.7) J:18.1 (9.9) J:4.6

California L:0.1 (0.36) L:0.1 (1.9) * L:0.2 (0.8) L:0.6 (1.4) L:0.2 (0.3) L:2.8 (3.0) L:4.4 (2.4) L:8.9 (8.2) L:2.2
H:18 (+1) H:21 H:20 H:25 (+1) H:30 (+2) H:23 H:23 H:25 H:23
T:+3 T:+3 T:+9 T:+10 T:+9 T:+9 T:+10 T:+4
D:65.2 (10.1) D:63.4 (3.3) D:84.0 (1.3) D:31.3 (0.6) D:33.4 (0.2) D:16.6 (10.4) D:341.1 (24.7) D:136.5 (7.1) D:96.4
J:1.6 (0.6) J:0.6 (0.1) J:0.9 (0.8) J:0.9 (0.5) J:1.6 (0.9) J:3.4 (1.5) J:6.9 (2.0) J:NA J:2.0

Belgium L:0.0 (0.0) L:0.0 (0.0) L:1.2 (1.0) * L:0.0 (0.0) L:0.0(0.0) L:0.21 (0.7) L:3.8 (2.7) L:NA L:0.6
H:16 H:17 H:23 H:17 H:22 H:13 H:16 (+2) H:19 H:17
T:-6 T:-6 T:-9 T:+1 T:0 T:0 T:+1 T:-5
D:97.8 (4.2) D:86.8 (1.9) D:109.9 (4.7) D:30.7 (0.3) D:13.6 (1.0) D:26.8 (7.3) D:321.2 (39.3) D:161.5 (12.2) D:106.3
J:1.7 (0.8) J:1.1 (0.6) J:1.4 (0.8) J:1.4 (0.6) J:1.9 (0.9) J:3.9 (1.1) J:3.4 (1.7) J:17.4 (8.2) J:4.1

Finland L:0.0 (0.1) L:0.0 (0.3) L:0.7 (1.4) L:0.1 (0.3) * L:0.0 (0.0) L:0.0(0.0) L:3.2 (1.7) L:7.5 (6.5) L:1.4
H:15 (+1) H:17 (+1) H:24 (+2) H:16 H:20 H:20 (+1) H:17 (+2) H:19 H:18
T:-7 T:-7 T:-10 T:-1 T:-1 T:-1 T:0 T:-6

D:99.3 (8.8) D:84.9(1.9) D:105.6 (2.1) D:33.3 (0.4) D:13.5 (0.5) D:29.8 (12.8) D:322.2 (30.3) D:165.6 (17.9) D:107.8
J:3.0 (1.9) J:2.5 (2.0) J:3.2 (1.96) J:2.8 (1.6) J:2.4 (1.8) J:4.8 (2.5) J:3.2 (1.49) J:NA J:2.8

Sweden L:0.0 (0.0) L:0.03 (0.4) L:0.1 (0.1) L:0.1 (0.3) L:0.0 (0.01) * L:0.0 (0.0) L:2.9 (1.0) L:NA L:0.4
H:22 (+1) H:25 H:30 H:24 H:21 H:25 H:26 H:41 H:26
T:-6 T:-6 T:-9 T:0 T:+1 T:0 T:+1 T:-5

D:63.5 (9.6) D:60.4 (0.5) D:84.4 (1.0) D:11.1 (0.2) D:27.8 (7.3) D:29.2 (7.6) D:300.7 (39.7) D:149.8 (15.6) D:90.9
J:1.72 (0.7) J:0.7 (0.3) J:1.8 (0.7) J:0.8 (0.3) J:1.0 (0.5) J:1.5 (0.6) J:4.8 (2.1) J:NA J:1.6

Germany L:0.0(0.0) L:0.0 (0.0) L:2.5 (1.9) L:0.0 (0.0) L:0.0 (0.0) L:0.0 (0.0) * L:3.7 (2.5) L:NA L:0.8
H:15 H:16 H:22 H:12 H:17 H:22 H:16 H:18 H:17
T:-6 T:-6 T:-9 T:0 T:+1 T:0 T:+1 T:-5
D:379.1 (47.1) D:387.9 (35.5) D:410.9 (43.9) D:330.2 (28.6) D:318.9 (42.4) D:311.1 (8.3) D:378.2 (49.3) D:490.8 (26.0) D:375.9
J:8.6 (0.7) J:8.9 (1.2) J:8.8 (2.5) J:9.2 (2.0) J:8.8 (0.6) J:9.1 (0.7) J:10.7 (1.2) J:NA J:8.0

Turkey L:8.1 (2.8) L:8.0 (2.9) L:7.6 (6.8) L:7.10 (4.0) L:7.8 (2.7) L:8.4 (3.1) L:8.0 (3.1) * L:NA L:6.9
H:18 (+1) H:20 H:19 H:17 H:19 H:25 H:16 H:18 H:19
T:-7 T:-7 T:-10 T:-1 T:0 T:-1 T:-1 T:-6
D:117.0 (30.8) D:146.7 (44.2) D:152.0 (47.8) D:NA D:164.1 (27.2) D:160.9 (47.7) D:180.5 (50.5) D:NA D:115.2
J:4.2 (2.0) J:4.3 (2.3) J:3.1 (2.4) J:4.2 (2.0) J:3.9(2.2) J:2.9 (0.8) J:4.7 (1.5) J:6.0(1.2) J:4.2

Argentina L:0.5 (1.4) L:0.5 (1.5) L:0.6 (1.8) L:0.5 (1.4) L:0.5 (1.4) L:0.0 (0.1) L:0.1 (0.1) L:5.8 (3.0) * L:1.1
H:NA H:NA H:NA H:NA H:NA H:NA H:NA H:NA H:NA
T:-1 T:-1 T:-4 T:+5 T:+6 T:+5 T:+5 T:+6

D:114.1 D:113.6 D:115.7 D:77.1 D:105.8 D:105.2 D:104.4 D:345.6 D:180.0 D:136.2
Mean J:3.4 J:3.4 J:3.2 J:3.5 J:3.1 J:3.4 J:5.5 J:5.7 J:9.3 J:4.1

L:1.1 L:1.1 L:1.6 L:1.0 L:1.1 L:1.1 L:1.4 L:4.0 L:4.00 L:1.8
H:14 H:16 H:19 H:13 H:16 H:20 H:16 H:17 H:23 H:18

F
ig.27.A

sum
m

ary
of18000

V
oIP

sessions.T
he

delay,jitterand
loss

forthe
nine

sites.T
he

delay
and

jitter
are

in
m

illiseconds,the
losses

are
in

percentages.
T

he
num

ber
of

hops
and

tim
e

zones
(in

hours)
are

also
given.T

he
m

eans
for

each
site

and
allsites

are
stated

and
standard

deviations
are

in
parenthesis.

61

We now turn our attention to results which are not related to any particular site.
As far as loss is concerned the majority of losses are single losses. 78% of all the
losses counted in all trace files were single losses whereas 13% were duplicate losses
and only 4% triplicate losses. Generally the jitter is low relative to the delay of the
link, approximately 3-4%. This is not totally unexpected as the loss rates are also low.
With the exception of the Argentinian site, the sites did not exhibit large differences in
asymmetry and were normally within 5% of each other in each direction. It is interesting
to note that the number of hops could vary under the 15 week measurement period
denoted by () in the hops field. Only very few (� � � � �

���
) out of sequence packets were

observed. Within [106] there are details of other tests, such as the effect of using silence
suppression, differing payload sizes and daytime effects. In summary no significant
differences were observed as these quantities were varied.

9.4 Related Work

Similar but less extensive measurements were performed in 1998 [107]. Only three of
the hosts remain from four years ago so comparisons can only be made for these routes.
An improvement, in the order of 5-10% has been observed for these routes. We should
point out though, the number of sessions recorded four years ago numbered only tens
per host, whereas on this occasion we performed hundreds of calls from each host.
Bolot et. al. looked at consecutive loss for a FEC scheme [108]. They concluded that
the number of consecutive losses is quite low and stated that most losses are one to
five losses at 8am and between one to ten at 4pm. This is in broad agreement with
the findings in this work, however we did not investigate the times during the day of
the losses. Maxemchuk and Lo measured both loss and delay variation for intra-state
connections within the USA and international links [109]. Their conclusion was the
quality depends on the length of the connection and the time of day. We did not try
different length of connections but saw much smaller variations (almost negligible)
during a 24 hour cycle (see [106]). We attribute this to the small 64kbits per second VoIP
session on well dimensioned academic networks. It is worthy to point out our loss rates
were considerably less than Maxemchuks (3-4%). Dong Lin had similar conclusions
[110], stating that in fact even calls within the USA could suffer from large jitter delays.
Her results on packet loss also agree with those in [108], which is interesting, as the
measurements were taken some four years later.

9.5 Conclusions

We have presented the results of 15 weeks of voice over IP measurements consisting of
over 18000 recorded VoIP sessions. We conclude that the quality of VoIP is very good
and in most cases is over the requirements as stated in many speech quality recommen-
dations. Recall that all of the sites were at academic institutions which is an important
factor when interpreting these results as most universities have well provisioned links,
especially to other academic sites. Nevertheless, the loss, delay and jitter values are
very low and from previous measurements the quality trend is improving. We can only
attribute this to more capacity and better managed networks than those four years ago.
However some caution should be expressed as the sample period was only 15 weeks, the

62

bandwidth of the flows very small and only used once per hour. We do have however
quite a large number of sample sessions. VoIP is dependent on the IP network infra-
structure and not only on the geographic distance. This can be clearly seen in the differ-
ences between the Argentinian and Turkish hosts. We have found performing measure-
ments on this scale is not an easy task. Different access mechanisms, firewalls, NATs
and not having super-user permission complicates the work in obtaining measurements.
Since it is not possible to envisage all the possible uses for this data we have made it
available for further investigation at http://www.sics.se/˜ianm/COST263/cost263.html.

References

1. Willinger, W., Paxson, V.: Where mathematics meets the internet. Notices of the American
Mathematical Society 45 (1998) 961–970

2. Park, K., Willinger, W.: Self-similar network traffic and performance evaluation. Wiley
(2000)

3. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling tcp throughput: a simple model
and its empirical validation. In: Proceedings of SIGCOMM 98, ACM. (1998)

4. Kleinrock, L.: Queuing Theory - Vol 2. Wiley (1976)
5. Ben Fredj, S., Bonald, T., Proutire, A., Rgni, G., Roberts, J.: Statistical bandwidth sharing:

a study of congestion at flow level. Proceedings of Sigcomm 2001, Computer Communi-
cation Review 31 (2001) 111–122

6. Bonald, T., Roberts, J.: Congestion at flow level and the impact of user behaviour. Computer
Networks, to appear (2003)

7. Le Boudec, J.Y., Thiran, P.: A theory of deterministic queuing systems for the Internet.
Volume 2050 of Lecture notes in computer science. Springer-Verlag (2001)

8. Bonald, T., Proutire, A., Roberts, J.: Statistical performance guarantees for streaming flows
using expedited forwarding. In: Proceedings of Infocom 2001. (2001) 1104–1112

9. Gibbens, R., Kelly, F., Key, P.: A decision theoretic approach to call admission control.
IEEE JSAC 13 (1995) 1104–1114

10. Bonald, T., Oueslati, S., Roberts, J.: Ip traffic and qos control: towards a flow-aware archi-
tecture. In: Proceedings of World Telecom Conference, Paris (2002)

11. Benameur, N., Ben Fredj, S., Delcoign, F., Oueslati-Boulahia, S., Roberts, J.: Integrated
admission control for streaming and elastic flows. In: Proceedings of QofIS 2001, LNCS
2156, Springer (2001)

12. Quadros, G., Monteiro, E., Boavida, F.: A qos metric for packet networks. In: Proceed-
ings of SPIE International Symposium on Voice, Video, and Data Communications, Hynes
Convention Center, Boston, Massachusetts, USA (1998)

13. for Standardization, I.O.: Information technology – quality of service: Framework. Inter-
national Standard 13236 (1998)

14. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: Rfc 2475 – an architec-
ture for differentiated service (1998)

15. Quadros, G., Alves, A., Monteiro, E., Boavida, F.: An approach to support traffic classes in
ip networks. In Crowcroft, J., Roberts, J., Smirnov, M.I., eds.: Lecture Notes in Computer
Science. Volume 1922., Berlin, Germany, Springer-Verlag, Heidelberg (2000) 285–299

16. Quadros, G., Alves, A., Monteiro, E., Boavida, F.: An effective scheduler for ip routers.
In: Proceedings of ISCC’2000, Antibes, France, Fifth IEEE Symposium on Computers and
Communications (2000)

63

17. Quadros, G., Alves, A., Silva, J., Matos, H., Monteiro, E., Boavida, F.: A queue manage-
ment system for differentiated-services ip routers. In Crowcroft, J., Roberts, J., Smirnov,
M.I., eds.: Lecture Notes in Computer Science. Volume 1922., Berlin, Germany, Springer-
Verlag, Heidelberg (2000) 14–27

18. Alves, A., Quadros, G., Monteiro, E., Boavida, F.: Qostat – a tool for the evaluation of
qos-capable routers. In: Proceedings of SPIES’s International Symposium on Voice, Video,
and Data Communications, Boston (2000)

19. netIQ: Chariot – User Guide. (2001)
20. Oliveira, M., Brito, J., Melo, B., Quadros, G., Monteiro, E.: Encaminhamento com qual-

idade de serviço: Desafios da implementação da estratégia qosr-lct (portuguese). In: Pro-
ceedings of CRC’2000, Third National Conference on Computer Networks – Technologies
and Applications, Viseu, Portugal, FCCN (2000)

21. Oliveira, M., Melo, B., Quadros, G., Monteiro, E.: Quality of service routing in the dif-
ferentiated services framework. In: Proceedings of SPIES’s International Symposium on
Voice, Video, and Data Communications, Boston (2000)

22. Lourenco, D., Oliveira, M., Quadros, G., Monteiro, E.: Definição do mecanismo de con-
trolo de admissão para o modelo de serviços de lct-uc. In: Proceedings of CRC’2000, Third
National Conference on Computer Networks – Technologies and Applications, Viseu, Por-
tugal, FCCN (2000)

23. Breslau, L., Shenker, S.: Best–effort versus reservations: A simple comparative analysis.
ACM Computer Communication Review 28 (1998) 3–16

24. Braden, R., Clark, S., Shenker, S.: Integrated services in the internet architecture. RFC
1633, IETF (1994)

25. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An architecture for
differentiated services. RFC 2475, IETF (1998)

26. Shenker, S., Partridge, C., Guerin, R.: Specification of guaranteed quality of service. RFC
2212, IETF (1997)

27. Wroclawski, J.: Specification of the controlled-load network element service. RFC 2211,
IETF (1997)

28. Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S.: Resource ReSerVation protocol
(RSVP). RFC 2205, IETF (1997)

29. Jacobson, V., Nichols, K., Poduri, K.: An expedited forwarding PHB. RFC 2598, IETF
(1999)

30. Heinanen, J., Baker, F., Weiss, W., Wroclawski, J.: Assured forwarding PHB group. RFC
2597, IETF (1999)

31. Baker, F., Iturralde, C., Le Faucheur, F., Davie, B.: RSVP reservations aggregation. Internet
Draft, IETF (2001) (Work in progress).

32. Bernet, Y.: Format of the RSVP DCLASS object. RFC 2996, IETF (2000)
33. Bernet, Y., Ford, P., Yavatkar, R., Baker, F., Zhang, L., Speer, M., Braden, R., Davie, B.,

Wroclawski, J., Felstaine, E.: A framework for integrated services operation over diffserv
networks. RFC 2998, IETF (2000)

34. Cetinkaya, C., Knightly, E.W.: Egress admission control. In: Proc. of IEEE INFOCOM
2000, Tel Aviv, Israel (2000) 1471–1480

35. Breslau, L., Jamin, S., Shenker, S.: Comments on the performance of measurement–based
admission control algorithms. In: Proc. of IEEE INFOCOM 2000, Tel Aviv, Israel (2000)
1233–1242

36. Karlsson, G.: Providing quality for internet video services. In: Proc. of CNIT/IEEE IT-
WoDC 98, Ischia, Italy (1998) 133–146

37. Fodor (née Elek), V., Karlsson, G., Rönngren, R.: Admission control based on end-to-end
measurements. In: Proc. of IEEE INFOCOM 2000, Tel Aviv, Israel (2000) 623–630

64

38. Ramakrishnan, K., Floyd, S.: A proposal to add explicit congestion notification (ECN) to
IP. RFC 2481, IETF (1999)

39. Kelly, F.P., Key, P.B., Zachary, S.: Distributed admission control. IEEE Journal on Selected
Areas in Communications 18 (2000) 2617–2628

40. Kelly, T.: An ECN probe–based conection acceptance control. ACM Computer Communi-
cation Review 31 (2001) 14–25

41. Bianchi, G., Capone, A., Petrioli, C.: Throughput analysis of end–to–end measurement-
based admission control in IP. In: Proc. of IEEE INFOCOM 2000, Tel Aviv, Israel (2000)
1461–1470

42. Bianchi, G., Capone, A., Petrioli, C.: Packet management techniques for measurement
based end-to-end admission control in IP networks. Journal of Communications and Net-
works 2 (2000) 147–156

43. Bianchi, G., Borgonovo, F., Capone, A., Petrioli, C.: Endpoint admission control with delay
variation measurements for QoS in IP networks. ACM Computer Communication Review
32 (2002) 61–69

44. Breslau, L., Knightly, E.W., Shenker, S., Stoica, I., Zhang, H.: Endpoint admission control:
Architectural issues and performance. In: Proc. of ACM SIGCOMM 2000, Stockholm,
Sweden (2000) 57–69

45. Más Ivars, I., Karlsson, G.: PBAC: Probe–based admission control. In: Proc. of QoFIS
2001, Coimbra, Portugal (2001) 97–109

46. Más, I., Fodor, V., Karlsson, G.: Probe–based admission control for multicast. In: Proc. of
IWQoS 02, Miami Beach, Florida (2002) 97–109

47. Gibbens, R.J., Kelly, F.P.: Distributed connection acceptance control for a connection-
less network. In: Proc. of the 16th International Teletraffic Congress, Edinburgh, Scotland
(1999) 941–952

48. Bianchi, G., Borgonovo, F., Capone, A., Fratta, L., Petrioli, C.: PCP: an end-to-end
measurement-based call admission control for real-time services over IP networks. In:
Proc. of QoS–IP 2001, Rome, Italy (2001) 391–406

49. Roberts, J.W., Mocci, U., Virtamo, J., eds.: COST 242: Broadband Network Teletraffic.
Volume 1155 of Lecture notes in computer science. Springer–Verlag (1996)

50. Conte, M., Más, I., Fodor, V., Karlsson, G.: Policy enforcing for probe–based admission
control. In: Proc. of NTS 16, Espoo, Finland (2002) 45–55

51. Ventre, G., et al.: Quality of Service control in Premium IP networks. Deliverable 2.1, IST
Project CADENUS — IST 11017 (2001)

52. Smirnov, M., et al.: SLA Networks in Premium IP. Deliverable 1.1, IST Project CADENUS
— IST 11017 (2001)

53. Quittek, J., Zseby, T., Claise, B.: Requirements for IP Flow Information Export. Internet
Draft, IETF (2002) (Work in progress).

54. ebXML Technical Architecture Project Team: ebXML Technical Architecture Specification
v.1.0.4. Technical specification, ebXML Consortium (2001)

55. D’Antonio, S., Fadini, B., Romano, S., Ventre, G.: Designing Service Negotiation Entities
for the Electronic Marketplace. In: Proceedings of SEKE2002, Ischia, Napoli — Italy
(2002)

56. Cremonese, P., et al.: A Framework for Policy-based Management of QoS-aware IP Net-
works. In: Proceedings of Networking2002, Pisa — Italy (2002)

57. Chan, K., et al.: COPS Usage for Policy Provisioning (COPS-PR). RFC 3084, IETF (2001)
58. Rawlins, D., et al.: Framework of COPS-PR Policy Usage Feedback. Internet Draft, IETF

(2002) (Work in progress).
59. Zhang, Z., Towsley, D., Kurose, J.: Statistical analysis of the generalized processor sharing

scheduling discipline. In Proceedings of ACM SIGCOMM (1994) 68–77

65

60. Zhang, Z., Liu, Z., Kurose, J., Towsley, D.: Call admission control schemes under general-
ized processor sharing scheduling. The Journal of Telecommunication Systems, Modeling,
Analysis, Design, and Management 7 (1997)

61. Elwalid, A., Mitra, D.: Design of generalized processor sharing schedulers which statisti-
cally multiplex heterogeneous qos classes. In Proceedings of IEEE INFOCOM ’99 (1999)
1220–1230

62. Parekh, A., Gallager, R.G.: A generalized processor sharing approach to flow control in in-
tegrated services networks: The single-node case. IEEE/ACM Transactions on Networking
1 (1993) 344–357

63. Parekh, A., Gallager, R.G.: A generalized processor sharing approach to flow control in
integrated services networks: The multiple node case. IEEE/ACM Transactions on Net-
working 2 (1994) 137–150

64. Szabo, R., Barta, P., Nemeth, F., Biro, J.: Call admission control in generalized processor
sharing (gps) schedulers using non-rate proportional weighting of sessions. In Proceedings
of INFOCOM ’00 (2000)

65. Zhang, Z., Liu, Z., Towsley, D.: Closed-form deterministic end-to-end performance bounds
for the generalized processor sharing scheduling discipline. Journal of Combinatorial Op-
timization 1 (1998)

66. Georgiadis, L., Gu’erin, R., Peris, V., Sivarajan, K.: Efficient network qos provisioning
based on per node traffic shaping. IEEE/ACM Transactions on Networking 4 (1996) 482–
501

67. Duffield, N.G., Lakshman, T.V., Stiliadis, D.: On adaptive bandwidth sharing with rate
guarantees. In Proceedings of INFOCOM ’98 (1998) 1122–1130

68. Chang, C.S., Chen, K.C.: Service curve proportional sharing algorithm for service-
guaranteed multiaccess in integrated-service distributed networks. In Proceedings of
GLOBECOM ’99 (1999) 1340 –1344

69. Stamoulis, A., Giannakis, G.: Deterministic time-varying packet fair queueing for inte-
grated services networks. In Proceedings of GLOBECOM ’00 (2000) 621–625

70. Toutain, F.: Decoupled generalized processor sharing: A fair queueing principle for adaptive
multimedia applications. In Proceedings of INFOCOM ’98 (1998) 291–298

71. Panagakis, A., Stavrakakis, I.: Optimal call admission control under generalized processor
sharing scheduling. In Proceedings of IWQoS ’01 (2001)

72. Boudec, J.Y.L.: Application of network calculus to guaranteed service networks. IEEE
Transactions on Information Theory 44 (1998) 1087–1096

73. Panagakis, A., Stavrakakis, I.: Generalized processor sharing enhancement through session
decomposition. In Proceedings of Net-Con ’02 (2002)

74. Sisodia, G., Headley, M.: Statistical analysis and simulation study of vbr coded video
source models in atm networks. In: Proceedings of UPC. (1998) 177–181

75. Li, S.Q., Hwang, C.L.: Queue response to input correlation functions: discrete spectral
analysis. IEEE Trans. on Networking 1 (1997) 533–552

76. Lombardo, A., Morabito, G., Schembra, G.: An accurate and treatable markov model of
mpeg video traffic. In: Proc. of IEEE INFOCOM 1998. (1998) 217–224

77. MPEG traces archive: (http://www-info3.informatik.uni-wuerzburg.de/mpeg/traces/)
78. Heyman, D.: The gbar source model for vbr videoconferences. IEEE Trans. on Networking

5 (1997) 554–560
79. Heyman, D., Tabatabai, A., Lakshman, T.: Statistical analysis and simulation study of video

teleconference traffic in atm networks. IEEE Trans. on Circ. and Syst. for Video Tech. 2
(1992) 49–59

80. Koucheryavy, Y., Moltchanov, D., Harju, J.: A novel two-step mpeg traffic modeling algo-
rithm based on a gbar process. In: Proc. of NET-CON. (2002) 293–304

66

81. Lombardo, A., Morabito, G., Palazzo, S., Schembra, G.: Intra-gop modeling of mpeg video
traffic. In: Proc. of IEEE ICC. Volume 1. (1998) 563–567

82. Lombardo, A., Morabito, G., Palazzo, S., Schembra, G.: A fast simulation of mpeg video
traffic. In: Proc. GLOBECOM. Volume 2. (1998) 702–707

83. Blondia, C., Casals, O.: Performance analysis of statistical multiplexing of vbr sources. In:
Proc. IEEE INFOCOM. (1992) 828–838

84. Koucheryavy, Y., Moltchanov, D., Harju, J.: A top-down approach to vod traffc transmission
over diffserv domain using the af phb class. In: Proc. of IEEE ICC, Alaska, USA (2003)

85. Meyer, C.: Matrix analysis and applied linear algebra. SIAM Publications (2000)
86. Hajek, B., Linhai, H.: On variations of queue response for inputs with the same mean and

autocorrelation function. IEEE Trans. on Networking 6 (1998) 588–598
87. Awduche, D.: MPLS and Traffic Engineering in IP networks. IEEE Communications

Magazine 37 (1999) 42–47
88. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol label switching architecture. RFC

3031, IETF (2001)
89. Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., Xiao, X.: Overview and Principles of

Internet Traffic Engineering. RFC 3272, IETF (2002)
90. Blake et al., S.: An architecture for differentiated services. RFC 2475, IETF (1998)
91. Le Faucheur et al., F.: Multi-protocol label switching (MPLS) support of differentiated

services. RFC 3270, IETF (2002)
92. Cho, K.: Alternate Queuing (ALTQ) module, (http://www.csl.sony.co.jp/person/kjc/programs.html)
93. Almesberger, W.: Linux network traffic control - implementation overview. White paper,

EPFL ICA (2001)
94. Almesberger, W., Hadi Salim, J., Kuznetsov, A.: Differentiated services on linux. Internet

Draft, IETF (1999) (Work in progress).
95. Leu, J.R.: MPLS for Linux, (http://sourceforge.net/projects/mpls-linux)
96. Avallone, S., Esposito, M., Pescapé, A., Romano, S., Ventre, G.: Measuring MPLS over-

head. In: Proc. of ICCC2002, Mumbai, India (2002)
97. Avallone, S., D’Arienzo, M., Esposito, M., Pescapé, A., Romano, S., Ventre, G.: Mtools.

IEEE Network 16 (2002) 3 Networking column.
98. Avallone, S., Esposito, M., Pescapé, A., Romano, S., Ventre, G.: Mtools: a one-way delay

and round-trip time meter. In Mastorakis, N., Mladenov, V., eds.: Recent Advances in
Computers, Computing and Communications. (2002)

99. Avallone, S., Esposito, M., Pescapé, A., Romano, S., Ventre, G.: An experimental analysis
of Diffserv-MPLS interoperability. In: Proc. of ICT 2003, Papeete, French Polynesia (2003)

100. Recommendation G.114, I.T.: General Characteristics of International Telephone Connec-
tions and International Telephone Circuits: One-Way Transmission Time (1998)

101. Cole, R., Rosenbluth, J.: Voice over IP Performance Monitoring. ACM Computer Commu-
nication Review (2002)

102. ITU-T Recommendation G.107: The E-Model, a computational model for use in transmis-
sion planning (1998)

103. L.F.Sun, G.Wade, B., E.C.Ifeachor: Impact of Packet Loss Location on Perceived Speech
Quality. In: Proceedings of 2nd IP-Telephony Workshop (IPTEL ’01), Columbia University,
New York (2001) 114–122

104. Kitawaki, N., Kurita, T., Itoh, K.: Effects of Delay on Speech Quality. NTT Review 3
(1991) 88–94

105. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport Protocol for
Real-Time Applications. RFC 1889, Internet Engineering Task Force (1996)
http://www.rfc-editor.org/rfc/rfc1889.txt.

106. Li, F.: Measurements of Voice over IP Quality. Master’s thesis, KTH, Royal Institute of
Technology, Sweden (2002)

67

107. Hagsand, O., Hansson, K., Marsh, I.: Measuring Internet Telephone Quality: Where are
we today ? In: Proceedings of the IEEE Conference on Global Communications (GLOBE-
COM), Rio, Brazil, IEEE (1999)

108. Bolot, J., Crepin, H., Garcia, A.: Analysis of audio packet loss in the internet. In: Proc. Inter-
national Workshop on Network and Operating System Support for Digital Audio and Video
(NOSSDAV). Lecture Notes in Computer Science, Durham, New Hampshire, Springer
(1995) 163–174

109. Maxemchuk, N.F., Lo, S.: Measurement and interpretation of voice traffic on the Inter-
net. In: Conference Record of the International Conference on Communications (ICC),
Montreal, Canada (1997)

110. Lin, D.: Real-time voice transmissions over the Internet. Master’s thesis, Univ. of Illinois
at Urbana-Champaign (1999)

