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a b s t r a c t

Software systems are increasingly being used in business or mission critical scenarios, where the
presence of certain types of software defects, i.e., bugs, may result in catastrophic consequences (e.g.,
financial losses or even the loss of human lives). To deploy systems in which we can rely on, it is vital to
understand the types of defects that tend to affect such systems. This allows developers to take proper
action, such as adapting the development process or redirecting testing efforts (e.g., using a certain
set of testing techniques, or focusing on certain parts of the system). Orthogonal Defect Classification
(ODC) has emerged as a popular method for classifying software defects, but it requires one or more
experts to categorize each defect in a quite complex and time-consuming process. In this paper, we
evaluate the use of machine learning algorithms (k-Nearest Neighbors, Support Vector Machines, Naïve
Bayes, Nearest Centroid, Random Forest and Recurrent Neural Networks) for automatic classification
of software defects using ODC, based on unstructured textual bug reports. Experimental results reveal
the difficulties in automatically classifying certain ODC attributes solely using reports, but also suggest
that the overall classification accuracy may be improved in most of the cases, if larger datasets are
used.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Software systems are nowadays at the core of most businesses,
where they are used to support critical operations, usually under
the form of services [1]. In general, the size and complexity of
critical software systems has grown throughout the years and the
tendency is that this complexity and their importance will con-
tinue to increase. In this context, the presence of a software defect
(i.e., a bug) may result in serious failures [2] that have several
consequences on the business (e.g., lost business transactions,
reputation losses, or even severe safety problems).

The development of dependable systems requires that devel-
opers carry out software defect detection activities (e.g., code
inspections, static analysis, black-box testing) where it is vital
to detect bugs early in the process, especially before production,
otherwise the impact on product cost can become quite high [3].
However, from a software engineering perspective, what really
makes the whole process more efficient is the execution of pre-
ventive actions. As it is not possible to have preventive actions for
all different bugs, it is better to understand their main types and
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then perform root cause analysis on the patterns found [4]. This
allows for adjustments in the software engineering methodology,
allowing to put more or less effort on certain software defect
detection techniques, changing the development methodology
(e.g., to use test-driven development), or redistributing team
effort, just to name a few.

Orthogonal Defect Classification (ODC) is a set of analytical
methods used for software development and test process analysis
to characterize software defects that consists of eight orthogonal
attributes [4]. Despite being a very popular framework for classi-
fying software defects, the main problem associated with it is that
it requires the presence of one or more experts, the classification
process is relatively complex and particularly lengthy, and does
not fit well with current time-to-market pressure put on devel-
opers. Previous works have tried to automate the classification
process (e.g., [5–7]), but most of them are limited to one or
two ODC attributes (e.g., Defect Type, [6,7], Impact [5,8]), require
the addition of further information to bug reports, or end up
using a simpler classification, which is placed on top of ODC, and
where higher level families serve to group ODC attributes, which
impacts the usefulness of ODC.

In this paper, we evaluate the applicability of a set of popular
machine learning algorithms for performing automatic classifica-
tion of software defects purely based on ODC and using unstruc-
tured text bug reports as input. The classifiers considered were:
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k-Nearest Neighbors (k-NN), Support Vector Machines (SVM),
Naïve Bayes (NB), Nearest Centroid (NC), Random Forest (RF), and
Recurrent Neural Networks (RNNs). We illustrate our approach
using a set of 4096 bug reports referring to ‘closed and resolved’
bugs that were extracted from the issue tracking systems of
three popular NoSQL systems: MongoDB, Cassandra, and HBase.
At the time of writing, this number of bugs represents about
one fourth of all ‘closed and resolved’ bugs for these systems
and were previously manually classified (and partially verified)
by a researcher according to ODC. Two additional independent
classifications were also produced to understand the reliability of
the dataset.

The experimental results show the difficulties in automatically
classifying bugs by solely using bug reports and disregarding the
actual changes in the code. This is evident in some ODC attributes,
such as Defect Type and Qualifier, which are highly related to
the code corrections associated with the bug report. On the other
hand, other attributes (e.g., Target) show high accuracy values
as they do not depend on the actions taken by the developer
to correct the bug. It also became obvious that, with exceptions,
a relatively small dataset (which typically carries low number
of occurrences of certain ODC classes) negatively impacts the
overall results. Results suggest that, in general, larger and richer
datasets may be very helpful in effectively automating the whole
classification procedure.

We must emphasize that we are making our dataset publicly
available and are also providing a Representational state transfer
(RESTful) service [9] for performing automatic classification of
bugs according to ODC. The service receives, as input, an un-
structured textual description of the software defect (i.e., a bug
report) and the machine learning algorithm to use. The dataset,
Swagger API description, and RESTful service are available at http:
//odc.dei.uc.pt.

In summary, the main contributions of this paper are the
following:

• A comprehensive evaluation of machine learning algorithms
for automatic classification of bug reports using ODC;

• A machine learning system able to tackle the majority of
ODC attributes, namely Activity, Trigger, Impact, Target, De-
fect Type, and Qualifier;

• The public availability of our dataset holding 4096 ODC
annotated bug reports;

• A RESTful service allowing developers to effortlessly classify
a bug report according to ODC.

The rest of this paper is organized as follows. Section 2
presents background concepts and related work on papers using
ODC, with emphasis on research trying to automate software
defect classification using machine learning algorithms. Section 3
presents the study designed to evaluate the applicability of ma-
chine learning algorithms to ODC and Section 4 discusses the
results. Section 5 presents the threats to the validity of this work
and finally Section 6 concludes this paper.

2. Background and related work

This section introduces the Orthogonal Defect Classification
(ODC) [10] main concepts and overviews works related with the
application of ODC. The section then presents a set of works that
try to automate the classification of bug reports, particularly by
using machine learning algorithms.

2.1. Orthogonal defect classification

Orthogonal Defect Classification is an analytical process used
in software development and test process analysis to characterize
software defects [10]. It allows extracting valuable information
from defects and provides insights and aids diagnosis in software
engineering processes. ODC is based on the definition of eight
attributes grouped into two sections: open-report and closed-
report. The open-report section refers to attributes for which there
should be information at the moment of disclosure of a certain
defect, in particular:

− Activity: refers to the activity being performed at the time
the defect was disclosed (e.g., unit testing);

− Trigger: indicates what caused the defect to manifest (e.g., a
blocked test);

− Impact: is the impact a user experienced when the defect
surfaced.

The closed-report section includes the attributes that relate
with the correction of a certain defect (and depend on that
information). In particular:

− Target: the object that was the target of the correction
(e.g., a set of build scripts);

− Defect Type: the type of change that was performed to
correct the problem (e.g., changing a checking condition);

− Qualifier: describes the code point before the correction was
made (e.g., missing, incorrect, or extraneous);

− Age: the moment in which the defect was introduced (e.g.,
during the correction of another defect);

− Source: refers to the origin of the defect, e.g., if it was
detected in outsourced code or in-house developed code.

Several works have used ODC to classify sets of software
defects to understand the distribution of the types of bugs found.
Some works use the knowledge obtained from using ODC in
empirical settings (e.g., fault injection experiments), such as [11]
and [12]. Christmansson and Chillarege [11] inject errors instead
of faults (i.e., an error is the consequence of a fault [13]) so as to
skip the unknown waiting period needed for a certain fault to be
activated. This requires some form of mapping between the set of
faults that should be injected and their respective errors, which is
obtained via using ODC classified bugs. Durães and Madeira [12]
use the ODC classification distributions from a set of software
bugs to categorize common programmer mistakes. The emerging
patterns among these common mistakes are then used to define
a set of software fault emulation operators. Works such as [14]
and [15] propose workflow strategies consisting of multiple steps
which aim to improve the effectiveness of software development
processes. In the midst of these steps, the authors include the
use of ODC to classify bugs found in the software product be-
ing developed. The final steps are mostly focused on extracting
knowledge and lessons learned from the whole process, mostly
based on defect distributions according to ODC attributes.

2.2. Automating ODC with machine learning

A common problem present in works that use ODC is that
the bug classification is usually a time-consuming manual pro-
cess that requires the presence of one (or ideally more than
one) expert. In addition, the number of defects analyzed should
be relatively large to enable further analysis, which aggravates
the problem. This kind of task is not only time- and resource-
consuming, but also error prone. Therefore, there is an obvious
need to automate this process, either via rule-based approaches
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(e.g., as proposed in [16]) or through the use of machine learning
algorithms.

In [6], the authors propose an SVM-based automatic defect
classification scheme. This scheme classifies defects into three
families that essentially aggregate ODC attributes: (i) control and
data flow; (ii) structural; and (iii) non-functional. The classifi-
cation process applies a text mining solution, which is able to
extract useful information from defect report descriptions and
source code fixes, and uses this information as the main criteria
to classify defects. To validate the proposal, 500 software defects
were classified both manually by the authors and automatically
by the resulting SVM algorithm. The authors reported being able
to achieve a global accuracy of 77.8%. The fact that families of
ODC attributes are used is a way of diminishing the error, which
may be interesting in certain scenarios, but, at the same time,
providing an automatic approach based purely in ODC is a quite
different endeavor, as the diversity of attributes (and respective
values) is much larger.

The authors of [7] propose an active learning and
semi-supervised defect classification approach that targets the
families of defects proposed in [6]. The approach resorts to
minimal labeled data that includes diverse and informative ex-
amples (i.e., active learning) and uses both labeled and unlabeled
defect examples in the learning process (i.e., semi-supervised
learning). The main goal of this approach is to reduce the amount
of time spent in categorizing defects to train machine learning
algorithms. The authors validated the proposal by labeling only
50 ODC defects out of a set of 500 (unlabeled), and achieved
a weighted precision of 65.1% (applied to the three mentioned
families only and based on the special selection of the minimal
set of defects).

In [17] the authors describe an automatic defect classification
scheme based on feeding the Abstract Syntax Trees of the buggy
code and its respective correction to a decision engine. This
decision engine can classify defects according to four categories:
(i) Data; (ii) Computational; (ii) Interface; and (iv) Control/Logic.
With a dataset of 1174 defects extracted from defect-tracking
repositories of three separate systems, the automatic defect clas-
sification scheme was able to classify defects with an accuracy
ranging from 64% to 79%. Given the relatively low number of
classes, automating such procedure tends to be an easier task
(i.e., when compared with a more complex scheme, such as ODC),
but, at the same time, less informative.

In [5], the authors describe AutoODC, which is an approach for
automatically classifying software defects according to ODC and
that views the case as a supervised text classification problem.
AutoODC integrates ODC experience with domain knowledge and
resorts to two text classification algorithms, namely Naïve Bayes
and Support Vector Machines. The authors introduce the Rele-
vance Annotation Framework, in which a person registers the
reason why they believe a given defect should belong to a particu-
lar ODC attribute value, thus providing further information to the
machine learning algorithm. The authors state that this additional
approach is able to reduce the relative error of the classification
by a factor between 14% and 29%. The accuracy of the proposed
approach reaches 82.9% using the NB classifier and 80.7% using
the SVM classifier on a total of 1653 industrial defect reports, and
77.5% and 75.2% using the NB and SVM classifiers respectively,
on a set of open-source defect reports. Note, however that, trying
to automate ODC exclusively relying on the typical information
present in a bug report is a much harder task and, at the same
time, a more realistic scenario.

Some works use machine learning algorithms to automate
the process of bug triage, i.e., the process of deciding what to
do with newly found software defects. These approaches do not
focus on the classification of the defects in terms of their causes

or corrective measures, but typically on properties like sever-
ity level, so that defects can be separated into specific cate-
gories, allowing developers to, for instance, prioritize their cor-
rections. The works [18–21] apply this approach to automatically
assign new bugs to specific developers. To this end, the au-
thors of [18] propose the use of a supervised Bayesian machine
learning algorithm. The algorithm correctly assigns 30% of bug
reports to the expected developers. Xuan et al. [21] describe
a semi-supervised NB text classification algorithm which uses
’expectation–maximization’ to take advantage of both categorized
and uncategorized bug reports. The algorithm iteratively catego-
rizes unlabeled data (which refers to the expectation step) and
rebuilds a new classifier (which refers to the maximization step).
This semi-supervised approach increases the overall accuracy by
up to 6% when compared with its supervised counterpart.

Tian et al. [19] propose a framework, named DRONE, for pre-
dicting the severity of a software defect based on a set of factors
(i.e., temporal, textual, author, related-report, severity, and prod-
uct) that are extracted from bug reports via feature extraction.
The framework includes a classification engine named Threshold-
inG and Linear Regression to ClAssifY Imbalanced Data (GRAY),
which tries to enhance linear regression with a thresholding
approach so that cases of imbalanced bug reports are handled.
The approach is applied against a dataset of over 100.000 bug
reports from Eclipse and it shows an improvement of 58.61%
compared to results in Menzies and Marcus [22]. With the same
bug triage goal, Dedík [20] proposes an algorithm based on SVM
with Term Frequency–Inverse Document Frequency (TF–IDF). The
achieved accuracy is of 57% for a dataset of Firefox bug reports,
53% for a Netbeans dataset and 53% for a defect dataset from a
private company.

Finally, Hernández-González et al. [8] present an approach
which focuses on automating the classification of software de-
fects according to the ODC Impact attribute. The authors name
this approach ‘‘learning from crowds’’ (it relies on the amount
of data rather than quality), and it focuses on training a clas-
sifier with a large amount of potentially erroneous and noisy
classifications from people with no particular expertise in ODC
classification (i.e., partially reliable annotators). The work used
the data produced by a group of 5 novice annotators, which
classified 846 plus 598 bugs from the Compendium and Mozilla
Firefox open-source projects, respectively. The authors resort to
a Bayesian network classifier and conclude that learning from
(unskilled) crowds can outperform the typical approach of using
a reliable dataset to train the classifier. Still, the authors have
used only 4 of the 13 values of the Impact attribute (Installability,
Requirements, Usability, Other), reaching the whole 13 values
with satisfactory accuracy is a complex task.

In summary, considering the prior developments on automatic
defect classification, we essentially find two groups of works. One
group uses machine learning to perform bug triage (including
assigning bugs to developers and distinguishing severity). The
second group specializes on ODC, but the different works either
focus on a single ODC attribute (sometimes using a reduced set
of values for the single attribute), or they focus in families of
attributes, where several attributes are used to form higher-level
groups. From the perspective of ODC these kinds of approaches
are less useful, as we are trading the information richness that
is strictly associated with the detailed ODC process with the
information that can be obtained from a higher granularity classi-
fication (which is less informative), although it potentially allows
accuracy metrics to reach higher values.

In this work, we opted to not discard less popular attributes
nor consider families of attributes. In this sense, this work di-
verges from related work and results cannot be directly compared
using the typical metrics (e.g., accuracy). These two particular
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choices create greater difficulties to the machine learning algo-
rithms, such as: (i) there is no additional information for each
defect, other than what already exists in reality; (ii) the number
of attributes (and classes, i.e., attribute values) are higher, thus
the chance of error tends to be higher. Despite the additional
difficulties, we consider that this case represents reality in a more
accurate way and allows developers and researchers to obtain full
benefits of applying ODC.

3. Study design

In this section, we describe the design of our study, which is
based on the following set of steps:

(1) Manual creation and preprocessing of the dataset;
(2) Feature extraction;
(3) Dimensionality reduction;
(4) Configuration and execution of the machine learning clas-

sifiers;
(5) Assessment of the classifiers performance.

The following subsections describe each of the above steps in
detail, explaining the decisions taken throughout the work.

3.1. Dataset creation and preprocessing

The creation and initial preprocessing of the dataset (step 1 of
the study) used in this work involved going through the following
set of substeps, which we describe in the next paragraphs:

i. Selection of a set of NoSQL databases;
ii. Selection of a set of defect descriptions from each one of

the databases online bug tracking platforms;
iii. Manual ODC classification of each software defect, carried

out by one researcher (named researcher1);
iv. Manual verification of the software defects classified in the

previous step in two different verification activities:

(a) Internal verification carried out by the same re-
searcher responsible for the original classification;

(b) External verification produced by two external re-
searchers (named researcher2 and researcher3).

We started by selecting three popular NoSQL databases, Mon-
goDB, Cassandra, and HBase (selected according to popularity
rankings in db-engines.com, stackoverkill.com, and kdnuggets.
com). One ODC-knowledgeable early stage researcher, named
researcher1 was selected to carry out the manual process of
classifying ‘closed and resolved’ bug reports, according to ODC.
researcher1 first trained with a total of 300 defect descriptions
(100 bug reports per each of the 3 NoSQL databases). During
this process, and initially in an informal way, a few samples of
the outcome of the classification were verified and discussed by
two experienced researchers as a way of providing feedback to
researcher1. These 300 bug descriptions were then discarded and,
thus, are not part of the final dataset.

We then randomly selected 4096 ‘closed and resolved’ bug re-
ports (1618, 1095 and 1383 defects for MongoDB, Cassandra, and
Hbase, respectively), which, at time of writing, accounted for
around one fourth of the total closed and resolved defects in
each database. We divided the 4096 software defects dataset in
five batches, with the first four batches holding 2048 bugs (512
defects each batch). researcher1 then initiated with the manual
classification of each defect.

The bug reports used are composed of a title, a description of
the detected defect and several comments that end up describing
what has been made to correct the defect. This information was

interpreted by researcher1 and each defect was manually labeled
using the six different labels, one for each ODC attribute: Activity,
Trigger, Impact, Target, Defect Type, and Qualifier. We excluded
the ‘Age’ and ‘Source’ ODC attributes from this work, as the bug
tracking systems of the three systems under analysis did not
provide sufficient information to classify these attributes for all
the defects in our dataset.

To verify the classification of the defects and, most of all, to
have some insight regarding the overall quality of the annotated
dataset, we performed two verification activities against 40% of
the defects (1640 out of 4096 defects), which we name Internal
and External and that are depicted in Fig. 1.

During the internal verification activity, researcher1 progres-
sively re-inspected a total of 20% of the defects (820 of the
4096 defects) to check and correct any errors found. Thus, the
internal verification was performed over the first four batches
and immediately after the classification of a certain batch was
concluded. In practice, by the end of each batch, the researcher
double-checked a total of 40% of the already classified defects
in that batch, using the following distributions: (i) a sequen-
tial selection of the first 20% of the defects in the batch; (ii) a
random selection of another 20% from the remaining defects in
the batch. After this was concluded and the dataset improved,
we initiated the external verification activity, which involved two
new and independent classifications carried out by two external
researchers (designated researcher2 and researcher3). These two
researchers were provided with two sets of randomly selected
and non-overlapping defects, which added up to 20% of the global
dataset (i.e., 820 defects in total, 410 bugs per each one of the two
researchers).

Table 1 shows the detailed outcome of the verification proce-
dure, which is composed of the previously mentioned verification
tasks, named Internal (carried out by researcher1), External1
(carried out by researcher2) and External2 (carried out by re-
searcher3). The table shows the details only for the Defect Type
attribute, due to the fact that it is the most widely used ODC
attribute in related work (e.g., [23–25]). Notice that the defect
counts for Internal, External 1, and External 2 are below the 20%
and 10% marks (the exact numbers are 746, 379, and 382 defects,
respectively), as we are considering only the defects where the
Target attribute was confirmed to be ‘Code’ and, as such, can be
marked with a defect type.

In each of the matrices, each cell holds the total number of
bugs marked with a certain attribute value, the values read in
the rows represent the outcome of the verification procedure. The
highlighted cells in the diagonal refer to true positives (the bugs
in which there is agreement between the original classification
and the respective verification task).

We also analyzed the inter-rater agreement using Cohen’s
Kappa (k), which is able to measure the agreement between two
raters that classify items in mutually exclusive categories [26]. In
our case, we wanted to understand the agreement of researcher2
(and researcher3) with researcher1. The definition of k is given
by Eq. (1):

k =
po − pc
1 − pc

(1)

where po is the relative observed agreement between raters
(i.e., accuracy) and pc is the probability of agreement by chance.
If both raters fully agree, then k = 1, if there is no agreement
beyond what is expected by chance, then k = 0, and, finally,
a negative value reflects the cases where agreement is actually
worse than random choice. The following terms are typically used
for the quantitative values of k: poor when k < 0, slight when
0 ≤ k ≤ 0.2, fair when 0.21 ≤ k ≤ 0.40, moderate when
0.41 ≤ k ≤ 0.60, substantial when 0.61 ≤ k ≤ 0.80, and finally
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Fig. 1. Representation of the different verification tasks across the dataset.

Table 1
Detailed view of the verification tasks results.

Table 2
Accuracy and Cohen’s Kappa Agreement for re-
searcher2 external verification.

almost perfect when 0.81 ≤ k ≤ 0.99 [27]. The accuracy results of
researcher2 are presented in Table 2, along with the Kappa value
(referring to the agreement with researcher1).

Table 2 shows that we obtained almost perfect agreements for
the majority of the ODC attributes. The exception is Activity with
substantial agreement and Trigger with moderate agreement. In
the former case, the most visible case of disagreement between
the researchers is the case where code inspection bugs were
marked by researcher2 as being one of the three possible Testing
cases (i.e., unit testing, function testing, system testing). Indeed,
researcher2 classified roughly one third of the 229 bugs originally
marked with code inspection by researcher1 as being one of the
three Testing activities (15 bugs attributed to unit testing, 30 to
function testing, and 32 to system testing). This has direct impact
in the Trigger classification, as, in this case, a wrong activity will
lead to a wrong Trigger (this is due to the fact that some activities
exclusively map into certain triggers). As such, we can expect
that the accuracy values for Trigger are lower, which is actually
the case. Due to time restrictions, researcher3 only classified the
defect type attribute, for which it reached an accuracy of 0.90
which corresponds to a Kappa value of 0.88, also achieving an
almost perfect agreement. Based on this, we consider that the

whole dataset is reliable, as we estimate the overall error is kept
under similar values.

Table 3 holds a summary of the final outcome of the whole
classification process and shows the details regarding the number
of reports assigned to each label. As the Triggers directly map to
the 5 Activities (i.e., Design Review/Code Inspection, Unit Test,
Function Test, System Test), we also include the detailed values
for the respective triggers. There is also a relation between the
Defect Type and Qualifier attributes with the Target attribute,
which only apply to reports classified with Target Code or Design
(which means that not all of the 4096 defects qualify for being
marked with a defect type/qualifier, in our case — 3846 defects
are code defects). During the process, we had to exclude some
classes (marked in gray in Table 3) due to their absence or
relatively low number of instances in the dataset. We also identify
(light blue cells) the smallest number of reports per attribute in
Table 3 (explained in the next paragraph).

After observing the classified bug reports in detail, we noticed
that the dataset was very imbalanced. The classifiers chosen
(SVM, k-NN, NB, NC, RF and RNN) tend to classify a certain report
using the most prevalent class if the dataset is imbalanced. An
obvious solution is to use a sampling technique to balance the
dataset. We decided to use an undersampling technique rather
than oversampling because, in this context, oversampling would
imply artificially generating bug reports (including mimicking
conversations between developers), which is a very complex task
and very prone to errors.

Undersampling consists of decreasing the number of reports
so that their number will be the same for all classes. Thus, the
class with less reports (marked in light blue in Table 3) keep all
information while in the others, reports are randomly removed
until their number reaches the number of reports in the less
popular classes.
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Table 3
Number of documents per class in the dataset. Gray cells indicate removed
classes due to small or nonexistent instances. Black cells indicate the smallest
number of instances per attribute.

3.2. Feature extraction

The goal of this step is to extract representative values from
the original text reports that are supposed to be informative and
non-redundant (as a way to help the machine learning algo-
rithms). Several feature extraction techniques, described in the
next paragraphs, can be applied to non-structured text data,
namely: bag-of-words [28]; term frequency (TF) [28]; term fre-
quency combined with inverse document frequency (TF-IDF) [28–
30].

The bag-of-words technique, where each word counts as 1
when it appears in a document and 0 otherwise, does not allow
to distinguish uncommon words from words that appear in the
entire dataset, since all of them would carry the same value.

The TF technique, where an array of numbers represents how
many times each word appears in a document, gives a higher
value to the words that appear most often in a document. This
may be problematic, given that the words that appear most often
in a document are usually words which are widely used in a given
context. Therefore, the classifiers would very likely show poor
performance since all the classes would be defined by the same
best words.

The TF-IDF computes a weight that discriminates the occur-
rence frequency of a given word in the entire dataset and allows
us to understand its importance for a certain document. The TF
part counts how many times it appears in the document and the
IDF part is a ratio between the total number of documents and the
number of documents where a certain term t appears. A higher
number of occurrences of a word in the entire dataset decreases
the word’s importance for the classification problem [29,30]. In
this work we use TF-IDF.

The IDF value for a certain term t in a dataset D is given
by Eq. (2):

IDF(t,D) = log10

(
N

|{d ∈ D : t ∈ d}|

)
. (2)

where N is the number of documents in the data set D, and the
denominator is the number of documents where the given term t
appears. If the denominator is 0 it is added one unit to make the
division possible. When we multiply the term counter values with
the IDF values we obtain a value (TF-IDF) that allow us to know
the importance of a word in each document. The words that are
the most important are those that have larger values, i.e. those
that appear more times in each document and less times in the
entire data set. The TF-IDF is given by:

TF-IDF(t, d,D) = TF(t, d) × IDF(t,D). (3)

where TF(t, d) represents the number of times that term t appears
in a document. Therefore, at the end each report is represented by
a vector x with all the values that resulted from the application
of TF-IDF.

Finally, the TF-IDF values are normalized using L2 Normaliza-
tion represented by Expression (4):

L2 Normalization: x =

⎡⎢⎣x1
x2
...

xn

⎤⎥⎦ →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1√
x21 + x22 + · · · + x2n

x2√
x21 + x22 + · · · + x2n

...
xn√

x21 + x22 + · · · + x2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

This normalization algorithm converts the vectors in normal-
ized vectors where the sum of the squares of vector elements is
1, i.e., it is also known as euclidean norm.

The classification process included training (using part of the
dataset) and testing (the execution of the classifiers using un-
known data). Thus, we divided the dataset in these two parts
(see Section 3.5 for further details). For performing feature ex-
traction over the bug reports that belong to the training dataset,
a dictionary was developed with all the words that appeared
in the set and their respective number of occurrences. For this
purpose, we relied on text feature extraction functions available
in Scikit-learn: Machine Learning in Python [31]. For the testing
set, the dictionary built with the training set was used to convert
words into numbers using Eqs. (2) and (3). Although, the majority
of state-of-art text classification models remove the words that
appear too frequently, called stop words, we decided to keep
them since these type of words are not useless in our case [5].

3.3. Dimensionality reduction

Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) are likely the most used Dimensionality Reduc-
tion methods in Machine Learning. On one hand, PCA is a non-
supervised approach that tries to project features into a low-
dimensional space, preserving the data variance as most as pos-
sible. On the other hand, LDA is supervised and the goal is to
find a projection that maximizes data clusters separability and
compactness [32].

Due to its simplicity, PCA was used to diminish the ratio be-
tween the number of samples and the number of features, known
as Dimensionality Ratio [33]. High dimensionality ratios reduce
the risk of overfitting (training data specialization), i.e., tend to
improve the capacity to classify correctly new data. For this
purpose, it was necessary to select a dimensionality ratio that
would allows us to keep as much information as possible, while
keeping the abovementioned ratio higher than one (values below
one mean that we have more features than samples and accuracy
in new data tend to be very low). In the case of this work, the
value that we used was half of the number of documents in the
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balanced dataset for each attribute. This leads to a dimensionality
ratio of two, preserving around 70% of the data variance for
all ODC categories, which is pointed as the minimum value of
preserved variance in the literature [34]. After applying PCA for
Dimensionality Reduction, we obtained new vectors x with new
features created based on the old best features, i.e, based on the
best discriminative words.

3.4. Classifiers

Six classifiers that fit into six different types were consid-
ered: the k-Nearest Neighbor classifier (k-NN), known to be a
lazy learner; a Bayesian classifier (Naïve Bayes), i.e., a paramet-
ric approach; the Support Vector Machine (SVM), which is a
maximal-margin classifier; the Random Forest (RF), an ensemble
classifier; the Nearest Centroid (NC), a minimum distance classi-
fier; and the Recurrent Neural Network (RNN) which in this work
was implemented as a deep learning architecture.

The k nearest neighbors (k-NN) classifier is named lazy learner
because its training is just the storage of labeled data [35]. A new
pattern is classified by finding the k closest neighbors, and the
class of the new pattern will be the most prevalent class among
the k closest neighbors. Thus, the k parameter should be odd to
not allow the occurrence of draws. The best k value is usually
obtained by experimentation, as we did in this work. Concerning
the determination of the k closest neighbors, we opted to use the
Euclidean distance, which is known to be the most used metric.

A Bayesian classifier is based on the Bayes rule, which is given
by:

P(ωi|x) =
P(ωi)p(x|ωi)

p(x)
. (5)

where x is a feature vector corresponding to a given bug re-
port that we want to classify, ωi is the ith class, p(x|ωi) is the
conditional probability density function (pdf ) that describes the
occurrence of a given vector x when the class ωi is known, P(ωi)
is the probability of occurrence of objects of class ωi, p(x) is the
pdf that define the probability of occurrence of a given pattern
x independently of the class, and P(ωi|x) is the probability that
knowing a pattern x its class is ωi. Thus in a classification problem
we assign the class that corresponds to the biggest P(ωi|x) to x.
The classification rule is:

x ∈ ωi if P(ωi|x) > P(ωj|x) ∀i ̸= j. (6)

The training of a Bayesian classifier encompasses the determi-
nation of P(ωi) and p(x|ωi) for all the classes. The former is
estimated by computing the prevalence of patterns from a given
class in the training set, for example, for a given class ωi: P(ωi) =

ni/N , being N the total number of patterns in the training set and
ni the number of patterns that belong to ωi. The latter involves
the estimation of a pdf from data. Naïve Bayes (NB) is a partic-
ular case of the general Bayesian classifier, where independence
between every pair of features is assumed, thus the estimation of
p(x|ωi) is simply given by:

p(x|ωi) ≈

F∏
k=1

p(xk|ωi), (7)

where xk is a given value of the kth feature and F the total number
of features. Concerning the distribution type assumed for each
p(xk|ωi), in this paper we considered the multinomial distribution,
which is known to be a good choice for text classification [36].

In its native formulation the support vector machine (SVM)
finds a decision hyperplane that maximizes the margin that sep-
arates two different classes [37]. Considering non-linearly sep-
arable training data pairs {xi, yi} (with i = 1, . . . ,N), where

yi ∈ {−1, 1} are the class labels and xi ∈ Rd are corresponding
features vectors, the function that defines the hyperplane is:

yi
(
wTxi + b

)
≥ 1 − ξi; yi ∈ {−1, 1} (8)

where w = [w1, . . . , wd]
T is the vector normal to the hyperplane,

b/(∥w∥) is the hyperplane offset to the origin and ξ is a quantifi-
cation of the degree of misclassification. w and b are obtained by
minimizing:

Ψ (w) =
1
2
∥w∥

2
+ C

N∑
i=1

ξi, subject to (9)

yi(wTxi + b) ≥ 1 − ξi; i = 1, . . . ,N.

C defines the influence of ξ on the minimization criterion Ψ .
In a classification problem it may happen that data can be

separated but by non-linear decision boundaries. SVM enable the
definition of non-linear decision functions by applying a data
transformation into a new space where data may be easier to
classify by a linear decision function given by [38]:

d(x) = w1f1(x) + · · · + wkfk(x) + b, (10)

where f = [f1, . . . , fk]T implements the non-linear transformation
from the original feature space to a new space of dimension k. It
can be demonstrated that by considering the dual optimization
problem that the decision function is given by:

d(x) =

∑
SVs

αiyifT (xi)f(x) =

∑
SVs

αiyi(f(xi) · f(x)) =

∑
SVs

αiyiK (xi, x).

(11)

Where αi and yi are the Lagrange multiplier and the ±1 label
associated with support vector xi, respectively. K (xi, x) = f(xi) ·

f(x) is the inner-product kernel, where the most popular and used
one is the Gaussian RBF, given by:

K (xi, x) = e−
∥x−xi∥

2

2σ2 = e−γ ∥x−xi∥2 . (12)

γ =
1

2σ2 is a free parameter that controls the kernel function
aperture, and should be subjected to a grid search procedure in
conjunction with the C parameter.

The SVM is defined as a two-class classifier, but ODC classifica-
tion is a multi-class problem. The usual approach for multi-class
SVM classification is to use a combination of several binary SVM
classifiers. Different methods exist but, in this work, we used
the one-against-all multi-class approach [39]. This method trans-
forms the multi-class problem, with c classes, into a series of c
binary sub problems that can be solved by the binary SVM. The ith
classifier output function ρi is trained taking the examples from
a given class as 1 and the examples from all other classes as −1.
For a new example x, this method assigns to x the class that were
assigned in majority by all the binary classifiers [39].

The Random Forest (RF) classification is made by considering a
set of random decision trees [40]. The trees training is usually per-
formed with the ‘‘bagging’’ (Bootstrap aggregating) method [41],
with the ambition that a combination of simple learning models
increases the overall classification performance. The ‘‘random’’
designation comes from the fact that individual trees are based
on a random selection of the available features. RF is less prone
to overfitting than single decision trees because of its random
nature. When compared to non-ensemble approaches, this type
of algorithms tends to return more stable results, i.e., they present
a reduced variance.

The first step in a Nearest Centroid (NC) classifier is the com-
putation of the centroids based on a training dataset, i.e., the
mean vector for each class. In the testing phase a new sample is
classified by computing the distance between it and the centroids,
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Table 4
Best parameter values that lead to the highest accuracy for each classifier and ODC attribute.

related to the different classes, then the class of the sample will be
the class of the nearest centroid. In the text classification domain
using TF-IDF feature vectors NC is also known as the Rocchio
classifier [28].

Recurrent neural networks (RNNs) are popular neural net-
works used for text classification [42,43]. They allow to use past
information for making better decisions in the present i.e, they
are able to learn relations between words of each document
instead of looking at each word independently. Therefore, they
are classifiers that are aware of the sequence (previous, actual and
next). However, simple RNN architecture suffers from vanishing
gradient problem [44] and long term dependency problem as
well [45]. In order to overcome such disadvantages, Hochre-
iter and Schmidhuber presented the long-short-term memory
(LSTM) [46], a type of RNN that is able to control the flow of
the information over the sequence steps (e.g. over the words of a
text), and that may be composed by several LSTM units, forming
a deep-learning architecture.

In this paper we used a RNN model that is based on LSTM
units. For a better exploration of the text we used two LSTM
layers, one which learns the texts from left to the right and other
which does the inverse, named Bi-LSTM [47,48]. For training this
architecture we used a batch size higher than one. Thus, we had
to convert all the documents to the same length. We decided to
use a threshold equal to the average length of all documents plus
three times the standard deviation which allow us to maintain
almost 99% of the information of all documents. Another method
would be using the maximum length of the training set. However,
this would lead to have longer documents just for more 1% of
information. Then, we pad the smaller documents with the word
‘‘padding’’ and remove words from the documents longer than
this threshold. Differently from the classical algorithms, for train-
ing RNN classifier we used word embeddings instead of TF-IDF
feature. For training the word embedding model responsible for
converting each word in a embedding vector we used Word2Vec
algorithm [49] and all the reports presented on the MongoDB,
Cassandra and HBase databases at the moment of the training of
the algorithms (17,117 reports) allowing us to use non-annotated
data to classify labeled reports. Our deep-learning model archi-
tecture is presented in Fig. 2. For the RNNs development we used
the Keras API [50].

Configuring the classifiers mostly involves finding the best
hyperparameters for our SVM, k-NN, RF and RNN. Thus, we per-
formed a search, usually referred as Grid-Search, for the param-
eters that lead to the best classification, i.e, that leads to the best
accuracy. The NB and NC classifiers have no free parameters and
thus it was not necessary to perform this search. About the SVM
we applied two classifiers, one with a linear kernel and other with
Gaussian RBF kernel. Then, we searched for the C values for the
linear one and for the C and γ values combinations for the other,
for k-NN we searched for the number of neighbors (k), for RF
for the appropriate number of trees, and for RNN the appropriate
hidden vector dimension and dropout percentage.

An application of the Grid-Search method is represented in
Fig. 3, where the goal is to find both C values, γ , k, the number of
trees, the hidden vector dimension, and the dropout percentage
that provides high accuracy (the best values, in the case of the
example shown in Fig. 3, are marked in red). As presented in
the Figure, we varied both C values and γ in powers of two
between 2−5 and 25, k assumed odd values between 1 and 21,
the number of trees tested were [20, 21, . . . , 210

], the hidden
vector dimension varied in powers of two between 23 and 26,
and dropout between 10% and 50% using a step of 10%. For both
SVM models, we should choose a C value that leads to high
accuracies but that at the same time is small. Larger C values
lead to the definition of smaller separation margins based on
the training data and the probability of overfitting is high. On
the other hand, for k-NN we have the reverse situation, i.e., the
number of neighbors should not be so small in order to prevent
overfitting. RF is known to be very resistant to overfitting, even
with a higher number of trees. The number of trees can result in
a problem of complexity, and we should use a good compromise
between performance and complexity. Regarding the RNN clas-
sifier, keeping the network with a low hidden vector dimension
prevents overfitting [51]. Furthermore, the dropout regularization
is also fundamental to make better relations between the features
preventing overfitting as well [52]. Although Fig. 3 only shows
the values for the Activity attribute, the procedure was exactly
the same for all other ODC attributes and therefore we omit the
graphical view of the remaining searches (all detailed values and
graphics may be found at http://odc.dei.uc.pt).

Table 4 presents all the best values for C , γ , k, number of trees,
hidden vector dimension and dropout percentage. As previously
mentioned, these values were selected by examining the best
accuracies found with lower values of C , k and number of trees.
We found out that the best C values for Linear SVM were confined
to the range [2−2, 24

], the best k values to the range [5, 21], the
best number of trees to the range [27, 210

], the best C values
for RBF SVM to the range [20, 25

] and the best γ values to the
range [2−5, 20

]. Finally, for RNN classifier the best hidden vector
dimension values were confined to the range [23, 24

] and the best
dropout percentage to the range [10%, 20%]

3.5. Classifier assessment

As mentioned earlier, the classification process includes train-
ing (using part of the dataset) and testing (using unknown data,
also known as out-of-sample data). It is important to mention
that, for training the classifiers related to ‘open section’ ODC
attributes we just used the title and description of the software
defect. Thus, for these cases, we do not use the posterior de-
veloper comments, which many times discuss how a fix should
be performed and would not fit the open section definition. For
training the classifiers related with the ‘close section’ ODC at-
tributes, we use all available information regarding each software
defect.

http://odc.dei.uc.pt
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Fig. 2. RNN architecture used for classification of the bug reports.

Fig. 3. Grid search for hyperparameters using Activity.

Table 5
Generic confusion matrix, where ‘‘ĉk ’’ indicates
predictions provided by the algorithms.

In order to validate our classifiers, we used the K-Fold Cross
Validation (CV) approach, with ten folds (i.e., K = 10) [53], which
is known to be the most classic validation strategy. Supposing
that the training data is composed by M bug reports (i.e., sam-
ples), the algorithm will split the data in 10 parts, where each
part contains M/10 samples. Afterwards the classifiers are trained
10 times for the same data. In each iteration, the classifiers are
trained with nine parts and the part that is ‘‘left out’’ is used for
testing. The algorithm output is compared to the real labeling
by filling confusion matrices. Different ODC attributes present
different numbers of classes, thus, confusion matrices with dif-
ferent sizes were filled. These can be represented by the generic
confusion matrix illustrated in Table 5.

The diagonal terms ni,j, where i = j, correspond to the
instances where the algorithm’s output was consistent with the

real class label, i.e. the true positive patterns. The values ni,j,
where i ̸= j, are the number of instances misclassified by the
algorithm, which can be considered as false positives or false
negatives depending on the class under analysis. Considering a
given class k, four measurements can be taken:

− True positives (TPk): number of instances correctly classified
as class k;

− False positives (FPk): number of instances classified as k
when in fact they belong to other class;

− True negatives (TNk): number of instances correctly not
classified as k;

− False negatives (FNk): number of instances assigned to other
classes when in fact they belong to class k;

These measurements for a problem with K classes can be
computed from the confusion matrix as follows:

n+,k =

K∑
i=1

ni,k;

nk,+ =

K∑
j=1

nk,j;

TPk = nk,k;

FPk = n+,k − nk,k; (13)
FNk = nk,+ − nk,k;

TNk = N − TPk − FPk − FNk.
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Fig. 4. Relative change for the Defect Type attribute.

where N is the number of patterns that do not belong to class
k. We evaluated the algorithm’s according to three metrics: ac-
curacy, recall (or sensitivity), and precision. These metrics are
respectively given by:

accuracyk =
TPk + TNk

TPk + FPk + TNk + FNk
(14)

recallk =
TPk

TPk + FNk
(15)

precisionk =
TPk

TPk + FPk
(16)

In the next section we present the results obtained with each
classifier and discuss results, based on the concepts presented in
this section.

4. Results and discussion

This section discusses the results obtained during this work
in three different views. We first analyze how the size of the
dataset affects the accuracy of the classifiers. We then overview
the classification results according to the previously mentioned
metrics (i.e., accuracy, recall, and precision) and using the whole
dataset. Finally, we go through the detailed results obtained for
each ODC attribute. The numbers shown in this section refer to
the average of several runs, namely 25 runs using all algorithms,
so that we could identify the best one per each ODC attribute. We
report average performance indicators, as well as their variability
in the testing data in the format average value±standard deviation.

We begin by analyzing how the dataset size affects the overall
accuracy of the classification. For this purpose, we carried out a
set of tests using Linear SVM, which has a fast training and it
was also one of the models that revealed the best accuracy val-
ues while classifying the complete dataset (see next paragraphs
for details on the accuracy values obtained by each algorithm).
We varied the size of the dataset using increments of 10% and
computed the relative change of the accuracy across the different
dataset sizes and using the smallest dataset size (i.e., 10%) as
reference. The relative change is calculated as follows:

RC
(
ai, aref

)
=

ai − aref
aref

(17)

where aref represents the reference accuracy value for the small-
est dataset size (in this case, 10%) and ai represents the accuracy
obtained for a dataset with a certain size i.

Fig. 4 presents a graphical view of the relative change values
for a single ODC attribute —- defect type, which confirms our
general expectation that a larger dataset size would lead to better
accuracy values. Table 6 presents a more detailed vision of the
relative change of accuracy for all ODC attributes per varying
dataset sizes.

Table 6
Relative change values for all ODC attributes.

In general, and as we can see in Table 6, all attributes (the
exception is Function Test) benefit from increasing the dataset
size. This is quite expectable, since machine learning algorithms
tend to perform better and its performance is well estimated with
increasing amounts of (good quality) information used during
training [54]. In the particular case of the Function Test triggers,
and after analyzing the data in further detail, we observed that
the increasing amounts of data present in the different dataset
sizes do not contribute towards the definition of a pattern that
would allow distinguishing among the different triggers. It may
be the case that a different dataset is required, or that the current
sizes used are simply not sufficient for this particular case.

Additionally, we can observe that, for most of the attributes,
the relative change of accuracy does not always progressively
change with the increase of the dataset size. More specifically,
Unit Test, System Test, Impact, Defect Type and Qualifier do not
show the highest relative change value for the dataset size of
100%. Still, the differences between the highest values and those
at 100% dataset size are relatively subtle.

Table 7 presents the overall results for all classifiers and per
each ODC attribute, with the best values per attribute marked in
orange (using the average of 25 runs). Fig. 5 visually shows the
overall results for the best classifier and per each ODC attribute.

As we can see in Table 7 the Linear SVM and RNN classifiers
seem to outperform all the others. Regarding the first one, this
was expected since the data is sparse (a considerable number of
features values are zero) and this type of classifier is known to
handle these cases quite well considering it has a linear kernel, as
discussed in [30]. It was also expected that RNN model got better
results than the others since it is based on a powerful architecture
capable of capturing the words sequence in each document and
it is also able to use unannotated data for classifying the reports.
Still, we wanted to know if the observed differences among the
classifiers performance were statistically significant. Thus, we
performed statistical tests which ended up by comparing the best
classifier performance for each attribute, i.e., the model with the
highest average accuracy for each attribute, with all the remain-
ing classifiers for the same category. For each run we balance
data, thus testing data is different between runs, which led us
to consider classifier’s performance as independent realizations.
This allows us to use independent statistical tests. We decided
to use t-test or the Mann–Whitney test, depending on the data
following a normal distribution or not (respectively). To evaluate
normality, we used two tests: Kolmogorov–Sminorv and Shapiro–
Wilk. The t-test is only applied if both tests determine that data
is normal.

Table 8 shows the cases where the model with the highest
accuracy outperforms the remaining in a statistically significant
manner (with an α value of 0.05, i.e., 95% confidence). The cases
marked with ‘‘X’’ refer to those where there are no statistical
differences between the best model and a certain algorithm under
analysis, e.g. in Activity attribute RNN model performs better than
the other models while in Target Linear SVM outperforms all the
others.
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Table 7
Overall classifier results per ODC attribute.

As we can see in Table 8, there are statistically significant
differences between the performance of RNN and the remaining
classifiers for Activity, Trigger — System Test and Impact while for
Trigger — Code Inspection and Trigger — Function Test although
RNN got higher average accuracy than Linear SVM there are no
statistical differences between them. Regarding Linear SVM, there
are statistical differences between it and all the others for Target
and Defect Type while for Trigger — Unit Test there are only
statistical differences between it, Naïve Bayes and Random Forest.
About the Qualifier attribute, although RBF SVM got the highest

average performance there are no statistical differences between
it and RNN and Linear SVM models.

Thus, we can conclude that RNN and Linear SVM models were
the models with the best performances. Fig. 5 shows the best
results obtained for each ODC attribute in a graphical manner.

As we can see in Fig. 5, we were able to reach an accuracy of
47.6% ± 3.5% for the Activity attribute, which essentially means
that the 4 classes for the Activity attribute seem to be a little bit
hard to separate using our data. For the Trigger attribute, which
we have previously divided in parts according to the respective
Activity (according to the Trigger-Activity mapping in [10]), we
obtained accuracy values of 40.3% ± 7.0% for Code Inspection,
37.4% ± 12.8% for Function Test, 41.4% ± 12.7% for System Test
and 57.5% ± 12.3% for Unit Test. Since the Trigger attribute is
directly related with the Activity [10], these results were expected
since the Activity results were not high. In Function Test, System
Test and Unit Test, the standard deviation values are relatively
high, suggesting that there is still high variability in the data in
what concerns these three attributes.

The accuracy obtained for the Impact attribute was relatively
low (33.3% ± 7.5%), which represents the worst classification
performance since it has about half of its classes with no data
and still has low accuracy. However, considering that we are still
using a relatively large number of classes (i.e., 8 classes) and not
a very large quantity of data, results certainly have space for
improvement.

Regarding the Target attribute, we were able to obtain 85.6% ±

5.1% of accuracy (the highest of all attributes). Still, it is important
to mention that we just used 2 out of the 6 classes (i.e., we used
Code and also Build/Package), as we did not have enough data
for the remaining 4 classes. The high accuracy for Target was
expected since, in the case of this attribute, it is really easy to
separate the respective classes just by looking for some keywords,
as software defects which are not associated with Code (e.g., de-
fects associated with build scripts) usually have that information
explicitly mentioned in the bug reports.

Finally, for the Defect Type and Qualifier attributes we ob-
tained 34.7% ± 5.1% and 39.7% ± 6.8% of accuracy, respectively.
These low values obtained for Defect Type and Qualifier are
excepted, as these attributes are fully related to what is changed
in the code, thus being the most difficult cases to classify solely
based on the text of the bug reports. Thus, to improve the results,
it is important to also analyze the code changes (i.e., using other
means), which is something that falls outside of the scope of this
paper and is left for future work.

Overall, we were able to easily automate the classification
regarding the ODC Target attribute. The remaining cases revealed
to be more difficult to handle. For these, and in general, the
algorithm associated with the best performance showed to be
correct between one third and half of the times. Although the
values obtained are not high, we find them to be acceptable,
mostly due to the relatively low number of reports available
(and especially as a consequence of the data balancing performed
during this study). As it is presented in Table 6, the classifiers
tend to perform better if an adequate quantity of data is used for
training, thus gathering more good quality data is a crucial step
for a more effective classification procedure.

We now discuss the detailed results per ODC attribute, to un-
derstand in which classes the algorithms tend to perform better
and in which ones the difficulties are higher. For this purpose,
we analyze the 9 confusion matrices (one per ODC attribute,
including the 4 groups of triggers), as previously explained in
Section 3.5. It should be mentioned that the values shown in
the confusion matrices are not integers since they represent an
average of 25 runs.

Fig. 6a holds the detailed results for the Activity attribute. As
we can see, for this classifier it is relatively easy to identify the
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Fig. 5. Best classifier results per ODC attribute. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 8
Statistical difference of SVM against the remaining algorithms.

System Test and also the Code Inspection classes. Conceptually,
System Test (which refers to testing whole systems) should also
be relatively easy to identify. It was also expectable that code
inspection could be easily distinguishable from the remaining. On
the other hand, we were expecting to see the classifier struggling
with Unit Test and Function Test, which in fact was confirmed by
the results. Unit Test refers to white-box testing of small units
of code, while Function Test refers to testing functions and this
separation is not always very clear (e.g., in some cases, a unit
may be a function, the bug report may not be clear about this). In
fact, the independent classification carried out by researcher2 (see
Section 3) resulted only in moderate agreement, which means that
identifying the right activity used in the disclosure of a software
defect is a somewhat difficult task.

Fig. 6b presents the Trigger — Code Inspection classifier re-
sults. Overall, the classifier experienced more difficulties when
identifying Logic/Flow, which is also the one with the most
generic definition [10] and, possibly more prone to being con-
fused with some other. We can observe that quite often our clas-
sifier confuses this class with Design Conformance, Side Effects,
and Language Dependency.

On the opposite side, the easiest class to identify is Concur-
rency. Although there are no overlaps in the definition of any
of the classes, is it true that, conceptually, concurrency problems
are quite easy cases to identify due to their own specificity. This
leaves little error margin for human classifiers which in the end
reflects on the performance of machine learning classifiers.

Regarding the Trigger — Function Test results depicted in
Fig. 6c, we find that all three classes are confused quite often, al-
though the Sequencing class shows the best true positive results.
Function Test-labeled software defects are those which could
have been caught through functionality testing (as suggested by
the name), and although to the human reader there may be clear
differences between the three presented classes (i.e., coverage,
sequencing, variation), it is possible that the main keywords
referring to each class end up by being quite similar. This was, in

fact, reported by researcher1 that pointed out a general difficulty
in distinguishing among the three classes.

The results for the Trigger — System Test, presented in Fig. 6d,
were not quite what we expected since we find the definitions of
the System Test triggers to be quite separate, which would make
them relatively easy to tell apart, and we can see that several
pairs of Triggers were confused by the classifier. A possible expla-
nation for the confusion cases (e.g., mislabeling Blocked Test with
Software Configuration) can be the relatively low number of sam-
ples (i.e., 130 samples) and, indeed, we have previously observed
a general tendency for better results with larger datasets (see
Table 6). Workload/Stress showed to be the easiest to identify
class, mostly due to the specificities of the keywords related to
this class.

In the case of Trigger — Unit Test the classifier shows diffi-
culties in distinguishing both classes involved (see Fig. 6e). The
definitions of these two classes (complex path and simple path)
both refer to white-box testing and, although they are conceptu-
ally different, they do not largely differ from each other [10]). It is
easy to imagine a bug report not being sufficiently clear about one
of these particular cases. Despite the relatively similar output, the
results show that it is easier to identify Complex Path Unit Tests
than Simple Path.

Regarding the Impact attribute, shown in Fig. 6f, we can see
that the Performance and Reliability classes are the easiest to
identify and that, in general, the amount of defects that are
confused are low, when compared to the amount of correctly
labeled defects. The Capability class is associated with the worst
Impact results, which may be explained by the fact that this is
a generic class (i.e., it represents the ability of the software to
perform its intended functions and satisfy known requirements)
that is select when the user is not affected by any of the other
Impact types [10]. We have seen that the human classifier used
Capability far more than all other Impact classes (i.e., more than
50% of the bugs in the dataset were marked with Capability), and,
when this happens, it is common for the machine classifier to be
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Fig. 6. Detailed classification results per ODC attribute: (a) Activity; (b) Trigger — Code Inspection; (c) Trigger — Function Test; (d) Trigger — System Test; (e) Trigger
— Unit Test; (f) Impact; (g) Target; (h) Defect Type; (i) Qualifier.

confused (a possible reason is that the keywords associated with
more generic classes overlap with some of the keywords in more
concrete classes).

As previously mentioned, the best results were obtained with
the Target attribute, due to the fact that the respective classes
Code and Build/Package are easily separable. Fig. 6g shows the
results in detail.

As for the Defect Type classifier results, which are shown in
Fig. 6h, we were actually not expecting good results because,

by definition, this attribute is about the nature of the change
that was performed to fix the defect, thus mostly (if not com-
pletely) referring to the actual changes in the code. However,
we can see that the results for Function/Class/Object are quite
good, with the classifier seldom confusing this class with the
remaining ones. This Defect Type class refers to large changes
in the code, that would require formal design changes [10]. We
can also see that, the higher number of errors tends to be related
with the erroneous classification of a certain type of defect with
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Algorithm/method (leftmost column). This can be explained by
the fact that this is, by definition, the most generic class of the
Defect Type attribute.

Finally, Fig. 6i shows the detailed results for the Qualifier
attribute. The classes associated with the best results are Extrane-
ous and Missing. It was expected that the three classes had similar
results since their definitions do not overlap, with each Qualifier
referring to a particular state in which the code was (i.e., present
but wrong — Incorrect; present but unnecessary — Extraneous).
The Incorrect class was the one which the algorithm confused the
most, which we know to be a consequence of (as opposed to the
other Qualifiers) this particular value having been used for most
defects (nearly two thirds of the code defects). In the end, this
results in the classifier not easily finding a distinguishable pattern
for this particular class.

Overall, regardless of the accuracy values reported, we noted
that there are a number of resemblances between the difficul-
ties encountered by the classifier and what the main researcher
involved in the creation of the dataset informally reported. The
human difficulties would be mostly related with classes that,
in practice, become not clearly separable (e.g., simple path and
complex path), although they are different by definition. Also,
the low quality of some of the reports creates difficulties to
the human creation of the dataset, which ends up reflecting in
the performance of the classifiers (which have to learn from
an erroneous, many times inconsistent, classification). Thus, and
although the focus of this work is not on the process taken
to manually classify the set of bug reports, we would like to
emphasize that the path to achieve higher accuracy values using
machine learning classifiers starts with a high quality dataset,
which implies a set of actions that, in a pragmatic way, allow
us to reach such highly reliable dataset. The difficulties observed
simply reflect the reality of handling such complex problem and
indicate that there is still space for improvement, namely in the
definition of new techniques (e.g., using a composition of differ-
ent algorithms, mixing machine-learning with other techniques
such as rule-based approaches) for automatic classification of bug
reports using ODC.

5. Threats to validity

In this section, we briefly present threats to the validity of
this work and discuss mitigation strategies. An obvious first ob-
servation refers to the relatively small dataset size obtained after
balancing. In fact, the difficulties in obtaining large datasets (and
especially considering that some classes will be rare) stem from
the lengthy and arduous manual labeling of bugs according to
the several ODC attributes. We are currently working on ex-
tending the dataset, so that we are able to further improve the
classification results. The reduced number of reports lead to the
low dimensionality ratio problem. We tried to control this issue
by performing dimensionality reduction using Principal Compo-
nent Analysis, while preserving as most as possible the retained
variance.

An aspect that will be tackled in future work is related with
the fact that some ODC attributes refer to code changes that are
many times not properly described in the bug reports. As such,
the fact that we are only using the unstructured textual bug reports
is something that may influence the outcome of the classification
(i.e., a code change is objective data, whereas a description of
a code change may not be). Thus, in future work, we intend to
use techniques that directly analyze the code (and especially,
the code changes) as a way to provide additional information to
the classifiers. Related with the previous threat, we must also
mention that, the outcome of the classification process depends
on the quality of the bug reports and especially on the consistency

of the text across reports. But the main aspect to retain here is
that we are using what can be found in the field, and correcting or
individually changing bug reports would not represent a realistic
context.

Our dataset was originally manually annotated (labeled) by one
researcher. Obviously, this activity may have introduced some
errors in the process, especially inconsistent labeling of the same
type of bugs. To reduce the likelihood of this threat, researcher1,
the main researcher responsible for the classification, was first
trained with 300 bug reports (which actually touched most of the
ODC classes used later). In addition, throughout the classification
process, we verified 40% of the classified bugs. 20% of the bugs
were incrementally verified by researcher1 and the remaining
20% by two independent researchers (10% each). The goal was to
achieve a more consistent classification and also to gather some
insight regarding the reliability of the dataset. Due to the amount
of effort involved, in practice it becomes inviable to verify the
complete dataset. Obviously, this does not remove the mislabel-
ing problem (as two persons may make the same mistake), but it
allows to mitigate it.

6. Conclusion

This study evaluated the applicability of a set of popular ma-
chine learning algorithms (k-Nearest Neighbors, Support Vector
Machines, Recurrent Neural Networks, Naïve Bayes, Nearest Cen-
troid, and Random Forest) for performing automatic classification
of software defects based on ODC and using unstructured text bug
reports as input. The experimental results show the difficulties
in automatically classifying certain ODC attributes solely using
unstructured textual reports, but also suggest that the overall
classification accuracy may be improved if larger datasets are
used. Based on our work, we are providing developers and re-
searchers with a public and free RESTful service (available at http:
//odc.dei.uc.pt) for performing automatic classification of bugs
according to ODC. The service receives the bug report and the
machine learning algorithm to use as input and classifies the bug
according the ODC scale. As future work, we intend to extend
the dataset used, integrate code changes in the whole process,
and also consider a combined approach using distinct machine
learning algorithms and different voting schemes in the definition
of a new automatic classification process, particularly tailored to
handle the ODC specificities.
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