
1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

An Analysis of Public REST
 Web Service APIs

Andy Neumann, Nuno Laranjeiro, Jorge Bernardino

Abstract—Businesses are increasingly deploying their services on the web, in the form of web applications, SOAP services,
message-based services, and, more recently, REST services. Although the movement towards REST is widely recognized, there
is not much concrete information regarding the technical features being used in the field, such as typical data formats, how HTTP
verbs are being used, or typical URI structures, just to name a few. In this paper, we go through the Alexa.com top 4000 most
popular sites to identify precisely 500 websites claiming to provide a REST web service API. We analyze these 500 APIs for key
technical features, degree of compliance with REST architectural principles (e.g., resource addressability), and for adherence to
best practices (e.g., API versioning). We observed several trends (e.g., widespread JSON support, software-generated
documentation), but, at the same time, high diversity in services, including differences in adherence to best practices, with only
0.8% of services strictly complying with all REST principles. Our results can help practitioners evolve guidelines and standards
for designing higher quality services and also understand deficiencies in currently deployed services. Researchers may also
benefit from the identification of key research areas, contributing to the deployment of more reliable services.

Index Terms— REST, RESTful, Web Services, API, HTTP, Web, Web Services Analysis

—————————— u ——————————

1 INTRODUCTION
The number of services providing publicly available web
Application Programming Interfaces (APIs) has been
growing rapidly [1]. Several studies point out that devel-
opers have moved from Simple Object Access Protocol
(SOAP) or Remote Procedure Call (RPC) to deploying Rep-
resentational State Transfer (REST) web services, as the
means for consumers to use their services [1]–[4]. This is
corroborated by major websites like Google, Facebook, or
Twitter, which are now deploying REST services to pro-
vide easy access to their valuable data resources, while
promoting their businesses [1].

The REST architecture was introduced in the year 2000,
by Thomas Fielding, and is based on the principles that
support the World Wide Web [5]. In summary, according
to the REST principles [5], REST interfaces rely exclusively
on Uniform Resource Identifiers (URI) for resource detec-
tion and interaction, and usually on the Hypertext Trans-
fer Protocol (HTTP) for message transfer [3], [6], [7]. A
REST service URI only provides location and name of the
resource, which serves as a unique resource identifier. The
predefined HTTP verbs are used to define the type of op-
eration that should be performed on the selected resource
(e.g., GET to retrieve, DELETE to remove a resource).

Possibly due to HTTP’s features (which fit the REST ar-
chitecture rather well), long-term presence, and general
understandability, REST has become a de facto standard
way for offering a service on the Web [2], [8]. Despite this,
REST is merely an architectural style, provided without
standard specifications. This implies that several decisions
have to be made by developers when exposing service
APIs, which may result in diverse APIs and, in some cases,
in poor design decisions (e.g., using a single HTTP verb for

retrieving or deleting a resource). These decisions will im-
pact the client-side developer, that must adapt to the spe-
cific style being used, and may even affect the provider
(e.g., when a poorly maintainable service is deployed).

Server-side developers must define how an API should
be exposed (e.g., which URI design schema to use), which
characteristics it should possess (e.g., which output for-
mats are supported) or how the documentation is pro-
vided (e.g., created with documentation generation soft-
ware). For instance, this last item is problematic because
without standard means for documenting APIs, the ten-
dency will be to use text to describe the API (many times
in natural language), which may be diverse in form, struc-
ture, or depth and is obviously a problem for client devel-
opers [3]. The literature also suggests some heterogeneity
in how HTTP features are used, with some being widely
adopted (e.g., HTTP verbs, status codes) and others tend-
ing to be ignored (e.g., HTTP headers) [2], [3]. Also highly
discussed is the adoption of the Hypermedia As The Engine
Of Application State (HATEOAS) principle of the REST ar-
chitecture, which is rarely used [1]–[3], [9], [10].

Due to the abovementioned reasons, it is a common be-
lief that most online services available online claim to be
REST services without truly following the REST principles,
and present severe technical inconsistencies, diverse de-
signs, and operating modes [1]–[3], [9], [10]. Thus, some
web services expose Web APIs very close to the original
style described by Fielding [5], whereas others simply
change their existing RPC-style API to being directly acces-
sible via HTTP [2]. To what extent this currently happens
is not very clear, and there is the need of using new data as
a means to provide an additional data point that supports
or disputes findings of previous work.

In this paper, we empirically analyze the technical fea-
tures of 500 public REST Web Service APIs, found in the
top 4000 most popular sites on the Web (according to
alexa.com). Our analysis goes through 26 API features,
identified in the literature [1]–[4] and gathered during our
observations, with the goal of understanding: i) the level of

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
• A. Neumann, N. Laranjeiro, and J. Bernardino are with the CISUC, De-

partment of Informatics Engineering, University of Coimbra, Portugal.
E-mail: andy@finekey.de, cnl@dei.uc.pt, jorge@isec.pt

• J. Bernardino is also with the ISEC - Coimbra Institute of Engineering,
Polytechnic Institute of Coimbra, Portugal.

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

adoption of REST principles (e.g., the design schema used
in the URIs); ii) the common design decisions made by ser-
vice developers, e.g., is Extensible Markup Language
(XML) or JavaScript Object Notation (JSON) a popular
choice for service output data) and; iii) if REST service de-
velopment best practices [2]–[4], [9], [11]–[17] are being
followed by programmers (e.g., documenting services in a
structured manner). In summary, we aim to be able to an-
swer the following research questions:

RQ1: Are web services being deployed following a pure REST
architecture?

REST was built as a model of how the Web should work
[5], and violating any of its set of principles puts its objec-
tive at risk. The outcome is heterogeneity of service design
that emphasizes systems heterogeneity, with impact on cli-
ent developers and overall system interoperability [2], [3].
The client developer becomes dependent on the specific
and error-prone decisions of the service programmer. The
extension of this heterogeneity must be known so that
proper measures can be taken by developers and so that
the gaps are analyzed by researchers to advance the state
of the art.

RQ2: Which are the common design choices taken by practi-
tioners when developing REST web services?

In addition to the REST architecture, developing ser-
vices requires several choices regarding technical features,
such as type of output format supported, authentication
mechanism used, etc. Possessing this kind of data is crucial
for practitioners, as available information is short, highly
scattered, and, due to the dynamicity of the Web, also
quickly outdated. In the end, it can help guiding the
(re)definition of best practices.

RQ3: Are best practices for REST web services being followed
by service developers?

Best practices are built by researchers and practitioners,
as the result of research and experience, to guide service
development. Identifying those not followed can help un-
derstanding the disconnection between theory and prac-
tice and this insight may be useful for, for instance, refining
or creating new best practices. Also, understanding the de-
gree to which practices are followed can be used to rein-
force or improve best practices, which in the end contrib-
utes towards more reliable services.

Our results disclose several trends regarding decisions
made by service developers when designing and exposing
their REST web APIs. Examples include the popular use of
software-generated API documentation, the definitive de-
cay of XML in favor of JSON, which is now the most widely
supported output format, the use of OAuth, or the enforce-
ment of call limits, just to name a few. In some features, the
APIs show some diversity, such as the way clients select
the output format or the used documentation generation
software. We observed significant differences regarding
the adoption of the REST principles, resulting in a very low
number (4 out 500 services) of truly RESTful services (i.e.,
compliant with all principles). Finally, we also observed
high adherence to a subset of best practices (e.g., semanti-
cally correct use of HTTP verbs), while also showed resid-
ual appearances (e.g., HATEOAS [5]).

The rest of this paper is organized as follows. Section 2
presents related work in web API analysis. Section 3 de-
scribes the design of this study and section 4 presents the
results. Section 5 discusses the main findings and Section 6
reviews existing threats to validity. Finally, section 7 con-
cludes this paper.

2 RELATED WORK
We identified the following two main groups of re-

search work that provide information regarding web APIs:
i) Works that empirically analyze a set of web services for
specific API characteristics or features; and ii) Works that
provide information about quality attributes of web ser-
vices, including open issues and challenging aspects.

In what concerns empirical analyses of web services,
the work in [1] is an interesting case that analyses 222 pub-
licly available web API documentations, selected from pro-
grammableweb.com, against 20 features. Results show that
RESTful web services had been relatively widely adopted
by 2010, although the authors emphasize that developers
tend to disregard the REST principles, which we confirm
in this work in a larger-scale study and almost a decade
later. In [2], twenty REST web services, selected among the
APIs with higher number of mashups from programmable-
web.com, are analyzed against 17 features. Results show
that almost none of the services is actually truly RESTful,
despite the small dataset.

The authors in [3] analyzed the 45 most popular web
APIs of the programmableweb.com repository using the
number of mashups as the sorting metric and against 17
features. Results show diversity in the adoption of REST
principles or in common design decisions, which is at-
tributed to missing standards regarding REST. The rather
small dataset and the time passed since then make it nec-
essary to take another up-to-date look on the current state
of web APIs.

Authors in [8] aimed to understand the meaning of mi-
cro services for practitioners by questioning 42 companies.
The focus of the work is on micro services, how they are
technically implemented, and which difficulties are pre-
sent. Main findings show that two thirds of the companies
use external services, but also about two thirds of the ser-
vices used are internally developed and operated. REST
and HTTP are quite present, while SOAP rarely appears.
JSON is more common than XML and the most often used
programming languages for implementing the companies’
internal REST services are Java, JavaScript, C#, Python and
Ruby. The study analyzes a certain services niche, while
we aim for a broader study.

The authors in [9] analyze the degree of compliance
with the REST architectural principles, from a point of
view of mobile applications. 78GB of data logs of HTTP re-
quests collected from a large mobile operators are used to
identify patterns and matched against 26 best practices for
web services and the Richardson Maturity Model [18]. The
largest part of their analyzed dataset complies with level 2
of this model, whereas only a few hosts reach level 3. This
study is only based on the analysis of live HTTP requests
and does not examine the corresponding API itself and re-
spective documentation.

The services of three popular cloud providers are com-
pared against a catalog of 73 best practices for REST APIs
design in [13]. Results show that these cloud providers
have reached an acceptable level of maturity, even though
they follow only half to two thirds of the catalog guide-
lines. The work in [10] analyzes 286 Swagger API descrip-
tion documents and provide a framework for a structural
analysis of REST APIs to identify the main characteristics
and deficits. With roughly a third of the 286 APIs being
hosted by Google and by analyzing only Swagger docu-
ments, the authors focus on a particular niche. As we will
see in the next sections, we aim for a broader study, where

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

AUTHOR ET AL.: TITLE 3

even services with no structured documentation are ana-
lyzed.

In [19] 500 popular apps and 15 popular services for the
android ecosystem are analyzed, with the results showing
that application developers prefer official SDKs for access-
ing these services over simple HTTP clients. It is a small set
of 15 services (and with focus on android applications),
thus it is beneficial to have a broader view on this matter.

The authors in [14] analyze 18 popular web services ac-
cording to 12 linguistic patterns and anti-patterns by se-
mantically analyzing the URIs of web services. Results in-
clude the detection of syntactical URI design issues, alt-
hough the API designers tend to use adequate resource
names and no verbs in URIs (a REST best practice). The au-
thors do not analyze other REST-relevant features, such as
the use of HTTP headers.

Non-functional aspects (e.g., payment plans and busi-
ness models) of 69 web services extracted from mar-
ket.mashape.com and programmableweb.com are analyzed in
[21] with the goal of identifying requirements of a govern-
ance model of realistic RESTful APIs. The authors observe
a wider expression of API limitations (e.g., the client is lim-
ited to certain parts of the functionality, in a certain pay-
ment plan) if the API is not regulated by an API Gateway
(e.g., market.mashape.com). We also go through non-func-
tional aspects, such as existence of payment plans and call
limit rates, but intend to provide a wider focus, by analyz-
ing a broader set of technical features, including REST
principles compliance and best practices.

Regarding the works that provide information on qual-
ity attributes of web services, including open issues and
challenging aspects. It is relevant to mention the proposal
of an approach for benchmarking the quality of web ser-
vices considering geo-mobility of the service end-user pre-
sented in [17]. High-level architectural and engineering
options (e.g., client-side caching, the use of a backup API
that could leverage machine-readable API descriptions)
are discussed as means to handle variable Quality of Ser-
vice (QoS), observed during long-term benchmarking ex-
periments. The authors do not present detailed insights on
the features of the services under benchmark.

Software engineering research opportunities for the
consumption of web APIs are discussed in [22]. The chal-
lenges discussed are: i) service consumers have no control
over the web service (the provider may change the API or
the service); ii) clients may not be sure of the validity of
calls to the API at run-time; iii) SDKs out of synchroniza-
tion with the actual service; iv) and QoS issues. The au-
thors identify a few research lines (e.g., static analysis for
checking requests, documenting API signatures, coding
practices and patterns for dealing with varying QoS, im-
pact of web API usage on non-functional aspects). Our
work can help complementing this kind of study, by
providing further detailed data for research to take place.

A language for modeling REST client-server conversa-
tions is presented in [20]. Authors refer that most APIs are
simply exposing low-level HTTP details without hyperme-
dia controls (which creates obstacles for conversation),
which are two features that we analyze in this work for an
up-to-date view. In [4], the authors analyze the evolution
of the interface of client-server technologies (including
web APIs). The authors overview technologies used for
web services and point out reasons for the misuse of REST
principles. The authors emphasize that some designs and
mechanisms (e.g., REST design, OAuth) are much more
successful at web API reuse and discuss the usefulness of

an interface description for REST web APIs. In this paper,
we analyze services in the field for concrete evidence on
these and additional aspects.

In this paper, we designed a study with the broad ob-
jective of understanding the state of the practice regarding
REST web services. We are providing an additional and
updated data point that may support previous work. In
fact, due to the dynamicity of the Web environment, such
works are quickly outdated, leaving practitioners and re-
searchers with little information for designing and devel-
oping services, or pursuing research on this topic.

3 METHODOLOGY
The empirical analysis carried out in this paper was per-
formed from February to July 2017. For simplicity, from
this point onwards we use the term REST (accompanied by
web service API, service API or web API) to designate a ser-
vice that is claimed to be RESTful by some provider. We
use the term truly RESTful if it adheres to all mandatory
REST principles [5]. The study comprised the following
steps, described in further detail in the next paragraphs:

1) Identification of best practices for REST API develop-
ment [2]–[4], [9], [11]–[17];

2) Find a suitable URI source to use as basis for the anal-
ysis;

3) Filter duplicate sites (e.g., regional site variants);
4) Identify the site category (e.g., games, shopping);
5) Examine the site for available service APIs:

a. Identify service APIs announced as REST by
the site and select a subset for analysis;

b. Identify other types of service offered by the
site.

6) Analyze technical features (identified in previous
works [1]–[4]) and gathered during our observations)
of the REST service APIs, going through:

a. Compliance with REST principles [5];
b. Service design decisions;
c. Adherence to best practices [2]–[4], [9], [11]–

[17].
7) Verification of the results.

We started by identifying best practices in the litera-

ture by searching papers in Google Scholar, the results
were filtered to only include peer-reviewed papers that
have been cited (unless they have been published in the
last year). This allowed us to identify the whole set of best
practices. We then used Google Search Engine in search for
a practitioner view on this matter, which allowed us to fur-
ther support three practices that had been already identi-
fied in research work.

The second step involved selecting a source of web-
sites, that we could use as basis for our whole analysis.
There are a few options for this, such as alexa.com, program-
mableWeb.com, or apis.guru, among others. We selected
alexa.com as site source, as it is a mature, well-known, and
periodically updated source of popular sites. Certainly,
there is no direct link between the popularity of a website
and the popularity of its exposed web service, but its wide
application in previous similar research contexts [23], [24]
provides us assurances about its usefulness. The analysis,
described in detail in the next section, was carried out us-
ing the top 4000 most popular web sites as basis.

The selected list of URIs was then processed to filter du-
plicate sites, as many times popular sites include regional
variants, such as google.pt or google.co.uk. Including these

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

variants would add an artificial bias to the results, as such
sites are essentially mirrors deployed by the same com-
pany. Thus, we excluded repeated websites that only differ
in their top-level domain.

Alexa.com is well-known for its top popular site lists, but
it does not categorize websites. So, we opted to also add
some context about the type of sites being analyzed (e.g.,
shopping, finance, games). For this purpose, we used sim-
ilarweb.com (listed, at the time of writing, on position 1589
of alexa.com) to identify each site category, because it
freely provides a classification of sites in categories based
on user interests, and has been often used for website ana-
lytics in previous works [25]–[27].

The process of examining the site for an available ser-
vice API involves, at first, browsing through the site and
searching for information directed for developers. When-
ever an API was not found (many times the main site pages
do not mention any API) or when the website was not in
English, we would direct the search effort to Google’s
search engine. In this case, we used the name of the site
followed by “API”, which was useful for a few times. The
API was then marked as REST or not, based on what the
service provider announced (unofficial APIs, found using
Google, were not considered). In some cases, the website
would provide several web APIs (we registered the num-
ber for later analysis), of which we would randomly select
a single one to proceed with the analysis.

After identifying the REST web API, we manually ana-
lyzed the service API official documentation against a set
of technical features (e.g., HTTP verb support, design
schema used in URIs, versioning use), mostly extracted
from previous studies [1]–[4], and which we present in the
next paragraphs. Also, based on our observations, we
gathered additional features which include the support for
software development kits (i.e., client-side libraries), the
latest API documentation update, the use of generated API
documentation, presence of interactive API test consoles,
usage charges, and enforced call limit rates.

Some of the collected features imply analyzing the APIs
multiple endpoints (i.e., URIs), such as the “design schema
used in URIs”. For APIs with a large number of endpoints
(e.g., Facebook has more than 200 endpoints) we examined
a subset (but our observations showed that the design was
always consistent throughout the API). In short, if the
number of endpoints was less than 20 we checked all, else
if it was lower than 50 we checked about half, otherwise
we checked about one fourth. Similar to [3], and for presen-
tation clarity, we grouped the several features in the fol-
lowing dimensions:
• REST Architecture – This dimension mostly covers

core REST features of the API [5]: i) number of opera-
tions; ii) design schema used in the URIs (i.e., does the
URI only contain resource information or does it also
contain information about the operation); iii) the tech-
nique of the output format selection; iv) the scoping
information (i.e., how the server is informed about on
which data it should operate, for instance using data
specified in the URI path or in an HTTP header field);
v) API versioning support (i.e., is it possible and how
to select among different API versions, how many ma-
jor versions were deployed); vi) support for response
caching; and vii) use of links to related resources in re-
sponse messages.

• HTTP Use – This dimension refers to: i) the supported
HTTP verbs; ii) how HTTP method overrides are im-
plemented (e.g., how to delete a resource if the HTTP

DELETE verb is not supported); iii) if and how the
messages specify their content type; and iv) the use of
adequate HTTP status codes in responses (e.g., send-
ing a success response using a 2xx status code).

• I/O and Software Development Support – This co-
vers the input and output formats supported by the
services. It also addresses the support of Software De-
velopment Kits (SDKs) for the API consumer.

• Security Mechanisms – This refers to the presence of
user authentication mechanisms (is user authentica-
tion required and if yes, which mechanism is sup-
ported) and if communication channel encryption is
mandatory, optional, or simply not supported.

• Usage Policies – This dimension covers the type of
registration that is necessary for using the API,
whether payment plans for using the API are availa-
ble, if call limits are enforced and in this latter case,
how many daily API calls are allowed.

• Documentation and Application Use – This dimen-
sion covers general documentation aspects, namely if
the APIs provide: i) documentation updated in the
current calendar year (at the time of data collection),
i.e., between January to July 2017; ii) generated API
documentation (i.e., produced by a tool, such as the
Swagger UI [28]); iii) interactive developer consoles
(i.e., for testing requests and observing responses); iv)
explanations of error messages; v) example requests
and responses. In addition, we also examine the re-
ported number of applications that use the analyzed
APIs.

Of the above dimensions, the REST architecture is par-

ticularly important, especially due to the wide prolifera-
tion of this kind of APIs. Thus, besides the analysis of the
REST-related features mentioned above, we also analyze,
whenever possible, the level of compliance with Roy Field-
ing’s REST architecture principles [5] (labelled from (1) to
(6) in the next paragraphs).

The Client-Server principle (1) states that the server
holds resources, and the client wants to interact with these
resources. The client sends requests to the server to access
and manipulate data. A REST system must function ac-
cording to the client-server model and must separate user
interface concerns from data storage concerns.

The Stateless principle (2) requires that no client context
is being stored at the server between requests. Each client
request contains all necessary information for the server to
respond and is treated standalone. Responses must define
themselves as Cacheable (3) or not cacheable to potentially
improve scalability.

A Uniform Interface (4) is an essential principle of the
REST architecture that allows simple API usage. It consists
of the following four properties:
- Resource addressability: Every REST service has a URI

as a unique address. This address identifies a resource,
which standardizes the way of accessing the supplied
service.

- Manipulation of resources through representations: A cli-
ent has enough information to manipulate a resource
if it holds a representation of this resource and any at-
tached metadata. For instance, if a client has a repre-
sentation of a user resource and wants to change the
user id, the client would only need to send this repre-
sentation and the new id to the proper endpoint (e.g.,

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

AUTHOR ET AL.: TITLE 5

by using the HTTP PUT verb). A client must not, for
instance, send instructions to the server about how to
update a resource.

- Self-descriptive messages: Requests and responses must
be self-descriptive, which means that the recipient re-
ceives all necessary information to understand the
message and, for instance, must not wait for another
message that explains how to interpret the data. By
sending REST messages using standard means (e.g.,
correct HTTP verbs) to manipulate resources, the re-
cipient of the message (server or client) receives all
necessary information to complete its task.

- Hypermedia As The Engine Of Application State
(HATEOAS): Server response messages must provide
links to related resources. These resource links provide
clients with other currently available actions, based on
the client's current state, which work as a navigation
system throughout the API.

The Layered System principle (5) states that a client can-

not know whether it is connected to the end server, or to
an intermediate server. These layers should be hidden, to
simplify the architecture. Finally, there is an optional Code
on Demand (6) principle that states that, only in case of
need, the server may send code for the client to execute lo-
cally (e.g., the server sending JavaScript code).

Notice that, in the case of the principles, our analysis
will be limited as we will not be able to gather complete
information for at least the Stateless and Layered System
principles (as we are dependent on the information pro-
vided). Still, all service APIs found support the Client-
Server paradigm.

Due to the lack of common structure and standards of
the APIs documentations and due to the complexity of the
analysis, it is not possible to automate this kind of work.
Thus, extracting and analyzing the data is essentially a
manual process. Due to the huge amount of effort involved
we verified about one fourth of the results by randomly
selecting some features among each of the already classi-
fied APIs. During this verification procedure, which was
carried out by the same person performing the analysis, we
found only residual errors. The results of this process are
presented in the following section.

4 RESULTS
In this section, we present the results obtained during our
analysis, which followed the approach described in the
previous section. We begin by overviewing the types of
sites (as classified by similarweb.com) and identifying the
types of APIs provided (e.g., REST, SOAP). We then pre-
sent the results of the analysis of the 500 REST web APIs
identified during this process, from Section 4.1 to Section
4.6, going through the features [1]–[4] presented in Section
3. We discuss common designs, identify compliance with
the REST principles [5], and adherence to best practices
(identified in the text with Bp_bestPracticeName) [2]–[4], [9],
[11]–[17]. Detailed results are available at [29].

From the Alexa Top 4000 sites, 315 sites were found to
be duplicates (only differing in the top-level domain) and
were excluded from the analysis. From the remaining 3685
sites, we found that 681 (18%) provide some kind of API.
Fig.1 shows the distribution of the sites and APIs per cate-
gory (according to similarweb.com). Fourteen categories

holding values below 1.5% (of the 3685 sites) and websites
belonging to undetermined categories (not found in simi-
larweb.com) were placed under “Other”.

As we can see in Fig. 1, about half of the categories
nearly one third of the sites possess some kind of Web API
(e.g., “Computer and Electronics”, “Shopping, “Internet
and Telecom"), while in other categories this tendency
seems to fade (e.g., “Games”, “Adult”). Overall, what we
observe is that the APIs fit in quite diverse categories, em-
phasizing the large proliferation of web APIs that currently
extends to nearly all kinds of sites.

In 13.1% (of the 681 APIs) there is no API documenta-
tion in English and in 3.1% there is actually no documen-
tation. Also, in 4.7% it is necessary to create an account to
view the documentation and in 2.5%, it is necessary to ap-
ply for the API use just to view the documentation. For
simplicity, and due to the relatively low number of these
cases, we decided to exclude these APIs from the analysis,
ending up with a total of 522 APIs.

From the 522 sites, 91% provide only a single API which
we analyzed. The remaining 9% provide more than one
API, with nearly half (4.4%) providing less than 6 APIs, up
to a maximum of 100 APIs by google.com. Each API, of these
sites that offer several APIs, serves a different purpose. For
instance, ebay.com offers APIs for selling, buying, or ac-
counting. We observed that, in general, the characteristics
and documentation of the different APIs of the same pro-
vider tend to be similar. Due to this, and due to the rela-
tively low number of these cases (which could however
add some bias towards the decisions of a particular pro-
vider), we randomly selected one of the available APIs per
site to be part of the analysis.

Before proceeding with the core of the analysis, we must
refer that, based on the providers’ claims, we identified
APIs that fit in three main technologies or models: REST,
XML-RPC and SOAP. A huge amount of the 522 APIs
(500 APIs – 95.8%) provide an API based on REST, which
we thoroughly analyze in the next sections. Of the remain-
ing 22 APIs, 2.5% are SOAP APIs and 1.7% are XML-RPC
APIs.

About 3.2% of the 500 sites claiming to provide REST
APIs also deploy additional alternative APIs, with 2.4%
providing also SOAP and 0.6% providing an XML-RPC
API. For example, Flickr.com provides SOAP and XML-
RPC APIs in addition to its REST API (and is actually the
only one providing all three main types of APIs). The Sam-
sung Artik Cloud is the only site providing other types of
APIs, such as WebSockets, MQTT, and CoAP, in addition
to REST. These are a few exceptions, but most web APIs
(96.8%) are not providing any additional technologies or
protocols. These observations clarify the extension of the
movement towards the REST architecture. It is not a trend

Fig. 1. Number of sites and APIs per category.

7/170

59/689

18/132

61/402

30/165

49/173

127/425

73/230

20/61
25/75

51/153

84/237

77/763Other
Law and Government

Reference
Games

Career and Education
Finance

Adult
Business and Industry

Shopping
Computer and Electronics

Arts and Entertainment
Internet and Telecom

News and Media

0 250 500 750
Number of APIs/Sites (681/3685)

APIs

Sites

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

anymore, it is now an established practice, built for and put
in place by developers [8].

The analysis presented, from this point onwards, re-
fers only to the 500 REST services (as claimed by the ser-
vice provider) identified during this work and following
through the features discussed in the previous section.
Note that the complexity and specificity of the documenta-
tion resulted in a few cases being incompletely analyzed,
which we identify in the next sections. This already sug-
gests deficiencies resulting from the arbitrary way the doc-
umentation is produced, which in turn introduces com-
plexity to the typical tasks of a developer (i.e., finding or
understanding how to use a certain service).

4.1 REST architecture
We begin by discussing the number of operations pro-
vided by the 500 APIs, which is not exactly a core REST
feature, but provides insight on the typical size of this kind
of services. It is also a frequently analyzed feature in sim-
ilar work [1], [3], [10], [30]. Fig. 2 shows the distribution of
the number of operations in the set of 500 services.

Fig. 2. Distribution of the number of operations.

About two thirds of the APIs (64%) have between 2 and
50 operations. Roughly half of the analyzed services
(56.2%) provide at most 20 operations and about one third
offer between 2 and 10 operations. In the analyzed set, 5.2%
provide a huge number of operations (over 200 operations)
and these range from social platform services, such as the
facebook.com Graph API, to shopping sites, such as the
ebay.com Sell API. Overall, REST web service APIs tend to
provide a relatively small number of operations.

We identified the presence of two types of design sche-
mas in the 500 URIs: i) resource-oriented URIs; and ii) op-
eration-oriented URIs. In the following paragraphs, we
will refer to the resource-oriented URIs as REST-style URIs
and the operation-oriented URIs as RPC-style URIs.

 REST-style URIs are structured around resources such
as www.api.com/user/{name}. Depending on the HTTP verb
that is used, an API call can then either get the name of the
user, add, change or delete the name of a user. RPC-style
URIs are structured around operations such as
www.api.com/user/getname. The last part of the URI will
change if the user name should be added, changed or de-
leted, which means that the type of operation does not ex-
clusively rely on the HTTP verb used. Of the 500 web APIs,
87.8% use REST-style URIs (Bp_RestURI [2]–[4], [9], [11]–
[16]), while 12.2% use RPC-style. As mentioned, the analy-
sis of 222 APIs in 2010 [1] uncovered only 32.4% using
REST-style URIs. More recently, in 2016 [9], authors ob-
served about 90% of URIs avoiding CRUD operations as
resource names, which is in line with our observations. Ob-
viously, the datasets are different, but the tendency seems
to be the adoption of the Resource Addressability property of
the Uniform Interface REST principle.

We further delved into the difficulties for structuring
URIs around resources. Of the 12.2% that use RPC-style
URIs, 11.6% could be easily changed to REST-style, as they

allow just a few basic operations (e.g., /createfolder,
/listfolder) that could be offered on a single resource and
handled with (at most) the four common HTTP verbs. The
remaining 0.6% offer a great number of operations on a sin-
gle resource (e.g., one API supports 17 different opera-
tions) that go far beyond the four common HTTP verbs,
such as archive, unarchive, setTopic, setPurpose or mark.
In this kind of case, using REST-style URIs would involve
a much larger refactoring of the API, possibly involving
specifying the type of operation in the request.

The developers may have reasons for simply using a
single HTTP verb and specifying the type of operation di-
rectly in the URI. However, using RPC-style URIs is a vio-
lation of the Resource Addressability principle, because the
URI must only contain resource information and cannot
expose information about the type of operation.

The output format selection feature refers to how the
format of the service output is selected. The distribution of
the different ways of performing this selection is shown in
Fig. 3.

Fig. 3. Output format selection techniques.

The results show that almost half (45% – 223 APIs) of
the 500 APIs support only one output format, and do not
require any kind of output format selection to be per-
formed. In the remaining cases, the most popular way to
select the type of output is to use an HTTP header field
(24.0% – 120). Then, 2.4% (12) use the URI path, 13.6% (68)
use a URI Suffix, and 15.4% (77) use a query parameter to
specify the format. In [9], authors found selection of the
output type via query parameters in 3% of the services (vs
15.4% in our case) and via URI suffix or URI path in 27% of
the services (16% in our case).

Using the URI to specify the output format violates the
Resource Addressability principle, because the URI must
only refer to resource information. It is not clear, why only
about one fourth of the services use the HTTP header fields
as the way of selecting format, when the HTTP protocol
specifies an HTTP accept header field (Bp_AcceptHeader
[3], [11], [12]), precisely for this purpose. Specifying the for-
mat in the query parameter is a simple option that may not
be a best practice, but also does not violate the Resource Ad-
dressability principle.

 The information that informs the server on which data
or resource it should operate is named scoping infor-
mation. Scoping information is associated with the method
information (in lato sensu) that determines the operation
the server should perform (e.g., create or update a re-
source). For instance, in the following API call example:

GET /user/andy
The method information is represented by “GET” and

the scoping information is /user/andy. This “GET” action is
performed on the /user/andy resource, meaning that the cli-
ent wants to retrieve the available data of user andy. This
example only uses the URI path as the scoping infor-
mation. We identified four ways of providing the scoping
information in the 500 service APIs: i) URI path; ii) query
parameters; iii) HTTP header fields; and iv) URI paths and

0.000
0.005
0.010
0.015
0.020

0 25 50 75 100 125 150 175 200+
Number of Operations

De
ns

ity

223

12

77
120

68
URI Path

URI Suffix
Query Parameter

HTTP Header
Not Needed

0 50 100 150 200 250
Number of APIs

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

AUTHOR ET AL.: TITLE 7

query parameters. Fig. 4 shows the distribution of the dif-
ferent ways of encoding the scoping information.

As we can see in Fig. 4, almost two thirds of the APIs
(63.8% – 319 APIs) encode the scoping information exclu-
sively in the URI path. According to REST, this is the cor-
rect way (Bp_ScopingURI [2]–[4], [9], [11]–[16]), which
agrees with the Resource Addressability principle that states
that the scoping information should be encoded in the URI
path as a unique resource identifier. About 28% (141) of the
APIs use query parameters to specify additional scoping
information, while the URI path specifies the main re-
source information. For example, cnet.com uses this latter
technique, as in the following example:
 GET /author?personIds=9

The URI path specifies that the service should operate
on the author resource and the query parameter personIds
specifies the Id of the author. 7% (35) of the APIs require
scoping information to be encoded only in the query pa-
rameter (half of these 35 APIs mostly provide search oper-
ations and the search query is encoded as a query parame-
ter). Five APIs (1.0%) encode the scoping information only
in an HTTP header field.

Regarding versioning, about one fifth of the APIs (19%,
95 APIs) do not provide any information about API ver-
sions, but we were able to determine the major version
number of the remaining 89%. In 15.6% (78) this infor-
mation is part of the documentation and in 65.4% (alt-
hough not documented) the version number is exposed
within the API request call (in different ways). Versioning
the API (Bp_Versioning) is obviously a best practice [31],
as it is unlikely that a web API will remain static. The dis-
tribution of the number of major API version releases is
shown in Fig. 5, where we can see that more than two
thirds of the APIs are deploying either their first or second
major version.

After an API provider deploys a new major API version,
developers that want to start using the new version may
be forced to change their applications [32]–[34], depending
on which version selection technique they are using. Fig. 6
shows the different techniques that are used for selecting
the API version, which is possible for about two thirds of
the analyzed web APIs (65.4% – 327 APIs). The remaining
(34.6%, i.e., 173 APIs) do not support any kind of version
selection).

Nine out of ten APIs that allow version selection are us-
ing the URI path to select the version, which may violate
the Resource Addressability principle, because the URI must
only contain information about the location and name of a
resource. Selecting the version in an HTTP header field is
a more REST-conform way to do it [13], [36], but also adds
complexity to client calls, because the client needs to build
a header field appropriately and cannot just use a simple
URI. Selecting the version within the URI (or as a query
parameter) is, in comparison, much simpler. Although this
is a controversial matter [35], some practitioners recom-
mend to expose the API version in the URI path (Bp_Ver-
sionSelectionURI [2], [3], [12], [15], [16]). Another point of
view on this subject is that a version 2 API will, in general,

refers to different resources from those used by a previous
version 1 API, which means that the use of terms like v1 or
v2 in the URI is, in practice, also providing information
about the location of a certain resource (i.e., in such cases,
the Resource Addressability principle may not be violated).

Only about one fifth (20.6% – 103 APIs) of the 500 APIs
declare response messages as cacheable or not cacheable
(Bp_Caching [3], [11], [13], [15], [17]). All of the former use
the HTTP Cache-Control headers [36] for caching. The re-
maining 79.4% (397) do not provide any information about
caching. Caching is directly supported by the HTTP proto-
col and can help reducing API calls, by keeping frequently
needed response messages. As previously mentioned, the
authors in [3] found that 27% of the analyzed APIs explic-
itly stated their support for caching. Further analysis over
the remaining APIs using test invocations allowed to dis-
cover an additional 13% supporting caching (which may
also occur in our case, but is out of the scope of this work).
With direct support from HTTP, it is unclear why only
20.6% of the APIs state their support for caching or for not
caching, in agreement with the Cacheable principle.

The last feature of the REST architecture dimension ad-
dresses the use of links to related resources in response
messages, named by Fielding as Hypermedia As The Engine
Of Application State (HATEOAS), another property of the
Uniform Interface (4) principle [5] and also a REST service
development best practice (Bp_Hateoas [2]–[4], [4], [9],
[11]–[13]). Such links provide clients with available actions,
based on the clients’ current state, which work as a naviga-
tion system throughout the service and relieves a client
from calculating whether it is allowed to execute a specific
operation or not [37]. For instance, in a file hosting service,
a successful login response message would also contain
links to possible next operations (e.g., downloading a file,
logging off). Letting the client calculate possible operations
is error prone and may lead to unnecessary attempts by the
client to perform operations that will fail. We found only
4.2% of the APIs complying with HATEOAS. This appar-
ently useful REST property is scarcely adopted, which
opens space for discussion. Implementing HATEOAS ob-

viously adds complexity to the server and client sides. Au-
thors in [15] mention it may also require further standard-
ization efforts.

Overall, it is already clear that there is heterogeneity in
the adoption of certain features, compliance with some of
the REST principles, and adherence to best practices. In
Section 5, we further discuss these findings and the ones
presented in the following subsections.

Fig. 4. The different ways of encoding scoping Information.

Fig. 5. Distribution of currently deployed API major versions.

Fig. 6. Distribution of the API version selection techniques.

319
141

35
5HTTP Header

Query Parameter
URI Path & Query Parameter

URI Path

0 100 200 300
Number of APIs

252
104

39
4
3
3

95Unknown
6th to 10th

5th
4th
3rd
2nd
1st

0 100 200 300
Number of APIs

173
9
17

301

None
Query Parameter

HTTP Header
URI Path

0 100 200 300
Number of APIs

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

4.2 HTTP use
In this section, we present the results regarding the use of
HTTP verbs (e.g., GET, POST), how method overrides are
implemented, and if adequate HTTP status codes are used.
Fig. 7 shows the distribution (including overlaps) of the
HTTP verbs used (we were unable to determine the sup-
ported verbs for 2 APIs). As we can see, about a third of the
analyzed APIs allow GET as the only HTTP verb. 22% sup-
port only GET and POST and the third major combination
involves 20.8% of the APIs, which support the four HTTP
verbs GET, POST, PUT and DELETE. Not in the figure, but
also present were PATCH (8.6%) and HEAD (3.2%).

Each HTTP verb should be used for the corresponding
behavior (Bp_HTTPVerbs [2]–[4], [9], [11]–[13], [15], [16]).
GET, for instance, should be used for receiving resources
and not for changing resources. If developers adhere to this
kind of rules, API requests can more easily comply with
the self-descriptive messages principle. Assuming that the
server knows how to interpret the data (see the Bp_Con-
tentHeader best practice), if it receives the resource name,
location, and the right HTTP verb, then the server has all
information needed to complete the operation.

We found out that most APIs (88%) use the HTTP verbs
as originally intended, complying, in this sense, with the
self-descriptive messages property. However, 12% of the
APIs offer GET and also POST as the two only HTTP verbs,
to support operations (e.g., updating and deleting re-
sources) that should, according to the HTTP rules, not be
performed with GET or POST. This mode of operation was
also observed in previous work [3].

When not using the right HTTP verbs, to let the server
know which operation to perform, the API allows a
method override, which is in 9.4% carried out by specify-
ing the method type as part of the URI path. This percent-
age breaks down to 5.0% for RPC-style URIs, because these
always define the method information in the URI besides
the resource information (e.g., POST /deleteuser?user=andy)
and to 4.4% for REST-style URIs, where the method over-
ride is added after the resource path (e.g. POST
/user/andy/delete). 2.6% specify the method override as a
query parameter and the remaining 0.2% include the
method override information in an HTTP header field. A
more REST-conform way to allow interacting with clients
that do not support all HTTP verbs (e.g., old browsers)
would be to support all necessary HTTP verbs and then
also allow method overrides with one verb, which is actu-
ally offered by 6 APIs (1.2%).

 Another important aspect of the self-descriptive messages
property is that each message (client request and server re-
sponse) must contain information about how the trans-
ferred data must be interpreted (i.e., the content type). To
comply with this property, the information about how to
interpret should be encoded in the HTTP content-type

header (Bp_ContentHeader [2], [3], [9], [11]–[13], [15]). We
analyzed the services and found out that only one fourth
(24%) set the content-type header in messages appropri-
ately, which does not comply with the self-descriptive mes-
sages property (although this property is highly supported
when it comes to the adequate use of HTTP verbs, as dis-
cussed previously). Obviously, the information inside the
application message is also important to fully understand
compliance with the property, but this kind of analysis is
application-specific and, thus, out of scope of this paper.
The remaining 380 APIs (76%) do not provide insight
about the header fields of the client/server messages.

We further investigated the adoption of HTTP features,
by examining the APIs usage of HTTP response codes.
The HTTP protocol has a defined status code vocabulary
that specifies issues between server and client (or correct
behavior), which can simplify the overall communication
process, including error handling. Sending adequate
HTTP response codes (Bp_StatusCodes [2], [3], [11]–[13],
[15], [16]) will make the server response message easily un-
derstandable by clients.

Of the 500 services, almost two thirds (64.6%) exchange
adequate HTTP response status codes, which is aligned
with the self-descriptive messages principle. Such services
send HTTP status codes in the 2xx range, if the task is suc-
cessfully completed. For Client or Server errors, a status
code in the 4xx or 5xx range is returned. In 2016, the anal-
ysis of a large data set of API responses showed the rich-
ness of the use of status codes [9], pointing out an improve-
ment regarding web services running in 2005. With nearly
two thirds of our analyzed services also documenting their
existing HTTP response codes, we highlight the high adop-
tion of this feature by service developers. 2.8% send cus-
tom error codes inside the response body, which compli-
cates the error handling process for clients. About one
third (32.6%) do not provide insight on which (or if) HTTP
status codes are used in responses.

4.3 I/O and Software Development Support
In this section, we analyze the input and output formats
being used by the services. Fig. 8 shows the distribution of
the supported formats, in which JSON leads (note that
some APIs support more than one format). Encoding a rep-
resentation of a resource in the request, to let the server
manipulate the actual resource based on this, agrees with
the Manipulation of resources through representations princi-
ple. This applies to 66.2% of the services, which are essen-
tially services that allow data manipulation via the HTTP
verbs POST, PUT and PATCH. This percentage breaks

Fig. 7. API support of HTTP verbs.

Fig. 8. Supported input and output formats.

22.0%

3.2%

0.6%

20.8% 4.8%

PUT DELETE0.2%

33.8%

3.4%

POST

GET

7
14

9
53

44
144

188
4
7
9
10

13
11

20
28

167
139

316
455

RDF,PHP or CSV
URI−encoded

Only XML
Total XML

JSON and XML
Only JSON
Total JSON

Unknown
TXT

HTML
Serialized PHP

ATOM
CSV

Other
Only XML
Total XML

JSON and XML
Only JSON
Total JSON

0 100 200 300 400
Number of APIs

Input Format

Output Format

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

AUTHOR ET AL.: TITLE 9

down to 43.2% that send the resource representation en-
coded in the request body and 23% that only use the URI
or query parameters to send resource representations. The
remaining 33.8% only provide GET operations and do not
allow resource manipulation.

Almost all APIs (99.2%) provide information about
available output formats, with JSON nowadays leading as
the most popular format by a clear difference to XML (the
second most popular). In the past, developers argued that
JSON´s main weakness is its lack of well-defined stand-
ards, which made them use XML [38], but the fact is that
JSON has gained a lot of popularity [3], [8], [9], which may
be explained by the growing importance of JavaScript
runtime environments (e.g., Node.js) [8]. It seems like that
this lightweight compact data format could completely re-
place XML in the future. We base this argument on the fact
that nearly two thirds of the APIs (63.2%) support JSON
without supporting XML, whereas only 5.6% support XML
without supporting JSON. We also identified 14 other out-
put formats in 20 APIs. These include TXT, RDF, PAM
(Portable Arbitrary Map), RSS, HTML, JavaScript, PDF,
TSV, XLS, TL-schema, TSV, VCF (Variant Call Format),
QRCode and PNG.

Input and output formats are definitely linked to soft-
ware development support, which usually comes in the
form of Software Development Kits (SDKs) offered to cli-
ent developers. SDKs are essentially programming lan-
guage wrappers for sending API requests. They simplify
application development by automating tasks that are er-
ror-prone or time-consuming for developers (e.g., parsing
a complex JSON response or going through a complex au-
thorization mechanism) [39]. The need for an SDK in the
case of REST is much smaller, as the technology is fairly
easy to use (i.e., REST messages are simple HTTP re-
quests). Previous research suggests that developers prefer
official SDKs over plain HTTP clients [19], but, at the same
time, SDKs can also bring drawbacks as they can get out of
synchronization with the actual API [22]. Of the 500 API
documentations, 73% do not mention any SDKs, whereas
27% officially provide SDKs. Fig. 9 shows the distribution
of the number of supported SDKs.

We further extended this analysis by crossing the SDK
data with programming language popularity (as indexed
by tiobe.com in July 2017). Fig. 10 shows the distribution of
the programming language support of the 27% of APIs that
are offering official SDKs (we only show languages that are
part of Tiobe’s top10 or are offered by at least 5% of the
APIs).

As we can see in Fig. 10, PHP, Java, Python and Ruby
are the most often supported languages, with support from
about half of the APIs to almost two thirds (in the case of
Java). Relatively popular options include C#, JavaScript,
Objective-C, or Node.js. Notice also that, in some cases, the
API documentation simply states .NET support and does
not map it to specific .NET languages (e.g., C# or .NET Vis-
ual Basic), which may influence the final distribution in
what concerns the .NET framework. The SDK results are,
in general, aligned with observations from previous work

[8], where Java, JavaScript, C#, Python and Ruby were also
found to be often used, although the authors in [8] did not
mention PHP.

4.4 Security Mechanisms
In this section, we present the results regarding the adop-
tion of basic security mechanisms by the web APIs (and
supporting infrastructure), namely user authentication
mechanisms and SSL/TLS encryption support.

Most APIs (86%) in the set being analyzed require user
authentication for API calls. Depending on the sensitivity
of the data that is exchanged or on the purpose of the op-
eration, some APIs require that the user is authenticated
and authorized to execute for all operations, whereas oth-
ers require authentication only for certain operations (e.g.,
operations that exchange user-specific data).

From the 500 analyzed APIs, 1.4% do not provide infor-
mation about authentication mechanisms, 12.6% do not re-
quire any form of authentication, and 86% support at least
one authentication mechanism with every 1 out of 10 sup-
porting more than one authentication mechanism. Fig. 11
shows the distribution of the different authentication
mechanisms. Excluded from the figure are: APIs that either
do not require authentication or do not provide infor-
mation about it; 7 APIs using an unknown authentication
mechanism; and 25 APIs that are using 9 less common
mechanisms, such as HMAC, 2FA, JWT, Session, Open ID,
custom OAuth, Macaroon, Azure AD v2 and HTTP
Cookie. Areas that intersect in Fig. 11 but have no associ-
ated percentage refer to no intersection at all.

In Fig. 11 we essentially have proprietary (API key and
client credentials) and non-proprietary mechanisms
(OAuth1.0, OAuth2.0, and HTTP Basic). The services using
non-proprietary mechanisms (Bp_StandardAuth [2]–[4],
[11], [15]) add up to 42%, with the OAuth protocol (v1 and
v2) being used by about one third of the APIs (32.6%), be-
ing the most commonly supported mechanism and we ar-
gue that it has the potential for becoming the most widely

Fig. 9. Distribution of the number of supported SDKs.

Fig. 10. SDK languages and Tiobe’s language popularity.

Fig. 11. Distribution of the different authentication mechanisms.

0.00

0.05

0.10

0 3 6 9 12 15 18
Number of SDK Kits

D
en

si
ty

24.4

35.6

5.2

26

48.9

8.15
11.9
13.3

0.7

35.6

0.7

65.2

23.7

54.8

4.4
3

63

Delphi/Object Pascal(#9)
Visual Basic .NET(#7)

C(#2)
C++(#3)

Clojure(#51)
Swift(#12)
Perl(#11)
Go(#10)

C#(#5)
Node.js(#−)

Objective−c(#18)
JavaScript(#8)

.NET(#−)
Ruby(#13)
Python(#4)

Java(#1)
PHP(#6)

0 20 40 60
SDK support in %

9.4%

0.8%

5.0%

22.2%

API Key
36.4%

1.0%

OAuth2.0
26.6%

HTTP basic
7.4%

0.2%

32.8%

OAuth1.0
11.6%

Client
Credentials

7.6%

1.2%

2.0%

1.0%

0.2%

0.2%

0.8%

4.4%

0.2%

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

adopted standard for authentication. OAuth2.0 is cur-
rently used in 26.6% of the services and HTTP Basic, which
is a standard that may suffice for some services, is used by
7.4% of the services. However, also 42% of the services are
using proprietary authentication mechanisms (API key or
client credentials), despite the open and standard specifi-
cations for authentication available, which are preferable
options [2]–[4], [11], [15].

Using an encrypted connection is recommended for
communications that exchange sensitive data [40]. While
examining the APIs for transport channel encryption
(HTTPS), we identified 3 cases: i) no support for HTTPS
(9.2%); ii) mandatory HTTPS throughout all communica-
tions (61.2%); and iii) optional HTTPS (26.4%). For the re-
maining 3.2% we could not determine if SSL/TLS was sup-
ported. Offering (at least optionally) HTTPS is considered
to be a best practice (Bp_HTTPS [2], [15]).

When using the API involves authentication, the use of
an encrypted connection is certainly a very important re-
quirement, otherwise the authentication details can be eas-
ily harvested by attackers [41]. Thus, we analyzed if there
are APIs that do not support HTTPS but still require user
authentication to be performed. This resulted in a total of
5.0% (25 APIs), from which 4.0% use proprietary user au-
thentication mechanisms based on the user’s API Key,
0.6% identify the user by his account credentials, and 0.4%
use an undetermined authentication mechanism. Of these
services, a particular API even requires the user to pay a
monthly fee for the API usage, starting at 8€. For the APIs
using the non-proprietary authentication mechanisms, we
found HTTPS to be either mandatory or optionally availa-
ble.

4.5 Usage Policies
In this section, we present the results regarding the usage
policies of the web APIs. This includes the form of regis-
tration (required to start using the API), if payment plans
for the API usage are available or required, and if call limits
are being enforced.

Most APIs (82.4% – 412 APIs) require some form of ser-
vice registration for developers to start using the API. The
distribution of the different types of usage registration is
shown in Fig. 12. Registration enables the API provider to
carry out several management functions, such as monitor-
ing of API use, call limit enforcements or routing API re-
quests to different servers [4]. Actually, 75.6% require de-
velopers to create a user account, which in some cases en-
ables the generation of an API Key that needs to be passed
with every API call (not represented in Fig. 12). In other
cases, the account credentials are used by the authentica-
tion process to enable calls to the service. 6.8% of the ana-
lyzed APIs offer the creation of an API Key without requir-
ing an account. 13.6% do not require any registration for
using the API.

Regarding the payment plans, 76.4% offer a free-of-
charge usage, even though most APIs require an account
to make API calls. 7.4% offer optional payment plans that
enable more features than the free-of-charge plans such as

a higher call limit. 3.6% require a payment plan to get ac-
cess to the API and the remaining 12.6% do not provide
any further information regarding this matter. Authors in
[21] analyzed 69 web services in 2017, finding out that nine
out of ten services offered a free plan (six out of ten pro-
vided the ability to customize a plan). In our larger dataset,
this free-service trend is also quite visible, despite slightly
less accentuated (in 76.4% of the services).

Call limits enforce that a certain number of API calls are
not exceeded during a defined period and allow the API
provider to control the service usage, which is especially
important for APIs that handle a huge number of calls [4].
Fig. 13 presents the results regarding the APIs call limits
(normalized to daily limits).

More than half of the APIs (56.4%) provide information
about the existence or absence of call limits (Bp_RateLimit
[2]–[4], [15]), either as part of the documentation or written
down in the general terms and conditions, the remaining
do not provide any information about applied call limits.
12.8% (64) state that they do not enforce any call limits,
whereas 43.6% (218 APIs) state that they are enforcing call
limits. 3.6% block user’s API calls, if their algorithm detects
some kind of API abuse. Their respective documentations
do not advertise the exact call limits to discourage abuse.
11.8% enforce different call limits for different operations
or provide call limits per user, device or application. As an
example, the Samsung Artik Cloud web API has a daily call
limit for GET requests of 1000 calls per user and per device,
and 5000 calls per application. 2.2% of the documentations
state that they are enforcing call limits, but do not describe
how these limits are enforced. The remaining 26% enforce
a fixed call limit.

Overall, the results show that the call limits encompass
very different ranges. Authors in [21] also analyze the en-
forcement of call limits feature in services collected from
programmableweb.com and market.mashape.com, to find re-
spectively 59% and 88% of web services enforcing opera-
tion limitations, 21% and 4% enforcing functionality limi-
tations, and 21% and 8% enforcing time limitations of the
API usage. Thus, although there is some variability in the
type of limitation, the trend is to actually place some kind
of usage limit on the clients.

 An often-used technique (which is present in 22% of the
218 APIs that enforce call limits) is the return of HTTP
headers carrying information about the status of current
call limits (Bp_RateHeader [3], [15]) to allow the user or
application to assess where it stands in terms of call limits.
From what we observed, these headers typically provide

the maximum number of allowed requests in the current
period, the number of remaining requests in the current
period and a timestamp that marks when the call limit
counter will be reset. This kind of information enables dy-
namic adjustments of the API usage, which may be used to
prevent the API user from being blocked.

Fig. 12. Distribution of the different required registration forms.

Fig. 13. Call limit enforcements.

378

34
68

20Unknown
API Key

No Registration
Account

0 100 200 300 400
Number of APIs

64
11

59
18

9
30

44
26

21

No call limit
Existent, but unknown call limit

Varying call limit rate
Block calls by abuse
More than 1 000 000

100 001−1 000 000
10 001−100 000

1 001−10 000
Less than 1000

0 20 40 60
Number of APIs

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

AUTHOR ET AL.: TITLE 11

4.6 Documentation and Application Use
We begin by reviewing the API documentation dates, to

have an overall idea about the activity behind APIs. This
section has then two main parts, in the first part we detail
how developers are creating documentation for their ser-
vices (i.e., by analyzing the use of documentation genera-
tion software) and in the second part we analyze the
known participation of APIs in applications.

Considering that many times users can choose among
alternative APIs, a user may prefer an API that is regularly
maintained over an API whose documentation has been
last updated several years ago, if both allow using the same
service. We tried to analyze this in the documentation of
the 500 APIs, to find that 73% of the APIs do not provide
this information. The remaining 27% break down to 12%
updated during 2017, 8.6% during 2016, and 6.4% between
2010 and 2015. So, within the 27% about half is providing
documentation that has been modified during 2017, which
suggests activity behind the API. Still, the dataset is very
poor in this feature and cannot provide rich data for fur-
ther discussion.

Documentation can be manually created or generated
by software. There are several API development tools on
the market, which help not only designing and testing an
API, but also documenting it. This software can automati-
cally generate documentation based on comments in the
source code (e.g., Apidoc), based on API specifications,
such as the OpenAPI specification (formerly Swagger [28]),
or on API description languages such as API Blueprint
(e.g., Apiary). Generated documentation can be also seen
as an alternative to interface description documents, such
as WSDL for SOAP web services.

Generated documentation (Bp_GeneratedDoc [2], [15])
is being used in about half (45%) of the 500 web services,
with documents generated by Swagger UI taking the lead.
This assists typical web development tasks by, for instance,
creating interactive API test consoles to enable testing API
calls within the browser, which we found present in one
third (33.6%) of the 500 APIs and in almost all of the Swag-
ger UI and Apigee SmartDocs generated documentation.
The distribution of the different software tools that gener-
ate documentation (and that generate test consoles) is
shown in Fig. 14.

Although the growing trend of using documentation
tools is relatively well-known [42], still 55% do not use soft-
ware generated documentation and document their API in
some textual form as part of a web page, which results in
rather diverse descriptions of the API, in terms of struc-
ture, content, and level of detail and creating huge obsta-
cles for automated analysis of the API documentation.
Also, in 14.6% of the cases, we classified the documenta-
tion as a software generated documentation (“Unknown
Software” in Fig. 14), because although they featured cer-
tain recognizable structures, we were unable to determine
the exact software used.

These observations agree, in general, with the work in
[4] (2014), where the authors emphasize the industry inter-
est in Swagger. In our work, we found 10.6% of the ana-
lyzed APIs using Swagger UI and nearly half using soft-
ware to generate the documentation (notice that, currently,
one fourth of the tool generated documentations are cre-
ated by Swagger UI), which are, for most cases, also com-
patible with the OpenAPI specification. This suggests
some tendency to make the API documentation machine-
readable and also understandable, which will also allow
easier composition of different services as well as other au-
tomated processes (e.g., service recommendation) [10].
Still, for such kind of approach to work the documentation
must be of good quality (even if generated). Previous re-
search has discussed there are actually differences in the
quality of Swagger specifications [43], which suggests the
need for further standardization efforts.

Of the 500 API documentations, 90.4% provide example
API requests and responses. These examples give the de-
veloper a quick insight on the use of the API, including URI
structure, parameter selection, response structure, which
simplifies development. Also, a total of 70.2% describe and
explain possible error messages arising from the use of
the API, whether these are simple text messages in the re-
sponse body or HTTP status codes. The remaining 29.8%
do not provide any information about error responses.
When these error messages are not self-explanatory, the
developer may not be able to know what went wrong or
why exactly the error occurred and may not be able to trig-
ger the correct error handling code.

Finally, we retrieved the reported number of applica-
tions that use the APIs as set in programmableweb.com,
which is a repository that has been used in previous work
[1]–[3], with this same purpose. About one third of the
APIs (30.2%) are not listed in programmableweb.com and
41.8% of the APIs are associated with no applications.
16.4% are associated with 1 to 5 applications, 8.8% fall in
the 6-50 range and 2.8% are used in more than 50 applica-
tions, with Twitter.com counting 830 applications, the high-
est number observed.

The abovementioned distribution shows that only a few
APIs are often used in applications, with the majority
hardly being used. As these values provided by program-
mableweb.com are based on user input, the true exact num-
bers might be different, as services are added to this kind

Fig. 14. Documentation tools used by the APIs.

TABLE 1. APIS REPORTEDLY USED BY APPLICATIONS AND MAIN FEATURES

Range Total
APIs

URI scheme Documentation
Tool

Output Format Authentication mechanism

REST RPC Yes No JSON XML Both /
Other

OAut
h

Prop. Both / Other

1 to 5 82 84% 16% 50% 50% 55% 4% 41% 41% 38% 21%
6-50 44 86% 14% 68% 32% 59% 5% 36% 52% 30% 18%
>50 14 86% 14% 71% 29% 57% 7% 36% 86% 7% 7%

51/53
28/28
8/25

8/11
2/10
4/8
0/8
0/6

2/3
49/73

16/275No Software used
Unknown Software

RAMLtoHTML
readthedocs

Apidoc
readme

Spring Rest Docs
Postman Documentation

Apiary (API Blueprint)
Apigee SmartDocs

Swagger UI

0 100 200 300
Number of APIs

Generated Documentation Only

Test Console

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

of repositories but rarely, or never, removed. However, the
values are still indicators of some level of reusability of the
APIs or at least of their popularity. We further analyzed
this data against some of the main features provided by the
APIs. Table 1 summarizes the results.

As we can see in Table 1, services using a REST-style
URI scheme and producing output in JSON (marked in
green in Table 1) are present in all three ranges and show
little or no fluctuation. Moreover, their values are clearly
dominant in each of the two respective features. We also
see dominance in the use of documentation generation
software and in the use of OAuth. In these cases (marked
in orange in Table 1) the growing trend is also very clear,
with services that are being used by more applications hav-
ing a greater likelihood of also using a documentation gen-
eration software and OAuth. We also verified that none of
the popular APIs were using HATEOAS, which further
emphasizes the unpopularity of this REST principle.

5 DISCUSSION
In this section, we show an overall view of the results, dis-
cussing: i) level of agreement of the services with the REST
principles; ii) common decisions regarding the features
discussed in this paper; iii) observed compliance with best
practices.

In Fig. 15 we show the observed compliance with the
REST principles (RQ1). We excluded Stateless, Layered Sys-
tem, and the optional Code on Demand principle from the
figure, due to the related inconclusive data found.

Overall, there is visible heterogeneity regarding the
adoption of REST principles. Some are highly adopted (but
also easy to comply with, such as Client-Server) while oth-
ers are barely adopted (e.g., Uniform Interface). The low
adoption of certain principles or properties, such as Cache-
able or HATEOAS is in line with previous work, in which
similar findings were discussed [2], [3], [9], [10]. The Uni-
form Interface principle gathers a number of properties,
which show high variability (e.g., Manipulation of Resources
through Representations and HATEOAS).

Overall, we found out that only four (0.8%) of the ana-
lyzed services fully comply with the REST principles.
These services are provided by pearson.com, github.com, re-
verb.com, and familysearch.org, with the adoption of
HATEOAS being highly responsible for such a low num-
ber. The Richardson Maturity Model [18] is also a way of
understanding principle compliance. In this model, Level
0 services just use a single endpoint (e.g., SOAP services);
Level 1 distribute functionality across several resources,
but services still need to use message data or the URL to
know which operation is to be invoked; Level 2 services
use HTTP methods and status codes adequately; and Level
3 apply HATEOAS. We identified no Level 0 services;
12.2% Level 1; 60.2% Level 2; and 4% Level 3, which is, in
general, aligned with the results presented in [9].

Fig. 16 presents the most common decisions (RQ2) per
feature. As we can see, in what concerns this aspect, devel-
opers lean quite strongly towards a decision in about one
third (8 features) where we observed the same feature
value in more than 75% of the services. If we lower this
threshold to 50%, then we find about two thirds of the fea-
tures holding the same value. A few features are scarcely
adopted (e.g., HATEOAS and URI Path Method Override),
with some being close to the 50% threshold, such as “No
Format Selection Necessary” or “Deployment of First Ma-
jor Version”.

Fig. 16. Most commonly observed features.

If we look more closely to the second choices (not visible
in Fig. 16, as they are not top results) and drill down to the
details, we find a few interesting common values. In par-
ticular, the growing use of software generated documenta-
tion, in line with what was mentioned in [42], mostly refers
to the use of Swagger UI. Service output format selection,
when available, is done mostly using HTTP headers.
Among the APIs offering official SDKs, PHP is taking the
lead as the top language supported and API key is the most
popular authentication mechanism. Finally, when the ser-
vice requires registration, the most often scheme used is
the creation of an account. This global image, discussed
here, allows us to describe what currently a REST service
tends to be, and, overall, we see strong agreement in the
application of two thirds of the analyzed features.

Fig. 17 presents the adherence to REST service devel-
opment best practices (RQ3) observed in the 500 services.
We found almost half (7) of the best practices being fol-
lowed by more than half of the services. The remaining are
split in a group of 3 practices, followed by almost half of
the services, and in another group followed by at most one
fourth of the services, with Bp_Hateoas showing residual
numbers. In the end, there is no single service following all

56.2
87.8

44.6
63.8

50.4
60.2

20.6
4.2

88
9.4

24
64.6

91
37.6

73
86
87.6

75.6
76.4

43.6
12

55
33.6

90.4
70.2

41.8No API use in apps (acc. to ProgrammableWeb)
Explain Error messages

Example API conversations
Interactive API console

plain HTML Documentation
Recent Documentation
Call limit enforcements

Free API plans
Account registration

HTTPS support
User authentication

No official SDK
Input format JSON

Output format JSON
HTTP status code use

Content−type Header use
URI Path Method Override

correct HTTP verb use
Links to related Resources

Cacheable declaration
URI Path version selection

Deployment of first major version
Scoping Info in URI Path

No Format Selection Necessary
REST−style URIs

At most 20 operations

0 25 50 75 100
Number of APIs in %

Fig. 15. Overall compliance with the REST principles.

Fig. 17. Adherence to REST service development best practices.

100
20.6
20.4

66.2
23.6

4.2
1
0.8truly REST

Uniform Interface (4)
HATEOAS (4d)

Self−descriptive messages (4c)
M. Resources through Representations (4b)

Resource Adressability (4a)
Cacheable (3)

Client−Server (1)

0 30 60 90
Number of APIs in %

60.2

87.8

45
22

43.6
87.6

42

24
63.8

81

20.6
4.2

88
24

64.6

Bp_GeneratedDoc
Bp_RateHeader

Bp_RateLimit
Bp_HTTPS

Bp_StandardAuth
Bp_StatusCodes

Bp_ContentHeader
Bp_HTTPverbs

Bp_Hateoas
Bp_Caching

BP_VersionSelectionURI
Bp_Versioning

Bp_ScopingURI
Bp_AcceptHeader

Bp_RestURI

0 25 50 75
Number of APIs in %

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

AUTHOR ET AL.: TITLE 13

best practices. Previous work stresses the fact that guide-
lines for building web services can be very fine-grained,
while others rather simple [2], [13], [14]. This may explain
the heterogeneity observed (including the very low num-
bers for some practices), but especially stresses the diver-
sity present in services in the field.

Future research could, based on the state of the practice
discussed in this paper, focus on several areas. These range
from coarse grained research to fine grained research ac-
tivities, of which we emphasize: i) evolving the set of REST
principles towards a second generation; ii) proposing best
practices based on new principles and on common de-
sign/implementation decisions found in the field; iii) un-
derstanding how REST service development tools (e.g., the
Swagger toolset) affect compliance with principles or best
practices (and the real level of developer adoption regard-
ing provided SDKs); iv) quantifying the practical effect of
not following certain practices on the dependability prop-
erties of services (e.g., robustness, maintainability). Alt-
hough REST services are, by now, a very popular way of
deploying services, there are still numerous challenges that
relate to the diversity observed in the deployments, leav-
ing space for researchers and practitioners to improve the
state of the practice.

6 THREATS TO VALIDITY
In this section, we present threats to the validity of this

work and discuss mitigation strategies. Regarding external
validity, it is important to mention that the analysis of REST
services performed in this work cannot be generalized to
all available web services, as it is based on a limited set of
services. This threat cannot be avoided, but we tried to mit-
igate it by carrying out a large-scale study of 500 service
APIs. The set of APIs was defined based on popularity of the
hosting web site, which may exclude some popular APIs as-
sociated with less popular web sites. Also, the random se-
lection of a single web service when a provider offered more
than one could add some bias to the results. At the same
time, knowing that some providers offer huge amounts of
services (e.g., Google offers 100 different web services)
would add bias towards the design of Google web services,
which we decided to avoid in favor of a more general view
on current public web services.

Regarding internal validity, it is relevant to point out that
we verified a subset of the available endpoints in the case of
APIs providing a large number of endpoints, as it was un-
feasible to verify all. This may add error to our results, but
we did however verify half of the endpoints (for APIs with
20 to 50 endpoints) and one quarter (for APIs with more
than 50 endpoints). The verified subset showed strong con-
sistency, which suggests that the non-verified endpoints
will not change the results significantly.

In this work, we only analyzed the services documentation
and did not perform actual invocations to prove it was cor-
rect. Thus, the documentation might be outdated, incor-
rect, or incomplete (e.g., not stating that a service supports
caching), but using service invocations would go beyond
the scope of the work. Being highly popular sites, we be-
lieve that the interest in keeping the API documentation
correct should be quite high. The work performed here was
entirely manual, due to the lack of structure of the APIs doc-
umentation. Due to the huge amount of effort involved, we
verified just part of the results, which we estimate reached
one fourth of the APIs, to find only residual mistakes. Still,

we acknowledge that the results might hold some residual
error, due to the human intervention in the process.

7 CONCLUSION
In this work, we went through the alexa.com top 4000

sites to find precisely 500 sites claiming to provide at least
one REST web service API, and 22 services built based on
other technologies (e.g., SOAP). We went through the
REST services, analyzing a total of 26 different features,
mostly gathered in the literature, to understand the level
of compliance with the REST principles, common devel-
oper decisions, and adherence to REST service develop-
ment best practices.

The knowledge brought in by this work, namely under-
standing the state of the practice, can provide useful re-
search directions for the academy (e.g., understanding
how REST development tools affect compliance with prin-
ciples or best practices) and useful guidelines for practi-
tioners (e.g., commonly used user authentication mecha-
nisms). As future work, we intend to focus on the chal-
lenges identified in Section 5, starting with the empirical
analysis of REST development tools.

ACKNOWLEDGEMENTS
This work has been partially supported by the project AT-
MOSPHERE, funded by the European Commission under
the Cooperation Programme, Horizon 2020 grant agree-
ment no 777154.

REFERENCES
[1] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating

Web APIs on the World Wide Web,” in 2010 Eighth IEEE Euro-
pean Conference on Web Services, 2010, pp. 107–114.

[2] D. Renzel, P. Schlebusch, and R. Klamma, “Today’s Top ‘REST-
ful’ Services and Why They Are Not RESTful,” in Web Infor-
mation Systems Engineering - WISE 2012, 2012, pp. 354–367.

[3] F. Bülthoff and M. Maleshkova, “RESTful or RESTless – Current
State of Today’s Top Web APIs,” in The Semantic Web: ESWC
2014 Satellite Events, 2014, pp. 64–74.

[4] J. Kopecký, P. Fremantle, and R. Boakes, “A history and future of
Web APIs,” It - Inf. Technol., vol. 56, 2014.

[5] R. T. Fielding, “Architectural Styles and the Design of Network-
based Software Architectures,” Univ. of California, Irvine, 2000.

[6] R. Battle and E. Benson, “Bridging the semantic Web and Web 2.0
with Representational State Transfer (REST),” Web Semant. Sci.
Serv. Agents World Wide Web, vol. 6, no. 1, pp. 61–69, Feb. 2008.

[7] B. Costa, P. F. Pires, F. C. Delicato, and P. Merson, “Evaluating a
Representational State Transfer (REST) Architecture: What is the
Impact of REST in My Architecture?,” in 2014 IEEE/IFIP Confer-
ence on Software Architecture, 2014, pp. 105–114.

[8] G. Schermann, J. Cito, and P. Leitner, “All the Services Large and
Micro: Revisiting Industrial Practice in Services Computing,” in
Service-Oriented Computing – ICSOC 2015 Workshops, 2015,
pp. 36–47.

[9] C. Rodríguez et al., “REST APIs: A Large-Scale Analysis of Com-
pliance with Principles and Best Practices,” in Web Engineering,
vol. 9671, A. Bozzon, P. Cudre-Maroux, and C. Pautasso, Eds.
Cham: Springer International Publishing, 2016, pp. 21–39.

[10] F. Haupt, F. Leymann, A. Scherer, and K. Vukojevic-Haupt, “A
Framework for the Structural Analysis of REST APIs,” in Soft-
ware Architecture (ICSA), 2017 IEEE International Conference
on, 2017, pp. 55–58.

[11] Mark Masse, REST API Design Rulebook. 2011.

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2847344, IEEE
Transactions on Services Computing

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[12] S. Jauker, “10 Best Practices for Better RESTful API | Thinking
Mobile,” 05-Jun-2014. [Online]. Available:
https://blog.mwaysolutions.com/2014/06/05/10-best-prac-
tices-for-better-restful-api/. [Accessed: 27-Mar-2017].

[13] F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc, “Are REST
APIs for Cloud Computing Well-Designed? An Exploratory
Study,” in Service-Oriented Computing, 2016, pp. 157–170.

[14] F. Palma, J. Gonzalez-Huerta, M. Founi, N. Moha, G. Tremblay,
and Y.-G. Guéhéneuc, “Semantic Analysis of RESTful APIs for
the Detection of Linguistic Patterns and Antipatterns,” Int. J.
Coop. Inf. Syst., vol. 26, no. 02, p. 1742001, May 2017.

[15] V. Sahni, “Best Practices for Designing a Pragmatic RESTful
API,” Vinay Sahni. [Online]. Available: http://www.vi-
naysahni.com/best-practices-for-a-pragmatic-restful-
api#hateoas. [Accessed: 22-Dec-2017].

[16] M. Haldar, “RESTful API Designing guidelines — The best prac-
tices,” Hacker Noon, 03-Feb-2017. [Online]. Available:
https://hackernoon.com/restful-api-designing-guidelines-the-
best-practices-60e1d954e7c9. [Accessed: 24-Jun-2017].

[17] D. Bermbach and E. Wittern, “Benchmarking Web API Quality,”
in Web Engineering, 2016, pp. 188–206.

[18] M. Fowler, “Richardson Maturity Model,” martinfowler.com.
[Online]. Available: https://martinfowler.com/articles/richard-
sonMaturityModel.html. [Accessed: 27-Jun-2017].

[19] M. A. Oumaziz et al., “Empirical Study on REST APIs Usage in
Android Mobile Applications,” in Service-Oriented Computing,
2017, pp. 614–622.

[20] A. Ivanchikj, C. Pautasso, and S. Schreier, “Visual modeling of
RESTful conversations with RESTalk,” Softw. Syst. Model., pp.
1–21, May 2016.

[21] A. Gamez-Diaz, P. Fernandez, and A. Ruiz-Cortes, “An Analysis
of RESTful APIs Offerings in the Industry,” in Service-Oriented
Computing, 2017, pp. 589–604.

[22] E. Wittern et al., “Opportunities in software engineering research
for web API consumption,” in Proceedings of the 1st Interna-
tional Workshop on API Usage and Evolution, 2017, pp. 7–10.

[23] M. Seraj, “We Create, We Connect, We Respect, Therefore We
Are: Intellectual, Social, and Cultural Value in Online Communi-
ties,” J. Interact. Mark., vol. 26, no. 4, pp. 209–222, Nov. 2012.

[24] J. W. Patchin and S. Hinduja, “Changes in adolescent online so-
cial networking behaviors from 2006 to 2009,” Comput. Hum.
Behav., vol. 26, no. 6, pp. 1818–1821, Nov. 2010.

[25] M. Bakaev, V. Khvorostov, S. Heil, and M. Gaedke, “Web Intelli-
gence Linked Open Data for Website Design Reuse,” in Web En-
gineering, 2017, pp. 370–377.

[26] H. Singal and S. Kohli, “Trust Necessitated through Metrics: Es-
timating the Trustworthiness of Websites,” Procedia Comput.
Sci., vol. 85, pp. 133–140, Jan. 2016.

[27] M. R. Fedorko, “Search Engine Marketing (SEM)–The current
state of the issue,” 2014.

[28] SmartBear Software, “Swagger Specification.” [Online]. Availa-
ble: http://swagger.io/specification/. [Accessed: 18-Apr-2017].

[29] A. Neumann, N. Laranjeiro, and J. Bernardino, “API Analysis
Detailed Results,” 06-Aug-2017. [Online]. Available:
http://eden.dei.uc.pt/~cnl/papers/2017-tsc.zip.

[30] Y. Li, Y. Liu, L. Zhang, G. Li, B. Xie, and J. Sun, “An Exploratory
Study of Web Services on the Internet,” in IEEE International
Conference on Web Services (ICWS 2007), 2007, pp. 380–387.

[31] N. Masashi, “API design guidance.” [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/best-
practices/api-design. [Accessed: 23-Jan-2018].

[32] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How Does Web Service API
Evolution Affect Clients?,” in 2013 IEEE 20th International Con-
ference on Web Services, 2013, pp. 300–307.

[33] M. Fokaefs and E. Stroulia, “WSDarwin: Studying the Evolution
of Web Service Systems,” in Advanced Web Services, A.
Bouguettaya, Q. Z. Sheng, and F. Daniel, Eds. Springer New

York, 2014, pp. 199–223.
[34] S. Wang, I. Keivanloo, and Y. Zou, “How Do Developers React to

RESTful API Evolution?,” in Service-Oriented Computing, 2014,
pp. 245–259.

[35] G. Levin, “RESTFul API Versioning Insights,” REST API and Be-
yond, 21-Aug-2016. [Online]. Available: http://blog.rest-
case.com/restful-api-versioning-insights/. [Accessed: 24-Jun-
2017].

[36] K. Lange, “Boost Your REST API with HTTP Caching,” Kenneth
Lange. [Online]. Available: http://www.kenneth-
lange.com/posts/Boost-Your-REST-API-with-HTTP-Cach-
ing.html. [Accessed: 22-Dec-2017].

[37] O. Liskin, L. Singer, and K. Schneider, “Teaching Old Services
New Tricks: Adding HATEOAS Support As an Afterthought,” in
Proceedings of the Second International Workshop on RESTful
Design, New York, NY, USA, 2011, pp. 3–10.

[38] R. Zazueta, “API Data Exchange: XML vs. JSON | Mashery,” 23-
Jan-2014. [Online]. Available: https://www.mash-
ery.com/blog/api-data-exchange-xml-vs-json. [Accessed: 30-
Mar-2017].

[39] B. Mulloy, “RESTful API Design: complement with an SDK |
Apigee.” [Online]. Available:
https://apigee.com/about/blog/developer/restful-api-design-
complement-sdk. [Accessed: 18-Jan-2018].

[40] M. B. Juric, I. Rozman, B. Brumen, M. Colnaric, and M. Hericko,
“Comparison of performance of Web services, WS-Security, RMI,
and RMI–SSL,” J. Syst. Softw., vol. 79, no. 5, pp. 689–700, May
2006.

[41] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, “To-
wards a Formal Foundation of Web Security,” in 2010 23rd IEEE
Computer Security Foundations Symposium, 2010, pp. 290–304.

[42] R. Rodríguez, R. Espinosa, D. Bianchini, I. Garrigós, J.-N. Mazón,
and J. J. Zubcoff, “Extracting Models from Web API Documenta-
tion,” in Proc. of the 12th Int. Conference on Current Trends in
Web Engineering, Berlin, Heidelberg, 2012, pp. 134–145.

[43] M. Vaziri, L. Mandel, A. Shinnar, J. Siméon, and M. Hirzel, “Gen-
erating Chat Bots from Web API Specifications,” in Proc. ACM
SIGPLAN Int. Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, 2017, pp. 44–57.

Andy Neumann is a European Computer Sci-
ence student at ISEC - Polytechnic Institute of
Coimbra, Portugal. His former two years of
studies were completed at the HAW Univer-
sity, Hamburg. He is a researcher at CISUC -
Centre for Informatics and Systems of the Uni-
versity of Coimbra. His interests include web
services, programming and embedded sys-
tems.

Nuno Laranjeiro received the PhD degree
from the University of Coimbra, where he cur-
rently is an Assistant Professor. His research
interests include dependability of software ser-
vices, web services interoperability, and ser-
vices security. He has authored more than 50
papers in refereed conferences and journals in
the dependability and services computing ar-
eas.

Jorge Bernardino is a Coordinator Professor
at the Polytechnic of Coimbra - ISEC, Portu-
gal. He received the PhD degree from the Uni-
versity of Coimbra. He has authored over 100
publications in refereed conferences and jour-
nals. He was President of ISEC from 2005 to
2010. During 2014 he was Visiting Professor
at CMU. Currently, he is President of ISEC
Scientific Council and IEEE member.

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on May 18,2021 at 09:47:41 UTC from IEEE Xplore. Restrictions apply.

