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Abstract—Businesses are increasingly deploying their services on the web, in the form of web applications, SOAP services, 
message-based services, and, more recently, REST services. Although the movement towards REST is widely recognized, there 
is not much concrete information regarding the technical features being used in the field, such as typical data formats, how HTTP 
verbs are being used, or typical URI structures, just to name a few. In this paper, we go through the Alexa.com top 4000 most 
popular sites to identify precisely 500 websites claiming to provide a REST web service API. We analyze these 500 APIs for key 
technical features, degree of compliance with REST architectural principles (e.g., resource addressability), and for adherence to 
best practices (e.g., API versioning). We observed several trends (e.g., widespread JSON support, software-generated 
documentation), but, at the same time, high diversity in services, including differences in adherence to best practices, with only 
0.8% of services strictly complying with all REST principles. Our results can help practitioners evolve guidelines and standards 
for designing higher quality services and also understand deficiencies in currently deployed services. Researchers may also 
benefit from the identification of key research areas, contributing to the deployment of more reliable services. 

Index Terms— REST, RESTful, Web Services, API, HTTP, Web, Web Services Analysis 
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1 INTRODUCTION
The number of services providing publicly available web 
Application Programming Interfaces (APIs) has been 
growing rapidly [1]. Several studies point out that devel-
opers have moved from Simple Object Access Protocol 
(SOAP) or Remote Procedure Call (RPC) to deploying Rep-
resentational State Transfer (REST) web services, as the 
means for consumers to use their services [1]–[4]. This is 
corroborated by major websites like Google, Facebook, or 
Twitter, which are now deploying REST services to pro-
vide easy access to their valuable data resources, while 
promoting their businesses [1]. 

The REST architecture was introduced in the year 2000, 
by Thomas Fielding, and is based on the principles that 
support the World Wide Web [5]. In summary, according 
to the REST principles [5], REST interfaces rely exclusively 
on Uniform Resource Identifiers (URI) for resource detec-
tion and interaction, and usually  on the Hypertext Trans-
fer Protocol (HTTP) for message transfer [3], [6], [7]. A 
REST service URI only provides location and name of the 
resource, which serves as a unique resource identifier. The 
predefined HTTP verbs are used to define the type of op-
eration that should be performed on the selected resource 
(e.g., GET to retrieve, DELETE to remove a resource). 

Possibly due to HTTP’s features (which fit the REST ar-
chitecture rather well), long-term presence, and general 
understandability, REST has become a de facto standard 
way for offering a service on the Web [2], [8]. Despite this, 
REST is merely an architectural style, provided without 
standard specifications. This implies that several decisions 
have to be made by developers when exposing service 
APIs, which may result in diverse APIs and, in some cases, 
in poor design decisions (e.g., using a single HTTP verb for 

retrieving or deleting a resource). These decisions will im-
pact the client-side developer, that must adapt to the spe-
cific style being used, and may even affect the provider 
(e.g., when a poorly maintainable service is deployed). 

Server-side developers must define how an API should 
be exposed (e.g., which URI design schema to use), which 
characteristics it should possess (e.g., which output for-
mats are supported) or how the documentation is pro-
vided (e.g., created with documentation generation soft-
ware). For instance, this last item is problematic because 
without standard means for documenting APIs, the ten-
dency will be to use text to describe the API (many times 
in natural language), which may be diverse in form, struc-
ture, or depth and is obviously a problem for client devel-
opers [3]. The literature also suggests some heterogeneity 
in how HTTP features are used, with some being widely 
adopted (e.g., HTTP verbs, status codes) and others tend-
ing to be ignored (e.g., HTTP headers) [2], [3]. Also highly 
discussed is the adoption of the Hypermedia As The Engine 
Of Application State (HATEOAS) principle of the REST ar-
chitecture, which is rarely used [1]–[3], [9], [10].  

Due to the abovementioned reasons, it is a common be-
lief that most online services available online claim to be 
REST services without truly following the REST principles, 
and present severe technical inconsistencies, diverse de-
signs, and operating modes [1]–[3], [9], [10]. Thus, some 
web services expose Web APIs very close to the original 
style described by Fielding [5], whereas others simply 
change their existing RPC-style API to being directly acces-
sible via HTTP [2]. To what extent this currently happens 
is not very clear, and there is the need of using new data as 
a means to provide an additional data point that supports 
or disputes findings of previous work. 

In this paper, we empirically analyze the technical fea-
tures of 500 public REST Web Service APIs, found in the 
top 4000 most popular sites on the Web (according to 
alexa.com). Our analysis goes through 26 API features, 
identified in the literature [1]–[4] and gathered during our 
observations, with the goal of understanding: i) the level of 
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adoption of REST principles (e.g., the design schema used 
in the URIs); ii) the common design decisions made by ser-
vice developers, e.g., is Extensible Markup Language 
(XML) or JavaScript Object Notation (JSON) a popular 
choice for service output data) and; iii) if REST service de-
velopment best practices [2]–[4], [9], [11]–[17]  are being 
followed by programmers (e.g., documenting services in a 
structured manner). In summary, we aim to be able to an-
swer the following research questions: 

RQ1: Are web services being deployed following a pure REST 
architecture? 

REST was built as a model of how the Web should work 
[5], and violating any of its set of principles puts its objec-
tive at risk. The outcome is heterogeneity of service design 
that emphasizes systems heterogeneity, with impact on cli-
ent developers and overall system interoperability [2], [3]. 
The client developer becomes dependent on the specific 
and error-prone decisions of the service programmer. The 
extension of this heterogeneity must be known so that 
proper measures can be taken by developers and so that 
the gaps are analyzed by researchers to advance the state 
of the art. 

RQ2: Which are the common design choices taken by practi-
tioners when developing REST web services? 

In addition to the REST architecture, developing ser-
vices requires several choices regarding technical features, 
such as type of output format supported, authentication 
mechanism used, etc. Possessing this kind of data is crucial 
for practitioners, as available information is short, highly 
scattered, and, due to the dynamicity of the Web, also 
quickly outdated. In the end, it can help guiding the 
(re)definition of best practices. 

RQ3: Are best practices for REST web services being followed 
by service developers? 

Best practices are built by researchers and practitioners, 
as the result of research and experience, to guide service 
development. Identifying those not followed can help un-
derstanding the disconnection between theory and prac-
tice and this insight may be useful for, for instance, refining 
or creating new best practices. Also, understanding the de-
gree to which practices are followed can be used to rein-
force or improve best practices, which in the end contrib-
utes towards more reliable services. 

Our results disclose several trends regarding decisions 
made by service developers when designing and exposing 
their REST web APIs. Examples include the popular use of 
software-generated API documentation, the definitive de-
cay of XML in favor of JSON, which is now the most widely 
supported output format, the use of OAuth, or the enforce-
ment of call limits, just to name a few. In some features, the 
APIs show some diversity, such as the way clients select 
the output format or the used documentation generation 
software. We observed significant differences regarding 
the adoption of the REST principles, resulting in a very low 
number (4 out 500 services) of truly RESTful services (i.e., 
compliant with all principles). Finally, we also observed 
high adherence to a subset of best practices (e.g., semanti-
cally correct use of HTTP verbs), while also showed resid-
ual appearances (e.g., HATEOAS [5]).  

The rest of this paper is organized as follows. Section 2 
presents related work in web API analysis. Section 3 de-
scribes the design of this study and section 4 presents the 
results. Section 5 discusses the main findings and Section 6 
reviews existing threats to validity. Finally, section 7 con-
cludes this paper. 

2 RELATED WORK 
We identified the following two main groups of re-

search work that provide information regarding web APIs: 
i) Works that empirically analyze a set of web services for 
specific API characteristics or features; and ii) Works that 
provide information about quality attributes of web ser-
vices, including open issues and challenging aspects. 

In what concerns empirical analyses of web services, 
the work in  [1] is an interesting case that analyses 222 pub-
licly available web API documentations, selected from pro-
grammableweb.com, against 20 features. Results show that 
RESTful web services had been relatively widely adopted 
by 2010, although the authors emphasize that developers 
tend to disregard the REST principles, which we confirm 
in this work in a larger-scale study and almost a decade 
later. In [2], twenty REST web services, selected among the 
APIs with higher number of mashups from programmable-
web.com, are analyzed against 17 features. Results show 
that almost none of the services is actually truly RESTful, 
despite the small dataset. 

The authors in [3] analyzed the 45 most popular web 
APIs of the programmableweb.com repository using the 
number of mashups as the sorting metric and against 17 
features. Results show diversity in the adoption of REST 
principles or in common design decisions, which is at-
tributed to missing standards regarding REST. The rather 
small dataset and the time passed since then make it nec-
essary to take another up-to-date look on the current state 
of web APIs. 

Authors in [8] aimed to understand the meaning of mi-
cro services for practitioners by questioning 42 companies. 
The focus of the work is on micro services, how they are 
technically implemented, and which difficulties are pre-
sent. Main findings show that two thirds of the companies 
use external services, but also about two thirds of the ser-
vices used are internally developed and operated. REST 
and HTTP are quite present, while SOAP rarely appears. 
JSON is more common than XML and the most often used 
programming languages for implementing the companies’ 
internal REST services are Java, JavaScript, C#, Python and 
Ruby. The study analyzes a certain services niche, while 
we aim for a broader study. 

The authors in [9] analyze the degree of compliance 
with the REST architectural principles, from a point of 
view of mobile applications. 78GB of data logs of HTTP re-
quests collected from a large mobile operators are used to 
identify patterns and matched against 26 best practices for 
web services and the Richardson Maturity Model [18]. The 
largest part of their analyzed dataset complies with level 2 
of this model, whereas only a few hosts reach level 3. This 
study is only based on the analysis of live HTTP requests 
and does not examine the corresponding API itself and re-
spective documentation. 

The services of three popular cloud providers are com-
pared against a catalog of 73 best practices for REST APIs 
design in [13]. Results show that these cloud providers 
have reached an acceptable level of maturity, even though 
they follow only half to two thirds of the catalog guide-
lines. The work in [10] analyzes 286 Swagger API descrip-
tion documents and provide a framework for a structural 
analysis of REST APIs to identify the main characteristics 
and deficits. With roughly a third of the 286 APIs being 
hosted by Google and by analyzing only Swagger docu-
ments, the authors focus on a particular niche. As we will 
see in the next sections, we aim for a broader study, where 
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even services with no structured documentation are ana-
lyzed. 

In [19] 500 popular apps and 15 popular services for the 
android ecosystem are analyzed, with the results showing 
that application developers prefer official SDKs for access-
ing these services over simple HTTP clients. It is a small set 
of 15 services (and with focus on android applications), 
thus it is beneficial to have a broader view on this matter.  

The authors in [14] analyze 18 popular web services ac-
cording to 12 linguistic patterns and anti-patterns by se-
mantically analyzing the URIs of web services. Results in-
clude the detection of syntactical URI design issues, alt-
hough the API designers tend to use adequate resource 
names and no verbs in URIs (a REST best practice). The au-
thors do not analyze other REST-relevant features, such as 
the use of HTTP headers.  

Non-functional aspects (e.g., payment plans and busi-
ness models) of 69 web services extracted from mar-
ket.mashape.com and programmableweb.com are analyzed in 
[21] with the goal of identifying requirements of a govern-
ance model of realistic RESTful APIs. The authors observe 
a wider expression of API limitations (e.g., the client is lim-
ited to certain parts of the functionality, in a certain pay-
ment plan) if the API is not regulated by an API Gateway 
(e.g., market.mashape.com). We also go through non-func-
tional aspects, such as existence of payment plans and call 
limit rates, but intend to provide a wider focus, by analyz-
ing a broader set of technical features, including REST 
principles compliance and best practices. 

Regarding the works that provide information on qual-
ity attributes of web services, including open issues and 
challenging aspects. It is relevant to mention the proposal 
of an approach for benchmarking the quality of web ser-
vices considering geo-mobility of the service end-user pre-
sented in [17]. High-level architectural and engineering 
options (e.g., client-side caching, the use of a backup API 
that could leverage machine-readable API descriptions) 
are discussed as means to handle variable Quality of Ser-
vice (QoS), observed during long-term benchmarking ex-
periments. The authors do not present detailed insights on 
the features of the services under benchmark. 

Software engineering research opportunities for the 
consumption of web APIs are discussed in [22]. The chal-
lenges discussed are: i) service consumers have no control 
over the web service (the provider may change the API or 
the service); ii) clients may not be sure of the validity of 
calls to the API at run-time; iii) SDKs out of synchroniza-
tion with the actual service; iv) and QoS issues.  The au-
thors identify a few research lines (e.g., static analysis for 
checking requests, documenting API signatures, coding 
practices and patterns for dealing with varying QoS, im-
pact of web API usage on non-functional aspects). Our 
work can help complementing this kind of study, by 
providing further detailed data for research to take place. 

A language for modeling REST client-server conversa-
tions is presented in [20]. Authors refer that most APIs are 
simply exposing low-level HTTP details without hyperme-
dia controls (which creates obstacles for conversation), 
which are two features that we analyze in this work for an 
up-to-date view. In [4], the authors analyze the evolution 
of the interface of client-server technologies (including 
web APIs). The authors overview technologies used for 
web services and point out reasons for the misuse of REST 
principles. The authors emphasize that some designs and 
mechanisms (e.g., REST design, OAuth) are much more 
successful at web API reuse and discuss the usefulness of 

an interface description for REST web APIs. In this paper, 
we analyze services in the field for concrete evidence on 
these and additional aspects. 

In this paper, we designed a study with the broad ob-
jective of understanding the state of the practice regarding 
REST web services. We are providing an additional and 
updated data point that may support previous work. In 
fact, due to the dynamicity of the Web environment, such 
works are quickly outdated, leaving practitioners and re-
searchers with little information for designing and devel-
oping services, or pursuing research on this topic.   

3 METHODOLOGY 
The empirical analysis carried out in this paper was per-
formed from February to July 2017. For simplicity, from 
this point onwards we use the term REST (accompanied by 
web service API, service API or web API) to designate a ser-
vice that is claimed to be RESTful by some provider. We 
use the term truly RESTful if it adheres to all mandatory 
REST principles [5]. The study comprised the following 
steps, described in further detail in the next paragraphs: 

1) Identification of best practices for REST API develop-
ment [2]–[4], [9], [11]–[17]; 

2) Find a suitable URI source to use as basis for the anal-
ysis; 

3) Filter duplicate sites (e.g., regional site variants); 
4) Identify the site category (e.g., games, shopping); 
5) Examine the site for available service APIs: 

a. Identify service APIs announced as REST by 
the site and select a subset for analysis; 

b. Identify other types of service offered by the 
site. 

6) Analyze technical features (identified in previous 
works [1]–[4]) and gathered during our observations) 
of the REST service APIs, going through: 

a. Compliance with REST principles [5]; 
b. Service design decisions; 
c. Adherence to best practices [2]–[4], [9], [11]–

[17]. 
7) Verification of the results. 

 
We started by identifying best practices in the litera-

ture by searching papers in Google Scholar, the results 
were filtered to only include peer-reviewed papers that 
have been cited (unless they have been published in the 
last year). This allowed us to identify the whole set of best 
practices. We then used Google Search Engine in search for 
a practitioner view on this matter, which allowed us to fur-
ther support three practices that had been already identi-
fied in research work.  

The second step involved selecting a source of web-
sites, that we could use as basis for our whole analysis. 
There are a few options for this, such as alexa.com, program-
mableWeb.com, or apis.guru, among others.  We selected 
alexa.com as site source, as it is a mature, well-known, and 
periodically updated source of popular sites. Certainly, 
there is no direct link between the popularity of a website 
and the popularity of its exposed web service, but its wide 
application in previous similar research contexts [23], [24] 
provides us assurances about its usefulness. The analysis, 
described in detail in the next section, was carried out us-
ing the top 4000 most popular web sites as basis.  

The selected list of URIs was then processed to filter du-
plicate sites, as many times popular sites include regional 
variants, such as google.pt or google.co.uk. Including these 
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variants would add an artificial bias to the results, as such 
sites are essentially mirrors deployed by the same com-
pany. Thus, we excluded repeated websites that only differ 
in their top-level domain. 

Alexa.com is well-known for its top popular site lists, but 
it does not categorize websites. So, we opted to also add 
some context about the type of sites being analyzed (e.g., 
shopping, finance, games). For this purpose, we used sim-
ilarweb.com (listed, at the time of writing, on position 1589 
of alexa.com) to identify each site category, because it 
freely provides a classification of sites in categories based 
on user interests, and has been often used for website ana-
lytics in previous works [25]–[27]. 

The process of examining the site for an available ser-
vice API involves, at first, browsing through the site and 
searching for information directed for developers. When-
ever an API was not found (many times the main site pages 
do not mention any API) or when the website was not in 
English, we would direct the search effort to Google’s 
search engine. In this case, we used the name of the site 
followed by “API”, which was useful for a few times. The 
API was then marked as REST or not, based on what the 
service provider announced (unofficial APIs, found using 
Google, were not considered). In some cases, the website 
would provide several web APIs (we registered the num-
ber for later analysis), of which we would randomly select 
a single one to proceed with the analysis. 

After identifying the REST web API, we manually ana-
lyzed the service API official documentation against a set 
of technical features (e.g., HTTP verb support, design 
schema used in URIs, versioning use), mostly extracted 
from previous studies [1]–[4], and which we present in the 
next paragraphs. Also, based on our observations, we 
gathered additional features which include the support for 
software development kits (i.e., client-side libraries), the 
latest API documentation update, the use of generated API 
documentation, presence of interactive API test consoles, 
usage charges, and enforced call limit rates.  

Some of the collected features imply analyzing the APIs 
multiple endpoints (i.e., URIs), such as the “design schema 
used in URIs”. For APIs with a large number of endpoints 
(e.g., Facebook has more than 200 endpoints) we examined 
a subset (but our observations showed that the design was 
always consistent throughout the API). In short, if the 
number of endpoints was less than 20 we checked all, else 
if it was lower than 50 we checked about half, otherwise 
we checked about one fourth. Similar to [3], and for presen-
tation clarity, we grouped the several features in the fol-
lowing dimensions: 
• REST Architecture – This dimension mostly covers 

core REST features of the API [5]: i) number of opera-
tions; ii) design schema used in the URIs (i.e., does the 
URI only contain resource information or does it also 
contain information about the operation); iii) the tech-
nique of the output format selection; iv) the scoping 
information (i.e., how the server is informed about on 
which data it should operate, for instance using data 
specified in the URI path or in an HTTP header field); 
v) API versioning support (i.e., is it possible and how 
to select among different API versions, how many ma-
jor versions were deployed); vi) support for response 
caching; and vii) use of links to related resources in re-
sponse messages. 

• HTTP Use – This dimension refers to: i) the supported 
HTTP verbs; ii) how HTTP method overrides are im-
plemented (e.g., how to delete a resource if the HTTP 

DELETE verb is not supported); iii) if and how the 
messages specify their content type; and iv) the use of 
adequate HTTP status codes in responses (e.g., send-
ing a success response using a 2xx status code). 

• I/O and Software Development Support – This co-
vers the input and output formats supported by the 
services. It also addresses the support of Software De-
velopment Kits (SDKs) for the API consumer. 

• Security Mechanisms – This refers to the presence of 
user authentication mechanisms (is user authentica-
tion required and if yes, which mechanism is sup-
ported) and if communication channel encryption is 
mandatory, optional, or simply not supported. 

• Usage Policies – This dimension covers the type of 
registration that is necessary for using the API, 
whether payment plans for using the API are availa-
ble, if call limits are enforced and in this latter case, 
how many daily API calls are allowed. 

• Documentation and Application Use – This dimen-
sion covers general documentation aspects, namely if 
the APIs provide: i) documentation updated in the 
current calendar year (at the time of data collection), 
i.e., between January to July 2017; ii) generated API 
documentation (i.e., produced by a tool, such as the 
Swagger UI [28]); iii) interactive developer consoles 
(i.e., for testing requests and observing responses); iv) 
explanations of error messages; v) example requests 
and responses. In addition, we also examine the re-
ported number of applications that use the analyzed 
APIs. 

 
Of the above dimensions, the REST architecture is par-

ticularly important, especially due to the wide prolifera-
tion of this kind of APIs. Thus, besides the analysis of the 
REST-related features mentioned above, we also analyze, 
whenever possible, the level of compliance with Roy Field-
ing’s REST architecture principles [5] (labelled from (1) to 
(6) in the next paragraphs). 

The Client-Server principle (1) states that the server 
holds resources, and the client wants to interact with these 
resources. The client sends requests to the server to access 
and manipulate data. A REST system must function ac-
cording to the client-server model and must separate user 
interface concerns from data storage concerns. 

The Stateless principle (2) requires that no client context 
is being stored at the server between requests. Each client 
request contains all necessary information for the server to 
respond and is treated standalone. Responses must define 
themselves as Cacheable (3) or not cacheable to potentially 
improve scalability. 

A Uniform Interface (4) is an essential principle of the 
REST architecture that allows simple API usage. It consists 
of the following four properties: 
- Resource addressability: Every REST service has a URI 

as a unique address. This address identifies a resource, 
which standardizes the way of accessing the supplied 
service. 

- Manipulation of resources through representations: A cli-
ent has enough information to manipulate a resource 
if it holds a representation of this resource and any at-
tached metadata. For instance, if a client has a repre-
sentation of a user resource and wants to change the 
user id, the client would only need to send this repre-
sentation and the new id to the proper endpoint (e.g., 
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by using the HTTP PUT verb). A client must not, for 
instance, send instructions to the server about how to 
update a resource. 

- Self-descriptive messages: Requests and responses must 
be self-descriptive, which means that the recipient re-
ceives all necessary information to understand the 
message and, for instance, must not wait for another 
message that explains how to interpret the data. By 
sending REST messages using standard means (e.g., 
correct HTTP verbs) to manipulate resources, the re-
cipient of the message (server or client) receives all 
necessary information to complete its task. 

- Hypermedia As The Engine Of Application State 
(HATEOAS): Server response messages must provide 
links to related resources. These resource links provide 
clients with other currently available actions, based on 
the client's current state, which work as a navigation 
system throughout the API. 

 
The Layered System principle (5) states that a client can-

not know whether it is connected to the end server, or to 
an intermediate server. These layers should be hidden, to 
simplify the architecture. Finally, there is an optional Code 
on Demand (6) principle that states that, only in case of 
need, the server may send code for the client to execute lo-
cally (e.g., the server sending JavaScript code). 

Notice that, in the case of the principles, our analysis 
will be limited as we will not be able to gather complete 
information for at least the Stateless and Layered System 
principles (as we are dependent on the information pro-
vided). Still, all service APIs found support the Client-
Server paradigm.  

Due to the lack of common structure and standards of 
the APIs documentations and due to the complexity of the 
analysis, it is not possible to automate this kind of work. 
Thus, extracting and analyzing the data is essentially a 
manual process. Due to the huge amount of effort involved 
we verified about one fourth of the results by randomly 
selecting some features among each of the already classi-
fied APIs. During this verification procedure, which was 
carried out by the same person performing the analysis, we 
found only residual errors. The results of this process are 
presented in the following section. 

4 RESULTS 
In this section, we present the results obtained during our 
analysis, which followed the approach described in the 
previous section. We begin by overviewing the types of 
sites (as classified by similarweb.com) and identifying the 
types of APIs provided (e.g., REST, SOAP). We then pre-
sent the results of the analysis of the 500 REST web APIs 
identified during this process, from Section 4.1 to Section 
4.6, going through the features [1]–[4] presented in Section 
3. We discuss common designs, identify compliance with 
the REST principles [5], and adherence to best practices 
(identified in the text with Bp_bestPracticeName) [2]–[4], [9], 
[11]–[17]. Detailed results are available at [29]. 

From the Alexa Top 4000 sites, 315 sites were found to 
be duplicates (only differing in the top-level domain) and 
were excluded from the analysis. From the remaining 3685 
sites, we found that 681 (18%) provide some kind of API. 
Fig.1 shows the distribution of the sites and APIs per cate-
gory (according to similarweb.com). Fourteen categories 

holding values below 1.5% (of the 3685 sites) and websites 
belonging to undetermined categories (not found in simi-
larweb.com) were placed under “Other”. 

As we can see in Fig. 1, about half of the categories 
nearly one third of the sites possess some kind of Web API 
(e.g., “Computer and Electronics”, “Shopping, “Internet 
and Telecom"), while in other categories this tendency 
seems to fade (e.g., “Games”, “Adult”). Overall, what we 
observe is that the APIs fit in quite diverse categories, em-
phasizing the large proliferation of web APIs that currently 
extends to nearly all kinds of sites. 

In 13.1% (of the 681 APIs) there is no API documenta-
tion in English and in 3.1% there is actually no documen-
tation. Also, in 4.7% it is necessary to create an account to 
view the documentation and in 2.5%, it is necessary to ap-
ply for the API use just to view the documentation. For 
simplicity, and due to the relatively low number of these 
cases, we decided to exclude these APIs from the analysis, 
ending up with a total of 522 APIs. 

From the 522 sites, 91% provide only a single API which 
we analyzed. The remaining 9% provide more than one 
API, with nearly half (4.4%) providing less than 6 APIs, up 
to a maximum of 100 APIs by google.com. Each API, of these 
sites that offer several APIs, serves a different purpose. For 
instance, ebay.com offers APIs for selling, buying, or ac-
counting. We observed that, in general, the characteristics 
and documentation of the different APIs of the same pro-
vider tend to be similar. Due to this, and due to the rela-
tively low number of these cases (which could however 
add some bias towards the decisions of a particular pro-
vider), we randomly selected one of the available APIs per 
site to be part of the analysis.  

Before proceeding with the core of the analysis, we must 
refer that, based on the providers’ claims, we identified 
APIs that fit in three main technologies or models: REST, 
XML-RPC and SOAP. A huge amount of the 522 APIs 
(500 APIs – 95.8%) provide an API based on REST, which 
we thoroughly analyze in the next sections. Of the remain-
ing 22 APIs, 2.5% are SOAP APIs and 1.7% are XML-RPC 
APIs.  

About 3.2% of the 500 sites claiming to provide REST 
APIs also deploy additional alternative APIs, with 2.4% 
providing also SOAP and 0.6% providing an XML-RPC 
API. For example, Flickr.com provides SOAP and XML-
RPC APIs in addition to its REST API (and is actually the 
only one providing all three main types of APIs). The Sam-
sung Artik Cloud is the only site providing other types of 
APIs, such as WebSockets, MQTT, and CoAP, in addition 
to REST. These are a few exceptions, but most web APIs 
(96.8%) are not providing any additional technologies or 
protocols. These observations clarify the extension of the 
movement towards the REST architecture. It is not a trend 

 
Fig. 1. Number of sites and APIs per category. 
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anymore, it is now an established practice, built for and put 
in place by developers [8].  

The analysis presented, from this point onwards, re-
fers only to the 500 REST services (as claimed by the ser-
vice provider) identified during this work and following 
through the features discussed in the previous section. 
Note that the complexity and specificity of the documenta-
tion resulted in a few cases being incompletely analyzed, 
which we identify in the next sections. This already sug-
gests deficiencies resulting from the arbitrary way the doc-
umentation is produced, which in turn introduces com-
plexity to the typical tasks of a developer (i.e., finding or 
understanding how to use a certain service).  

4.1 REST architecture 
We begin by discussing the number of operations pro-
vided by the 500 APIs, which is not exactly a core REST 
feature, but provides insight on the typical size of this kind 
of services. It is also a frequently analyzed  feature in sim-
ilar work [1], [3], [10], [30]. Fig. 2 shows the distribution of 
the number of operations in the set of 500 services. 
 

 
Fig. 2. Distribution of the number of operations. 

About two thirds of the APIs (64%) have between 2 and 
50 operations. Roughly half of the analyzed services 
(56.2%) provide at most 20 operations and about one third 
offer between 2 and 10 operations. In the analyzed set, 5.2% 
provide a huge number of operations (over 200 operations) 
and these range from social platform services, such as the 
facebook.com Graph API, to shopping sites, such as the 
ebay.com Sell API. Overall, REST web service APIs tend to 
provide a relatively small number of operations. 

We identified the presence of two types of design sche-
mas in the 500 URIs: i) resource-oriented URIs; and ii) op-
eration-oriented URIs. In the following paragraphs, we 
will refer to the resource-oriented URIs as REST-style URIs 
and the operation-oriented URIs as RPC-style URIs. 

 REST-style URIs are structured around resources such 
as www.api.com/user/{name}. Depending on the HTTP verb 
that is used, an API call can then either get the name of the 
user, add, change or delete the name of a user. RPC-style 
URIs are structured around operations such as 
www.api.com/user/getname. The last part of the URI will 
change if the user name should be added, changed or de-
leted, which means that the type of operation does not ex-
clusively rely on the HTTP verb used. Of the 500 web APIs, 
87.8% use REST-style URIs (Bp_RestURI [2]–[4], [9], [11]–
[16]), while 12.2% use RPC-style. As mentioned, the analy-
sis of 222 APIs in 2010 [1] uncovered only 32.4% using 
REST-style URIs. More recently, in 2016 [9], authors ob-
served about 90% of URIs avoiding CRUD operations as 
resource names, which is in line with our observations. Ob-
viously, the datasets are different, but the tendency seems 
to be the adoption of the Resource Addressability property of 
the Uniform Interface REST principle.  

We further delved into the difficulties for structuring 
URIs around resources. Of the 12.2% that use RPC-style 
URIs, 11.6% could be easily changed to REST-style, as they 

allow just a few basic operations (e.g., /createfolder, 
/listfolder) that could be offered on a single resource and 
handled with (at most) the four common HTTP verbs. The 
remaining 0.6% offer a great number of operations on a sin-
gle resource (e.g., one API supports 17 different opera-
tions) that go far beyond the four common HTTP verbs, 
such as archive, unarchive, setTopic, setPurpose or mark. 
In this kind of case, using REST-style URIs would involve 
a much larger refactoring of the API, possibly involving 
specifying the type of operation in the request. 

The developers may have reasons for simply using a 
single HTTP verb and specifying the type of operation di-
rectly in the URI. However, using RPC-style URIs is a vio-
lation of the Resource Addressability principle, because the 
URI must only contain resource information and cannot 
expose information about the type of operation.  

The output format selection feature refers to how the 
format of the service output is selected. The distribution of 
the different ways of performing this selection is shown in 
Fig. 3.  

 
Fig. 3. Output format selection techniques. 

The results show that almost half (45% – 223 APIs) of 
the 500 APIs support only one output format, and do not 
require any kind of output format selection to be per-
formed. In the remaining cases, the most popular way to 
select the type of output is to use an HTTP header field 
(24.0% – 120). Then, 2.4% (12) use the URI path, 13.6% (68) 
use a URI Suffix, and 15.4% (77) use a query parameter to 
specify the format. In [9], authors found selection of the 
output type via query parameters in 3% of the services (vs 
15.4% in our case) and via URI suffix or URI path in 27% of 
the services (16% in our case). 

Using the URI to specify the output format violates the 
Resource Addressability principle, because the URI must 
only refer to resource information. It is not clear, why only 
about one fourth of the services use the HTTP header fields 
as the way of selecting format, when the HTTP protocol 
specifies an HTTP accept header field (Bp_AcceptHeader 
[3], [11], [12]), precisely for this purpose. Specifying the for-
mat in the query parameter is a simple option that may not 
be a best practice, but also does not violate the Resource Ad-
dressability principle.  

 The information that informs the server on which data 
or resource it should operate is named scoping infor-
mation. Scoping information is associated with the method 
information (in lato sensu) that determines the operation 
the server should perform (e.g., create or update a re-
source). For instance, in the following API call example:  

GET /user/andy 
The method information is represented by “GET” and 

the scoping information is /user/andy. This “GET” action is 
performed on the /user/andy resource, meaning that the cli-
ent wants to retrieve the available data of user andy. This 
example only uses the URI path as the scoping infor-
mation. We identified four ways of providing the scoping 
information in the 500 service APIs: i) URI path; ii) query 
parameters; iii) HTTP header fields; and iv) URI paths and 
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query parameters. Fig. 4 shows the distribution of the dif-
ferent ways of encoding the scoping information. 

As we can see in Fig. 4, almost two thirds of the APIs 
(63.8% – 319 APIs) encode the scoping information exclu-
sively in the URI path. According to REST, this is the cor-
rect way (Bp_ScopingURI [2]–[4], [9], [11]–[16]), which 
agrees with the Resource Addressability principle that states 
that the scoping information should be encoded in the URI 
path as a unique resource identifier. About 28% (141) of the 
APIs use query parameters to specify additional scoping 
information, while the URI path specifies the main re-
source information. For example, cnet.com uses this latter 
technique, as in the following example: 
 GET /author?personIds=9 

The URI path specifies that the service should operate 
on the author resource and the query parameter personIds 
specifies the Id of the author. 7% (35) of the APIs require 
scoping information to be encoded only in the query pa-
rameter (half of these 35 APIs mostly provide search oper-
ations and the search query is encoded as a query parame-
ter). Five APIs (1.0%) encode the scoping information only 
in an HTTP header field. 

Regarding versioning, about one fifth of the APIs (19%, 
95 APIs) do not provide any information about API ver-
sions, but we were able to determine the major version 
number of the remaining 89%. In 15.6% (78) this infor-
mation is part of the documentation and in 65.4% (alt-
hough not documented) the version number is exposed 
within the API request call (in different ways). Versioning 
the API (Bp_Versioning) is obviously a best practice [31], 
as it is unlikely that a web API will remain static. The dis-
tribution of the number of major API version releases is 
shown in Fig. 5, where we can see that more than two 
thirds of the APIs are deploying either their first or second 
major version.  

After an API provider deploys a new major API version, 
developers that want to start using the new version may 
be forced to change their applications [32]–[34], depending 
on which version selection technique they are using. Fig. 6 
shows the different techniques that are used for selecting 
the API version, which is possible for about two thirds of 
the analyzed web APIs (65.4% – 327 APIs).  The remaining 
(34.6%, i.e., 173 APIs) do not support any kind of version 
selection).  

Nine out of ten APIs that allow version selection are us-
ing the URI path to select the version, which may violate 
the Resource Addressability principle, because the URI must 
only contain information about the location and name of a 
resource. Selecting the version in an HTTP header field is 
a more REST-conform way to do it  [13], [36], but also adds 
complexity to client calls, because the client needs to build 
a header field appropriately and cannot just use a simple 
URI. Selecting the version within the URI (or as a query 
parameter) is, in comparison, much simpler. Although this 
is a controversial matter  [35], some practitioners recom-
mend to expose the API version in the URI path (Bp_Ver-
sionSelectionURI [2], [3], [12], [15], [16]). Another point of 
view on this subject is that a version 2 API will, in general, 

refers to different resources from those used by a previous 
version 1 API, which means that the use of terms like v1 or 
v2 in the URI is, in practice, also providing information 
about the location of a certain resource (i.e., in such cases, 
the Resource Addressability principle may not be violated). 

Only about one fifth (20.6% – 103 APIs) of the 500 APIs 
declare response messages as cacheable or not cacheable 
(Bp_Caching [3], [11], [13], [15], [17]). All of the former use 
the HTTP Cache-Control headers [36] for caching. The re-
maining 79.4% (397) do not provide any information about 
caching. Caching is directly supported by the HTTP proto-
col and can help reducing API calls, by keeping frequently 
needed response messages. As previously mentioned, the 
authors in [3] found that 27% of the analyzed APIs explic-
itly stated their support for caching. Further analysis over 
the remaining APIs using test invocations allowed to dis-
cover an additional 13% supporting caching (which may 
also occur in our case, but is out of the scope of this work). 
With direct support from HTTP, it is unclear why only 
20.6% of the APIs state their support for caching or for not 
caching, in agreement with the Cacheable principle. 

The last feature of the REST architecture dimension ad-
dresses the use of links to related resources in response 
messages, named by Fielding as Hypermedia As The Engine 
Of Application State (HATEOAS), another property of the 
Uniform Interface (4) principle [5] and also a REST service 
development best practice (Bp_Hateoas [2]–[4], [4], [9], 
[11]–[13]). Such links provide clients with available actions, 
based on the clients’ current state, which work as a naviga-
tion system throughout the service and relieves a client 
from calculating whether it is allowed to execute a specific 
operation or not [37]. For instance, in a file hosting service, 
a successful login response message would also contain 
links to possible next operations (e.g., downloading a file, 
logging off). Letting the client calculate possible operations 
is error prone and may lead to unnecessary attempts by the 
client to perform operations that will fail. We found only 
4.2% of the APIs complying with HATEOAS. This appar-
ently useful REST property is scarcely adopted, which 
opens space for discussion. Implementing HATEOAS ob-

viously adds complexity to the server and client sides. Au-
thors in [15] mention it may also require further standard-
ization efforts. 

Overall, it is already clear that there is heterogeneity in 
the adoption of certain features, compliance with some of 
the REST principles, and adherence to best practices. In 
Section 5, we further discuss these findings and the ones 
presented in the following subsections. 

 
Fig. 4. The different ways of encoding scoping Information. 

 
Fig. 5. Distribution of currently deployed API major versions. 

 
Fig. 6. Distribution of the API version selection techniques. 
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4.2  HTTP use 
In this section, we present the results regarding the use of 
HTTP verbs (e.g., GET, POST), how method overrides are 
implemented, and if adequate HTTP status codes are used.  
Fig. 7 shows the distribution (including overlaps) of the 
HTTP verbs used (we were unable to determine the sup-
ported verbs for 2 APIs). As we can see, about a third of the 
analyzed APIs allow GET as the only HTTP verb. 22% sup-
port only GET and POST and the third major combination 
involves 20.8% of the APIs, which support the four HTTP 
verbs GET, POST, PUT and DELETE. Not in the figure, but 
also present were PATCH (8.6%) and HEAD (3.2%). 

Each HTTP verb should be used for the corresponding 
behavior (Bp_HTTPVerbs [2]–[4], [9], [11]–[13], [15], [16]). 
GET, for instance, should be used for receiving resources 
and not for changing resources. If developers adhere to this 
kind of rules, API requests can more easily comply with 
the self-descriptive messages principle. Assuming that the 
server knows how to interpret the data (see the Bp_Con-
tentHeader best practice), if it receives the resource name, 
location, and the right HTTP verb, then the server has all 
information needed to complete the operation. 

We found out that most APIs (88%) use the HTTP verbs 
as originally intended, complying, in this sense, with the 
self-descriptive messages property. However, 12% of the 
APIs offer GET and also POST as the two only HTTP verbs, 
to support operations (e.g., updating and deleting re-
sources) that should, according to the HTTP rules, not be 
performed with GET or POST. This mode of operation was 
also observed in previous work [3].  

When not using the right HTTP verbs, to let the server 
know which operation to perform, the API allows a 
method override, which is in 9.4% carried out by specify-
ing the method type as part of the URI path. This percent-
age breaks down to 5.0% for RPC-style URIs, because these 
always define the method information in the URI besides 
the resource information (e.g., POST /deleteuser?user=andy) 
and to 4.4% for REST-style URIs, where the method over-
ride is added after the resource path (e.g. POST 
/user/andy/delete). 2.6% specify the method override as a 
query parameter and the remaining 0.2% include the 
method override information in an HTTP header field. A 
more REST-conform way to allow interacting with clients 
that do not support all HTTP verbs (e.g., old browsers) 
would be to support all necessary HTTP verbs and then 
also allow method overrides with one verb, which is actu-
ally offered by 6 APIs (1.2%).  

 Another important aspect of the self-descriptive messages 
property is that each message (client request and server re-
sponse) must contain information about how the trans-
ferred data must be interpreted (i.e., the content type). To 
comply with this property, the information about how to 
interpret should be encoded in the HTTP content-type 

header (Bp_ContentHeader [2], [3], [9], [11]–[13], [15]). We 
analyzed the services and found out that only one fourth 
(24%) set the content-type header in messages appropri-
ately, which does not comply with the self-descriptive mes-
sages property (although this property is highly supported 
when it comes to the adequate use of HTTP verbs, as dis-
cussed previously). Obviously, the information inside the 
application message is also important to fully understand 
compliance with the property, but this kind of analysis is 
application-specific and, thus, out of scope of this paper. 
The remaining 380 APIs (76%) do not provide insight 
about the header fields of the client/server messages.  

We further investigated the adoption of HTTP features, 
by examining the APIs usage of HTTP response codes. 
The HTTP protocol has a defined status code vocabulary 
that specifies issues between server and client (or correct 
behavior), which can simplify the overall communication 
process, including error handling. Sending adequate 
HTTP response codes (Bp_StatusCodes [2], [3], [11]–[13], 
[15], [16]) will make the server response message easily un-
derstandable by clients. 

Of the 500 services, almost two thirds (64.6%) exchange 
adequate HTTP response status codes, which is aligned 
with the self-descriptive messages principle. Such services 
send HTTP status codes in the 2xx range, if the task is suc-
cessfully completed. For Client or Server errors, a status 
code in the 4xx or 5xx range is returned. In 2016, the anal-
ysis of a large data set of API responses showed the rich-
ness of the use of status codes [9], pointing out an improve-
ment regarding web services running in 2005. With nearly 
two thirds of our analyzed services also documenting their 
existing HTTP response codes, we highlight the high adop-
tion of this feature by service developers. 2.8% send cus-
tom error codes inside the response body, which compli-
cates the error handling process for clients. About one 
third (32.6%) do not provide insight on which (or if) HTTP 
status codes are used in responses. 

4.3  I/O and Software Development Support 
In this section, we analyze the input and output formats 
being used by the services. Fig. 8 shows the distribution of 
the supported formats, in which JSON leads (note that 
some APIs support more than one format). Encoding a rep-
resentation of a resource in the request, to let the server 
manipulate the actual resource based on this, agrees with 
the Manipulation of resources through representations princi-
ple. This applies to 66.2% of the services, which are essen-
tially services that allow data manipulation via the HTTP 
verbs POST, PUT and PATCH. This percentage breaks 

 
Fig. 7. API support of HTTP verbs. 

 
Fig. 8. Supported input and output formats. 
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down to 43.2% that send the resource representation en-
coded in the request body and 23% that only use the URI 
or query parameters to send resource representations. The 
remaining 33.8% only provide GET operations and do not 
allow resource manipulation.   

Almost all APIs (99.2%) provide information about 
available output formats, with JSON nowadays leading as 
the most popular format by a clear difference to XML (the 
second most popular). In the past, developers argued that 
JSON´s main weakness is its lack of well-defined stand-
ards, which made them use XML [38], but the fact is that 
JSON has gained a lot of popularity [3], [8], [9],  which may 
be explained by the growing importance of JavaScript 
runtime environments (e.g., Node.js) [8]. It seems like that 
this lightweight compact data format could completely re-
place XML in the future. We base this argument on the fact 
that nearly two thirds of the APIs (63.2%) support JSON 
without supporting XML, whereas only 5.6% support XML 
without supporting JSON. We also identified 14 other out-
put formats in 20 APIs. These include TXT, RDF, PAM 
(Portable Arbitrary Map), RSS, HTML, JavaScript, PDF, 
TSV, XLS, TL-schema, TSV, VCF (Variant Call Format), 
QRCode and PNG.  

Input and output formats are definitely linked to soft-
ware development support, which usually comes in the 
form of Software Development Kits (SDKs) offered to cli-
ent developers. SDKs are essentially programming lan-
guage wrappers for sending API requests. They simplify 
application development by automating tasks that are er-
ror-prone or time-consuming for developers (e.g., parsing 
a complex JSON response or going through a complex au-
thorization mechanism) [39]. The need for an SDK in the 
case of REST is much smaller, as the technology is fairly 
easy to use (i.e., REST messages are simple HTTP re-
quests). Previous research suggests that developers prefer 
official SDKs over plain HTTP clients [19], but, at the same 
time, SDKs can also bring drawbacks as they can get out of 
synchronization with the actual API [22]. Of the 500 API 
documentations, 73% do not mention any SDKs, whereas 
27% officially provide SDKs. Fig. 9 shows the distribution 
of the number of supported SDKs. 

We further extended this analysis by crossing the SDK 
data with programming language popularity (as indexed 
by tiobe.com in July 2017). Fig. 10 shows the distribution of 
the programming language support of the 27% of APIs that 
are offering official SDKs (we only show languages that are 
part of Tiobe’s top10 or are offered by at least 5% of the 
APIs).  

As we can see in Fig. 10, PHP, Java, Python and Ruby 
are the most often supported languages, with support from 
about half of the APIs to almost two thirds (in the case of 
Java). Relatively popular options include C#, JavaScript, 
Objective-C, or Node.js. Notice also that, in some cases, the 
API documentation simply states .NET support and does 
not map it to specific .NET languages (e.g., C# or .NET Vis-
ual Basic), which may influence the final distribution in 
what concerns the .NET framework. The SDK results are, 
in general, aligned with observations from previous work 

[8], where Java, JavaScript, C#, Python and Ruby were also 
found to be often used, although the authors in [8] did not 
mention PHP. 

4.4  Security Mechanisms 
In this section, we present the results regarding the adop-
tion of basic security mechanisms by the web APIs (and 
supporting infrastructure), namely user authentication 
mechanisms and SSL/TLS encryption support. 

Most APIs (86%) in the set being analyzed require user 
authentication for API calls. Depending on the sensitivity 
of the data that is exchanged or on the purpose of the op-
eration, some APIs require that the user is authenticated 
and authorized to execute for all operations, whereas oth-
ers require authentication only for certain operations (e.g., 
operations that exchange user-specific data).  

From the 500 analyzed APIs, 1.4% do not provide infor-
mation about authentication mechanisms, 12.6% do not re-
quire any form of authentication, and 86% support at least 
one authentication mechanism with every 1 out of 10 sup-
porting more than one authentication mechanism. Fig. 11 
shows the distribution of the different authentication 
mechanisms. Excluded from the figure are: APIs that either 
do not require authentication or do not provide infor-
mation about it; 7 APIs using an unknown authentication 
mechanism; and 25 APIs that are using 9 less common 
mechanisms, such as HMAC, 2FA, JWT, Session, Open ID, 
custom OAuth, Macaroon, Azure AD v2 and HTTP 
Cookie. Areas that intersect in Fig. 11 but have no associ-
ated percentage refer to no intersection at all. 

In Fig. 11 we essentially have proprietary (API key and 
client credentials) and non-proprietary mechanisms 
(OAuth1.0, OAuth2.0, and HTTP Basic). The services using 
non-proprietary mechanisms (Bp_StandardAuth [2]–[4], 
[11], [15]) add up to 42%, with the OAuth protocol (v1 and 
v2) being used by about one third of the APIs (32.6%), be-
ing the most commonly supported mechanism and we ar-
gue that it has the potential for becoming the most widely 

 
Fig. 9. Distribution of the number of supported SDKs. 

 
Fig. 10. SDK languages and Tiobe’s language popularity. 

 
Fig. 11. Distribution of the different authentication mechanisms. 
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adopted standard for authentication. OAuth2.0 is cur-
rently used in 26.6% of the services and HTTP Basic, which 
is a standard that may suffice for some services, is used by 
7.4% of the services. However, also 42% of the services are 
using proprietary authentication mechanisms (API key or 
client credentials), despite the open and standard specifi-
cations for authentication available, which are preferable 
options [2]–[4], [11], [15]. 

Using an encrypted connection is recommended for 
communications that exchange sensitive data [40]. While 
examining the APIs for transport channel encryption 
(HTTPS), we identified 3 cases: i) no support for HTTPS 
(9.2%); ii) mandatory HTTPS throughout all communica-
tions (61.2%); and iii) optional HTTPS (26.4%). For the re-
maining 3.2% we could not determine if SSL/TLS was sup-
ported. Offering (at least optionally) HTTPS is considered 
to be a best practice (Bp_HTTPS [2], [15]). 

When using the API involves authentication, the use of 
an encrypted connection is certainly a very important re-
quirement, otherwise the authentication details can be eas-
ily harvested by attackers [41]. Thus, we analyzed if there 
are APIs that do not support HTTPS but still require user 
authentication to be performed. This resulted in a total of 
5.0% (25 APIs), from which 4.0% use proprietary user au-
thentication mechanisms based on the user’s API Key, 
0.6% identify the user by his account credentials, and 0.4% 
use an undetermined authentication mechanism. Of these 
services, a particular API even requires the user to pay a 
monthly fee for the API usage, starting at 8€. For the APIs 
using the non-proprietary authentication mechanisms, we 
found HTTPS to be either mandatory or optionally availa-
ble.  

4.5  Usage Policies 
In this section, we present the results regarding the usage 
policies of the web APIs. This includes the form of regis-
tration (required to start using the API), if payment plans 
for the API usage are available or required, and if call limits 
are being enforced. 

Most APIs (82.4% – 412 APIs) require some form of ser-
vice registration for developers to start using the API. The 
distribution of the different types of usage registration is 
shown in Fig. 12. Registration enables the API provider to 
carry out several management functions, such as monitor-
ing of API use, call limit enforcements or routing API re-
quests to different servers [4]. Actually, 75.6% require de-
velopers to create a user account, which in some cases en-
ables the generation of an API Key that needs to be passed 
with every API call (not represented in Fig. 12). In other 
cases, the account credentials are used by the authentica-
tion process to enable calls to the service. 6.8% of the ana-
lyzed APIs offer the creation of an API Key without requir-
ing an account. 13.6% do not require any registration for 
using the API.  

Regarding the payment plans, 76.4% offer a free-of-
charge usage, even though most APIs require an account 
to make API calls. 7.4% offer optional payment plans that 
enable more features than the free-of-charge plans such as 

a higher call limit. 3.6% require a payment plan to get ac-
cess to the API and the remaining 12.6% do not provide 
any further information regarding this matter. Authors in 
[21] analyzed 69 web services in 2017, finding out that nine 
out of ten services offered a free plan (six out of ten pro-
vided the ability to customize a plan). In our larger dataset, 
this free-service trend is also quite visible, despite slightly 
less accentuated (in 76.4% of the services). 

Call limits enforce that a certain number of API calls are 
not exceeded during a defined period and allow the API 
provider to control the service usage, which is especially 
important for APIs that handle a huge number of calls [4]. 
Fig. 13 presents the results regarding the APIs call limits 
(normalized to daily limits). 

More than half of the APIs (56.4%) provide information 
about the existence or absence of call limits (Bp_RateLimit 
[2]–[4], [15]), either as part of the documentation or written 
down in the general terms and conditions, the remaining 
do not provide any information about applied call limits. 
12.8% (64) state that they do not enforce any call limits, 
whereas 43.6% (218 APIs) state that they are enforcing call 
limits. 3.6% block user’s API calls, if their algorithm detects 
some kind of API abuse. Their respective documentations 
do not advertise the exact call limits to discourage abuse. 
11.8% enforce different call limits for different operations 
or provide call limits per user, device or application. As an 
example, the Samsung Artik Cloud web API has a daily call 
limit for GET requests of 1000 calls per user and per device, 
and 5000 calls per application. 2.2% of the documentations 
state that they are enforcing call limits, but do not describe 
how these limits are enforced. The remaining 26% enforce 
a fixed call limit.  

Overall, the results show that the call limits encompass 
very different ranges. Authors in [21] also analyze the en-
forcement of call limits feature in services collected from 
programmableweb.com and market.mashape.com, to find re-
spectively 59% and 88% of web services enforcing opera-
tion limitations, 21% and 4% enforcing functionality limi-
tations, and 21% and 8% enforcing time limitations of the 
API usage. Thus, although there is some variability in the 
type of limitation, the trend is to actually place some kind 
of usage limit on the clients. 

 An often-used technique (which is present in 22% of the 
218 APIs that enforce call limits) is the return of HTTP 
headers carrying information about the status of current 
call limits (Bp_RateHeader [3], [15]) to allow the user or 
application to assess where it stands in terms of call limits. 
From what we observed, these headers typically provide 

the maximum number of allowed requests in the current 
period, the number of remaining requests in the current 
period and a timestamp that marks when the call limit 
counter will be reset. This kind of information enables dy-
namic adjustments of the API usage, which may be used to 
prevent the API user from being blocked. 

 
Fig. 12. Distribution of the different required registration forms. 

 
Fig. 13. Call limit enforcements. 
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4.6  Documentation and Application Use 
We begin by reviewing the API documentation dates, to 

have an overall idea about the activity behind APIs. This 
section has then two main parts, in the first part we detail 
how developers are creating documentation for their ser-
vices (i.e., by analyzing the use of documentation genera-
tion software) and in the second part we analyze the 
known participation of APIs in applications. 

Considering that many times users can choose among 
alternative APIs, a user may prefer an API that is regularly 
maintained over an API whose documentation has been 
last updated several years ago, if both allow using the same 
service. We tried to analyze this in the documentation of 
the 500 APIs, to find that 73% of the APIs do not provide 
this information. The remaining 27% break down to 12% 
updated during 2017, 8.6% during 2016, and 6.4% between 
2010 and 2015. So, within the 27% about half is providing 
documentation that has been modified during 2017, which 
suggests activity behind the API. Still, the dataset is very 
poor in this feature and cannot provide rich data for fur-
ther discussion. 

Documentation can be manually created or generated 
by software. There are several API development tools on 
the market, which help not only designing and testing an 
API, but also documenting it. This software can automati-
cally generate documentation based on comments in the 
source code (e.g., Apidoc), based on API specifications, 
such as the OpenAPI specification (formerly Swagger [28]), 
or on API description languages such as API Blueprint 
(e.g., Apiary). Generated documentation can be also seen 
as an alternative to interface description documents, such 
as WSDL for SOAP web services. 

Generated documentation (Bp_GeneratedDoc [2], [15]) 
is being used in about half (45%) of the 500 web services, 
with documents generated by Swagger UI taking the lead. 
This assists typical web development tasks by, for instance, 
creating interactive API test consoles to enable testing API 
calls within the browser, which we found present in one 
third (33.6%) of the 500 APIs and in almost all of the Swag-
ger UI and Apigee SmartDocs generated documentation. 
The distribution of the different software tools that gener-
ate documentation (and that generate test consoles) is 
shown in Fig. 14. 

Although the growing trend of using documentation 
tools is relatively well-known [42], still 55% do not use soft-
ware generated documentation and document their API in 
some textual form as part of a web page, which results in 
rather diverse descriptions of the API, in terms of struc-
ture, content, and level of detail and creating huge obsta-
cles for automated analysis of the API documentation. 
Also, in 14.6% of the cases, we classified the documenta-
tion as a software generated documentation (“Unknown 
Software” in Fig. 14), because although they featured cer-
tain recognizable structures, we were unable to determine 
the exact software used. 

These observations agree, in general, with the work in 
[4] (2014), where the authors emphasize the industry inter-
est in Swagger. In our work, we found 10.6% of the ana-
lyzed APIs using Swagger UI and nearly half using soft-
ware to generate the documentation (notice that, currently, 
one fourth of the tool generated documentations are cre-
ated by Swagger UI), which are, for most cases, also com-
patible with the OpenAPI specification. This suggests 
some tendency to make the API documentation machine-
readable and also understandable, which will also allow 
easier composition of different services as well as other au-
tomated processes (e.g., service recommendation) [10]. 
Still, for such kind of approach to work the documentation 
must be of good quality (even if generated). Previous re-
search has discussed there are actually differences in the 
quality of Swagger specifications [43], which suggests the 
need for further standardization efforts. 

Of the 500 API documentations, 90.4% provide example 
API requests and responses. These examples give the de-
veloper a quick insight on the use of the API, including URI 
structure, parameter selection, response structure, which 
simplifies development. Also, a total of 70.2% describe and 
explain possible error messages arising from the use of 
the API, whether these are simple text messages in the re-
sponse body or HTTP status codes. The remaining 29.8% 
do not provide any information about error responses. 
When these error messages are not self-explanatory, the 
developer may not be able to know what went wrong or 
why exactly the error occurred and may not be able to trig-
ger the correct error handling code.  

Finally, we retrieved the reported number of applica-
tions that use the APIs as set in programmableweb.com, 
which is a repository that has been used in previous work 
[1]–[3], with this same purpose. About one third of the 
APIs (30.2%) are not listed in programmableweb.com and 
41.8% of the APIs are associated with no applications. 
16.4% are associated with 1 to 5 applications, 8.8% fall in 
the 6-50 range and 2.8% are used in more than 50 applica-
tions, with Twitter.com counting 830 applications, the high-
est number observed. 

The abovementioned distribution shows that only a few 
APIs are often used in applications, with the majority 
hardly being used. As these values provided by program-
mableweb.com are based on user input, the true exact num-
bers might be different, as services are added to this kind 

 
Fig. 14. Documentation tools used by the APIs. 
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of repositories but rarely, or never, removed. However, the 
values are still indicators of some level of reusability of the 
APIs or at least of their popularity. We further analyzed 
this data against some of the main features provided by the 
APIs. Table 1 summarizes the results. 

As we can see in Table 1, services using a REST-style 
URI scheme and producing output in JSON (marked in 
green in Table 1) are present in all three ranges and show 
little or no fluctuation. Moreover, their values are clearly 
dominant in each of the two respective features. We also 
see dominance in the use of documentation generation 
software and in the use of OAuth. In these cases (marked 
in orange in Table 1) the growing trend is also very clear, 
with services that are being used by more applications hav-
ing a greater likelihood of also using a documentation gen-
eration software and OAuth. We also verified that none of 
the popular APIs were using HATEOAS, which further 
emphasizes the unpopularity of this REST principle. 

5 DISCUSSION 
In this section, we show an overall view of the results, dis-
cussing: i) level of agreement of the services with the REST 
principles; ii) common decisions regarding the features 
discussed in this paper; iii) observed compliance with best 
practices. 

In Fig. 15 we show the observed compliance with the 
REST principles (RQ1). We excluded Stateless, Layered Sys-
tem, and the optional Code on Demand principle from the 
figure, due to the related inconclusive data found. 

Overall, there is visible heterogeneity regarding the 
adoption of REST principles. Some are highly adopted (but 
also easy to comply with, such as Client-Server) while oth-
ers are barely adopted (e.g., Uniform Interface). The low 
adoption of certain principles or properties, such as Cache-
able or HATEOAS is in line with previous work, in which 
similar findings were discussed  [2], [3], [9], [10]. The Uni-
form Interface principle gathers a number of properties, 
which show high variability (e.g., Manipulation of Resources 
through Representations and HATEOAS).  

Overall, we found out that only four (0.8%) of the ana-
lyzed services fully comply with the REST principles. 
These services are provided by pearson.com, github.com, re-
verb.com, and familysearch.org, with the adoption of 
HATEOAS being highly responsible for such a low num-
ber. The Richardson Maturity Model [18] is also a way of  
understanding principle compliance. In this model, Level 
0 services just use a single endpoint (e.g., SOAP services); 
Level 1 distribute functionality across several resources, 
but services still need to use message data or the URL to 
know which operation is to be invoked; Level 2 services 
use HTTP methods and status codes adequately; and Level 
3 apply HATEOAS. We identified no Level 0 services; 
12.2% Level 1; 60.2% Level 2; and 4% Level 3, which is, in 
general, aligned with the results presented in [9]. 

Fig. 16 presents the most common decisions (RQ2) per 
feature. As we can see, in what concerns this aspect, devel-
opers lean quite strongly towards a decision in about one 
third (8 features) where we observed the same feature 
value in more than 75% of the services. If we lower this 
threshold to 50%, then we find about two thirds of the fea-
tures holding the same value. A few features are scarcely 
adopted (e.g., HATEOAS and URI Path Method Override), 
with some being close to the 50% threshold, such as “No 
Format Selection Necessary” or “Deployment of First Ma-
jor Version”. 

 
Fig. 16. Most commonly observed features.  

If we look more closely to the second choices (not visible 
in Fig. 16, as they are not top results) and drill down to the 
details, we find a few interesting common values. In par-
ticular, the growing use of software generated documenta-
tion, in line with what was mentioned in [42], mostly refers 
to the use of Swagger UI. Service output format selection, 
when available, is done mostly using HTTP headers. 
Among the APIs offering official SDKs, PHP is taking the 
lead as the top language supported and API key is the most 
popular authentication mechanism. Finally, when the ser-
vice requires registration, the most often scheme used is 
the creation of an account. This global image, discussed 
here, allows us to describe what currently a REST service 
tends to be, and, overall, we see strong agreement in the 
application of two thirds of the analyzed features. 

Fig. 17 presents the adherence to REST service devel-
opment best practices (RQ3) observed in the 500 services. 
We found almost half (7) of the best practices being fol-
lowed by more than half of the services. The remaining are 
split in a group of 3 practices, followed by almost half of 
the services, and in another group followed by at most one 
fourth of the services, with Bp_Hateoas showing residual 
numbers. In the end, there is no single service following all 
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Fig. 17. Adherence to REST service development best practices. 
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best practices. Previous work stresses the fact that guide-
lines for building web services can be very fine-grained, 
while others rather simple [2], [13], [14]. This may explain 
the heterogeneity observed (including the very low num-
bers for some practices), but especially stresses the diver-
sity present in services in the field. 

Future research could, based on the state of the practice 
discussed in this paper, focus on several areas. These range 
from coarse grained research to fine grained research ac-
tivities, of which we emphasize: i) evolving the set of REST 
principles towards a second generation; ii) proposing best 
practices based on new principles and on common de-
sign/implementation decisions found in the field; iii) un-
derstanding how REST service development tools (e.g., the 
Swagger toolset) affect compliance with principles or best 
practices (and the real level of developer adoption regard-
ing provided SDKs); iv) quantifying the practical effect of 
not following certain practices on the dependability prop-
erties of services (e.g., robustness, maintainability). Alt-
hough REST services are, by now, a very popular way of 
deploying services, there are still numerous challenges that 
relate to the diversity observed in the deployments, leav-
ing space for researchers and practitioners to improve the 
state of the practice. 

6 THREATS TO VALIDITY 
In this section, we present threats to the validity of this 

work and discuss mitigation strategies. Regarding external 
validity, it is important to mention that the analysis of REST 
services performed in this work cannot be generalized to 
all available web services, as it is based on a limited set of 
services. This threat cannot be avoided, but we tried to mit-
igate it by carrying out a large-scale study of 500 service 
APIs. The set of APIs was defined based on popularity of the 
hosting web site, which may exclude some popular APIs as-
sociated with less popular web sites. Also, the random se-
lection of a single web service when a provider offered more 
than one could add some bias to the results. At the same 
time, knowing that some providers offer huge amounts of 
services (e.g., Google offers 100 different web services) 
would add bias towards the design of Google web services, 
which we decided to avoid in favor of a more general view 
on current public web services.  

Regarding internal validity, it is relevant to point out that 
we verified a subset of the available endpoints in the case of 
APIs providing a large number of endpoints, as it was un-
feasible to verify all. This may add error to our results, but 
we did however verify half of the endpoints (for APIs with 
20 to 50 endpoints) and one quarter (for APIs with more 
than 50 endpoints). The verified subset showed strong con-
sistency, which suggests that the non-verified endpoints 
will not change the results significantly. 

In this work, we only analyzed the services documentation 
and did not perform actual invocations to prove it was cor-
rect. Thus, the documentation might be outdated, incor-
rect, or incomplete (e.g., not stating that a service supports 
caching), but using service invocations would go beyond 
the scope of the work. Being highly popular sites, we be-
lieve that the interest in keeping the API documentation 
correct should be quite high. The work performed here was 
entirely manual, due to the lack of structure of the APIs doc-
umentation. Due to the huge amount of effort involved, we 
verified just part of the results, which we estimate reached 
one fourth of the APIs, to find only residual mistakes. Still, 

we acknowledge that the results might hold some residual 
error, due to the human intervention in the process. 

7 CONCLUSION 
In this work, we went through the alexa.com top 4000 

sites to find precisely 500 sites claiming to provide at least 
one REST web service API, and 22 services built based on 
other technologies (e.g., SOAP). We went through the 
REST services, analyzing a total of 26 different features, 
mostly gathered in the literature, to understand the level 
of compliance with the REST principles, common devel-
oper decisions, and adherence to REST service develop-
ment best practices.  

The knowledge brought in by this work, namely under-
standing the state of the practice, can provide useful re-
search directions for the academy (e.g., understanding 
how REST development tools affect compliance with prin-
ciples or best practices) and useful guidelines for practi-
tioners (e.g., commonly used user authentication mecha-
nisms). As future work, we intend to focus on the chal-
lenges identified in Section 5, starting with the empirical 
analysis of REST development tools. 
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