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Abstract—The performance assessment of blockchain applica-
tions holds significant challenges due to their decentralized archi-
tecture, immutable smart contracts, distributed ledgers, and op-
erational costs such as gas fees. Existing blockchain benchmarks
often either fail to fully capture blockchain-specific behaviors
or offer limited configurability and metric reporting. In this
paper, we present a new and comprehensive benchmark designed
explicitly for blockchain applications, named bBench. Building
on established principles from traditional benchmarking and by
specializing them in the blockchain context and supported by
customized blockchain tools (i.e., Hyperledger Caliper, web3.eth,
and node-os-utils), bBench characterizes blockchain application
performance in four dimensions: network performance, resource
utilization, storage usage, and operational cost. We demonstrate
the effectiveness of our benchmark through a case study involv-
ing 12 smart contract applications with varying performance
demands, some of which hold known vulnerabilities. The results
show the benchmark’s ability to quantify performance deviations
across different applications, as well as those caused by the
activation of specific vulnerabilities.

Index Terms—Blockchain, Blockchain Applications, Smart
Contracts, Performance Evaluation, Benchmarking, Metrics

I. INTRODUCTION

Blockchain applications have specific characteristics that
make them distinct from traditional applications. These charac-
teristics include the highly decentralized and complex nature
of the entire system, the immutability of data generated by
smart contracts, the distributed nature of the ledger where
this data is stored, and the costs associated with running a
blockchain application (e.g., gas fees or the effective cost of
executing a transaction) [1], [2]. These make it difficult to
fully assess the performance of a blockchain application and
to verify key aspects, such as whether throughput is acceptable,
whether there are performance bottlenecks, or whether the
operational costs are too high.

A benchmark is a standardized process used to assess how
well a system performs with respect to a specific property,
such as performance, dependability, or resilience [3]–[5].
Benchmark results enable the assessment of a single system
as well as the comparison of different alternatives, such as
various database systems [6], different virtualization technolo-
gies [7], or different high-performance computing systems [8],
among others. Organizations like the Standard Performance
Evaluation Corporation (SPEC - spec.org) or the Transaction
Processing Council (TPC - tpc.org) have a long-standing tradi-
tion in performance benchmarking across numerous domains,
including Online Transaction Processing Systems (OLTP), the

Internet of Things (IoT), Big Data, and AI. At the time of
writing, no benchmark for blockchain applications has been
proposed by any of these organizations. Since a smart contract
cannot really be changed after it is deployed, having a practical
way to assess the performance of a blockchain application
before deployment is of key importance.

Previous research has explored the field of benchmarking
blockchain applications. Some of the research in this field
focuses on permissioned networks or offers limited sets of
metrics [9], [10]. Some works are based on general network
emulators and lack the ability to allow finer control over
blockchain-specific behaviors such as transaction cost dynam-
ics and contract size variability [10]. Works like Diablo [1]
and BlockCompass [11] are quite complete but lack support
for workload configurability and also do not focus on some
metrics that are important when the goal is to provide a broader
assessment that includes not only the more usual network-
level metrics, but also other types of metrics, such as the
transactional cost, block size, or state storage size.

In this paper, we propose a new performance benchmark,
named bBench, for blockchain applications. The primary ob-
jective is to provide users with a means to assess and compare
the performance of different smart contract implementations.
Our approach builds on general yet well-established concepts
from performance and dependability benchmarking [3], [4],
such as workload definition and metrics, while incorporating
the necessary adaptations to accommodate the specificities of
blockchain (e.g., the existence of gas and the utilization of
ledger space). We also customized state-of-the-art blockchain
tools (e.g., we modified Hyperledger Caliper to collect fine-
grained data) for network emulation, contract deployment,
and performance measurement. The resulting benchmark al-
lows the evaluation of a blockchain application’s performance
across four key dimensions: network behavior, storage usage,
computational resource consumption, and operational cost.
Each dimension includes selected metrics, some of which were
identified in the literature, while others are new and derived
from the tools integrated into our benchmark.

We conducted a case study involving a total of 12 smart
contract applications. These include three baseline applications
with varying performance demands, each accompanied by
three additional versions containing vulnerabilities. In each
of these versions, we artificially introduced a known type of
vulnerability to understand how effectively our benchmark can
assess and distinguish the performance of these applications

1

https://orcid.org/0000-0003-4869-2336
https://orcid.org/0000-0001-8376-6711
https://orcid.org/0000-0003-0011-9901


with and without vulnerabilities. Results show that the bench-
mark is able to signal cases of contracts in which, as expected,
one or more groups of metrics are affected. The benchmark,
along with instructions for executing it, the dataset used in this
paper, and the detailed results are available at [12]. Additional
resources are available at https://blockchain.dei.uc.pt.

The main contributions of this paper are the following:
• A novel comprehensive benchmark, particularly tailored

for blockchain applications, targeting four assessment
dimensions (i.e., network, resource, storage, and cost) and
including various metrics that are essential to extensively
characterize systems’ performance.

• The improvement of existing blockchain tooling, such as
Hyperledger Caliper, which is now used to report addi-
tional metrics, as well as the integration of other sources
of metrics to allow going beyond typical assessments
based on traditional metrics like throughput or latency.

• The demonstration of the benchmark’s ability to assess
different blockchain applications from distinct domains
and quantitatively signal the effect of known vulnerabil-
ities in the overall performance.

The rest of the paper is organized as follows. Section II
discusses the state of the art in benchmarking blockchain
systems. Section III presents our benchmark proposal, and
Section IV presents an experimental case study to demonstrate
the capabilities of our benchmark. Section V discusses the
results, and Section VI presents the threats to the validity of
this work and its limitations. Finally, Section VII concludes
this paper.

II. STATE-OF-THE-ART

A benchmark is a standardized procedure that allows for
assessing and comparing certain properties of computer sys-
tems, such as performance, dependability, or resilience [3]–[5].
The Standard Performance Evaluation Corporation (SPEC)
[13] is a well-established organization that develops and
maintains standardized, vendor-agnostic benchmarks and tools
for assessing the performance of various computing systems.
The Transaction Processing Performance Council (TPC) [14]
is also a renowned organization that develops and maintains
benchmarks for multiple domains, including virtualization, big
data, IoT, among many others. Currently, no blockchain bench-
mark has been made available by any of these organizations.

BLOCKBENCH [9] is, to the best of our knowledge,
the first framework designed to assess the performance of
permissioned blockchains. The tool is used to assess smart
contract execution across different blockchain platforms (i.e.,
Ethereum, Parity, and Hyperledger Fabric). Results show that
Fabric outperforms the other platforms in terms of overall
performance, with Ethereum and Parity demonstrating greater
resilience to node failures. The evaluation was based on met-
rics such as throughput, latency, scalability, and fault tolerance.
Our intention with bBench is to give it a broader scope in
the sense that it applies to permissioned and permissionless
networks. As an example, bBench reports the average gas
price, which is quite important in public environments.

The Boston Blockchain Benchmark [10] is also focused on
permissioned networks. The tool is based on Mininet [15],
a network emulator designed to replicate realistic network
conditions. The benchmark enables the configuration of vari-
ous network parameters, including topology adjustments, link
latency, and bandwidth. The tool reports key performance
metrics, including fault tolerance, latency, scalability, and
throughput. In addition, the framework also supports the
detection of network attacks, such as eclipse attacks. Besides
targeting a different set of metrics, our proposal includes a
network emulator (i.e., Hardhat) that is specific to blockchain
environments, unlike Mininet, which is not designed for
blockchain environments. This allows us to emulate much
more blockchain-specific behaviors, such as varying network
costs, increasing the number of transactions per block, or
controlling the size of deployed contracts, to name a few. There
are also other solutions for permissioned networks, which
share characteristics very similar to those of the previously
discussed tools, such as [16] or [17].

Diablo [1] is a blockchain benchmark that comes with five
realistic decentralized applications. Diablo’s architecture com-
prises a primary component that coordinates the experiment
(e.g., generating and dispatching the workload, aggregating,
and reporting results), as well as multiple secondary compo-
nents responsible for presigning transactions and executing the
workload, which involves direct interaction with blockchain
nodes. The authors evaluated six blockchain platforms (i.e.,
Ethereum, Avalanche, Diem, Algorand, Quorum, and Solana).
The authors emphasize the importance of using realistic work-
loads that more accurately reflect the expected behavior of the
assessed applications. Diablo offers metrics such as through-
put, latency, proportion of committed transactions, peak trans-
action throughput, and latency distribution over time. Although
the work emphasizes the importance of workload in bringing
benchmarks closer to realistic settings, it provides limited
support for this goal. bBench includes a customizable work-
load module that supports function dependency handling, and
data generation customization using libraries and dictionaries,
among other features.

VeriBench [2] allows assessing storage systems that in-
corporate verifiability mechanisms. The authors use it to
evaluate systems comprising blockchains, ledger databases,
and log transparency technologies. As a key finding, the
authors note that the verification mechanisms implemented
(e.g., supported by Merkle trees) have a significant impact on
the system’s overall performance. Metrics analyzed include
latency, throughput, storage usage, abort rate, impact of delay,
and impact of block time. VeriBench and our proposal par-
tially share some similarities regarding network-level metrics.
However, our proposal introduces different types of metrics
(e.g., cost) as well as metrics related to resource and storage
usage. It is also worth mentioning that bBench adds various
mechanisms to support generating workloads for different
applications.

BlockCompass is a benchmark based on Caliper [11]. The
authors introduce a workload generation mechanism grounded
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in the concept of transactional workload, which emulates
multiple users issuing requests in a random manner, including
the possibility of failure in some of these interactions. This
approach allows for a more realistic evaluation of blockchain
applications than those relying solely on static workload
batches. The tool is compatible with various networks, in-
cluding Ethereum, Hyperledger Fabric, and Sawtooth. The key
metrics collected by the tool include Emit Rate, Throughput,
Error Rate, Latency, Resource Utilization, Scalability, and Gas
Consumption. In bBench, we use Hardhat as well as storage
metrics that BlockCompass does not support. Furthermore, our
workload and cost metrics assess the impact of transfers in
payable functions, whereas BlockCompass focuses solely on
gas consumption (used to execute the program).

In summary, bBench differs from the state of the art in sev-
eral aspects. First, it reports a set of metrics that, to the best of
our knowledge, is more extensive than those in current works.
Second, it offers workload generation capabilities that account
for key factors needed to produce valid and realistic workloads
(e.g., call dependency handling). Finally, at the implementation
level, existing benchmarks such as VeriBench and the Boston
Blockchain Benchmark rely on general-purpose emulators. In
contrast, bBench utilizes Hardhat, a tool specifically designed
for blockchain emulation, which enables finer control over
blockchain-specific behaviors, such as transactional costs.

III. A BLOCKCHAIN PERFORMANCE BENCHMARK

In this section, we describe the design of bBench. We first
provide an overview of the conceptual design of the bench-
mark in Section III.A and then explain its implementation in
Section III.B.

A. Conceptual Design of the Blockchain benchmark

Our approach is inspired by general models of performance
and dependability benchmarking [3], [4], [13], [14], which we
have adapted to account for the specificities of the blockchain
domain and the context of the target application. In summary,
our approach is based on the definition of a benchmarking
scenario, which sets the basis for the benchmarking procedure
and includes the following set of main components, detailed
in the following paragraphs:

• Goals: This component refers to the general goals of the
benchmark and mostly reflects the assessment objectives
(e.g., overall performance, network, or storage perfor-
mance). These goals determine which group of metrics
should be used or how the workload should be generated.

• Workload: This component refers to the combination of
inputs to be used in calls to contracts that make up the
blockchain application under assessment.

• Metrics: This refers to the measurable outcomes (e.g.,
throughput, memory usage) of the assessment process.
It will allow us to measure and understand the effect of
running the workload against the blockchain application.

• Procedure: This component refers to the overall pro-
cedure to be followed during the assessment of the

blockchain application. It includes setting up the en-
vironment, defining specific rules, and executing the
benchmarking process. In general, the procedure involves
the following steps: initializing the blockchain system,
applying the workload, collecting metrics, and restoring
the system’s state at specific points in time.

Figure 1 represents the conceptual design of the blockchain
benchmark and shows how the different benchmark compo-
nents (represented in blue rounded squares) interact.
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tract consumes more than the maximum allowed compu-
tational) [1].

• Benchmarks fail in critical points such as i) generating
workloads and ii) identifying when dApps consume more
than the maximum allowed computational [1].

• Existing benchmarks fail to collect resource usage in
specific contexts (e.g., CPU, Memory) and network emu-
lation (e.g., related to getting the impact on the diffusion
of new blocks) [19].

• Latency definition (i.e., duration between transaction sub-
mission and final commit), depending on whether the
blockchain supports immediate or probabilistic finality.
Thus, a benchmark metric can be an empirical measure-
ment [20]. For instance, The Caliper displays only the
“success throughput” and not the “commit throughput,”
even though both can be derived from the available results
[11].

• The behavior of different blockchain platforms can vary
significantly (i.e., EOS.IO implements ”Delayed Trans-
actions.” [21]) [14].

Overall, we claim the current solutions focus on evaluating
the blockchain’s performance rather than providing metrics to
assess the impact of a fault. In the next section, we present our
benchmarking implementation, which tackles this problem by
providing metrics to measure the effects of contract faults.
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vironment and setting specific rules to be followed. This
includes cases like starting up the blockchain system or
restoring the system’s state at particular moments.
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Fig. 1. Conceptual design of the blockchain benchmark.

The benchmarking process begins with the definition of
the benchmarking scenario, which consists in setting goals,
specifying metrics, and configuring the workload generation.
The goals 1 2 3 4 may be be general i.e., all available
metrics should be used, or may signal that the benchmark user
is interested in evaluating specific aspects of the system, such
as assessing network performance, storage usage, resource
consumption, or financial costs. This represents a general
indication that specific groups of metrics should be used. It
may also be used to generally specify some semantics of
the application, e.g., (e.g., what certain operations represent)
which will later support the generation of a specific type of
workload.

The metrics selection component refers to measurable
aspects of the blockchain system. During our analysis of the
state of the art, we identified the following groups of metrics
(see further details in Section X and Table I):

i) Network: this group includes typical metrics such as
throughput (e.g., transactions completed per unit of time)
or latency (e.g., ).

ii) Storage: this group refers to metrics like the number of
generated blocks or the number of generated transactions.

iii) Resource: this includes metrics that refer to the usage of
system-level resources such as CPU processing time or
memory usage.

iv) Privacy: the privacy group refers to metrics that could
reveal privacy issues duvidas.

v) Financial: this category includes metrics that relate to the
cost of running the application, namely gas price and
balance.
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The benchmarking process begins with the definition of
the benchmarking scenario, which consists of setting goals,
specifying metrics, and configuring the workload generation.
The goals 1 may be general, i.e., all available metrics should
be used or may signal that the benchmark user is interested
in evaluating specific aspects of the system, such as assessing
network performance, storage usage, resource consumption,
or operational cost. This represents a general indication that
specific groups of metrics should be used. Goals may also be
used to generally specify some semantics of the application
(e.g., what certain operations to assess), which will later
support the generation of a specific workload.

The metrics selection 2 component refers to measurable
aspects of the blockchain system. During our analysis of the
state of the art, we identified the following groups of metrics
(see further details in Section III-B and Table I):

i) Network: This group includes typical metrics in dis-
tributed systems, such as latency and throughput, which
reflect network performance.

ii) Storage: This group refers to metrics such as block size
or the number of committed transactions, which reflect
the application’s performance in terms of storage usage.

iii) Resource: This group includes metrics that refer to the
usage of system-level resources, such as CPU or memory
usage.

iv) Cost: This group includes metrics related to the cost of
running the application and transactions, specifically gas
prices and execution cost.

Network metrics groups aspects related to network perfor-
mance. Some types of applications, such as Decentralized
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IoT, can be more sensitive to latency, as delays may render
an operation useless, requiring a rollback of an entire IoT
process [18]. Other types of applications may be sensitive to
different groups of network metrics, such as throughput, which
is necessary for applications requiring high data transfer rates,
such as Blockchain-based streaming [19], file transfers [20],
and web3 gaming [21], to name a few.
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extremely expensive. Additionally, recording unwanted data
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may discourage nodes from maintaining large copies on their
devices. For these reasons, solutions that store external data
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a reference link in the ledger. So, the number of affected
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The next component shown in Figure 1 refers to the
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of one of these types may depend on the availability of data
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manner. These workloads are flexible in the sense that
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may not really represent real operational conditions.
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The benchmark is permanently available for download at [12].
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environment in Figure 2.
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an appropriate group of metrics or to guide the type of work-
load generation (e.g., in some cases, purely random generation
might be enough). The definition of goals may also determine
whether the entire set of metrics should be considered or
if only a subset is relevant for the benchmark’s output. For
instance, a user may have the goal to assess a certain latency-
sensitive application and disregard or give less importance
to other metrics or may be interested in understanding if a
certain contract allows for high transactional throughput or in
understanding its behavior in terms of blockchain storage. The
specific way how such metrics should be exactly combined
is something that is out of the scope of this paper and could
be achieved using, for instance, multi-criteria decision-making
techniques that would fit complex scenarios.

As previously mentioned, the metrics provided by our
benchmark fall into four groups: network, resource, stor-
age, and cost. These groups include generic metrics, such
as throughput and memory usage, as well as blockchain-
specific metrics, such as gas price and execution cost. They
also cover even more specialized blockchain metrics, such as
block size and state size. To identify the set of metrics that
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tract consumes more than the maximum allowed compu-
tational) [1].

• Benchmarks fail in critical points such as i) generating
workloads and ii) identifying when dApps consume more
than the maximum allowed computational [1].

• Existing benchmarks fail to collect resource usage in
specific contexts (e.g., CPU, Memory) and network emu-
lation (e.g., related to getting the impact on the diffusion
of new blocks) [19].

• Latency definition (i.e., duration between transaction sub-
mission and final commit), depending on whether the
blockchain supports immediate or probabilistic finality.
Thus, a benchmark metric can be an empirical measure-
ment [20]. For instance, The Caliper displays only the
“success throughput” and not the “commit throughput,”
even though both can be derived from the available results
[11].

• The behavior of different blockchain platforms can vary
significantly (i.e., EOS.IO implements ”Delayed Trans-
actions.” [21]) [14].

Overall, we claim the current solutions focus on evaluating
the blockchain’s performance rather than providing metrics to
assess the impact of a fault. In the next section, we present our
benchmarking implementation, which tackles this problem by
providing metrics to measure the effects of contract faults.

III. A BLOCKCHAIN BENCHMARK

In this section, we describe the design of our blockchain
benchmark. We begin by describing the conceptual design of
the benchmark in Section III.A and then explain its concrete
implementation in Section III.B.

A. Conceptual Design of the Blockchain benchmark

Our approach is inspired by the classic model of depend-
ability benchmarking, which we have redesigned to take into
account the specificities of the blockchain domain, the security
context, and the context of the application being used. In
summary, our approach is based on the definition of a bench-
marking scenario which sets the basis for the experimental
procedure to take place and includes the following set of main
components, which we detail in the following paragraphs:

• Goals: This component refers to the general goals of
the benchmarking process and mostly reflects the as-
sessment objectives (e.g., general, network or storage
performance). The main idea is that the goal determines
aspects like which group of metrics should be used or
how the workload should be generated.

• Workload: This component refers to the combination of
inputs to be used in calls to contracts that compose the
blockchain application under assessment.

• Metrics: This component refers to the measurable out-
comes (e.g., throughput, failed transactions, memory
usage) of the assessment process. It will allow us to
understand the effect of running the workload against the
blockchain application.

• Procedure: This component refers to the overall pro-
cedure to be carried out during the assessment of the
blockchain application. This includes setting up the en-
vironment and setting specific rules to be followed. This
includes cases like starting up the blockchain system or
restoring the system’s state at particular moments.

Figure 1 represents our assessment approach and especially
how the different benchmark components (represented in blue
rounded squares) interact.
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The goals 1 2 3 4 may be be general i.e., all available
metrics should be used, or may signal that the benchmark user
is interested in evaluating specific aspects of the system, such
as assessing network performance, storage usage, resource
consumption, or financial costs. This represents a general
indication that specific groups of metrics should be used. It
may also be used to generally specify some semantics of
the application, e.g., (e.g., what certain operations represent)
which will later support the generation of a specific type of
workload.

The metrics selection component refers to measurable
aspects of the blockchain system. During our analysis of the
state of the art, we identified the following groups of metrics
(see further details in Section X and Table I):

i) Network: this group includes typical metrics such as
throughput (e.g., transactions completed per unit of time)
or latency (e.g., ).

ii) Storage: this group refers to metrics like the number of
generated blocks or the number of generated transactions.

iii) Resource: this includes metrics that refer to the usage of
system-level resources such as CPU processing time or
memory usage.

iv) Privacy: the privacy group refers to metrics that could
reveal privacy issues duvidas.

v) Financial: this category includes metrics that relate to the
cost of running the application, namely gas price and
balance.
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Fig. 2. General view of our benchmark implementation.

could be the target of our benchmark, we used the Google
Scholar engine along with the query ”blockchain benchmark”
to search for papers in which authors used some form of
blockchain assessment, snowballing [29] was also used during
the process. From each paper, we identified which metrics
were used, consolidated the names, and grouped them. We
excluded some metrics such as phantom read [30], invalid item
[30], concurrent update conflict [30], validationQuorum [31],
loadFactor [31] due to being specific of certain blockchains
(e.g., phantom read is specific of Hyperledger and validation-
Quorum is specific of XRP). Table I presents the list of metrics
currently supported by our benchmark.

The whole set of metrics is then collected through three
tools/sources. The first tool we use to retrieve metrics is
Caliper, which is a performance measurement tool. Caliper
allows us to collect typical values used in performance mea-
surement (e.g., latency, throughput, etc.), but the source code
was also modified to include additional fields, such as network
behavior, round ID, error messages, and execution date and
time, which are considered essential for the consolidation
and statistical analysis of the data gathered from all metrics
sources. The second tool is web3.eth, which we use to retrieve
additional data related to the blockchain, such as balance,
transaction count, block size, storage, and events. The last
tool is node-os-utils, which is an operating system tool that
retrieves system-level data, such as CPU and memory usage.

The workload component is implemented based on the in-
formation available on the Application Binary Interface (ABI)
code, which contains all contract definitions (i.e., functions,
public variables, and events) that can be accessed externally.
The ABI also provides argument types (e.g., int, address)
and state mutability information (e.g., view, pure), indicating

whether the function modifies the contract’s state. We also rely
on such function attributes to check if a function is payable,
so we can automatically generate valid Ether transactions.

In the simplest form of workload generation, the ABI is
processed, and data is randomly generated according to each
identified data type, e.g., random strings for string parame-
ters and random integer values for integer parameters. If a
function is specified as payable (i.e., it can receive Ether), a
random monetary transfer is also generated for it. All identified
functions are scheduled for execution in a non-deterministic
sequence. This can then become more complex by allowing
the user to indicate (currently in a JSON configuration file): i)
specific functions that should be used for workload generation
(i.e., a subset of those present in the contract); ii) the enforce-
ment of a specific order between certain function calls; iii) the
maximum and minimum number of times each function should
be executed; iv) whether generation is random or constant
values should be used for certain parameters; v) the address of
the input arguments to be used as msg.sender; vi) the amount
of value (in wei) to be sent with each call to payable functions;
vii) the gas limit allowed during the execution; viii) the
name of custom functions used to generate values for special
parameters (i.e., custom functions can be implemented in a
customFunction.js file); ix) independent execution units
that run performance test workloads in parallel; x) whether the
state should be restored and when (i.e., so that the effects of
previous runs do not accumulate); and xi) specific business
rules that must be respected (e.g., special domain values
that a workload should include, special moments in which
a particular value should be used).

In addition to random generation, the benchmark also uses
third-party libraries for certain cases, such as email addresses
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TABLE I
METRICS TRACKED AND REPORTED BY BBENCH.

Group Metric Unit Formula Description Source Reference

Throughput 
Transactions 
commited 
per second

committed transactions / period 
in seconds

Refers to the rate at which the blockchain commits 
valid transactions, not at a single node but at all 
network nodes given a certain period.

Caliper
throughput : Duan et al. (2020) [10]; Dinh et al. (2023)[9].   
peak transaction throughput:  Gramoli et al. (2023)[1]; 
Nasrulin et al. (2022) [17]

Latency Miliseconds
sum(latency-individual) / 
number of committed 
transactions

Refers to the average time taken by all executed 
transactions in an experimental run, measured from 
the moment a transaction is issued to when a response 
is received.

Caliper

latency distribution over time : Gramoli et al. [1](2023).
average latency:  Gramoli et al. [1] (2023).
latency: Duan et al. (2020) [10]; Dinh et al. (2023) [9]; Yue 
et al. (2023) [2].
serverLatency:Touloupou et al. (2022) [31] 

Committed 
Transactions Percentual committed transactions / total 

transactions Indicates the success rate of executed transactions. Caliper emit rate: Rasolroveicy et al. (2024) [11].
commit timeouts:  Klenik et al (2022) [30]

Committed 
Consensus Percentual

committed transactions / verified 
transactions (validated by 
consensus mechanisms)

Ratio between the number of committed transactions
recorded in the ledger and the number of transactions 
verified by the consensus mechanism.

Web3.Eth proportion of commited: Gramoli et al. (2023) [1].
endorsement timeouts:  Klenik et al (2022) [30].

CPU Usage Percentual avg(cpu usage) per individual 
transaction

Refers to CPU usage in percentage, given a reading 
interval node-os-utils resource utilization: Rasolroveicy et al. (2024) [11].   

Memory 
Usage MegaByte Sum(mem_end - mem_start) per 

individual transaction

System memory used, in average, per each 
transaction. Considers the period starting from the 
beginning of the transaction to its end (be it successful 
or not)

node-os-utils consumption:  Saingre et al (2020) [16]

Block Size Bytes
avg (block sizes generated in the 
experiment) per individual 
transaction

Size of the block(s) generated per each transaction, in 
average. Web3.Eth —

State Size Bytes

avg(memory used by all 
declared variables in the 
contract) per individual 
transaction

Average of the state storage used by all transactions. Web3.Eth
storage usage: Yue et al. (2023) [2]; 

Gas Price Wei avg(gas price) per individual 
transaction

Amount the user wants to pay per gas unit as a fee to 
the miner. The higher the rate, the faster the 
transaction is executed.

Web3.Eth gas consumption: Rasolroveicy et al. (2024) [11].   

Execution 
Cost Ether

sum (balance_end - 
balance_start) per individual 
transaction

Sums the total cost of each executed transaction Web3.Eth —

Network

Resource

Storage

Cost

[32], zip codes [33], or phone numbers [34]. For example, in
a farming application requiring geographic coordinates [35],
if a random generator is used for latitude and longitude,
many of the generated values will be invalid. Finally, the
benchmark also makes use of dictionaries to generate realistic
data such as city names, first names, surnames, and more.
The main idea is that, if needed, the benchmark can generate
workloads that better represent real-world execution. As output
of this workload generation step, the benchmark produces an
execution script with all calls to perform and corresponding
generated data.

The procedure component of the benchmark, in this context,
operates by collecting the overall inputs from the scenario and
managing the benchmark’s start, execution, and termination
according to the user-provided configuration. The procedure
may involve setting the workload script to run once or may
consider a certain amount of time to execute each run (each
benchmark run is composed of several calls to the contract
functions). If the generated calls are insufficient to complete
the time set by the user, the workload script will restart from
the beginning once it reaches the end, and the state will be
reset. The procedure should also specify if the state should be
restored after each run or not. Figure 3 presents the execution
profile of a set of benchmark runs.

The System Under Test includes the infrastructure and
an application (i.e., one or more smart contracts). In terms
of infrastructure, our benchmark includes a set of software
to allow the execution of blockchain applications in realistic

environments while collecting all necessary metric values. To
support the application, we use Hardhat [36], which supplies
the necessary environment and mechanisms to emulate a local
Ethereum blockchain. It uses less disk storage than other
alternatives, such as the Ethereum TestNet, and has been
used previously in similar research contexts [37], [38], [39].
Hardhat also allows emulating useful network behaviors, such
as ”busy” (i.e., when a high number of calls to contracts
are being executed) or ”miner activity” (i.e., manipulating the
block creation operation by defining the number of transac-
tions that can be stored per block; the smaller the number
of transactions, the more blocks need to be generated). In
terms of configuration, it is possible to use Hardhat to i) set
the maximum gas allowed per block; ii) set the gas limit per
transaction; iii) set the gas price in wei; iv) set the minimum
allowed gas price; v) bypass contract size limits; and vi) set
custom accounts with specific private keys and balances.

Hyperledger Caliper [40] is part of the setup and has the

Ramp-up Ramp-downMeasurement

System state reset

Run 1 Run 2 Run 3 ... Run N

Fig. 3. Benchmark execution temporal profile.
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following functions: i) load workloads, ii) execute operations,
iii) interact with the blockchain environment, and iv) generate
performance metrics. We use Caliper (version 0.6.0, i.e., the
latest at the time of writing) and connect it with the blockchain
using the accounts provided by the Hardhat emulator.

The system under test also includes the application, in-
cluding one or more contracts, that is at the center of the
assessment and will be exercised through the generated work-
load. The benchmark exclusively supports contracts written
in Solidity and requires the source code of the contract as
input. To generate the ABI, all programs are compiled using
Hardhat’s built-in compiler.

The benchmark report includes values for all collected
metrics, previously identified in Table I, along with all data
used in their calculation. The individual tools (i.e., Caliper,
node-os-utils, web3.eth) report metrics to CSV files, which
we organize and store in a PostgreSQL relational database to
facilitate the analysis of the data regarding each experimental
campaign. Currently, we run a set of predefined SQL queries
to generate a report with the metrics collected for all runs.

IV. CASE STUDY

This section presents a case study designed to show the
usefulness of the benchmark by applying it in different
settings. The primary goal is to show that the benchmark
can effectively measure the performance of various types of
applications, including smart contracts, which are expected
to underperform in specific metric categories running in a
blockchain environment. To this end, we evaluate three groups
of contracts. Each group contains four smart contracts: one
baseline contract (referred to as V0), with no known vulnera-
bilities, and three variants (referred to as V1, V2, and V3),
each with a single artificially injected vulnerability. Using
our benchmark, we collect metric values for all contracts
and perform a pairwise comparison between the vulnerable
and non-vulnerable versions within each group. This approach
allows us to evaluate the effectiveness of our benchmark
in signaling performance differences among these contract
variations. The approach is illustrated in Figure 4. Detailed
results, as well as all experimental data necessary to replicate
the experiments, are available at [12].

We first selected three blockchain applications of different
types belonging to distinct domains to form each of the
three groups. In particular, a financially-sensitive application
RentRoom [41] (referred as ROOM-V0), ClassAttendance
[42] which is an application for which storage is critical
(referred as CLASS-V0), and a privacy-sensitive application
EHRBlockchain [43] (referred as EHR-V0). RentRoom facil-
itates room reservations by tracking availability, costs, and
services, requiring payment via Ether to release a certain
room. Attendance is designed to manage student-teacher meet-
ings, enabling scheduling, recording meeting minutes on the
blockchain, and listing available users for future sessions.
EHRBlockchain securely stores patient health data using smart
contracts, enabling doctors, patients, and auditors to manage
medical records with specific permissions. This approach also
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Fig. 4. Approach for assessing the impact of running vulnerable contracts on
a blockchain.

gives patients control over their data, including the ability to
delete sensitive information. Table II characterizes the three
blockchain applications used as the baseline.

The applications presented in Table II were modified with
the goal of having additional (and realistic) complexity. Re-
garding the RentRoom hotel application, we have included
functionalities to i) extend the stay of a reservation (increase
the number of days), ii) check the current guest bill, and iii)
redeem discounts. Regarding the Class Attendance App, we
have included a feature to record meeting minutes between
students and teachers. In the EHRBlockchain application, we
added the possibility of registering new patients.

In addition to the three non-vulnerable versions of the appli-
cations, we created nine additional versions, each containing
a specific vulnerability. For each application, we selected vul-
nerabilities based on the nature of the application, prioritizing
those that are likely to occur in that context and have the
potential to impact the corresponding business logic. Table III
describes the entire set of applications used, including details
of the vulnerable versions, namely the selected vulnerabilities
extracted from openSCV [44], the injection location, and the
potential expected impact on the application.

We ran our benchmark against all 12 application versions.
We set no particular importance on specific groups of metrics.
The goal was to demonstrate that, first, the benchmark can be
applied to various types of applications (i.e., with different in-
terfaces, behaviors, and workload requirements); second, even
in a neutral setting, performance differences in certain groups
of metrics are noticeable and highlighted by the benchmark.

We configured each experimental run as follows. The first
two minutes are used for ramp-up and are not included
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TABLE II
DESCRIPTION OF THE THREE DECENTRALIZED APPLICATIONS USED AS A BASELINE IN OUR CASE STUDY.

dApp ID Operation
Return 

type
Modifier

Pay-
able

Call 
dependency

Description

1 setEnroll (uint _roll, uint _year) void Owner - Starts a new academic year

2
createStudent (uint _studId, uint _age,string memory _fName, string 
memory _lName, address _aStud)

void - - The administrator creates student profiles and enrolls them in the system

3
createTeacher (uint _teachId,string memory _fName, string memory 
_lName, string memory _discipline, address _aTeach)

void - - The administrator creates teacher  profiles and enrolls them in the system

4 incrementAttendance (address _aTeach,  address _aStud) void Teacher 2,3 Registers attendance with the participation of both teacher and student
5 getStudents () object list Teacher 2 Attempts to retrieve all students from the specified academic year
6 getParticularStudent () object Student 2 Tries to retrieve a single student record from a given academic year
7 getTeacherList () object list Teacher 3 Attempts to retrieve all teachers from the specified academic year
8 addHistory (address _aStud, address _aTeach, string memory _comment) void Teacher 4 Records information about the teacher’s assistance to the student.

1
setInfo (string firstName, string lastName, string IID, string bdate, string 
email, string phone, string zip, string city, string encryption_key) 

void Owner - Creates a new Patient in the system

2 start_visit (address _unique_id,uint _time) string Owner 1 Starts a new appointment for a patient
3 addDoctors (address _doctor_address) string Owner - Add a Physician available to attend
4 addAudits (address _audit_address) string Owner - Add Auditors available to attend
5 doctor_print_record (address _unique_id) array Doctor 2 Physician prints the Patient record before starting the appointment
6 doctor_query_record (address _unique_id) array Doctor 2 The physician retrieves the patient's records.
7 doctor_update_record (address _unique_id) array Doctor 2 Physician updates a Patient's record based on the data of an appointment 
8 doctor_delete_record (address _unique_id) array Doctor 2 The Physician removes information previously recorded for a Patient
9 get_record_details (address _unique_id) string Patient 2 The Patient queries the records pertaining to their own data
1 setReserveRoom () void - Y - Attempts to reserve a room, should it be available.
2 setAddDaysToPay (uint256 _amount, uint8 _qtdDay) void - 1 Add charges, including daily rates and additional services, to the stay
3 getCurrentBill () int - 1 Returns the current bill for a single guest.
4 getCurrentDay () int - 2 Returns the number of days the guest has been staying
5 getDiscount () int - 2 Returns whether the guest received a discount during their stay
6 setReleaseRoom () void - Y 1 Calculates and processes the payment required to check out of the room

EHR-V0
Electronic Health 
Record 
Blockchain

CLASS-V0
Class Attendance 
Management 
System

ROOM-V0
Room Renting

TABLE III
DESCRIPTION OF THE VULNERABLE VERSIONS OF THE BASELINE APPLICATIONS.

Name Target Operation Injected Vulnerability
Expected 
Impact

Description

CLASS-V1 addHistory 5.16 Wrong Logic Storage
Represents a programming mistake in the history registration function, in which an array of students is used for validation 
instead of an array of supervisors. It allows students to self-register their history without any consent from their supervisors.

CLASS-V2 createStudent
5.4.2 Wrong Selection of 
Guard Function

Cost
Wrong selection of guard function is, in our case, using 'assert' instead of 'require'. 'Assert' reverts a transaction but does not 
return the gas used. Thus, a version using 'assert' it is expected to have higher execution costs.

CLASS-V3 getTeacherList 8.2.1 Expose Private Data Network
Vulnerability 8.2.1, in this context, allows both students and teachers to access unauthorized data (grades, comments), which 
likely impacts network metrics due to more traffic being generated.

EHR-V1 printRecord
5.7.2 No effect code 
execution

Cost Additional code, with no effect on the contract state or the ledger, was added to the contract. 

EHR-V2 printMyRecord 8.1.2 Owner Manipulation Network
Vulnerability 8.1.2 allows unauthorized people (i.e., non-doctors) to access/manipulate patient records. Should generate 
additional network trafic.

EHR-V3 createPatientID
5.13.3 Read from Arbitrary 
Storage Location

Unknown
This operation includes a wrong access to an array, which results in a wrong patient identifier and ending up with the doctor 
creating an appointment for the wrong patient.

ROOM-V1 releaseRoom
5.4.2 Wrong Selection of 
Guard Function

Cost
Simulates the incorrect selection of a guard function (i.e., using 'assert' instead of 'require'). When verifying conditions for 
releasing a room, such as payment and occupancy checks, the failure of these conditions does not trigger a gas revert.

ROOM-V2 toString
5.7.2 No effect code 
execution

Cost Additional code, with no effect on the contract state or the ledger, was added to the contract. 

ROOM-V3 addDaysToPay 7.1.2 Integer Overflow Cost
If a user adds sufficient days to its reservation it will overflow the variable storing the value and the user will be able to release 
the room without paying for it.

in the reporting. The middle 15 minutes correspond to the
measurement interval, and the last two minutes are used for
ramp-down and are also not considered in the benchmark
report. The state was reset after each run to prevent the
effect of previous runs from affecting the results (e.g., gas
limits, gas prices, insufficient balances). For each new run, the
applications were always executed starting from the genesis
block (i.e., block 0), and all accounts were initialized with the
same balance (i.e., 100 ether).

We added all necessary rules to the workload generator
(e.g., call dependencies and special values required for certain

operations) to the point where the generated workload could
reasonably cover each contract. That is, all available operations
should be exercised, and all useful code paths should be
covered. Exception handling code, however, is not expected
to be triggered by the workload, considering the nature of
our three applications. The experiments were conducted on
a single machine running Ubuntu 22.04.2 LTS, with 4 CPU
cores (1 core per socket) and 8 GB of RAM. We also
empirically determined the peak load our hardware could
support and accordingly configured the benchmark to emulate
10 simultaneous clients that interact with the system, each
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generating a constant load of 400 transactions per second.
Throughout the whole experimental process, we monitored the
machine resources to ensure there was no bottleneck (as it
could influence the results).

V. RESULTS AND DISCUSSION

This section presents and discusses the results obtained from
executing our benchmark for each of the three groups of appli-
cations. We show results for all three groups in tables. These
tables include the values of all metrics reported by bBench,
as well as a column (RD) that shows the relative change of
each metric compared to the reference value collected in V0.
To simplify, we only show values that differ positively or
negatively by more than 10% compared to the reference value..
We follow the lines of benchmarks, such as those offered by
TPC or SPEC, and do not provide statistical testing. However,
a user may use the benchmark’s output to perform such tests.

A. Class Attendance Application

Table IV presents the benchmark results for the Class
Attendance application. The following paragraphs go through
each group of metrics and discuss cases of interest.

1) Network: As we can see, CLASS-V3 (with 8.2.1 Ex-
posed Private Data vulnerability) stands out with the highest
throughput, lowest latency, and also the highest committed
transaction rate. The reason is that the vulnerability made
public certain functions that handled private data of students
and teachers (e.g., creating student profiles and scheduling
appointments). These functions are computationally light. As
a result, the workload associated with this contract included a
greater number of function calls that could be executed faster
compared to the other versions.

2) Resources: CLASS-V1 (with 5.16 Faulty Logic vulnera-
bility) showed lower memory consumption when compared to
the other versions. This is due to the fact that the implemented
vulnerability caused the instruction flow to pass through a
require statement more times without being reverted. This
results in less memory consumption as the reversion process
carried out by the infrastructure consumes more memory than
the case where it is not carried out. This outcome may seem
to be counter-intuitive, but this type of effect occurs in many
cases (it is very context-specific), which end up positively
affecting a particular metric but negatively affecting either
other metrics or the business itself (as in this case).

3) Storage: CLASS-V1 (with 5.16 Faulty Logic vulnerabil-
ity) also resulted in a smaller amount of data being stored in
the smart contract’s state variables (i.e., state size) because the
instructions within the addHistory operation that use volatile
storage were executed less frequently. Regarding block space
consumption in the ledger (i.e., block size), we observed that
all vulnerable contracts required more storage than CLASS-
V0. Of all vulnerable versions, CLASS-V1 resulted in the
generation of the largest number of records due to the creation
of more academic history entries. While the injected vulnera-
bility in CLASS-V1 had a relatively minor impact on volatile
memory usage, it significantly contributed to the production

of persistent data (i.e., due to the creation of more academic
history entries), thus increasing the overall size of the stored
information on the ledger.

4) Cost: CLASS-V3 (with 8.2.1 Exposed Private Data
vulnerability) has a significantly higher execution cost. This
occurred because the vulnerability activation led to additional
data being exposed when compared to CLASS-V0, leading to
increased Ether consumption.

B. Electronic Health Record Application

Table V presents the benchmark results for the Electronic
Health Record application. The next paragraphs go through
each group of metrics and discuss the respective cases of
interest.

1) Network and Resources: As shown in Table V, both
network metrics and resource metrics are barely affected by
the activation of the various injected vulnerabilities.

2) Storage: The impact on storage was most evident in
EHR-V3 (with 5.13.3 Read from Arbitrary Storage vulnera-
bility), which contained a vulnerability allowing unrestricted
access to array indices and resulted in less in-memory storage
being used (smaller state size). The activation of the vul-
nerability led to numerous invalid references (e.g., to non-
existent patient IDs) and caused several transactions to fail
when creating appointments due to invalid patient IDs. These
failed appointments were expected to be stored in memory, but
this did not occur. As a result, the state variables in the affected
contract showed a reduction in the size of stored data when
compared to EHR-V0. On the other hand, in EHR-V2 (with
8.1.2 Owner Manipulation), the block size increased due to the
execution of extra (unauthorized) function calls (e.g., a doctor
retrieving information about patients he should not access).

3) Cost: In EHR-V1 (with 5.7.2 No effect code execution
vulnerability), the larger contract size resulted in higher exe-
cution costs, as more gas is required to deploy larger contracts
on the blockchain (the same happens with the execution of the
additional code). The additional code was not large/complex
enough to result in observable latency differences, and, given
this scenario, the observed impact is mostly reflected in opera-
tional costs. We also see that EHR-V3 (with 5.13.3 Read from
Arbitrary Storage Location vulnerability) resulted in lower
Ether consumption (execution cost) compared to the baseline
contract. This is explained by the fact that attempts to access
nonexistent indices in state variables trigger revert operations,
causing the execution to halt prematurely and thereby reducing
gas usage when compared to EHR-V0.

C. Room Renting Application

Table VI presents the benchmark results for the Room
Renting application. The next paragraphs discuss cases of
interest in each group of metrics.

1) Network: We must begin by mentioning that the low
rate of committed transactions in ROOM-V0 (10%) is due
to the fact that reservations that cannot be concluded (i.e.,
due to lack of room availability) are correctly reverted. In
practice, the code checks if the value of an integer variable is
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TABLE IV
BENCHMARK RESULTS FOR THE CLASS ATTENDANCE APPLICATION.

Throughput 
(Tx/s)

RD
Latency 

(ms)
RD

Commited 
Transactions (%)

RD
Commited  

Consensus (%)
RD CPU(%) RD Mem(MB) RD

State Size 
(Bytes)

RD
Block Size 

(Byte)
RD

Exc. Cost 
(ETH)

RD
Gas Price 

(ETH)
RD

CLASS-V0 344,15 – 29,29 – 70% – 100% – 82,54 – 1172,81 – 16800 – 349957 – 1,91 – 1E-09 –
CLASS-V1 342,90 – 28,18 – 61% -0,14 100% – 82,56 – 947,59 -0,19 13200 -0,21 489863 0,40 2,18 0,14 1E-09 –
CLASS-V2 351,03 – 25,71 -0,12 64% – 100% – 82,42 – 1154,83 – 16800 – 443010 0,27 2,36 0,24 1E-09 –
CLASS-V3 355,06 – 20,71 -0,29 80% 0,14 100% – 81,71 – 1243,34 – 16800 – 469579 0,34 3,10 0,62 1E-09 –

dApp
CostStorageResourcesNetwork

TABLE V
BENCHMARK RESULTS FOR THE ELECTRONIC HEALTH RECORD APPLICATION.

Throughput 
(Tx/s)

RD
Latency 

(ms)
RD

Commited 
Transactions (%)

RD
Commited  

Consensus (%)
RD CPU(%) RD Mem(MB) RD

State Size 
(Bytes)

RD
Block Size 

(Byte)
RD

Exc. Cost 
(ETH)

RD
Gas Price 

(ETH)
RD

EHR-V0 370,79 – 30,00 – 77% – 100% – 78,05 – 5980,95 – 24200 – 1855292 – 9,46 – 1E-09 –
EHR-V1 369,22 – 30,00 – 73% – 100% – 74,76 – 5787,65 – 26400 – 1894894 – 10,47 0,11 1E-09 –
EHR-V2 367,94 – 30,00 – 80% – 100% – 75,27 – 5536,19 – 24200 – 2074288 0,12 11,05 0,17 1E-09 –
EHR-V3 369,03 – 30,00 – 80% – 100% – 76,78 – 5449,38 – 19800 -0,18 1904775 – 8,32 -0,12 1E-09 –

dApp
CostStorageNetwork Resources

TABLE VI
BENCHMARK RESULTS FOR THE ROOM RENTING APPLICATION.

Throughput 
(Tx/s)

RD
Latency 

(ms)
RD

Commited 
Transactions (%)

RD
Commited  

Consensus (%)
RD CPU(%) RD Mem(MB) RD

State Size 
(Bytes)

RD
Block Size 

(Byte)
RD

Exc. Cost 
(ETH)

RD
Gas Price 

(ETH)
RD

ROOM-V0 334,56 – 22,73 – 10,3% – 100% – 77,56 – 4589,80 – 2200 – 2151103 – 20,08 – 1E-09 –
ROOM-V1 330,23 – 27,00 0,19 10,1% – 100% – 75,60 – 4361,85 – 2000 – 2204843 – 25,54 0,27 1E-09 –
ROOM-V2 355,70 – 24,00 – 8,1% -0,22 100% – 77,15 – 4595,30 – 2000 – 2748311 0,28 24,42 0,22 1E-09 –
ROOM-V3 369,90 0,11 24,00 – 95,8% 8,26 100% – 75,71 – 4577,60 – 2000 – 2700086 0,26 28,17 0,40 1E-09 –

dApp
CostNetwork Resources Storage

about to exceed the maximum value supported by its data type
and reverts the transaction if so. Considering this, we observe
ROOM-V3 (with 7.1.2 Integer Overflow vulnerability) with a
high number of committed transactions ( 96%). The reason is
that in ROOM-V3, the exception is not raised, and therefore,
the transaction is not reverted, resulting in the generation of
multiple invalid transactions with invalid data.

We also see that ROOM-V3 has a higher throughput, which
is expected due to the high number of committed transactions.
However, this gain in throughput is lower than we could
expect. The reason is that in ROOM-V0, most transactions
are reverted early more often, i.e., when an overflow would
occur. These early reverts consume less gas and processing
time compared to fully committed transactions. In ROOM-
V3, although nearly all transactions are committed, they
involve heavier state changes, often producing invalid but fully
executed transactions. These transactions consume more gas
and computation, which limits the number of transactions the
system can process per unit of time. In practice, the overall
system is slower in ROOM-V3 due to the higher cost of
fully processing invalid transactions, resulting in an increase in
throughput that is not proportional to the increase in committed
transactions.

Regarding latency, it is worth mentioning that ROOM-V1
(with 5.4.2 Wrong Selection of Guard Function vulnerability)
is the most affected. In this case, require statements were
replaced with assert statements in a frequently called function.
The assert statements take longer to execute, which is the
reason for the higher latency observed in this version.

2) Resources: The performance variations observed in the
resources group are all under 5%. The activation of the injected
vulnerability led to no substantial change in this group of
metrics.

3) Storage: The results for ROOM-V2 (with 5.7.2 No
Effect Code Execution vulnerability) and ROOM-V3 show an
increase in block size. The presence of no-effect extraneous
code in ROOM-V2 increased gas consumption and contributed
to the growth of the ledger data. As for ROOM-V3, the
absence of an exception that would protect an integer overflow
allows transactions to proceed incorrectly, which results in a
higher number of faulty records.

4) Cost: ROOM-V1 resulted in higher execution cost due
to the fact that, besides correct transactions, additional incor-
rect transactions are successfully executed and recorded on the
ledger when this type of bug is present. The same happened
with ROOM-V3, in which we have an overflow being triggered
multiple times, resulting in more code being executed, which
demands more gas. In ROOM-V2, the additional no-effect
code simply increased the execution cost.

D. Additional Remarks
Some metrics, such as gas price, were not useful for

comparison purposes in our experiments. This occurred as
network price fluctuations were observed only during the
ramp-up period. At the beginning of the execution, costs
peaked at 1.7 × 10−9 and later stabilized at 1.0 × 10−9.
This behavior is attributed to the higher costs incurred during
contract deployment and initial calls. After reaching the bench-
mark measurement period, gas prices associated with contract
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execution remained stable. Since the contracts were executed
on a local network without an active distributed consensus
mechanism, Hardhat did not increase gas prices to regulate
network usage.

The committed consensus was another metric with no vari-
ability, i.e., all runs reached 100%, meaning that the number of
committed transactions matched exactly the number of trans-
actions validated by the consensus mechanism. This outcome
is due to the use of a local network environment, where the
distributed and different behavior of miners is not simulated.
In this setup, each block is generated instantaneously by a
single miner, eliminating competition between branches of the
blockchain and ensuring that valid blocks are never discarded.
This is also something that we may evaluate in future work.

In addition to the goal of running the benchmark to un-
derstand possible differences within each of the three groups
of applications, it also became obvious that different general
performance characteristics exist across the groups. EHR-
V0 demonstrated the best network and storage performance,
while CLASS-V0 utilized significantly fewer resources than
the remaining ones and incurred the lowest execution cost.

VI. THREATS TO VALIDITY AND LIMITATIONS

In this section, we discuss the possible threats to the
validity of this study and corresponding mitigation actions,
as well as the limitations of the work.

Construct validity is related to whether we are accurately
capturing the performance characteristics we claim to measure.
There is a risk that the selected metrics may not fully represent
the system’s performance under test, or that we may have
missed some other relevant metrics. We tried to mitigate this
threat by identifying metrics based on the state of the art and
extending them to cover typical blockchain-specific concerns
(e.g., operational costs, block size, storage usage).

Internal validity is concerned with unknown influences that
may affect the independent and dependent variables. Given the
complexity of the entire setup, aspects such as the network
emulation environment or unknown interactions between the
tools that comprise our toolset may introduce noise or have
an unknown effect on the results. Also, given the randomness
of the workload, we end up measuring the effect of a mix of
transactions (some activate the vulnerability, while others do
not). To mitigate these aspects, we repeated the experiments
3 times. We also reset the state after each experimental run,
ensuring that the effects of a previous run do not accumulate
in the next one.

Conclusion validity affects the ability to draw correct con-
clusions. The benchmark was capable of signaling perfor-
mance differences originating from different types of applica-
tions and the injected vulnerabilities, but to allow for statistical
analysis to take place, we would need additional experimental
data. Still, to mitigate this threat, we did repeat the experiments
three times to find little variability in the results.

External validity is related to the ability to generalize
our benchmark results to other platforms or application do-
mains. Currently, our benchmark is limited to Ethereum-

based applications written in Solidity. Although we still do
not support other blockchain environments (e.g., Hyperledger
Fabric, Solana), we tried to mitigate this threat by successfully
assessing different applications with different requirements
and belonging to three different domains.

Our benchmark has the following limitations. Caliper does
not allow the generation or injection of random parameters
in the constructor of smart contracts. To allow our bench-
mark to execute, we modified the contracts by removing the
constructor parameters and introducing an additional public
initialization function, which is invoked shortly after the
emulation begins.

Fallback functions are triggered when a contract receives
a call to a function that does not exist, either because the
function name is incorrect or the provided parameters do
not match any of the defined function signatures [44]. This
behavior cannot be currently simulated in our benchmark,
as Caliper’s underlying framework (i.e., Ethereum-connect.js)
does not allow the execution of undefined functions or valid
functions with incorrect parameters. Instead, such calls result
in an exception that stops execution. This restriction is un-
derstandable as the tool must enforce basic input validation to
avoid unintended behavior, but it also prevents testing fallback
functionality.

VII. CONCLUSION

This work presented a new performance benchmark specifi-
cally designed for blockchain applications to measure network
behavior, storage usage, computational resources, and opera-
tional cost. We built our solution based on established bench-
marking principles and on the improvement of existing tools,
such as Hyperledger Caliper, to retrieve additional metrics.
We selected three applications of different types and domains,
each with three additional vulnerable versions. bBench was
able to quantify expected performance differences and also
signal cases of interest in the different experimental scenarios.

In future work, we intend to further simplify the usage of
the benchmark and extend it to be usable on various platforms,
supporting additional smart contract languages. There are other
aspects we intend to pursue, such as capturing real behaviors
from a blockchain network like Ethereum and integrating
aspects like gas usage distributions (dynamic adjustments to
the gas price), or access patterns for more realistic workloads,
or even network impairments (e.g., bandwidth limitations,
packet drops).
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