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Abstract—Blockchain has become popular due to its use in
cryptocurrencies and potential to support different business-
critical services (e.g., financial services, retail). The smart contract
is at the center of blockchain systems and is a coded specification
of an agreement between interacting partners in a transaction.
Like other software artifacts, smart contracts are prone to carry
residual faults. As many contracts are being used to handle
financial transactions, huge losses may occur if a vulnerability is
exploited. Also, a faulty contract cannot be corrected once it has
been deployed on the blockchain, it can only be terminated and a
new one must be deployed, which aggravates the cost of deploying
contracts with faults and marks the reputation of the provider.
Smart contract verification tools have been emerging, but limited
knowledge is available regarding their real effectiveness. In this
paper, we define a smart contract defect classification scheme
based on the Orthogonal Defect Classification and apply it to
a contract dataset, which has been extracted from multiple
sources and holds different types of defects. We use the dataset
to evaluate three state of the art verification tools regarding
their fault detection performance. Results show the relatively
low effectiveness of the tools and their complementarity.

Index Terms—Blockchain, Smart Contract, Software Vulnera-
bility, Fault Injection, Vulnerability Detection Tools.

I. INTRODUCTION

Blockchain systems have become very popular mostly due
to their application in cryptocurrencies, but they are also
being seen as a promising way to support diverse business-
critical services in a wide range of domains. At the core
of a blockchain system, we find smart contracts, which are
programs stored on the blockchain that run when predeter-
mined conditions are met. In practice, they serve to automate
an agreement between parties that wish to perform a certain
transaction. Nowadays, we are seeing blockchain applications
in healthcare, licensing in the music industry, or payment
processing in financial services. In these contexts, the presence
of a software fault in a contract may bring in disastrous
consequences for the parties involved, such as the well-known
bug in the DAO (Decentralized Autonomous Organization) [1].

Smart contracts can be written in mainstream languages
like Java, but developers usually resort to smart-contract
specific languages like Solidity [2], many times without proper
expertise. The software development processes in this domain
tend to be informal, making Verification and Validation (V&V)
activities more difficult to integrate, at least when compared
to classic critical systems, where V&V fits rather well [3].

Despite the technology being relatively recent, there are al-
ready several tools for verifying smart contracts (e.g., static
analysers like Slither [4], abstract interpreters like Securify
[5], or tools based on symbolic execution like Mythril [6]).
Such tools are recent and known to have limitations regarding
their effectiveness. Indeed, previous studies have analyzed
the effectiveness of smart contract verification tools, but only
focus on certain classes of tools (e.g., static analysis) [4], [5],
[7], or use small sets of contracts [8], or a low number of
faults [9], or do not analyze tools effectiveness with respect to
the different classes of faults present in contracts [10]. Other
clear difficulty is having a standard classification of faults for
blockchain smart contracts, as current schemes struggle to fit
the specific defects arising in smart contracts [9], [11], [12].

In this paper, we define a smart contract defect classification
scheme, using the Orthogonal Defect Classification [13] as
structure. We analyze several sources of contract faults and
classifications, namely [2], [11], [12], [14], and define a fault
classification scheme for smart contracts, in which we fit
known faults. We then extract contracts from existing datasets
[11], [14], [15] to create a set composed of 222 contracts that
fit in three groups (following the structure in [11]): i) contracts
with known software defects (including vulnerabilities) of
various types; ii) contracts where those defects have been
corrected; and iii) contracts designed to mislead verification
tools. We then analyze the effectiveness of the latest versions
of three smart contract verification tools Mythril [6], Securify2
[5], and Slither [4] by running them against the three groups of
contracts. Results are analyzed according to the tools’ overall
detection capabilities and also their false-positive and false-
negative rates. We provide a view on the different types of
defects the tools are able to detect and cases where they
are misled, identifying clear points where tools need to be
improved.

Results reflect the relatively low detection capabilities of the
different tools, which detect just a fraction of the defective
contracts, but also show the complementarity of the tools,
which are able to detect different faults and of different types.
The alerts produced by the tools also allowed us to identify
new cases of faults in the analyzed smart contracts (previously
unknown), although this is carried out at the expense of
manually analyzing alerts, which are also produced in different
magnitudes by the tools. The main contributions of this paper
are the following:
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• The definition of a defect classification scheme tailored
for smart contract faults, structured around the Orthogo-
nal Defect Classification (ODC) and in the general fault
models presented in [16], which we now extended to take
into account specific smart contract faults [2], [11], [12],
[14].

• A reusable dataset of smart contracts, which were mostly
extracted from previous work [11], [14], [15], available at
[17]. The selection was made to consider contracts that
hold diverse types of defects (i.e., defects representing
different classes of software faults), their respective fixed
versions, and contracts holding diverse defect patterns,
which are however not exploitable.

• A view of the overall effectiveness of different state of
the art smart contract verification tools (i.e., Securify2
[5], Mythril [6], and Slither [4]), including an analysis
of the tools complementarity in detecting known and
unknown faults of different types, allowing for individual
tool improvement and effective tool ensemble.

This paper is organized as follows. Section II presents
background and related work and Section III presents the
design of our experimental study. Section IV discusses the
results and Section V presents the main threats to the validity
of this work. Finally, Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

This section overviews background on software defect
classification schemes and related work on the evaluation
of smart contract verification tools. There are several works
on generic defect classification schemes, such as the IEEE
Standard 1044–2009 Classification for Software Anomalies
2010, Hewlett-Packard’s Defect Origins, Types and Modes
(DOTM) and the Orthogonal Defect Classification (ODC)
[13]. ODC is a set of analytical methods used for software
development and test process analysis to characterize software
defects that consists of eight orthogonal attributes [13]. Of
these attributes, there are two that serve to characterize the
software defect, namely defect type which represents the nature
of the change performed to fix a certain defect (e.g., algorithm,
assignment); and qualifier, which complements the defect type
by describing the state of the code prior to the correction (e.g.,
missing, incorrect, or extraneous).

There are recent efforts to define or adapt software de-
fect classification schemes for blockchain smart contracts.
The Decentralized Application Security Project (DASP) [12]
identifies the top 10 types of vulnerabilities that threaten
the security of smart contracts. However, the categorization
presented in the work is not systematical and complete. In
[18], the authors use the Bugs Framework developed by the
National Institute of Standards and Technology (NIST) to
classify known vulnerabilities, although it was found that most
of the vulnerabilities at the time, fell outside the scope of the
Bugs Framework classes. This tends to aggravate with time, as
new issues are discovered and must be properly characterized
by a classification scheme.

Poston [19] maps the OWASP Top 10 list of web application
vulnerabilities [20] to blockchain, highlighting that 9 out of

10 apply to blockchain. Zhang et al. [11] use the IEEE
Standard Classification for Software Anomalies to fit smart
contract defects. The standard has now been withdrawn and
the classification tends to mix causes and effects at similar
semantic levels (e.g., a calculation bug is expressed at the
same level as Denial of Service item, which is an effect of the
exploitation of a bug). Thus, having a more comprehensive
way of characterizing contract defects is still open research.

Previous work has been carried out on the evaluation of
smart contract verification tools. Tsankov et al. [5] present
an abstract interpreter (Securify) that can detect 7 vulnera-
bilities: Reentrancy, Locked Ether, Missing input validation,
Transaction ordering-dependent amount, receiver and transfer,
Mishandled exceptions and Lost Ether. The authors evaluated
the tool with two datasets of contracts, one consisting of
the Ethereum Virtual Machine (EVM) bytecode of 24,594
smart contracts and another one consisting of 100 Solidity
smart contracts. The tool is compared against Oyente [21] and
Mythril [6] in terms of detection accuracy and false positives.

Slither [4] is a static analysis tool that can detect various
types of contract defects, like shadowing, uninitialized vari-
ables, reentrancy, suicidal contracts, locked ether and arbitrary
sending of ether; and also defects related with optimization
detection, variables that should be declared as constants, and
functions that should be declared as externals. The authors
have evaluated the tool using a set of 1,000 popular contracts
to find out it outperforms Solhint, SmartCheck, and Securify
in terms of accuracy and false-positive rates.

The authors in [7] evaluate the bug detection effectiveness
of a static analysis tools, namely Oyente, Securify, Mythril,
Smartcheck, Manticore, and Slither. The approach is based
on the injection of bugs in contracts, based on known bug
patterns. The authors inject only the types of defects that the
tools claim to be able to detect and use classic metrics like
false-positive and false-negative rates to characterize the tools’
effectiveness. In [8] the authors evaluate Oyente, Securify,
Mythril and Smartcheck using ten contracts and express the
tools’ effectiveness by performing a Receiver Operating Char-
acteristic (ROC) analysis and also analyze accuracy, revealing
differences and gaps in the tools’ effectiveness.

A review of nine automated analysis tools for smart con-
tracts is presented in [10]. One of the goals is to analyze the
tools’ effectiveness, for which the authors use 47,587 ethereum
smart contracts (69 manually annotated plus 47,518 which
represented, at the time, all the contracts in the ethereum
network). There is open space for richer analysis regarding
the different outcomes (i.e., true positives, false negatives, and
false positives), particularly considering the different types of
software faults present in the dataset.

A framework for analyzing and testing smart contracts is
presented in [9]. The authors evaluate the proposed tool in
perspective with Oyente, Securify, Maian, SmartCheck and
Mythril. The evaluation uses 1,838 contracts and 8 faults
which are used to produce 12,866 mutated contracts. The
different tools are then executed to detect faults and com-
pared via precision and recall. Ye et al. [22] propose a bug
benchmark which is then demonstrated by running Oyente
and Slither against 1,010 contracts randomly selected from
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etherscan.io
In summary, despite the merits of current defect classifi-

cation schemes used, we find a few limitations with current
schemes being used, namely the use of outdated structures,
such as in [11], or schemes that tend to only reflect frequent
vulnerabilities (e.g., [12]) or require strong adaptations of
existing standards [18]. Researches that evaluate verification
tools are quite scarce, and in addition to the fast moving pace
of the field, we find them either focused on a certain class
of tools [4], [5], [7], or using small sets of contracts [8], a
low number of faults [9], or lacking deeper analysis regarding
tools’ capabilities, especially with respect to the different types
of software faults that can arise in code [10].

III. APPROACH AND STUDY DESIGN

This section presents the approach used to evaluate the
effectiveness of verification tools in presence of different types
of faults in smart contracts. We go through the following steps,
described in further detail in the next paragraphs:

1) Definition of a smart contract fault classification;
2) Definition of the set of contracts for the experiments;
3) Selection of contract verification tools;
4) Execution of the tools against the selected contracts;
5) Results analysis, based on a set of metrics of interest.
In Step 1) we begin by analyzing smart contract faults

and defining a classification scheme tailored for this kind
of issues, which is structured around the Orthogonal Defect
Classification (ODC) defect classification scheme [13] and
builds on a preliminary, non-comprehensive, classification
used in [23]. We first analyze various sources of contract
faults and classifications [2], [11], [12], [14], to find they are
generally not comprehensive, being unable to characterize all
defects that can appear in smart contracts (at least the known
ones). By analyzing multiple classifications and defect sources
and finding support in an established scheme like ODC, we
aim at providing a framework in which contract defects fit
easily.

In Step 2), we select a set of smart contracts to be used for
the evaluation of verification tools. We are mainly interested
in using three types of contracts (as in [11]): i) contracts with
known software defects; ii) contracts where known defects
have been corrected (and carry no known defects); iii) con-
tracts that have been crafted to mislead verification tools (i.e.,
contracts that hold a certain vulnerability pattern that is, in
practice, not exploitable). Also, we are interested in keeping
the set small but, at the same time, holding diverse defects.

We identified three main sources of contracts [11], [14],
[15]. As mentioned, we were interested in contracts carrying
known defects (named Set 1 - defective) and their corrected

TABLE I: The dataset of smart contracts per origin.

Source Defective Misleading Total
Zhang et al., 2020 67 70 + 1 30 168
SmartContractSecurity, 2020 20 16 + 4 0 40
Antonopoulos and Wood, 2018 7 0 + 7 0 14
Total Contracts 94 30 222
Total Known Defects 131 0 131

Fixed

98
0

version (named Set 2 - fixed) and also contracts created to
mislead tools by holding a certain vulnerability pattern that is,
in practice, not exploitable (named Set 3 - misleading). The
selection was complemented with our own implementation of
more contracts (1 from [11], 4 from [14], and 7 from [15]) to
allow having at least one corrected version for each defective
contract. Thus, we collected 94 defective contracts with 131
known defects, 98 fixed contracts and 30 misleading contracts.
The exact numbers per origin can be found in Table I.

Step 3) involves the selection of contract verification
tools. We aimed at popular tools and also tools of different
operational nature. Thus, we selected an abstract interpretation
tool (Securify2), a static analysis tool (Slither), and a symbolic
execution tool (Mythril), presented in further detail in Table
II.

We execute the tools, in Step 4), against the whole set
of contracts, collect their output and store the relevant in-
formation by processing the heterogeneous outputs produced
by the tools, mapping the outcome to the analyzed contracts
and known faults. The tools are run using default parameters
(details available at [17]), thus not being configured to detect
any particular type of issues in the contracts.

In Step 5) results are analyzed and all cases of potential
false-positives (i.e., software faults signaled by the tool that
in reality do not exist) are manually verified to check if the
signaled defect really exists (the contracts may hold unknown
vulnerabilities) or not. Overall, we will be examining the tools’
overall effectiveness regarding known faults and unknown
faults that will be signaled and their complementary abilities
in the detection of certain classes of faults present in our fault
model. With Set 1 (defective) we examine the tools’ detection
capabilities and the associated effort (i.e., the number of alerts
triggered by each tool). In Set 2 (fixed) we are firstly interested
in examining the true negative rates (the tool signaling a
contract as not holding a defect, which should be the case for
all contracts in this set considering known defects only). In
Set 3 (misleading), we place the tools in presence of contracts
that potentially trigger false positives.

IV. RESULTS AND DISCUSSION

In this section, we first present the defects/vulnerabilities
classification scheme (for the sake of simplicity, we use
“defects” in the rest of the document). The scheme was
built based on the analysis, from a security perspective, of
the data collected from several sources (as discussed in the
previous section). We then present the results regarding the
evaluation of the effectiveness of the three smart contract
verification tools. We begin by overviewing the results and
discuss the outcome per type of defect and tool. The section
concludes with some results highlights, including clear gaps
in the effectiveness of the verification tools.

TABLE II: Tools selected to evaluate the smart contracts.

Tool Type Language support Version Date
Securify v2.0 Abstract interpretation Solidity >= 0.5.8 13-Apr-20
Slither 0.7.1 Static analysis Solidity >= 0.4 04-May-21
Mythril v0.22.19 Symbolic execution Solidity >= 0.4 05-Apr-21
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TABLE III: Smart contract defect classification (part 1 of 2).

Defect 
Class

Defect 
Nature Defect Name Defect Identifier

Generic/
Specific Defect Cause Defect Type Impact, Threat

1 variable initialization using a value (MVIV) A_MVIV G
2 variable initialization using an expression (MVIE) A_MVIE G
3 variable assignment using value (MVAV) A_MVAV G
4 variable assignment using an expression (MVAE) A_MVAE G
5 variable auto-increment (MVAI) A_MVAI G
6 variable Auto-decrement (MVAD) A_MVAD G
7 Initialization of Storage variables/pointers (Uninitialized Storage 

Pointer) (MISP)
A_MISP S Language Storage Access Uninitialized storage pointer (SWC-109, SP-14), Access of 

Uninitialized Pointer
8 Initialization of Local Variable (MILV) A_MILV S Language Internal control flow
9 Initialization of State variables (MISV) A_MISV S Language Storage Access DoS
10 Constructor (MC) A_MC S Model Authorization Improper Access Control
11 Compiler Version (MCV) A_MCV S Language Compiler
12 arithmetic expression used in assignment (WVAE) A_WVAE S Language Arithmetic Over/underflow
13 miss-by-one value used in variable initialization (WVIM) A_WVIM G
14 Integer Sign (WIS) A_WIS S Language Arithmetic
15 Integer Truncation (WIT) A_WIT S Language Arithmetic Over/underflow (SWC-101, DASP-3, SP-2), Precision issues (SP-

15)
16 value assigned to variable (WVAV) A_WVAV G
17 value assignment with too many digits (WVATMD) A_WVATMD S Language Arithmetic Maintenance issue
18 use of deprecated build-in symbols (WUDBS) A_WUDBS S Language Internal control flow Hidden Build-in Symbols, DoS, Economic loss
19 build-in symbol name is assigned to variable or function 

(WBSAVF)
A_WBSAVF S Language Internal control flow Hidden Build-in Symbols, DoS, Economic loss

20 value assigned to contract address (WVAA) A_WVAA S Language Internal control flow DoS
21 Constructor name (WCN) A_WCN S Model Authorization Improper Access Control, Constructor name (SWC-118, SP-13)

22 Variable Type (e.g., byte[]) (WVT) A_WVT S Blockchain Gas limitations DoS
23 declaration of invariant state variable (WDISV) A_WDISV S Language Internal control flow Improper Access Control
24 Variable name (Variable Shadowing) (WVN) A_WVN S Language Internal control flow DoS
25 function type variables assignment using arbitrary values 

(WFTVA)
A_WFTVA S Language Internal control flow Arbitrary jump with function type variable (SWC-127)

26 variable assignment using another variable (EVAV) A_EVAV G
27 function type variables assignment using arbitrary values 

(EFTVA)
A_EFTVA S Language Internal control flow Arbitrary jump with function type variable (SWC-127)

28 "if" construct around statement (MIA) CH_MIA G
29 "require" on transaction sender (MRTS) CH_MRTS S Model Authorization Improper Access Control
30 "require" on input variable(s) (MRIV) CH_MRIV S Model Authorization Improper Input Validation
31 "OR EXPR" in expression used as branch condition (MLOC) CH_MLOC G
32 "require" OR subexpression on transaction sender (MROTS) CH_MROTS S Model Authorization Improper Access Control
33 "require" OR subexpression on input variable(s) (MROIV) CH_MROIV S Model Authorization Improper Input Validation
34 "if" const. OR subexpression on transaction sender (MIOTS) CH_MIOTS S Model Authorization Improper Access Control
35 "if" construct OR subexpression on input variable(s) (MIOIV) CH_MIOIV S Model Authorization Improper Input Validation
36 "AND EXPR" in expression used as branch condition (MLAC) CH_MLAC G
37 "require" AND subexpression on transaction sender (MRATS) CH_MRATS S Model Authorization Improper Access Control
38 "if" const. AND subexpression on transaction sender (MIATS) CH_MIATS S Model Authorization Improper Access Control
39 "require" AND subexpression on input variable(s) (MRAIV) CH_MRAIV S Model Authorization Improper Input Validation
40 "if" construct AND subexpression on input variable(s) (MIAIV) CH_MIAIV S Model Authorization Improper Input Validation
41 invariant checking (e.g., current balance) (MI) CH_MI S Blockchain Balance transfer Unexpected Balance transfer
42 check on gas limit (MCHGL) CH_MCHGL S Blockchain Gas limitations DoS
43 check on Return Values for Low Level Calls (MCHRV) CH_MCHRV S Blockchain Contract interaction DoS, Unchecked low-level call (SWC-104, DASP-4, SP-9)
44 check on input address length (MCHIAL) CH_MCHIAL S Blockchain Message structure Short address attack (DASP-9, SP-8)
45 check on External Call (MCHEC) CH_MCHEC S Blockchain Contract interaction DoS with revert (SWC-113, SP-11)
46 check on force to receive balance (MCHFRB) CH_MCHFRB S Blockchain Balance transfer Unexpected Balance transfer
47 check on write to Arbitrary Storage Location (MCHWASL) CH_MCHWASL S Language Storage access Overlap attack (SWC-124)
48 check on arithmetic operation (MCHAO) CH_MCHAO S Language Arithmetic Over/underflow (SWC-101, DASP-3, SP-2), Precision issues (SP-

15)
49 check on suicide functionality (MCHSF) CH_MCHSF S Blockchain Contract interaction DoS with selfdestruct (DASP-5), Suicidal contracts (SWC-106), 

Locked Balance, Unexpected balance transfer
50 check on pre-send balance (MCHPSB) CH_MCHPSB S Blockchain Balance transfer DoS
51 check on Balance Withdrawal (MCHBW) CH_MCHBW S Model Authorization Generous contracts (SWC-105)
52 check on Overpowered owner (MCHOO) CH_MCHOO S Model Trust DoS, Overpowered owner (SP-11 - see 3. Owner operations)
53 check on target address in delegatecall (MCHTADC) CH_MCHTADC S Language Storage access Delegatecall and storage layout (SWC-112, SP-4)
54 parenthesis in logical expression used in assignment (WPLC) CH_WPLC G
55 logical expression used as branch condition (WLEC) CH_WLEC G
56 "require" for authorization (Authorization through tx.origin) 

(WRA)
CH_WRA S Model Authorization Improper Access Control, Authorization with tx.origin (SWC-

115, SP-16)
57 logical expression in "require" over input variable(s) (WRIV) CH_WRIV S Model Authorization Improper Input Validation
58 logical expression in "if" const. over input variable(s) (WIIV) CH_WIIV S Model Authorization Improper Input Validation
59 logical expression in "require" over transaction sender (WRTS) CH_WRTS S Model Authorization Improper Access Control
60 logical expression in "if" const. over transaction sender (WITS) CH_WITS S Model Authorization Improper Access Control
61 check on loop condition (infinite loop) (WCHLC) CH_WCHLC S Blockchain Gas limitations Infinite loops (SWC-129), DoS
62 invariant checking (e.g., current balance) (WI) CH_WI S Blockchain Balance transfer Unexpected Balance transfer
63 check on arithmetic expression in branch condition (WAEC) CH_WAEC S Language Arithmetic Over/underflow (SWC-101, DASP-3, SP-2), Precision issues (SP-

15)
64 check on arithmetic operation (WCHAO) CH_WCHAO S Language Arithmetic Over/underflow (SWC-101, DASP-3, SP-2), Precision issues (SP-

15)
65 check on Return Values for Low Level Calls (WCHRV) CH_WCHRV S Blockchain Contract interaction DoS, Unchecked low-level call (SWC-104, DASP-4, SP-9)
66 check on input address length (WCHIAL) CH_WCHIAL S Blockchain Message structure Short address attack (DASP-9, SP-8)
67 check on external Call (WCHEC) CH_WCHEC S Blockchain Contract interaction DoS with revert (SWC-113, SP-11)
68 check on force to receive balance (WCHFRB) CH_WCHFRB S Blockchain Balance transfer Unexpected Balance transfer
69 check on write to Arbitrary Storage Location (WCHWASL) CH_WCHWASL S Language Storage access Overlap attack (SWC-124)
70 check on suicide functionality (WCHSF) CH_WCHSF S Blockchain Contract interaction DoS with selfdestruct (DASP-5), Suicidal contracts (SWC-106), 

Locked Balance, Unexpected Balance transfer
71 check on Balance Withdrawal (WCHBW) CH_WCHBW S Model Authorization Generous contracts (SWC-105)
72 check on Overpowered owner (WCHOO) CH_WCHOO S Model Trust DoS, Overpowered owner (SP-11 - see 3. Owner operations)
73 check on target address in delegatecall (WCHTADC) CH_WCHTADC S Language Storage access Delegatecall and storage layout (SWC-112, SP-4)
74 Extraneous   check on Overpowered owner (ECHOO) CH_ECHOO S Model Trust DoS, Overpowered owner (SP-11 - see 3. Owner operations)
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TABLE IV: Smart contract defect classification (part 2 of 2).

Defect 
Class

Defect 
Nature

Defect Name Defect Identifier Generic/
Specific

Defect Cause Defect Type Impact, Threat

75 return statement (MRS) I_MRS G
76  "OR sub-expr" in parameters of function call (MLOP) I_MLOP G
77  "AND sub-expr" in parameters of function call (MLAP) I_MLAP G
78 visibility modifier of state variables (implicit visibility) (MVMSV) I_MVMSV S Model Privacy Improper Access Control

79 Function Visibility Modifier (MFVM) I_MFVM S Model Authorization Improper Access Control
80 logical expression in parameters of function call (WLEP) I_WLEP G
81 arithmetic expression in parameters of func. call (WAEP) I_WAEP G
82 variable used in parameter of function call (WPFV) I_WPFV G
83 return value (WRV) I_WRV G
84 assembly code return value in the constructor (WACRV) I_WACRV S Language Internal control flow
85 Character (Right-To-Left-Override control character (U+202E)) 

within critical information (WRTLOC)
I_WRTLOC S Blockchain Message structure DoS, Right-to-Left Override Attack

86 Signature parameter (WSP) I_WSP S Model Authorization Improper Access Control
87 (Nonstandard) Token Interface (WTI) I_WTI S Model Authorization Improper Access Control
88 visibility (public) for private/internal function (WVPF) I_WVPF S Model Privacy Improper Access Control
89 Visibility of Non-public variables through external function 

(WVPVEF)
I_WVPVEF S Model Privacy Improper Access Control

90 Interface Implementation (WII) I_WII S Language Internal control flow DoS
91 Sensitive data visibility modifier (WSDVM) I_WSDVM S Model Privacy Improper Access Control
92 Function Visibility Modifier (WFVM) I_WFVM S Model Privacy Improper Access Control
93 parameters in hash function (abi.encode() or abi.encodePacked 

()) call (WPEFC)
I_WPHFC S Language Arithmetic Hash Collision

94 function call (MFC) AL_MFC G
95 call to SafeMath (MCSM) AL_MCSM S Language Arithmetic Over/underflow (SWC-101, DASP-3, SP-2)
96 "if" construct plus statements (MIFS) AL_MIFS G
97 "if" construct on transaction sender plus statements (MITSS) AL_MITSS S Model Authorization Improper Access Control
98    "if" construct on input variable(s) plus statements (MIIVS) AL_MIIVS S Model Authorization Improper Input Validation
99 "if-else" construct plus statements (MIES) AL_MIES G
100 "if" const. plus statements plus "else" before statements (MIEB) AL_MIEB G

101 iteration construct around statements (MCA) AL_MCA G
102 small and localized part of the algorithm (MLPA) AL_MLPA G
103 protection against reentrancy (MPAR) AL_MPAR S Blockchain Contract interaction Reentrancy (SWC-107, DASP-1, SP-1)
104 Exception Handling (MEH) AL_MEH S Language Internal control flow DoS
105 continue-statements in do-while-statements (MCSWS) AL_MCSWS S Language Internal control flow DoS
106 protection against re-execution of transaction (WPARET) AL_MPARET S Language Internal control flow Replay Attack
107 protection against gas limit in costly loop (MPAGLL) AL_MPAGLL S Blockchain Gas limitations Infinite loops (SWC-129), DoS
108 function called with same parameters (WFCS) AL_WFCS G
109 function called with different parameters (WFCD) AL_WFCD G
110 algorithm - code was misplaced (WALR) AL_WALR G
111 use of require, assert, and revert (WRAR) AL_WRAR S Language Internal control flow Improper Input Validation, DoS
112 (bad) algorithm for generating random number (WARN) AL_WARN S Blockchain Block content manipulation Bad Randomness, Random with blockhash (SWC-120, DASP-6, 

SP-6)113 Protection against reentrancy (WPAR) AL_WPAR S Blockchain Contract interaction Reentrancy (SWC-107, DASP-1, SP-1) 
114 Exception Handling (WEH) AL_WEH S Language Internal control flow DoS
115 Dynamic Array Cleanup (WDAC) AL_WDAC S Language Internal control flow DoS
116 continue-statements in do-while-statements (WCSWS) AL_WCSWS S Blockchain Gas limitations Infinite loops (SWC-129), DoS
117 iterating over a dynamically sized data structure (WIDSDS) AL_WIDSDS S Language Internal control flow DoS
118 use of call.value (WCVALUE) AL_WCVALUE S Blockchain Contract interaction Reentrancy (SWC-107, DASP-1, SP-1)
119 use of pull and push in external call (WPPEC) AL_WPPEC S Language Internal control flow DoS
120 Protection against force to receive balance (WPAFRB) AL_WPAFRB S Language Internal control flow DoS
121 protection against re-execution of transaction (WPARET) AL_WPARET S Language Internal control flow Replay Attack
122 protection against gas limit in costly loop (WPAGLL) AL_WPAGLL S Language Internal control flow DoS
123 place of external call (misplaced call to External contract) 

(WPEC)
AL_WPEC S Blockchain Contract interaction Reentrancy (SWC-107, DASP-1, SP-1) 

124 use of invariant in loop (WUIL) AL_WUIL S Blockchain Gas limitations DoS
125 Contract logic (e.g., dependent on exact values of the balance of 

the contract) (WCL)
AL_WCL S Language Internal control flow Unexpected Ether transfer, DoS

126 call to wrong hash function (abi.encodePacked()) (WCEP) AL_WCHF S Language Arithmetic Hash Collision
127 Voting logic (WVL) AL_WVL S Model Economy Voting issues
128 economic conjuncture of the token (WECT) AL_WECT S Model Economy Tokenomics issues
129 continue-statements in do-while-statements (ECSWS) AL_ECSWS S Language Internal control flow DoS
130 use of call.value (ECVALUE) AL_ECVALUE S Blockchain Contract interaction Reentrancy (SWC-107, DASP-1, SP-1) 
131 operations in fallback function (Complex fallback function) 

(WOFF)
AL_WOFF S Language Internal control flow DoS

132 Withdraw function (MWF) F_MWF S Blockchain Ether transfer Unexpected Ether transfer, Locked Ether
133 Inheritance (MINHERITANCE) F_MINHERITANCE S Language Internal control flow Missing Functionality
134 algorithm - large modifications (WALL) F_WALL G
135 State modification in constant/view function (WSMCVF) F_WSMCVF S Model Authorization DoS
136 Inheritance and inheritance Order (WIO) F_WIO S Language Internal control flow Multiple inheritance (SWC-125)
137 Inheritance (EINHERITANCE) F_EINHERITANCE S Language Internal control flow Multiple inheritance (SWC-125)
138 function with same signature (EFWSS) F_EFWSS S Blockchain Message structure Signature collisions

139
Missing

Race Condition in executing transactions (displacement of 
transactions) (MRC)

T_MRC S Blockchain Block content manipulation Front-running / transaction reordering (SWC-114, DASP-7, SP-
10)

140
Wrong

Race Condition in executing transactions (displacement of 
transactions) (WRC)

T_WRC S Blockchain Block content manipulation Front-running / transaction reordering (SWC-114, DASP-7, SP-
10)

141
Extraneous   Dependency over mining timestamp to run the transactions 

(EDOMT)
T_EDOMT S Blockchain Block content manipulation Timestamp manipulation (SWC-116, DASP-8, SP-12)

Fu
nc
ti
on

Missing

Wrong

Extraneous   

Ti
m
in
g/
se
ri
al
iz
at
io
n

In
te
rf
ac
e

Missing

Wrong

Al
go
ri
th
m

Missing

Wrong

Extraneous   

A. Classification Scheme for Smart Contract Defects

Our classification scheme is presented in Table III and
Table IV. We identified a total of 141 defects of which 110
defects are smart contract specific (distinguished by S in the
Generic/Specific Column) and 31 defects are general software
issues that may also appear in smart contracts (distinguished

by G in the Generic/Specific Column). We identified the
defect class and defect nature attributes based on the ODC
classification (respectively named defect type and qualifier in
[13]), where the former characterizes the general category of
the problem (i.e., Assignment, Checking, Interface, Algorithm,
Function, Timing/Serialization) and the latter characterizes the
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nature of the defect (i.e., Missing, Wrong, and Extraneous).
We then classified the defects in two groups: i) general defects,
mostly retrieved from previous work on software faults [16];
ii) smart contract specific defects, identified based on previous
work on smart contract faults and security [2], [11], [12]. In
the case of smart contract specific defects, we also identified
the cause of the defect according to [14] (i.e., if it relates to the
language, to the model/architecture, or to the blockchain), the
defect type (e.g., if it relates to gas limitations, balance transfer,
or contract interaction), and the impact/threat the presence of
a certain defect poses, or the impact/threat of being exploited
(more details on description of each case can be found in the
literature, e.g., [2], [12], [14]).

Figure 1 shows the distribution of the defects based on
their cause: blockchain, in which defects are caused by the
blockchain nature of the system (e.g., block content manip-
ulation); language, in which the defects are caused by the
insecure use of the language used for implementing contracts
(e.g., arithmetic related defects); and model, in which defects
are caused by mistakes in the model or architecture of the
system (e.g., authorization issues). As shown, most of the
defects (40%) are associated with the nature of the language.
Model-related defects are the second most frequent (32%).
The remaining (28%) belong to defects that are caused by the
blockchain nature of the system in which the smart contract
is running. This implies that, when, for instance, a different
language is used to implement smart contracts, some of the
40% of the defects that are related to the language nature (in
this study, the smart contracts are implemented in Solidity),
may not be valid or may be lacking due to the specific aspects
of the language involved.

Regarding the defect type, as we can see in Figure 2, about
half of defects belong to the Internal Control Flow (25%)
and Authorization (23%) which are respectively related to the
language and model natures. Then, Contract Interaction (with
10%) and Arithmetic (with 9%) are the next popular defect
types, related to the blockchain and language natures.

B. Set 1 - Defective Smart Contracts

The experiments with Set 1 allowed to understand the de-
tection capabilities of the tools. Figure 3 shows the distribution
of the known defects in this set of smart contracts. In total,
only 57 out of 141 defects of the classification scheme (refer
to Tables III and IV) appeared in the defective smart contracts.
All 57 defects are smart contract-specific defects.

40%

32%

28%
Language

Model

Blockchain

Fig. 1: Distribution of defects based on the defect causes.

25%

23%

10%
9%

5%

5%

4%

4%

4%

4% 3%
2%
1%
1%

Internal control flow

Authorization

Contract interaction

Arithmetic

Storage Access

Gas limitations

Balance transfer

Privacy

Message structure

Block content manipulation

Trust

Economy

Compiler

Ether transfer

Fig. 2: Distribution of defects based on the defect type.

Among all, I_WTI - Nonstandard Token
Interface is the most frequent defect followed by
I_MVMSV - Missing visibility modifier of
state variables. Both issues fit the ODC interface
class and are model-related. Also, both cause improper
access control in smart contracts. The remaining most
frequent defects are A_WUDBS - Wrong use of
deprecated build-in symbols, A_WCN - Wrong
Constructor name, and CH_MCHAO - Missing
check on arithmetic operation.

Overall, the tools were able to jointly detect 74 out of the
131 known defects, i.e., 56.5% (considering the combined
results). Figure 4 shows a detailed view of the detection
capabilities of each tool (in number of detected defects),
including the number of defects detected by more than one
tool (intersected areas in Figure 4).

As we can see in Figure 4, the tools clearly show com-
plementary detection capabilities. Only 8 defects (out of 74
detected defects) are detected by all three tools (6% of 131).
The overlapping regions in Figure 4 account for 28% of the
known defects (i.e., 8+8+21 = 37), meaning that less than one-
third of the defects are detected by two or more tools. The
remaining 37 detected defects (74 - 37 = 37 defects) represent
defects detected by a single tool, which again highlights the
tools’ complementary detection abilities and, at the same time,
points out the space for improvement in the tools’ detection
mechanisms. Table V presents further results regarding the
smart contracts from Set 1.

As we can see in Table V, regarding pure detection capabil-
ity, Slither shows the best results (44%), followed by Securify2
(30%), and Mythril (18%). However, this is achieved at the
expense of a relatively high number of false alerts. In fact,
the order reverses if we consider the ratio of alerts compared
to the correct detection results (i.e., number of alerts divided
by the number of correctly detected defects), as, on average,
for each detected defect, Mythril produces only 5 alerts,

TABLE V: Results for Set 1 - defective smart contracts.

# %
Securify2 433 39 30% 11.1
Slither 805 57 44% 14.1
Mythril 104 23 18% 4.5

Alerts / TP 
ratio

True Positives

Set 1 
(defective)

Alerts
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Fig. 3: Distribution of defects in Set 1 - defective smart contracts.

whereas Securify2 produces 11, and Slither produces 14 alerts.
This may be important information for application scenarios
in which there are constraints on the available resources,
including human resources, time, and financial resources, for
code review and correction, including the effort associated
with identifying false positives.

Figure 5 depicts the capability of the verification tools
per type of fault. In general, 21 of 57 types of defects that
appeared in the defective smart contracts were not detected
by any tool (e.g., AL_WRAR), of which 16 are the least
frequent defects (appears only once). The next observation
is that the majority of the most frequent defects remained
undetected by the tools. For instance, in the case of I_WTI -
Nonstandard Token Interface, Mythril was not able
to detect any of the 12 faulty cases, and Securify2 detected
only two of them.

In the case of I_MVMSV - Missing visibility
modifier of state variables, Slither and Mythril
were not able to detect any of the faulty occurrences, and
Securify2 only detected 1 case. Despite being known and fre-
quent, this shows that detecting these defects is a challenging
task. Among the 57 types of defects, only one of them, namely
F_MWF - Missing Withdraw function, is detected
by all tools, which again shows the different capabilities of
the verification tools.

Figure 6 shows the distribution of the detection results in Set
1 according to the defect class (e.g., Assignment or Checking).
As shown, the most frequent defects fit in the Assignment
class followed by Interface, Algorithm and Checking classes.
Timing and Function defects are the least frequent ones. Figure

20 21 10

8
8

7

Slither Securify2

Mythril

Fig. 4: Tools detection capabilities regarding known
vulnerabilities in Set 1.

6 also shows the capabilities of the tools in the detection
of these defect classes. Slither is more effective in detecting
all defect classes, except for Interface defects. In contrast,
Securify2 is more effective in detecting Interface defects.
Mythril shows better results than Securify2 when it comes
to Checking defects.

C. Set 2 - Fixed Smart Contracts

Set 2 is a set of contracts where the known defects are fixed,
and it is expected that the tools do not flag the known defects.
Corrections were performed in 98 contracts (some of the 94
contracts are corrected in different manners). Figure 7 shows
an overview of the tools’ performance, with the numbers
representing correctly detected fault-free contracts (i.e., the
tools correctly report that a given contract does not possess
vulnerabilities). Table VI details the individual performance
of the tools.

As previously, we can see in both Figure 7 and Table VI
that the tools have different and complementary capabilities.
Slither generates a large number of alerts and marked all 98
smart contracts as faulty contracts. The other two tools agree
that 17% of the contracts (i.e., 17 out of 98) are free of the
known defects. In general, Mythril performs better, followed
by Securify2, and Slither.

D. Set 3 - Misleading Smart Contracts

Set 3 contains 30 contracts, each of them having some
vulnerability pattern that is, however, not exploitable. Figure
8 shows an overview of the tools’ different performance, with
the numbers representing correctly detected fault-free contracts
(i.e., the tools correctly reports that a given contract does not
possess vulnerabilities).

Again, we observe in Figure 8 that the tools jointly agree
that 43% of the contracts (i.e., 13 out of 30) are free of the
known defects. Table VII details the individual performance of

TABLE VI: Results for Set 2 - fixed smart contracts.

# %
Securify2 426 33 34%
Slither 712 0 0%
Mythril 113 52 55%

Alerts True Negatives

Set 2
(98 fixed)
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Fig. 5: Tools detection capabilities per defect in Set 1 - defective smart contracts.
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Fig. 6: Tools detection capabilities per defect class in Set 1.

the tools, where we see that Mythril performs better, followed
by Slither and Securify2, which tends to be more easily tricked
by the misleading contracts.

E. Global Results (Set 1 + Set 2 + Set 3)

Table IX shows global results for the three tools. To be fair
about the effectiveness of the verification tools, it is important
to use an adequate evaluation criteria. Here, we consider four
distinct scenarios where security assurance has different levels
of importance, depending on the scenario being evaluated and
on the availability of resources to deal with security issues. We
select one appropriate criterion for each scenario as a mean to
evaluate the tools. The scenarios and associated criteria, follow
the proposal in [24] and are as follows:
• Highly-Critical: this scenario represents highly business (or

safety) critical systems with demanding security require-
ments (e.g., financial services, medical systems). In this

17 3516

Securify2 Mythril

Fig. 7: Correct detection of fault-free contracts in Set 2.

1 4 53 13

Slither

Securify2
Mythril

Fig. 8: Correct detection of fault-free contracts in Set 3.

scenario, the detection and removal of software defects, in
general, and, more specifically, security vulnerabilities is of
high priority (due to the potential high impact of a successful
security attack may have on the business or safety of the
involved users). Thus, the verification tools should be able
to detect the highest number of defective smart contracts,
regardless of the amount of possible false positives. In this
context, Recall [25] is an adequate criterion to evaluate the
verification tools, as it characterizes the ratio of defective
contracts that are correctly classified independently from the
number of false positives.

• Critical: this scenario represents systems of critical nature
(e.g., e-commerce applications) in which a successful attack
tends to lead to the exposure of sensitive data or financial
losses. In this context, verification tools should be able
to detect the highest number of software defects possible,
while trying to avoid reporting too many false positives,
as there may be some limits on the use of resources used
for correcting and eliminating the defects from the smart
contracts. In this case, Bookmaker Informedness [25] is

TABLE VII: Results for Set 3 - misleading smart contracts).

# %
Securify2 126 17 57%
Slither 124 20 67%
Mythril 21 22 73%

Alerts True Negatives

Set 3
(30 misleading)
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TABLE VIII: Application scenarios and criteria.

Scenario Criterion Formula

Highly-Critical Recall

Critical
Bookmaker 

Informedness

Low-Critical F-Measure

Non-Critical Markedness

𝑇𝑃
𝑃
= 	

𝑇𝑃
𝑇𝑃 +𝐹𝑁

𝑇𝑃
𝑃
−
𝐹𝑃
𝑁
=

𝑇𝑃
𝑇𝑃+ 𝐹𝑁

−
𝐹𝑃

𝑇𝑁+ 𝐹𝑃

2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

=
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑁+ 𝐹𝑃

P𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑖𝑛𝑣𝑒𝑟𝑠𝑒	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 − 1 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
+

𝑇𝑁
𝐹𝑁+ 𝑇𝑁

− 1

an appropriate criterion, as it associates a high importance
to true positive rate with moderate penalization for tools
reporting high numbers of false positives.

• Low-Critical: this scenario refers to blockchain systems
that are less critical and less exposed to attacks. In such
scenarios, the resources for detecting and removing bugs
are limited. Thus, both detecting and eliminating the highest
number of defects and spending less resources for analyzing
false positives have similar priorities. This is adequately
reflected by F-Measure [25], which combines precision and
recall.

• Non-Critical: this scenario refers to the case of systems
that are non-critical (i.e., from a security perspective). Thus,
there is a greater concern with the number of false positives
due to resource restrictions, although there is still interest
in detecting and removing defects. Markedness [25] is an
adequate criterion in this context, as it rewards low false
positive rates and, at the same time, takes true positives
into account.
Table VIII presents the identified criteria and respective

formulas. In the formulas visible in Table VIII, True Positive
(TP) refers to the number of defective contracts that are
correctly identified, True Negative (TN) represents the number
of non-defective contracts that are correctly identified, False
Positive (FP) represents the number of non-defective contracts
that are wrongly identified as defective and False Negative
(FN) represents the number of defective contracts that are
wrongly identified as non-defective.

As we can see in Table IX, we calculated the four criteria
for four distinct scenarios. The results show that none of
the verification tools analyzed in this study are suitable for
any of the scenarios due to the low number of true positives
(defective contracts that are correctly identified as defective)
and to the high number of false positives, hence the low
and negative metrics’ values. However, among the three tools,
Slither generally shows better results and has a recall over
50 percent (i.e., 0.61), but with the cost of a very high false-
positive rate.

F. Discussion of The Results

The main findings of this work are as follows:
• Smart contracts defects are associated with diverse

causes, namely language, model and blockchain natures.
Thus, at the time of writing, there is no unique classifica-
tion scheme for all types of smart contracts implemented

in different programming languages and running on dis-
tinct blockchain systems. Still, the scheme presented in
this work includes a high number of defects that are
common in smart contracts and reflect the context of
a very popular programming language used for writing
smart contracts – Solidity.

• Most of the defects identified in the classification scheme
are related to the ODC Interface class of defects. How-
ever, Assignment defects are more frequent in the faulty
smart contracts, followed by Interface and Checking
classes.

• The effectiveness of the smart contract verification tools
is quite low due to the low number of true positives
and the high number of false positives generated. In
practice and from the security perspective, none of the
tools analyzed in this work is suitable to be used in the
identified scenarios.

• In general, Slither showed better results in terms of recall,
but at the cost of a very high false-positive rate.

• In general, the smart contract verification tools show
complementary capabilities. Thus, creating a tool ensem-
ble that makes effective use of the different capabilities
involved is a possible path towards higher performance.

V. THREATS TO VALIDITY

In this section, we present threats to the validity of this work
and discuss mitigation strategies. We begin by mentioning
that selecting a specific software defect classification scheme
to fit the smart contract defects may result in providing
inaccurate views of the tools’ capabilities, if, for instance,
the definition of the defect classes are imbalanced, with some
aggregating a large number of different types of defects. Also,
the classification may not clearly represent certain types of
defects, leading to the misclassification of certain bugs and
aggravating the view of the tools’ effectiveness. To mitigate
this issue, we selected a widely used and very popular defect
classification scheme (i.e., ODC) in favor of schemes whose
application revealed issues in related work [11], [18] or are
just a partial representation of contract defects, e.g., [12].

The number of software defects or contracts used may result
in a inaccurate view of the tools’ effectiveness (e.g., due to
missing diversity of vulnerabilities). We tried to diminish this
issue by, based on ODC, selecting different types of defects,
while trying to keep the dataset size relatively small (as a way
to decrease the manual effort involved).

We performed a manual classification of the identified
defects using ODC. As a manual step, this may introduce
some errors, as the process was initially carried out by an
Early Stage Researcher. To attenuate this issue, an Experienced
Researcher double-checked the classification. Divergencies
were discussed and eliminated.

The selected tools may not provide a proper vision of smart
contract verification tools as the set is relatively small. Still,
we selected tools that frequently appear cited in the literature
and appear to be actively developed. Finally, the results were
manually analyzed initially by an Early Stage Researcher, still
this process was accompanied by an Experienced Researcher
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TABLE IX: Global results.

Alerts TP TN FP FN Recall Informedness F-Measure Markedness
Securify2 985 39 50 78 55 0,41 -0,19 0,37 -0,19
Slither 1641 57 20 108 37 0,61 -0,24 0,44 -0,30
Mythril 238 23 74 54 71 0,24 -0,18 0,27 -0,19

All Smart Contracts
(Set1+Set2+Set3)

which also verified a subset of the results. Any classification
conflicts were discussed and resolved.

VI. CONCLUSION

In this paper, we carry out an empirical study to understand
the effectiveness of three popular smart contract verification
tools. We begin by defining a framework, structured around
the Orthogonal Defect Classification, in which we fit known
smart contract defects. We then use three sources of smart
contracts [11], [14], [15] and define an heterogeneous set of
contracts holding different types of software defects and which
we use against Mythril [6], Securify2 [5], and Slither [4].

Results show the relatively low detection effectiveness of
the tools, but especially show their complementarity regarding
the detection of different types of faults. The tools also
allowed us to identify new cases of faults in the analyzed
smart contracts, although this is carried out at the expense of
manually analyzing alerts, which are also produced in different
orders of magnitude by the tools. In future work, we intend
to implement a smart contract fault injector that will allow
generating realistic faulty contracts, which will be used in a
more extensive tool evaluation.
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