
SPECIAL SECTION ON BLOCKCHAIN TECHNOLOGY: PRINCIPLES AND APPLICATIONS

Received September 9, 2020, accepted October 5, 2020, date of publication October 19, 2020, date of current version October 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3032239

Using Fault Injection to Assess Blockchain
Systems in Presence of Faulty
Smart Contracts
ÁKOS HAJDU 1, NAGHMEH IVAKI 2, (Member, IEEE), IMRE KOCSIS1, ATTILA KLENIK1,
LÁSZLÓ GÖNCZY1, NUNO LARANJEIRO 2, (Member, IEEE),
HENRIQUE MADEIRA2, (Member, IEEE), AND ANDRÁS PATARICZA1
1Department of Measurement and Information Systems, Budapest University of Technology and Economics, H-1117 Budapest, Hungary
2CISUC, Department of Informatics Engineering, University of Coimbra, 3030-290 Coimbra, Portugal

Corresponding author: Ákos Hajdu (hajdua@mit.bme.hu)

This work was supported in part by the Bi-Lateral FCT-NKFIH Program Portugal-Hungary, through the Project Advanced Analytics for
Empirical Assessment of Cloud Resilience, in part by the European Union’s Horizon 2020 Research and Innovation Program through the
Marie Sklodowska-Curie under Grant 823788 ‘‘ADVANCE," the BME-Artificial Intelligence TKP2020/IK grant of NRDI, in part by the
NRDI Fund Based on the Charter of Bolster Issued by the NRDI Office under the Auspices of the Ministry for Innovation and Technology,
and in part the ÚNKP-19-3 New National Excellence Program of the Ministry for Innovation and Technology.

ABSTRACT Blockchain has become particularly popular due to its promise to support business-critical
services in very different domains (e.g., retail, healthcare). Blockchain systems rely on complex middleware,
like Ethereum or Hyperledger Fabric, that allow running smart contracts, which specify business logic in
cooperative applications. The presence of software defects in these contracts has notably caused failures,
including severe security problems. In this article, we use software-implemented fault injection (SWIFI) to
assess the behavior of permissioned blockchain systems in the presence of faulty smart contracts.We emulate
the occurrence of general software faults and also blockchain-specific software faults (e.g., missing require
on transaction sender) in smart contracts code and observe the impact on the overall system dependability
in terms of reliability and integrity. We also analyze the effectiveness of formal verification and runtime
protection mechanisms in detecting the injected faults. Results indicate that formal verification and runtime
protections have to complement built-in platform checks to guarantee proper dependability of blockchain
systems. The work presented in this article allows smart contract developers to become aware of possible
faults in smart contracts and to understand the impact of their presence. It also provides valuable information
for middleware developers to improve the overall fault tolerance of their systems.

INDEX TERMS Blockchain systems, dependability, fault injection, formal verification, smart contracts.

I. INTRODUCTION
The blockchain is a software-based distributed ledger tech-
nology, which, just like in a hard copy ledger, is a way for
cooperating partners to store and track transaction records [1].
Its growing popularity can be attributed to core properties
such as decentralization, immutability, security, and trans-
parency [2] and to the fact that it naturally applies to many
contexts, from supply chain management through financial
markets to healthcare [3]–[5].

In a blockchain environment, code supplied by some of
the users of the system defines transaction logic that is

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

application-specific. The Ethereum technology [6]made such
programs, similar to stored procedures and named smart
contracts [7], popular as a general mechanism for executing
client-proposed ledger transactions. Cryptographically linked
(chained) blocks of the proposed transactions have to pass a
group consensus among a set of nodes (peers), maintaining
the distributed, shared ledger. The group consensus accounts
for the order as well as any consequences of smart contract
based transactions, which lead to modifications in the ledger
state.

Blockchain systems are commonly viewed as being
extremely secure and dependable, but the reality is much
more nuanced. Regarding security, while consensus may
probably be attack-resistant, it does not address the fact that

190760 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8001-8865
https://orcid.org/0000-0001-8376-6711
https://orcid.org/0000-0003-0011-9901
https://orcid.org/0000-0002-3202-1127


Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

deployed smart contract code may hold software defects,
including vulnerabilities [8], [9], allowing for certain exe-
cutions to harm the system. Regarding the general con-
cept of dependability, the system’s key properties like
ledger integrity, service reliability, and service availability
are a function of a complex interplay between different
mechanisms that target different non-functional properties,
which are challenging to check using traditional verification
techniques.

Within such a complex environment, quality of smart con-
tracts (i.e., the absence of software faults) plays a vital role.
Residual bugs in smart contracts (software faults that may be
activated due to absent or inadequate protection mechanisms,
or that were not detected by verification activities like testing
or static analysis) have been linked to failures in blockchain
systems and are known to be the cause of severe security
problems [9], [10], as, for instance, the infamous DAO attack
demonstrated [11].

In this article, we present a software-implemented fault
injection (SWIFI) technique [12], [13] that has been tai-
lored for evaluating the behavior of blockchain systems in
the presence of faulty smart contracts.We target smart con-
tracts written in the popular Solidity language [14], which is
being supported by an increasing number of blockchain plat-
forms. Starting with a general software fault model for soft-
ware fault injection as basis [15], we eliminate rare software
faults and faults that do not apply to our context (e.g., faults
that cannot affect programs written in Solidity) and comple-
ment the fault model with smart contract-specific faults,
based on 515 faults listed at the NIST National Vulnerability
Database [10] and blockchain and smart contract bugs pre-
sented in the literature. Based on the resulting fault model,
we inject software faults into the smart contract abstract
syntax tree (AST) to generate faulty smart contracts, which
are then executed on a blockchain platform.

The blockchain system is observed and analyzed con-
sidering the following perspectives: i) reliability (or cor-
rectness): divergence from correct behavior regarding the
external behavior of the system (observable by the client);
ii) integrity evaluation: the ledger state integrity violation
(either observable by the client or not). We complement the
empirical assessment using formal verification, i.e., static
analysis for possible detection of injected faults and verifica-
tion of incorrect functioning of smart contracts (to understand
which faults and incorrect behavior would be captured before
deployment and which would likely escape to production).

We carried out an experimental evaluation using Hyper-
ledger Fabric [16], the market-leading business blockchain
platform, and a set of 15 smart contracts (5 base versions,
5 versions modified to hold extensive protections against
invalid inputs, and 5 versions with no protection) in which
we injected faults, which resulted in a total of 651 faulty
versions. Results show the distinct effects of the different
types of injected faults and strongly suggest that using formal
verification and additional code-level protection mechanisms
can prevent the occurrence or activation of different types of

faults, thus being of utmost importance for developing and
deploying critical blockchain applications.

The main contributions of this article are the following.
• A smart contract software fault model of 51 fault types
(33 general and 18 smart contract specific);

• The definition of an approach for injecting faults into
smart contracts, which is independent from the program-
ming language used;

• A fault injector tool implemented for Solidity smart
contracts;

• The definition of a set of experiments to show i) the
impact of different faults on the behavior of a blockchain
system in terms of reliability and integrity; and ii) the
effectiveness and the complementary nature of several
verification and protection mechanisms in place includ-
ing smart contract formal verification, runtime platform
checks, and contract-level protections under our fault
model.

The paper is organized as follows. The next section,
Section II, introduces the background and related work and
Section III presents the smart contract fault model and the
fault injection approach used. Section IV introduces the
experimental setup and implementation, and the evaluation
process followed. Section V presents and discusses the results
obtained, and Section VI highlights the threats to the validity
of the results and the methods used in this work. Finally,
Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK
In this section, we present the necessary background on
blockchain technology and smart contracts and review exist-
ing works that address dependability (and security) in this
environment.

A. BLOCKCHAIN TECHNOLOGIES
Blockchain is, in practice, a digital implementation of the
hardcopy transaction ledger [17], which acts as a highly
secure and resilient database and execution environment
for the business logic deployed on it in the form of smart
contracts. Nowadays, digital ledgers are used in businesses
and organizations in a variety of applications, such as
the movement of assets or properties, recording contracts,
buy-sell deals, and liabilities documentation. A large number
of increasingly mature blockchain platforms are available
today, facilitating the creation of public access, ‘‘unpermis-
sioned’’ consensus participation networks with cryptocurren-
cies, as well as the ones that can be accessed only by specific
business consortia in a fully permissioned manner.

Ethereum is a key technology in both worlds. A core
part of its specification is a simple bytecode virtual machine
for smart contract execution, the Ethereum Virtual Machine
(EVM) [6]. The EVM is a general-purpose, Turing-complete
virtual machine that provides access to the ledger state largely
via key-value style CRUD (create, read, update and delete)
operations. As of today, Solidity is the most popular language
targeting the EVM [14]. However, Solidity is also becoming

VOLUME 8, 2020 190761



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

FIGURE 1. Transaction execution in Hyperledger Fabric.

available on blockchain platforms other than Ethereum. For
instance, the Hyperledger Burrow [18] EVM implementation
can be deployed in Hyperledger Fabric.

Solidity is a statically typed, contract-oriented lan-
guage with high-level facilities such as complex data
types, multiple inheritance, and libraries, with a syntax
resembling ECMAScript. The Solidity programming model
natively handles cryptocurrency (Ether) movements between
pseudonymous (cryptographic key authenticated) parties, and
EVM-based execution is defined in terms of the calling
party offering up-front cryptocurrency payment as fuel (gas)
for smart contract function call executions. If the offered
gas runs out before termination, the call fails. Regardless,
these peculiarities can be easily hidden or circumvented in
business-oriented blockchain networks and applications. Our
paper does not require a more in-depth introduction of either
Ethereum or the EVM; the interested reader is kindly referred
to the aforementioned references.

For our experiments, we chose Hyperledger Fabric [16],
the platform supporting the creation of ‘‘bespoke’’, business
consortium specific, permissioned blockchain systems to the
most extent. In Hyperledger Fabric, a set of organizations as a
consortium form a blockchain network from peers controlled
by them. The network is directly accessible only to their
systems and users.

Compared to most blockchain platforms, transaction exe-
cution and block consensus are fairly unique in Hyperledger
Fabric. Fig. 1 presents an overview. The core idea is that
a client asks peers of organizations to endorse a proposed
transaction (essentially, smart contract function call) by exe-
cuting it on their current ledger state and replying with the
so-called read-write set upon success – instead of modifying
their ledger state. The read-write set contains the (versioned)
set of variables and the updates a successful execution would

perform. Given enough matching (signed) endorsements,
the ordering service accepts the proposal and includes it in
the next block, to be distributed to the peers for ledger state
updates. The full protocol, which is described in detail in [16]
and in the Hyperledger Fabric documentation, is summarized
below and presented in Fig. 1.

1) A client generates and digitally signs a transaction
proposal;

2) The client sends the transaction proposal directly to
one or more so-called endorsing peers of one or more
organizations participating in the blockchain;

3) After checking the identity of the client, the peers
execute the transaction (smart contract function call)
using their current ledger state – but do not update it;
in essence, performing transaction simulation;

4) The peers respond to the client with a digitally signed
read-write set of such ledger variables that the actual
transaction execution would read and write;

5) The client collects the responses and submits them to
an ordering service (provided by a disinterested third
party, or a group consensus protocol across the organi-
zations);

6) The ordering service performs a consensus protocol
and forms blocks of the multiparty-endorsed transac-
tion proposals;

7) The ordering service disseminates the blocks to the
peers of the organizations;

8) Peers validate the transactions in the blocks and modify
their ledger state.

B. RELATED WORK
In business or mission-critical environments, the presence of
software bugs in a blockchain system is a problem that can
bring severe consequences to the business or mission itself,

190762 VOLUME 8, 2020



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

impairing its dependability [9]. This is aggravated by the
fact that, in some cases, the programming languages used
for writing the contracts are not mainstream languages (e.g.,
Solidity), and developers may lack the necessary expertise,
leading to the deployment of contracts holding residual bugs.

Despite several attempts in the literature to define best
practices for implementing secure and fault-free smart con-
tracts [19], [20], developing contracts without faults seems
to be very difficult, if possible. As smart contracts often
manipulate (or provide accounting for) valuable assets, veri-
fication of smart contracts is playing an increasingly impor-
tant role [17], but as the blockchain technology is still rel-
atively recent, there are just a few, and not really effective,
tools [9], [21], [22] (e.g., static analyzers [23]–[29], theorem
provers [30]–[34], and SMT-based tools [35]–[38]).

Testing tools [39], [40] have been developed to detect both
bugs and vulnerabilities, as well as formal approaches to
assure the correctness of smart contracts [9], [21], [22].

Most of these approaches are adaptations of, or built on,
existing methods, inheriting their advantages and limitations.
For example, static and symbolic analyzers are effective at
finding vulnerable patterns in smart contracts [23]–[29], but
might yield a high rate of false alarms and miss bugs related
to the business logic. Formal methods provide a sound basis,
but usually require formal specification [33], [36], [38] or
assisted proofs [30]–[34].

Our work is focused on using the software-implemented
fault injection (SWIFI) technique [12], [13], which is a
vital tool for evaluating the dependability of software sys-
tems, especially critical systems. Typical SWIFI approaches
include the injection of code changes in certain components
of the system (that emulate the most frequent types of bugs
introduced during development) or the direct injection of the
effects of faults (e.g., faulty data or user inputs). Regardless
of the technique, the goal is to be able to evaluate how a faulty
component may affect the behavior of the overall system,
which also allows for understanding the effectiveness of the
fault tolerance mechanisms in place [41].

We can find a few works in the literature, recently
published under the title of smart contract mutation
testing [42]–[44], that follow a similar approach (i.e., injec-
tion of faults into AST) for the generation of faulty smart
contracts for testing purposes. However, these works are
more focused on implementing the respective mutation test-
ing tools rather than the assessment of the blockchain
systems’ behavior and the effectiveness of the protection
and verification mechanisms in place. In addition, fuzzing
tools [45]–[47] are related to our work in the sense they also
generate inputs to check for vulnerabilities. However, existing
fuzzers only consider the original (existing) contracts and do
not include fault injection to evaluate the impact of faults in
smart contracts.

Our approach of using software fault injection can be
considered as a complementary technique to assess the
effects of both common programming errors and smart
contract-specific faults. Furthermore, software fault injection

can also be used as a benchmark to evaluate the precision
and recall of existing tools such as static analyzers and
fuzzers.

III. FAULT INJECTION INTO SMART CONTRACTS
This section describes the overall approach for assessing the
reliability of a blockchain system in the presence of faulty
smart contracts. The approach relies on the execution of
smart contract transactions accompanied by the formal ver-
ification of possible defects, which works as a complement
to the runtime execution (to understand if certain defects
could be caught before runtime). In the next subsections,
we present: i) an overview of the approach; ii) the definition
of the fault model used and its application to smart contracts;
iii) the workload generation process; iv) the process of formal
verification applied to contracts, and v) how the collected data
is analyzed.

A. OVERVIEW OF THE APPROACH
Fig. 2 presents a general view of the fault injection environ-
ment with the components involved, and the process followed
to inject faults into the system under assessment (SUA).

In general, to apply a fault injection technique, we need
to address the following main questions: which parts of the
system are targeted for fault injection (i.e., fault injection
location), what faults to be injected, and when to inject the
faults? In this work, the target of fault injection within the
blockchain system is the smart contract. Thus, it is one of
the inputs for the approach (depicted at the top left of Fig. 2).
One of the challenges involved in the use of a fault injection
technique is the definition of a fault model (at the top of
Fig. 2) that should be composed of representative types of
faults, which will be injected, in our case, into the smart
contracts. The definition of the fault model essentially covers
general cases of typical programming mistakes [15], [48] and
specific cases of smart contract related faults [10].

To inject faults into smart contracts, we integrate
changes (i.e., fault models similar to mutations but based
on realistic fault assumptions) into the source code of
the smart contracts. The implementation of these changes
(i.e., faults) strongly depends on the programming language
used to write the smart contract. To eliminate this depen-
dency, our fault injector first generates an Abstract Syntax
Tree (AST), which is an abstract representation of the syn-
tactic structure of source code for a certain smart contract
source code provided as input.We then inject individual faults
into the AST, which results in several faulty ASTs, each with
exactly one injected fault. Then the faulty ASTs are converted
back to code (Solidity code, in our case), resulting in faulty
versions of smart contracts.

Both the fault-free and faulty smart contracts are then
executed individually on the blockchain system, in an iso-
lated environment. Fault-free runs are used as a reference to
evaluate the results of faulty runs. A challenge at this point
is the generation of workloads that are representative and

VOLUME 8, 2020 190763



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

FIGURE 2. Overview of the approach.

allow activating the artificially introduced faults during the
execution of transactions.

We complement the assessment by performing formal
verification over both reference contracts and the respec-
tive mutated contracts that are annotated with specifications
(e.g., contract invariants, pre- and post-conditions) [36]. This
allows us to assess the effects of protection mechanisms in
smart contract code (e.g., integrity-protecting error detect-
ing assertions and observability-increasing return statements)
and to understand which faults and incorrect behavior would
be captured before deployment. During assessment, the sys-
tem under assessment (SUA) is monitored while executing
the fault-free and faulty smart contracts, and all necessary
data are collected and stored in log files for later analysis.

After finishing the runs, the analysis of the data is per-
formed from the reliability (i.e., correct external and internal
behavior) and integrity (i.e., ledger state integrity) perspec-
tives at two levels: i) component level, which refers to the
direct analysis of the behavior of the container running the

smart contracts, allowing us to understand the impact of the
faults on the container in which the smart contract is being
executed; ii) platform level, in which the analysis is per-
formed at the level of the whole blockchain platform, i.e., to
understand the impact of faults on the whole blockchain
system setting. At each of these analysis levels, we have
reference data corresponding to the outcome of fault-free runs
(i.e., component level reference data and platform level ref-
erence data) and mutation data corresponding to the outcome
of faulty smart contract runs (component level mutation data
and platform level mutation data).

The details regarding the definition of the fault model,
formal verification, and criteria used for behavior assessment
are presented in the following subsections.

B. FAULT MODEL DEFINITION
Our fault model uses a combination of software faults cover-
ing two cases: i) general software faults [48] and ii) smart
contract-specific faults, which include 515 faults listed at

190764 VOLUME 8, 2020



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

TABLE 1. Smart contract specific faults reported in NVD [10].

the NIST National Vulnerability Database [10] and also
blockchain and smart contract bugs presented in the litera-
ture [24]–[26], [49], [50].

To build the fault model, we use the information provided
by the Orthogonal Defect Classification (ODC) [48], which
provides a useful foundation for emulating software faults.
ODC is often used as a source of information to provide
insights and feedback regarding the quality of software and
the development process, but it also provides a useful founda-
tion regarding the emulation of software faults. Building on
ODC, an extensive classification of representative software
faults was carried out in [15], in which the identification
and classification of software faults are made from a fault
injection perspective so that the identified faults can be easily
emulated in code.

According to [15], the most representative types of
defects, i.e., of software faults are (in order): i) Assignment
(e.g., the value assigned to a variable is incorrect);
ii) Checking (e.g., the input data is not validated correctly );
iii) Interface (e.g., error in function call); iv) Algorithm (e.g.,
incorrect implementation of an algorithm); and v) Function
(e.g., a functionality is affected). The nature of a defect type
(i.e., the ODC qualifier [48]) can be one of the following
cases: Missing construct (e.g., missing function call), Wrong
construct (e.g., the wrong variable used in parameter of a
function call), and Extraneous construct (e.g., extraneous
function call).

We started the definition of our fault model based on the
general results in [15], which, in total, identifies 62 soft-
ware faults. From this list, we removed the ones that do not
apply to our context, which uses a specific programming
language (Solidity) and respective compiler. For instance,
Missing case: statement(s) inside a switch construct (MCS)
and Wrong branch construct - goto instead break (WBCI)
are not applicable because there are no goto and switch
statements in Solidity, or Missing parameter in function call
(MPFC) and wrong data types or conversion used (WSUT)
are also not applicable because they are caught by the com-
piler. After this analysis, 8 faults (out of 62) were excluded
from the fault model.

We also excluded the less frequent faults (those appearing
with a frequency lower than 1% (refer to [15] for more
details about the frequency of the faults). Wrong parenthesis
in logical expression in parameters of function call (WPLP)

is one example of these faults. This resulted in a total of
21 faults being excluded. For the time being, we have a list of
33 frequent generic software fault types, identified in the last
column of Table 2 with the letter G, that apply to our field
study.

In a second step, with the goal of increasing the repre-
sentativeness of the fault model, we completed the list of
faults with smart contract and Solidity specific faults. These
faults are identified in the last column of Table 2 with the
letter S. To define the specific faults, we collected and ana-
lyzed all smart contract faults reported in the National Vul-
nerability Database (NVD) [10] at the time of writing (a total
of 515 vulnerabilities), as well as the blockchain and
smart contract bugs presented and analyzed in the litera-
ture [24]–[26], [49], [50]. Table 1 summarizes all vulnerabil-
ities reported in NVD, categorized into 8 distinct types and
from which we focus on the more frequent ones.

As shown in Table 1, the most frequent vulnerability is
Integer Overflow or Wraparound (92% of all reported vul-
nerabilities), which occurs when the result of an arithmetic
computation exceeds the range of its type. When this occurs,
the value may wrap to become a negative number or a very
small number. For example, 127+ 1 becomes −128, instead
of 128, when one signed byte (8 bits) is used to store the
result. Overflows do not cause a run-time error and can
silently lead to incorrect calculations and undefined behavior.
This becomes a severe issue when the result of an arithmetic
computation is used to control loops, determine the size in
operations such as memory allocation, or take some other
action decision (e.g., used to control an authentication or
authorization process). In some systems, it may even impact
performance. Smart contract developers can avoid integer
overflows using recognized integer handling libraries, such
as SafeMath [51]. Thus, missing calls to these safe integer
handling functions may lead to integer overflows. For this
reason, fault 25.a (Missing calls to SafeMath (MCSM)) is
defined under this category of faults (i.e., Integer Overflow
orWraparound) as a special case of the ODC fault Missing
function call (MFC).

The next frequent vulnerability, although not as frequent
as the Integer Overflow or Wraparound, is Improper Access
Control (3.5% of all reported vulnerabilities). This occurs
when a smart contract does not restrict or incorrectly restricts
access to a certain resource or function from an unauthorized

VOLUME 8, 2020 190765



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

TABLE 2. Fault model.

user. Several faults in smart contracts may introduce such
access control weaknesses, in particular, those that include
incorrect or missing conditions required to be verified for
the sender of the transactions or incorrect visibility defined
for the resources. Faults 11.a (Missing require on transaction
sender (MRTS)), 12.a (Missing require OR subexpression
on transaction sender (MROTS)), 12.c (Missing if construct
OR subexpression on transaction sender (MIOTS)), 13.a
(Missing require AND subexpression on transaction sender
(MRATS)), 13.b (Missing if construct AND subexpression on
transaction sender (MIATS)), 15.c (Wrong logical expression
in require over transaction sender (WRTS)), 15.d (Wrong
logical expression in if construct over transaction sender
(WITS)), 24 (Wrong visibility (public) for private/internal
function (PVPF)), and 26.a (Missing if construct on transac-
tion sender plus statements (MITSS)) are defined under this

category of faults (i.e., Improper Access Control) as special
cases of the corresponding ODC faults.
Input Validation is the next frequent smart contract vul-

nerability (1.7% of all reported vulnerabilities), which refers
to wrong or missing validation of inputs (input values are
not validated correctly or are not validated at all), something
that usually takes place at the beginning of transactions to
revert the whole transaction when a condition does not hold.
Wrong inputs may affect data flow and control flow of the
transaction leading to various problems, such as robustness or
security issues. The possible input validation checks in smart
contracts are very diverse, depending on the type of input
data and the business logic expressed by the contracts, but
to emulate this kind of vulnerability, such validation checks
must be eliminated or modified (e.g., by altering the checking
conditions). Faults 11.b (Missing require on input variable(s)
(MRIV)), 12.b (Missing require OR subexpression on input
variable(s) (MROIV)), 12.d (Missing if construct OR subex-
pression on input variable(s) (MIOIV)), 13.c (Missing require
AND subexpression on input variable(s) (MRAIV)), 13.d
(Missing if construct AND subexpression on input variable(s)
(MIAIV)), 15.a (Wrong logical expression in require over
input variable(s) (WRIV)), 15.b (Wrong logical expression in
if construct over input variable(s) (WIIV)), and 26.bMissing
if construct on input variable(s) plus statements (MIIVS)) are
defined under this category of vulnerabilities as special cases
of the corresponding ODC faults.

Finally, we found Use of Cryptographically Weak
Pseudo-Random Number Generator (PRNG) (1.6% of
all reported vulnerabilities), which occurs when a non-
cryptographic PRNG or a PRNG’s algorithm that is not
cryptographically strong is used in a context where security
is important. For instance, if a non-cryptographic PRNG
algorithm is used to generate a session ID (i.e., used for
authentication and authorization), then an attacker might
be able to easily guess the session ID and gain access to
restricted resources. Although being an important security
issue, since the impact of this vulnerability is very tightly
coupled to the intention of the attacker and to the logic
involved in the transactions and smart contracts, for the time
being, we do not include it in our fault model.

As shown in the last column of Table 2, we implemented
all smart contract specific faults and most (in total covering
78.4%) of the software generic faults (identified with X).
We left a few of the generic faults unimplemented (the
ones that appear in light grey in the table and identified
with X), due to the fact that they do not seem to be very
common and relevant in smart contracts according to the
literature [24]–[26], [49], [50].

C. WORKLOAD GENERATION
Workload generation, in our context, is largely equivalent to
automated test case generation. We are not aware of any such
mature tool, so as part of our research, we defined a workload
generation process that generates values for smart contract

190766 VOLUME 8, 2020



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

function call input parameters based on their type, the literals
appearing in the code, and randomly, as follows:

- Type-based inputs: Generate input values for each
parameter based on its type. For Booleans, we generate
both true and false, while for integers, we generate the
minimum, the maximum, and zero. Input values for
reference types, such as strings and arrays, are generated
recursively for different lengths, including the length of
zero.

- Literal-based inputs: Inputs are often compared to liter-
als, which determines the control-flow inside the func-
tion. Therefore, we also extract each literal from the
function and use them as inputs to the parameters with
a matching type. Furthermore, for integer literals l we
also include l + 1 and l − 1 to catch off-by-one errors.

- Random inputs: Generate a configurable number of ran-
dom values for certain types. For integers, we gener-
ate random values within the minimum and maximum
range. We also generate random strings and arrays by
generating random elements of their sub-type and shuf-
fling them randomly for different lengths.

D. FORMAL VERIFICATION
We complement the empirical assessment using formal ver-
ification (i.e., static code analysis) in order to understand
how difficult it would be to detect injected faults and incor-
rect functioning of smart contracts. To do so, we execute
a formal verification technique, namely modular program
verification [52] over reference contracts and the respective
mutated contracts. In modular program verification, the smart
contract’s source code should be annotated with specifica-
tions (e.g., contract invariants, pre- and postconditions) of the
expected behavior. Each annotated contract is translated into
a formal representation in an intermediate verification lan-
guage [53], having mathematically precise semantics. Each
function in this representation is then translated into a set of
formulas (so-called verification conditions) that establish the
correctness of the function.

The verifier discharges these formulas automatically using
SMT (Satisfiability Modulo Theories) solvers [54] by check-
ing their validity. The modular verification approach used
in this work [36] targets the functional correctness of con-
tracts, with respect to different kinds of failures, including
expected and unexpected failures. An expected failure is a
failure that is caused due to an explicit guard defined by
developers (e.g., Solidity require, revert statements).
An unexpected failure is any other failure (e.g., assert,
overflow). A contract is reported as correct if there is no
unexpected failure and all of its transactions that are finished
without an expected failure, satisfy their specification.

E. BEHAVIOR ASSESSMENT
The last step of the approach is related to evaluating the
behavior of the blockchain system in the presence of the
injected faults, which is carried out in perspective with
the fault-free runs. In this work, we concern about the

faults’ effects on the system’s reliability (in lato sensu) and
integrity. Notice that integrity errors may, or may not, affect
the reliable behavior of the blockchain system.
Reliability evaluation mostly concerns divergence from

correct behavior (i.e., regarding the external, observable,
behavior). Evaluation of the external behavior is relatively
simple in the case of smart contracts. We can check whether
the expected outcome of the transaction (success/failure) and
the return value(s) (if any) match the fault-free runs.

Regarding integrity evaluation, the key aspect involved is
to verify the ledger integrity, which can be done by com-
paring the read/write sets of each transaction executed by a
faulty contract with that of the reference contract. Integrity is
maintained only if all key-value pairs in the read/write sets
are exactly the same. In this work, the integrity verification is
done using the transaction read/write set feature of Hyper-
ledger Fabric [16], in a way that it neither interferes with
workload execution nor requires additional instrumentation
and potential change coverage checking (as getter functions
would). Although such changes could be detected to some
extent by getter functions on the contract, the read/write sets
allow us to catch parasite side effects as well.

IV. EXPERIMENTAL EVALUATION
This section presents the implementation of the approach
outlined previously. It explains how target smart contracts
are selected and prepared for testing, how fault injection is
implemented, how workload is generated and executed, how
formal verification is executed, and how the test and formal
verification results are analyzed.

A. SMART CONTRACT SELECTION AND PREPARATION
To the best of our knowledge, neither a definitive
general taxonomy for smart contract functionality nor repre-
sentative smart contract sets for security assessment, formal
safety/liveness analysis, or dependability analysis exist yet.
The existing business use cases and token taxonomies, while
useful, do not provide meaningful source code template
libraries. Thus, we started by selecting five commonly-used
contracts (i.e., representative in this case), also with the
intention of covering a large cross-section of smart contract
use cases. For each of the five base contracts, we actually
generate an unprotected version and a fully protected version
of it, leading to a total of 15 smart contracts, in a process
described in the next paragraphs. The five base contracts used
as a basis for our experiments are the following:
• State Machine: The state machine contract [55] real-
izes a supply-chain use case, where a single product
is tracked across multiple parties. A temperature and
humidity sensor constantly reports readings about the
conditions of the product. The contract tracks whether
the transport conditions satisfy predefined compliance
criteria. This contract is representative for the permis-
sioned state machine/business process of the distributed
ledger world. It is typically deployed on permissioned
and private blockchains [37].

VOLUME 8, 2020 190767



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

• Wallet: The wallet contract [56] realizes a simple Ether
store, where users of the contract can deposit and with-
draw Ether. It is representative of bank-like ‘‘cryptocur-
rency wallet’’ and refundable escrow functionalities
from the cryptocurrency domain. It is typically deployed
on unpermissioned and public blockchains. It is worth
noting that its implementations include the reentrancy
bug that is the cause of the DAO hack [11].

• Token: The token contract [56] implements the impor-
tant aspects of an ERC20 standard-compliant fungible
token [57], which has a limited supply and can be trans-
ferred between users, either individually or in batches.
It is representative of a very general pattern found across
smart contracts [58].

• Refund Escrow: The escrow contract [59] makes it
possible for an escrower (the contract owner) to manage
deposits incoming from multiple sources for designated
payees. The contract also provides operational states like
enabling/disabling refunding and withdrawal for a ben-
eficiary user. It is typically deployed on unpermissioned,
public blockchains.

• Storage: The storage contract [56] provides a permis-
sioned key-value storage for users to store informa-
tion encoded as integers, which is associated with their
accounts. The contract has a designated administrator
who has access to every storage slot regardless of own-
ership.

As mentioned, for each of the above 5 base contracts,
we actually have the following different versions (described
in further detail in the next paragraphs).
• Base contract: The original unmodified contract, just as
described previously;

• Stripped contract: A modified version of the origi-
nal contract, where protection mechanisms have been
explicitly removed for evaluation purposes.

• Protected contract: A modified version of the original
contract, where additional protection mechanisms have
been added.

Each of the base smart contracts contains a ‘‘reasonable’’
level of defensive mechanisms (e.g., using require state-
ments for error detection purposes), which stem from the
business purpose of the contract (e.g., for input checking
or access control), under the assumption that the implemen-
tation and their execution is fault-free. Solidity, as a lan-
guage, provides assertion-style error detection mechanisms,
and EVM error detection covers some basic situations as,
e.g., array indexing out of bounds. For handling the detected
errors, Solidity uses state-reverting exceptions, and EVM
safely reverts all changes made to the state. In general, excep-
tions can emanate from the following situations: i) Invalid
operations in-contract, such as misindexing arrays; ii) Errors
with calling/creating other contracts and certain ledger opera-
tions; iii) Failing application-level checks using the assert,
require and revert statements [14].

The stripped smart contracts were created to allow us
to understand the impact of faults on contracts that lack

protection mechanisms. If an unprotected contract may be
used to harm the overall system, it is essential to understand
the potential impact of the presence of a specific software
fault. The stripped smart contracts were created by simply
stripping out the require statements from the base con-
tracts.

Finally, we generated fully protected smart contracts,
mostly as a way of understanding if such mechanisms could
be sufficient to protect the contracts from certain types of
faults. The protected smart contracts were created through
the following two types of modifications. First, we include
assert statements into each function as post-conditions
(i.e., checked directly before the return of the ‘‘protected’’
functions). The assertion predicates were created manually,
after carefully considering the valid and invalid function-local
and contract states after execution. It is worth noting that none
of the five selected contracts include assert statements.
Second, where applicable, we extend each function to return
part of its ledger side effect as a return value. Originally, most
functions of the five selected contracts terminate without
returning any values. The intention of these twomodifications
is to obtain a superior contract (in terms of error detec-
tion/mitigation) as, on the one hand, failed assertions sup-
press integrity-compromising state changes (at the expense of
accessibility - failing calls do not modify the ledger); on the
other hand, return values allow blockchain clients to perform
error/failure detection themselves. In blockchain systems like
Hyperledger Fabric, a client can choose to abandon a trans-
action after execution, but still before commitment. Note this
latter case (i.e., error/failure detection by clients) may be
only theoretically feasible, as, in practice, factors ranging
from constrained resources to the need to use gateway-based
blockchain access can prevent clients from cross-checking
expected and actual ledger modifications.

Given the above descriptions, we call a base smart contract,
its stripped version, and its protected version a contract
family.

B. FAULT INJECTION IMPLEMENTATION
The faults defined in the fault model presented earlier in
Section III-B are injected into all versions of the selected
smart contracts resulting in multiple faulty versions of each
original smart contract. A faulty contract will carry exactly
one single artificially introduced fault. Smart contracts writ-
ten in Solidity have to be compiled to bytecode using a
compiler tool like Solc [60]. Solc generates an abstract syntax
tree (AST) from the solidity source code, which can be easily
manipulated to emulate faults. We have implemented fault
injection as a series of transformations over the generated
abstract syntax tree of the smart contracts, which is extracted
from the Solc compiler [60].

Each fault is defined by a condition and an action. We read
the AST, and whenever the specified condition holds for a
given AST node, we transform it using the action. For exam-
ple, to inject a Missing if construct around statement (MIA)
fault, the condition checks whether the current node being

190768 VOLUME 8, 2020



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

analyzed is an if statement. If the condition holds, the action
replaces the node with its children (i.e., the body of the if
statement).

Sometimes there are multiple candidates, within the same
smart contract, that can be used for injecting a certain fault
(i.e., multiple nodes matching the condition). Whenever this
occurs, we generate one faulty contract for each of the match-
ing locations, resulting in several mutated contracts (again,
we emphasize that each contract will hold a single fault).
After injecting the faults, we then serialize the ASTs back
to Solidity source code so that it can be compiled to bytecode
and deployed on the blockchain.

C. WORKLOAD GENERATION
During our experiments, we evaluated the feasibility of using
automatically generated call sequences (i.e., a random work-
load). On the one hand, due to certain typical characteris-
tics of Solidity smart contracts (e.g., only a few addresses
actually having test-transferable tokens in deployed and
test-initialized smart contracts), an automatic test case gen-
erator tends to create an unacceptably high ratio of calls that
fail by specification. Thus, in this context, the high number
of failing ‘‘garbage’’ transactions (due to their randomness)
would shadow the interesting failures occurring in regular
user-contract interactions. On the other hand, certain software
faults can only be triggered by very specific input sequences.
For these reasons, we manually defined a workload
(i.e., a sequence of calls), exercising the target functions to
observe the potential effects of the injected faults in every
contract mutation. The construction of the workload was
based on the combination of basic black-box and white-box
testing principles.

Regarding the black-box perspective, we used the speci-
fication and the interface, to uncover the following aspects
of each contract: i) the actors interacting with the contract;
ii) the classification of functions based on whether they have
side-effects on the ledger state or not, i.e., transaction and
query functions, respectively; and iii) the input parameter
space of individual functions. Based on these aspects of the
contracts, and from a black-box perspective, the workload is
generated as follows.

- Issue transaction function calls by mixing the actors
and parameter value space (detailed in the following
paragraphs).

- Issue thewhole set of available query function calls. This
mimics user-initiated self-check queries.

- For both transaction and query function calls, use multi-
ple actor identities, starting with the actors who should
not be allowed to perform the given action.

- When a function has input parameters, use equivalence
partitioning and interval testing principles to exercise
the function with meaningful inputs. Equivalence par-
titioning typically splits the domain of an input param-
eter into valid and invalid partitions (derived from
the business logic), allowing testers to pick a single
value from each partition as a representative input.

Interval testing picks additional values from the parti-
tions/ranges, usually from around their boundaries (if
defined) to catch off-by-one errors. The combination
of the two approaches reduces the number of required
function calls for building a representative test sequence.

We also considered a white-box perspective, whenever the
contract exhibited a state-machine-like (or workflow-like)
behavior. We first construct the state transition graph of the
contract by inspecting its implementation. The transitions in
the graph drive the test sequence construction to achieve the
highest possible state and transition coverage. Note that the
complete coverage by a single test sequence is impossible if
the state transition graph of the contract has multiple terminal
strongly connected components (e.g., multiple sink states).

It is worth mentioning that, for the sake of readability,
we do not differentiate between transaction and query func-
tion calls in the remainder of the paper. Note, however, that
query function calls do not produce a read-write set and only
the endorsement phase of the Fabric consensus applies to
them.

D. TEST HARNESS AND EXECUTION
Our experimental environment is a highly instrumented
Hyperledger Fabric lab deployment, equipped with the
Ethereum Virtual Machine (EVM) implementation of Hyper-
ledger Burrow. The environment uses Hyperledger Caliper
for most experiment automation tasks. We use the environ-
ment to perform test runs: executing the contract family
workload (test sequence) of a specific mutation. In our envi-
ronment, the execution of a test run follows the order below.

1) The system is (re)initialized, meaning that the Hyper-
ledger nodes (endorsers and orderers) are set (or reset)
in a clean initial state, with an empty blockchain and
the Burrow EVM support installed. Then, the con-
tract under assessment is deployed onto the endorsing
peers and the appropriate accounts are filled with local
Ether to provide transferable cryptocurrency for certain
contracts.

2) For each transaction in a test sequence of a contract
family:
a) The (Caliper) client sends the transaction request

to each endorsing peer.
b) The endorsing peers forward the call to the EVM

implementation, running fenced-off in a Docker
container.

c) If the EVM execution terminates without error,
the read-write sets are sent back to the client.
Otherwise (upon EVM error, or if the Fabric peer
terminates processing after the specified timeout)
the client receives an error signal.

d) If all endorsements permit (i.e., n-out-of-n con-
sensus), the client sends them to the ordering ser-
vice, which immediately creates a one-transaction
block and distributes that to the peers for com-
mitment (inclusion in the current ledger state).
It is worth noting that, while strictly sequential

VOLUME 8, 2020 190769



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

TABLE 3. Contract statistics by families and variants.

transaction execution with one-transaction blocks
and n-out-of-n consensus are not production-typical
for Hyperledger Fabric, for our purposes these are
admissible and useful simplifications.

e) The client proceeds with the next transaction only
if the pending has been committed or can be
deemed failed.

During the test runs, detailed transaction-level data is col-
lected frommultiple sources. Caliper/client-side observations
provide the majority of transaction details, such as timing
of life-cycle phases, side effects returned by the platform
and general status information, for example, errors in case
of unsuccessful endorsement. Low-level EVM runtime data
is also collected from contract-side logs.

The collected data set is post-processed to match and com-
pare the transactions of faulty contracts to their corresponding
transaction pair in the reference contracts. The key compari-
son points are detailed in Section IV-G.

E. FORMAL SPECIFICATION AND VERIFICATION
For performing the formal verification, we execute a formal
verification tool, namely solc-verify [36], over the smart
contracts. Solc-verify is an automated modular verifier for
Solidity smart contracts. It takes contract source code anno-
tated with specifications (e.g., contract invariants, pre- and
post-conditions) and discharges verification conditions using
modular program verification and SMT solvers. Solc-verify
targets the functional correctness of contracts and checks for
possible assertion violations (Solidity assert statements)
and overflows as implicit specification. Moreover, it has a
feature for additional specifications such as:

- Contract invariants that must hold after the constructor,
and before and after every transaction;

- Function pre- and post-conditions that are assumed
before the function and checked after the function;

- Loop invariants to specify loops with expressions that
must hold before, after and in every iteration;

- Modification specifiers for fine grained specification of
the contract state that a function can modify.

In this work, for each contract family, a single set of spec-
ifications is created and used to annotate the base contracts,
the stripped, and the protected contracts. The specifications
are created manually for each base contract, using the facili-
ties (invariants, preconditions, etc.) described in Section III-E
and [36]. Table 3 presents key statistics about the number of
assert and require/revert statements, and the formal specifica-
tion constructs for each family.

Solc-verify translates each smart contract into an inter-
mediate verification language [53] and performs modular
verification [52], i.e., for each function it is checked whether
its specification (e.g., invariants, post-conditions, assertions)
hold, given the pre-conditions. The main feature that makes
modular verification efficient is that when a function calls
another one, the callee is replaced with its specification.
However, thismight introduce false alarms if the specification
is not detailed enough. Note that, as solc-verify targets func-
tional correctness (i.e., safety property and not liveness [36]),
a contract that always reverts is considered correct (or safe)
by the verifier.

F. VERIFICATION AND PROTECTION LEVELS IN SMART
CONTRACTS
Our experiments resemble, from a verification perspective,
the life-cycle of a smart contract. Thus, some of the injected
faults might be captured at different levels. In our experimen-
tal setup that is using Hyperledger Fabric running Solidity
smart contracts using the Hyperledger Burrow EVM, this
translates to the following 4 protection levels (i.e., including
formal verification). Note that names in bold denote the
terminology used in the figures presented in next section.

- Formal verification: applied before deployment
(e.g., static analysis), it may detect a certain portion of
existing faults before.

- Contract self-check: specification-derived defensive
programming constructs in the source/byte code (e.g.,
require statements in Solidity) and additional pro-
tective measures present in the source code (e.g., error

190770 VOLUME 8, 2020



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

detection by invariant checking directly before function
return using assert statements).

- Runtime platform check: error detection mechanisms
in the EVM runtime implementation (e.g., detection of
array out of bounds indexing, insufficient Ether balance
for transfer requests, invalid address format, or runaway
execution depleting gas) and error detection mecha-
nisms in Hyperledger Fabric – execution attempt time-
out detection and result matching over the endorsing
peer set. Both contract self-checks and runtime platform
checks provide error detection and processing; and in
our case, limited fault tolerance through what is effec-
tively a rollback of the affected smart contract call.

- Output invariant check: a blockchain client may be
also able to detect an execution error based on the
return values it receives (assuming the availability of
an appropriate test oracle). In general, it has, at least,
failure detection capabilities (after a transaction has
been committed to the ledger), given the necessary
output-based observability and test oracle. Additionally,
in a blockchain system where the client can also be
involved in transaction consensus – as is the case with
Hyperledger Fabric – the client can also choose to abort
the transaction attempt.

G. RESULT ANALYSIS
As described above, each faulty contract is executed against
its family-specific workload. Contract execution was per-
formed exactly once for each test case; repeating the experi-
ments showed a very high level of determinism (as expected,
slight differences arise only in timing and ‘‘runaway’’ execu-
tion terminations).

The guiding principle of our assessment of the test case
executions is that we aim at comparing behavior during
executions on a faulty contract versus its corresponding
fault-free reference. For instance, the execution behavior
of a faulty protected contract should be compared to the
execution behavior of the fault-free protected contract, and
for the same workload. Analysing runtime behavior of the
faulty contracts without comparing it to the corresponding
reference run would not be meaningful as some test sequence
steps are intended to fail also in baseline and protected cases
(e.g., authorization checking).

In each execution, a transaction is deemed successful if and
only if i) all of its endorsements are successful and matching
and ii) it is successfully ordered and reported as committed
by all endorsing peers. Additionally, formal verification was
performed for each faulty contract, taking into account the
supplied, contract family-specific verification properties as
well as the require and assert statements present. The
resulting observations that we subject to data analysis include
the following key characteristics and error/failure model for
each faulty contract version
• Observation identifier: which includes contract family,
version (i.e., base, stripped, protected), fault ID, muta-
tion instance ID.

• Source code formal verification result: which indi-
cates whether the fault-free and faulty contracts were
successfully distinguished by the formal verification
tool. The result is reported as true positive, true nega-
tive, false positive, or false negative. Note that the true
positive verification results indicate the caught faulty
mutations. Contract execution results are important for
the remaining cases (the false and true negatives).

• Abort failure: the result is a Boolean (true or false) that
indicates whether therewas at least one transaction in the
faulty contract that was aborted, while the reference case
did not fail. Abort failure shows that contract or platform
checks detected at least one transaction invocation fail-
ure correctly. Specific error codes [61], which are not
documented here, allow us to distinguish between the
contract-level and platform-level checks’ success or fail-
ure. Note that failing ‘‘normal’’ checks (e.g., require
statements) can also be distinguished from the source
code fault indicating error detecting ones. This failure is
detectable by the client.

• Gas depletion or Fabric timeout: it indicates that a
transaction call in the faulty contract failed through a
rollback of the affected smart contract call due to gas
depletion or Fabric timeout, while it did not happen
in the reference run. Gas depletion and Fabric timeout
respectively occur by EVM runtime implementation and
error detection mechanisms in Hyperledger Fabric pro-
tection mechanisms.

• Reliability failure: the result is a Boolean and indicates
whether there was at least one transaction in the faulty
contract with a different result or return value than the
reference contract. Reliability Failure indicates (theoret-
ically) client observable failures during output invariant
checks.

• Integrity failure: the result is a Boolean that indicates
whether there was at least one successful transaction in
the faulty contract with a different result or return value
and a different read-write set (i.e., the faulty contract
modified the state of the blockchain differently from the
reference contract) than the reference contract. In this
situation, the ledger integrity failure is also detectable
by the client.

• Latent integrity error: the result is a Boolean that
indicates whether there was at least one successful trans-
action in the faulty contract with the same result or return
value but a different read-write set than the reference
contract. In this situation, the ledger integrity error stays
hidden and cannot be directly detected by the client as
the client receives the expected result or return value.

• Ineffective: the result is a Boolean that indicates
whether the result, return value, and read-write set of all
transaction calls of the faulty contract are same as of the
reference contract.

In fact, faulty contracts passing even output invariant
checks constitute cases where the injected fault remains
undetected – i.e., no fault-indicative error state is detected.

VOLUME 8, 2020 190771



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

TABLE 4. Error/failure model and its characteristics.

These undetected faults are either ineffective, or, on the con-
trary, constitute latent integrity errors.
The error/failure model, including the effects of smart con-

tracts faults, and its characteristics are summarized in Table 4.
In this table, to simplify, the effects of fault are categorized
into three groups: i) Transaction not concluded; ii) Incorrect
return value or transaction result; iii) Incorrect ledger state.
When an Abort failure occurs, for any reason [61], neither a
value or transaction result is returned to the client, nor any
changes are made in the state of ledger. The transaction is
simply not concluded and some sort of exception or error
message is given to the client allowing to detect the failure.
When a Gas depletion or Fabric timeout occurs, same as
Abort failure, no value is returned and no changes to the
ledger state are made. In this case, the fault causes spending
more resources in terms of time and gas. Thus, the transaction
is not concluded due to the lack of gas or system timeout.With
Reliability failure, the transaction is concluded but the return
value or transaction result is incorrect, although the state of
the ledger is still correct. In contrast, when an Integrity failure
occurs, in addition to incorrect return value or transaction
result, the integrity of the ledger state is violated as well.
Either the lack of a valid result (in the case of Abort failure
andGas depletion or Fabric timeout) or an incorrect result (in
the case of Reliability failure and Integrity failure) allows the
client to detect the above issues. While in the case of Latent
integrity error, the integrity of the ledger state is violated
but, since the return value to the client is correct, it remains
undetected by the client. A fault is ineffective when the faulty
contract behaves exactly same as the reference contract.

V. RESULTS
This section presents the results obtained during our exper-
imental evaluation. It first overviews the effects caused by
the different injected faults. Then, we evaluate the effective-
ness of formal verification and other protection mechanisms.
Finally, we describe the preliminary performance evaluation
results.

A. FAULT EFFECTS OVERVIEW
We begin by presenting the distribution of injected faults and
their impact in terms of the error/failure model, previously
defined in Section IV-G, andwith respect to the base contracts
only, as they are the most realistic versions. Fig. 3 to Fig. 6
show the distribution/impact of the faults, listed from themost
frequent to the least frequent ones in the x-axis. For instance,

Wrong Algorithm (WALR), which is the most frequent fault,
is present in many of the faulty contracts and Wrong Arith-
metic Expression Used in Assignment (WVAE) is present in
just a few faulty contracts. The frequency of the faults pre-
sented in Fig. 3 to Fig. 6 does not directly imply the frequency
of the mistakes that developers usually make but relates to
the number of possible places in the typical contracts’ code,
in which each type of fault may appear. The faults that are not
present in the figures did not appear in any base contract. The
very first observation is that, in general, the generic faults are
more frequent than smart-contract specific faults.

Each of the four plots shows the number of times (i.e.,
the number of faulty contracts with a specific fault) each
individual fault caused a specific problem regarding the
error/failure model. For instance, Fig. 3 shows that from the
53 base faulty contracts with the Wrong Algorithm (WALR)
fault, abort failure occurred in at least one of the transactions
executed against 14 faulty contracts (red part in the figures),
and as shown in Fig. 4, reliability failures occurred in at
least one of the transactions of 10 faulty contracts, and so
on. Note that each fault may cause more than one failure
and error in the same contract. In total, 71 injected faults
caused abort failures; 145 injected faults caused reliability
failures, 122 injected faults caused integrity failures; and
90 injected faults caused latent integrity errors in at least one
of the transactions executed against the faulty contracts. Thus,
reliability failure is themost frequent failure, and abort failure
is the least frequent one.

As we can see in Fig. 3 to Fig. 6 Missing function call
(MFC) is highly frequent and most errors and failures, spe-
cially reliability failures and integrity failures, are caused due
to this fault (a total of 82 failures/errors). Latent integrity
error that is the most serious issue, is mostly caused by
Missing variable assignment using an expression (MVAE)
and Missing function call (MFC). On the other hand, Miss-
ing require OR subexpression on input variables (MROIV)
is the only one that did not cause any failure or error; it
was not a frequent fault in base contracts and when hap-
pened, did not cause any failure or error. Wrong arith-
metic expression used in assignment (WVAE) is not frequent
either but, when occurred, caused all kinds of failures and
errors.
Wrong logical expression in parameters of function call

(WLEP) is present in 16 faulty contracts and in all cases trig-
gered a reliability failure. Missing return statement (MRS),
Missing if construct around statement (MIA), and Wrong

190772 VOLUME 8, 2020



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

FIGURE 3. Faults’ impact in terms of abort failure.

FIGURE 4. Faults’ impact on reliability.

logical expression used as branch condition (WLEC) also
mostly caused reliability failures.

Among smart contract-specific faults, Missing require
on input variables (MRIV) and Missing call to SafeMath
(MCSM) are more frequent faults. Missing require on trans-
action sender (MRTS), Wrong logical expression in require
over input variables (WRIV), Wrong logical expression in
if construct over input variable (WIIV), and Wrong logi-
cal expression in require over transaction sender (WRTS),
although not being very frequent, caused reliability and
integrity failures in all faulty contracts in which they were
injected.

B. BASE CONTRACT RESULTS
We visualize the sequence of successively escaping faulty
contracts using Sankey-like diagrams. In these diagrams, blue
rectangles represent protection mechanisms, and ellipses are
classification of system output, referring to cases where a
given contract was indeed labeled as faulty at a given phase.
The order of steps is quite typical, representing a suggested
development workflow and the protection logic of EVM,
while the thickness of the lines shows the ratio of contracts
passing a check. First, we analyze the detection results for all
faulty instances of the base contracts, measured as described
earlier (refer to Section IV-F and Section IV-G).

VOLUME 8, 2020 190773



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

FIGURE 5. Faults’ impact on ledger integrity.

FIGURE 6. Faults’ impact in terms of latent integrity error.

Fig. 7 shows the number of faulty base contracts eluding
the different detection phases, but assuming that no formal
verification is performed before deployment, while Fig. 8
shows the number of faulty contracts escaping detection at
the different phases, which include verification as part of the
workflow. The number of generated faulty base contracts is
268, which is visible at the left side of Fig. 7 and Fig. 8.
When verification is part of the workflow (see Fig. 8), all

faulty contracts are first subject to formal verification, which
detects 159 faults out of 268 (59% of all faulty contracts). The
next step, contract-level self-check, expressed in the form of
require and assert constructs, catches faulty contracts where
a transaction terminated with an endorsement result different
from the reference run. Contract-level self-check detects 37
out of 110 faults (which is 14% of all 268 faulty contracts)
that remained undetected by formal verification.

The next step involves platform-level runtime checks.
These checks refer to built-in EVM and Hyperledger error
detection mechanisms (e.g., detection of a timeout, out-of-
bound array addressing, etc.). Violating such checks corre-
sponds to a behavior, in which a non-FT environment could
result in severe failures, including system crashes. In the
current experiments, no faulty contracts were detected by
these checks.

The last level of protection mechanisms is the client-side
validation of results (i.e., output invariant check in Fig. 7 and
Fig. 8). In total, 13 out of 73 faults (5% of all faulty contracts)
that remained undetected by previous verification and checks
were detected in this final step. In general, the remaining
faults which are undetectable by this step either cause latent
integrity errors or are ineffective. The first case represents
the most critical class of failures referring to a contract which

190774 VOLUME 8, 2020



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

FIGURE 7. Fault detection in base contracts without formal verification.

FIGURE 8. Fault detection in base contracts, with formal verification.

may produce corrupted, uncovered ledger content, while
mutants having only ineffective faults cannot be distinguished
from the reference (i.e., their injection, in combination with
the workload, did not produce any change in the contract
behavior). In the case of baseline mutants with formal ver-
ification (refer to Fig. 8), all 60 remaining faults (22% of all
mutants) are ineffective.

The results, presented in Fig. 7 and Fig. 8, suggest that
for contracts with ‘‘reasonable’’ protections (i.e., the base
contracts, which apply simple defensive programming
techniques), verification and runtime checks are comple-
mentary techniques for detecting faulty contracts with
potentially effective faults. On the one hand, formal ver-
ification applied to the faulty contracts caught only 59%
of the faults. On the other hand, verification does fil-
ter out those 14 faulty contracts (5% of all mutants),
which led to latent integrity errors without verification
(see Fig. 7).

Faults that are not ineffective, but pass verification and
self-checks are typically related to liveness or insufficient
specification. In the former case (liveness), faults cause to
revert transactions that should not revert. Formal verification
currently targets safety property (and not liveness) and does
not detect such issues. Furthermore, self-checks have no
chance to catch these issues as the transactions are reverted
before the checks. In the latter case, the specification was not
sufficient enough, e.g., for the state machine contract, we did
not specify the expected behavior for all the (roughly 20) state
variables.

One particularly interesting case escaping both verification
and self-checks was the missing auto increment for loop
variables. This caused an infinite loop that was forcefully
terminated by the ledger. Catching this error in Solc-verify
requires reasoning about termination (which is complicated
and not supported, at the time of writing), and catching
them by self-checks would require complex assertions on the
progress of loops.

Note that latent integrity errors are arguably the worst
failuremode for distributed ledgers. As ledgers are essentially
built over distributed databases, their generally expected
operational model explicitly rules out transaction rollback.
As a consequence, to repair data corruption, the only viable
options are governance processes (by blockchain peer con-
sortium) and embedding compensatory mechanisms into the
on-chain workflows.

We deem the significant ratio of ineffective faults nor-
mal. Solidity smart contract testing has to deal with the vast
Ethereum address space; until such time that symbolic auto-
mated test pattern generation becomes available for Solidity
and/or the EVM, the only viable option is to, as we did,
manually define the workload to be used. Evaluating test
coverage is part of further research.

Fig. 9 presents the results of the effectiveness of formal
verification and fault detection mechanisms in the faulty base
contracts, by showing in which detection phase the injected
faults are detected. Results show that Missing function call
(MFC) and Missing variable assignment using an expres-
sion (MVAE) that causes more severe failures, and errors

VOLUME 8, 2020 190775



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

FIGURE 9. Effectiveness of formal verification and protection mechanisms on each fault in the base contracts.

are mostly detected by formal verification. Similarly, Wrong
logical expression in parameters of function call (WLEP),
Missing return statement (MRS), and Wrong logical expres-
sion used as branch condition (WLEC) (that cause reliability
failures in most cases) are also mostly detected by formal
verification. However, formal verification does not seem to be
very effective in cases likeMissing if construct around state-
ment (MIA). On the other side, contract self-checks appear to
be effective in detecting this fault.

Among all faults, Missing return statement (MRS) is
the one that, after applying formal verification and pro-
tection mechanisms, causes more reliability/integrity fail-
ures, but is detectable by the client (red bar in the figure).
Among other problematic smart contract-specific faults,
Missing require on transaction sender (MRTS), Wrong logi-
cal expression in if construct over input variable (WIIV), and
Wrong logical expression in require over transaction sender
(WRTS) are fully detected by formal verification. However,
the same does not happen with Missing call to SafeMath
(MCSM) and Wrong logical expression in require over input
variables (WRIV).

The final general observation is that, after applying ver-
ification and protection over the base contracts, only a few
faulty contracts (13 out of 268, shown in red) cause reliability
or integrity failures and all these cases are detectable by the
client. Obviously, the difficulty lies in applying the correct
mechanisms at the correct time, and fault injection may help
in this regard by identifying cases for which developers must
pay special attention.

C. PROTECTED CONTRACT RESULTS
Fig. 10 and Fig. 11 show the number of faulty protected
contracts escaping detection at the different phases (with a

total of 279 protected faulty contracts). Fig. 10 refers to the
case where formal verification is used, whereas in Fig. 11
verification was skipped. The different number of faulty
contracts is due to slight differences in source code. While
assert statements are not subjected to faults, their support-
ing modifications are.

In comparison to the base contracts’ case presented in the
previous section, the following three main findings can be
formulated.

- Assuming no verification, even ‘‘cheap’’ and simple
post-condition checking (on-chain and client) signifi-
cantly reduce the ratio of latent integrity errors, and the
significance of client-side checks is slightly reduced.

- Verification becomes significantly more effective; it can
use the protective statements as additional implicit spec-
ification. However, we also experienced false positives
for the Token contract, due to the verifier not being able
to prove assertions in a loop.

- Combined verification and runtime checks eliminate
latent integrity errors in both cases, and could also
reduce the number of client observable faults.

Fig. 12 illustrates the results of the effectiveness of formal
verification and fault detection mechanisms for the protected
contracts. The types of faults that could be injected into the
protected contracts are exactly the same as the faults that are
injected into the base contracts, although their order in terms
of frequency is slightly different due to the specificities of the
additional protection mechanisms present in the code.

After analysing Fig. 12 and Fig. 9, we observed a very sim-
ilar pattern regarding the effectiveness of the formal verifica-
tion and protection mechanisms across these two groups of
contracts. However, after applying verification and protection
to the protected contracts, a lower number of faulty contracts

190776 VOLUME 8, 2020



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

FIGURE 10. Fault detection in protected contracts without formal verification.

FIGURE 11. Fault detection in protected contracts with formal verification.

FIGURE 12. Effectiveness of formal verification and protection mechanisms on each fault in the protected contracts.

(6 out of 279, shown in red) caused reliability or integrity
failures (detectable by the client), when compared to the base
contracts.

D. STRIPPED CONTRACTS RESULTS
Fig. 13 and Fig. 14 show the number of faulty stripped
contracts escaping detection at the different phases
(out of 104 stripped faulty contracts), without and with

formal verification, respectively. As shown, for stripped con-
tracts without verification, more than half of the mutants
results in client observable failures, as contract self-check
and some built-in EVM mechanisms (like balance check)
can catch only a few of the injected faults (10% in total).
From the remaining faulty contracts, 13% of them result
in latent integrity error, which is quite high. Formal ver-
ification, on the other hand, catches 97% of the faulty

VOLUME 8, 2020 190777



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

FIGURE 13. Fault detection in stripped contracts without formal verification.

FIGURE 14. Fault detection in stripped contracts with formal verification.

FIGURE 15. Effectiveness of formal verification and protection mechanisms on each fault in the stripped contracts.

contracts, and only one (ineffective) fault passes all protection
mechanisms.

The results, on the one hand, confirmed our presupposition
that eliminating even the basic runtime precondition checks
leads to unacceptable levels of latent integrity errors. On the
other hand, as we used the same precondition specifications

for all contracts in a family, verification could trivially find
counterexamples in all cases due to the missing require
statements.

The above observation is confirmed in Fig. 15, which
presents the results of the effectiveness of formal verification
and fault detection mechanisms for the stripped contracts.

190778 VOLUME 8, 2020



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

As we can see, a smaller number (i.e., when compared to
the base or protected contracts) of types of faults could be
injected into stripped contracts. Themain aspect visible is that
almost all cases are detected by formal verification.

E. VERIFICATION EFFECTIVENESS
During our experiments, we observed latent integrity
errors, but only when formal verification was not applied
(i.e., 3 latent integrity errors in the protected contracts and
14 in the base contracts). We investigated all cases and came
to the conclusion that all latent integrity errors were caused
by missing constructs, for example missing variable initial-
izations or missing subexpressions in the conditions of if
statements. While the errors could have also been avoided
with more protection, we observed that writing formal spec-
ification was, in some cases, more efficient than writing
extra protection. For instance, instead of defining invariants
individually at the function level, contract-level constructs
can also be applied [36].

To evaluate the effectiveness of verification and the impact
of additional protections, we summarized the results by com-
paring the recall values of base and protected variants. Recall
is calculated by dividing the number of detected faulty con-
tracts (true positives) over the total number of faulty con-
tracts (the sum of true positives and false negatives). Table 5
presents the ‘‘verification recall’’, evaluated for different
groups of faulty contracts with common error/failure effects
(e.g., faulty contracts causing ledger integrity violation, faulty
contracts causing reliability failures).

TABLE 5. Verification recall for faulty contracts with different
error/failure effects.

Results show that runtime protections added to the pro-
tected contracts, acting as additional specification, improve
the effectiveness of formal verification (i.e., recall increases)
in almost all cases. Hidden side effects are the exception.
The reason for the lower recall, in this case, is that the
‘‘return value introduction’’ protective measure changes the
‘‘hidden side effects’’ baseline failure category of a number
of mutants through increased observability (as also expressed
in Fig. 8). Ratio-wise, the remaining cases of the protected
mutants (no new ones introduced) become harder to catch
with verification.

Due to restrictive default Burrow settings in the measure-
ment setup, Fabric timeouts (1 second) were never engaged;
thus, the ‘‘EVM gas depletion or Fabric timeout’’ cases actu-
ally only ever exercised the EVM mechanism that limits the
number of computational steps. While verification caught all

such cases (e.g., infinite loops), we performed a dedicated
experiment to also measure active Fabric-level protections,
which is presented in the following section (Section V-F).

F. PRELIMINARY ASSESSMENT OF BLOCKCHAIN
PERFORMANCE
As a complement to the experimental evaluation, we car-
ried out a set of additional experiments of anecdotal nature,
aiming at understanding performance issues related to the
execution of faulty contracts. Performance evaluation allows
us to understand if there are significant changes in the exe-
cution time of faulty smart contracts when compared to
their reference counterparts. Protection mechanisms defined
in the blockchain system (e.g., the definition of gas limit)
do not allow smart contracts to execute indefinitely. Hence,
performance problems can eventually be transformed into
correctness problems (i.e., failed transactions). Additionally,
and especially in permissioned systems, the different resource
usage profiles of faulty contracts may have an impact on over-
all blockchain system performance and availability through
resource contention. In this work, performance evaluation is
mainly concerned about the execution time of transactions.

We performed our experiments using the Token base con-
tract, with an infinite loop fault in its batchTransfer
function and no faults in its transfer function (standard
token management functions). The test sequence calls i) the
fault-free function 400 times (warm-up fault-free period) to
be used as reference and baseline behavior of the system for
the comparison; ii) the faulty function 200 times; and iii)
the fault-free function 400 times again to be compared with
reference runs in order to understand how the faulty runs
impacted on the execution time of the fault-free function.
The calls were all data-independent. Burrow was reconfig-
ured to enable execution to hit (and possibly far exceed) the
Fabric timeout, but the measurement environment otherwise
remained unchanged. The numbers 400 and 200 are arbitrar-
ily chosen but in a way that lets us observe the behavior of
the system long enough.

Fig. 16 shows the client-perceived transaction times as
well as the call execution time measured inside the EVM
through additional instrumentation. The colors distinguish
the two functions: red for the faulty function and blue for
the fault-free function. As illustrated by the figure, upon
switching to the faulty function, end to end transaction time
increases to around 1 s (the Fabric timeout), and transac-
tions fail; however, when the workload switches back to the
fault-free function, for approximately 14 seconds, it remains
at 1 second before regaining the nominal value (and trans-
actions begin to succeed). At the same time, EVM execu-
tions are not actually terminated in the containers, leading
to increased resource contention.

Evidently, this is a resource management bug in the
blockchain environment (CPU-overloading runoff executions
are not terminated and garbage-collected in a timely manner).
The significance of this phenomenon in our context is that it
demonstrates that, in general, we cannot blindly rule out the

VOLUME 8, 2020 190779



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

FIGURE 16. End-to-end transaction (attempt) times and Burrow EVM execution times in the timeout campaign (red:
faulty, blue: fault-free function).

possibility of smart contract faults having an extra-functional
impact on the execution platform and other smart contracts;
especially in ‘‘business’’ blockchains that run more complex
and comparatively less security and resilience vetted platform
software than the public ones.

VI. THREATS TO VALIDITY
In this section, we present the main threats to the validity
of this work and discuss mitigation strategies. We start by
mentioning that the number and types of smart contracts used
in this work are limited. We are also aware that libraries
for domain-specific smart contract development, such as
OpenZeppelin or Hyperledger Grid, are rapidly matur-
ing. Smart contract development is also increasingly utiliz-
ing domain-specific languages and generative/interpretative
techniques, as available for, e.g., DAML and Hyperledger
Concerto. We plan to apply the techniques introduced in this
article for these technologies and over a broad set of smart
contracts in further research.
Our mutant generation approach can introduce some

mutations that lead to code that is strictly behaviorally
equivalent to the reference (e.g., swapping two subsequent,
data-independent, non-control statements or removing a local
overflow check, which is not necessary due to additional
global checks). Although it is not affecting the assessment
results, filtering these out duringmutation generation is ongo-
ing work to avoid duplicate executions.
The defensive mechanisms studies in this work are lim-

ited to formal verification and some additional Solidity- and
platform-level protection mechanisms, which are the most
popular mechanisms. However, further research will target

investigating the effect of introducing further defensive tech-
niques as business-logic derived runtime assertion checks,
N-version programming, or, indeed, much of the wide range
of fault-tolerant software patterns [62]. These can prove
especially important in enterprise blockchain systems, where
sizeable, complex smart contracts and critical applications are
rapidly appearing.
The manual definition of the fault modelmay involve some

errors due to the human intervention in the process. Thus,
some faults may be misclassified, which may affect their
overall frequency. To mitigate this threat, the classification
was verified by a second researcher, allowing for stronger
confidence in the fault model.
Executing one transaction at a time may not be a repre-

sentative scenario, especially when considering performance
metrics. Still, we consider it to be a starting point to execute
experiments that may impact performance, and future work
may consider scenarios involving the execution of multiple
transactions at a time.
The performance analysis of the Blockchain system is lim-

ited to the execution time of one faulty transaction compared
to its reference run, which is quite relevant. Nevertheless, this
study will be extended in the future to include the whole fault
model considering other performance attributes.

VII. CONCLUSION
In this article, we presented an approach for assessing key
dependability properties of blockchain systems in the pres-
ence of faulty smart contracts. The approach is based on
injecting a set of software faults that is composed of gen-
eral cases of software faults and blockchain-specific cases.

190780 VOLUME 8, 2020



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

We execute runtime tests over the modified faulty contracts
to observe divergence from reliable (correct) behavior and
ledger state integrity. We also evaluate the effectiveness of
formal verification and contract-level defense and protection
mechanisms against the injected software faults.

We evaluated a small but – considering the nature of
smart contracts – representative set of contracts and found
that the combined use of formal verification and protection
mechanisms is a powerful way of reducing the number of
client observable and residual faults. Still, these techniques
are not sufficient to prevent the occurrence of all kinds of
faults, with a few cases escaping these verification tech-
niques. We summarize the main findings and observations in
the next paragraphs.

Modern blockchain frameworks support the application
developer by offering built-in services for the most complex
tasks, especially by managing data distribution and synchro-
nization, consensus, and ordering of transactions. Despite
this, current built-in verification tools and services lack
adequate support to assure the dependability of such
complex systems. The principle of replicated synchronized
ledgers and prior agreement on contracts and their execution
by consensus implements an n-out-m modular redundancy
scheme providing system-level guarantees for Byzantine or
random errors. However, as software faults in accepted
smart contracts corrupt all nodes in a commonmode way,
replication and consensus are ineffective, and they remain
uncovered.

Solidity and its runtime environments offer limited mech-
anisms for self-checking and validation of user inputs in
the form of assumptions and assertions. Enriching the con-
tract with assertions and requirements reveals a signif-
icant number of logical errors by blockchain assertion
checks. Further platform level checks detect additional
faults before committing transactions (e.g., timeouts, account
validation, balance validation in case of native tokens). For-
mal verification can cover a broader subset of faults,
and doing the checks at design time can reduce execution
cost by omitting the already proven assertions. In our pilot
experiments, latent errors were eliminated, and the number of
faults that escape the detection and protection mechanisms in
the blockchain system (resulting in client observable failures)
was also significantly reduced.

As future work, we aim to focus on the security aspects of
blockchain systems. The fault model created and presented
in this article includes several faults that can be exploited
by attackers leading to severe security issues (e.g., miss-
ing require on transaction sender (MRTS) or wrong visibil-
ity (public) for privateinternal function (PVPF)). In order to
properly assess the impact of these kinds of faults/security
vulnerabilities, security penetration testing is a required tech-
nique that, to the best of our knowledge, has been scarcely
explored in the blockchain domain. There is a need for effec-
tive tools specialized in security for blockchain systems and
that are ready to handle the specificities of these systems.
This need is increasingly important, especially considering

the rapid adoption of blockchain systems and their new appli-
cations, but is especially difficult due to challenges like the
definition of effective attack loads and also the evaluation
of the impact of an attack, which must be performed on a
distributed, complex system.

This will require to perform a large scale field study to
characterize software faults and vulnerabilities as threats to
the security of blockchain systems. The goal would be to
achieve an extensive characterization of software defects and
vulnerabilities in smart contracts across different program-
ming languages. Some initial efforts in this regard exist (e.g.,
in this work), but none that allows the definition of represen-
tative and complete vulnerability models or attack models.
In fact, software defects (being them of a security nature or
not) need to be detailedly characterized according to various
dimensions, type of the defect, type of the impact on the sys-
tem, necessary conditions that allow the bug to surface (e.g.,
by using Orthogonal Defect Classification, or ODC+V [48])
and complemented with finer details, such as the typical
location or the exact triggering conditions of such type of
bug, which tend to be hard to characterize due to the vari-
ety of cases (e.g., presence of bugs in recursive functions,
bugs that only surface when the system reaches a certain
state).

REFERENCES
[1] W. Stallings, ‘‘A blockchain tutorial,’’ Internet Protocol J., vol. 20, no. 3,

pp. 2–24, Nov. 2017.
[2] D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and C. Yang,

‘‘The blockchain as a decentralized security framework [future direc-
tions],’’ IEEE Consum. Electron. Mag., vol. 7, no. 2, pp. 18–21, Mar. 2018.

[3] M. O’Dair and Z. Beaven, ‘‘The networked record industry: How
blockchain technology could transform the record industry,’’ Strategic
Change, vol. 26, no. 5, pp. 471–480, Sep. 2017.

[4] F. Curbera, D. M. Dias, V. Simonyan, W. A. Yoon, and A. Casella,
‘‘Blockchain: An enabler for healthcare and life sciences transformation,’’
IBM J. Res. Develop., vol. 63, nos. 2–3, pp. 8:1–8:9, Mar. 2019.

[5] M. Iansiti and K. R. Lakhani, ‘‘The truth about blockchain,’’ Harvard Bus.
Rev., vol. 95, no. 1, pp. 118–127, 2017.

[6] G. Wood, ‘‘Ethereum: A secure decentralised generalised transac-
tion ledger,’’ Ethereum Project Yellow Paper, vol. 151, pp. 1–32,
Apr. 2014.

[7] N. Szabo, ‘‘Smart contracts: Building blocks for digital markets,’’
EXTROPY, J. Transhumanist Thought, vol. 18, no. 2, p. 2, 1996.

[8] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, ‘‘A survey on the security of
blockchain systems,’’ Future Gener. Comput. Syst., vol. 107, pp. 841–853,
Jun. 2020.

[9] N. Atzei, M. Bartoletti, and T. Cimoli, ‘‘A survey of attacks on ethereum
smart contracts,’’ in Principles of Security and Trust (Lecture Notes
in Computer Science), vol. 10204. Cham, Switzerland: Springer, 2017,
pp. 164–186.

[10] NIST. (2020). National Vulnerability Database. [Online]. Available:
https://nvd.nist.gov/

[11] C. Forward and V. Dhillon, ‘‘The DAO hacked,’’ in Blockchain Enabled
Applications, V. Dhillon, D. Metcalf, and M. Hooper, Eds. Cham,
Switzerland: Springer, 2017, pp. 67–78.

[12] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, ‘‘Fault injection techniques and
tools,’’ Computer, vol. 30, no. 4, pp. 75–82, Apr. 1997.

[13] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. H. Leber,
‘‘Comparison of physical and software-implemented fault injection tech-
niques,’’ IEEE Trans. Comput., vol. 52, no. 9, pp. 1115–1133, Sep. 2003.

[14] Ethereum. (2019). Solidity Documentation. [Online]. Available:
https://solidity.readthedocs.io/en/latest/

[15] J. A. Duraes and H. S. Madeira, ‘‘Emulation of software faults: A field data
study and a practical approach,’’ IEEE Trans. Softw. Eng., vol. 32, no. 11,
pp. 849–867, Nov. 2006.

VOLUME 8, 2020 190781



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

[16] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, and
S. Muralidharan, ‘‘Hyperledger fabric: A distributed operating system
for permissioned blockchains,’’ in Proc. 13th EuroSys Conf., Apr. 2018,
p. 30.

[17] Z. Zheng, S. Xie, H. N. Dai, X. Chen, and H. Wang, ‘‘Blockchain chal-
lenges and opportunities: A survey,’’ Int. J. Web Grid Services, vol. 14,
no. 4, pp. 352–375, 2018.

[18] Hyperledger Burrow. Accessed: Oct. 19, 2020. [Online]. Available:
https://github.com/hyperledger/burrow

[19] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, ‘‘Step by
step towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur.
Cham, Switzerland: Springer, 2016, pp. 79–94.

[20] M. Wohrer and U. Zdun, ‘‘Smart contracts: Security patterns in the
ethereum ecosystem and solidity,’’ in Proc. Int. Workshop Blockchain
Oriented Softw. Eng. (IWBOSE), Mar. 2018, pp. 2–8.

[21] D. Harz and W. Knottenbelt, ‘‘Towards safer smart contracts: A survey of
languages and verification methods,’’ 2018, arXiv:1809.09805. [Online].
Available: https://arxiv.org/abs/1809.09805

[22] A. Miller, Z. Cai, and S. Jha, ‘‘Smart contracts and opportunities
for formal methods,’’ in Leveraging Applications of Formal Meth-
ods, Verification and Validation. Industrial Practice, (Lecture Notes in
Computer Science), vol. 11247. Cham, Switzerland: Springer, 2018,
pp. 280–299.

[23] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, and
S. Zanella-Béguelin, ‘‘Formal verification of smart contracts: Short
paper,’’ in Proc. ACM Workshop Program. Lang. Anal. Secur., 2016,
pp. 91–96.

[24] I. Grishchenko, M. Maffei, and C. Schneidewind, ‘‘A semantic framework
for the security analysis of Ethereum smart contracts,’’ in Principles of
Security and Trust (Lecture Notes in Computer Science), vol. 10804.
Cham, Switzerland: Springer, 2018, pp. 243–269.

[25] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, ‘‘Securify: Practical security analysis of smart contracts,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Jan. 2018,
pp. 67–82.

[26] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making smart
contracts smarter,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur.,
Oct. 2016, pp. 254–269.

[27] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, ‘‘Find-
ing the greedy, prodigal, and suicidal contracts at scale,’’ CoRR,
vol. abs/1802.06038, pp. 1–15, Mar. 2018.

[28] ConsenSys. (2019). Mythril Classic: Security Analysis Tool for
Ethereum Smart Contracts. [Online]. Available: https://github.
com/ConsenSys/mythril-classic

[29] Trail of Bits. (2019). Slihter: Static Analyzer for Solidity. [Online]. Avail-
able: https://github.com/trailofbits/slither

[30] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth,
and G. Rosu, ‘‘KEVM: A complete semantics of the Ethereum
virtual machine,’’ IDEALS, Tech. Rep., 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/8429306

[31] Y. Hirai, ‘‘Defining the Ethereum virtual machine for interactive theorem
provers,’’ in Financial Cryptography and Data Security (Lecture Notes
in Computer Science), vol. 10323. Cham, Switzerland: Springer, 2017,
pp. 520–535.

[32] I. Sergey, A. Kumar, and A. Hobor, ‘‘Scilla: A smart contract
intermediate-level LAnguage,’’ 2018, arXiv:1801.00687. [Online]. Avail-
able: http://arxiv.org/abs/1801.00687

[33] B. Beckert, M. Herda,M. Kirsten, and J. Schiffl, ‘‘Formal specification and
verification of hyperledger fabric chaincode,’’ in Proc. 3rd Symp. Distrib.
Ledger Technol. (SDLT), 2018, pp. 1–5.

[34] Z. Nehai and F. Bobot, ‘‘Deductive proof of ethereum smart con-
tracts using Why3,’’ 2019, arXiv:1904.11281. [Online]. Available:
http://arxiv.org/abs/1904.11281

[35] L. Alt and C. Reitwiessner, ‘‘SMT-based verification of solidity smart
contracts,’’ in Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice (Lecture Notes in Computer Science),
vol. 11247. Cham, Switzerland: Springer, 2018, pp. 376–388.

[36] A. Hajdu and D. Jovanović, ‘‘Solc-verify: A modular verifier for Solid-
ity smart contracts,’’ in Verified Software. Theories, Tools, and Experi-
ments (Lecture Notes in Computer Science). Cham, Switzerland: Springer,
2019.

[37] Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig, C. Born, and
I. Naseer, ‘‘Formal specification and verification of smart contracts
for azure blockchain,’’ 2018, arXiv:1812.08829. [Online]. Available:
http://arxiv.org/abs/1812.08829

[38] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, ‘‘VerX: Safety verification of smart contracts,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2020, pp. 18–20.

[39] Truffle Suite. Accessed: Oct. 19, 2020. [Online]. Available: https://www.
trufflesuite.com/

[40] sc-forks. (2017). Solidity-Coverage-Code Coverage for Solidity Testing.
[Online]. Available: https://github.com/sc-forks/solidity-coverage

[41] R. Natella, D. Cotroneo, and H. S. Madeira, ‘‘Assessing dependability with
software fault injection: A survey,’’ ACM Comput. Surv., vol. 48, no. 3,
p. 44:1–44:55, Feb. 2016.

[42] P. Chapman, D. Xu, L. Deng, and Y. Xiong, ‘‘Deviant: A mutation testing
tool for solidity smart contracts,’’ in Proc. IEEE Int. Conf. Blockchain
(Blockchain), Jul. 2019, pp. 319–324.

[43] J. J. Honig, M. H. Everts, and M. Huisman, ‘‘Practical mutation test-
ing for smart contracts,’’ in Data Privacy Management, Cryptocurren-
cies and Blockchain Technology. Cham, Switzerland: Springer, 2019,
pp. 289–303.

[44] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, and Z. Chen, ‘‘MuSC: A tool for
mutation testing of ethereum smart contract,’’ in Proc. 34th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Nov. 2019, pp. 1198–1201.

[45] B. Jiang, Y. Liu, and W. K. Chan, ‘‘ContractFuzzer: Fuzzing smart con-
tracts for vulnerability detection,’’ in Proc. 33rd ACM/IEEE Int. Conf.
Automated Softw. Eng. (ASE), 2018, pp. 259–269.

[46] M. C. R. Ponte and I. Medeiros, ‘‘Fuzzing Ethereum smart contracts,’’ in
Proc. DSN Workshop Byzantine Consensus Resilient Blockchains, 2018.

[47] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev, ‘‘Learn-
ing to fuzz from symbolic execution with application to smart con-
tracts,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 531–548.

[48] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus,
B. K. Ray, andM.-Y.Wong, ‘‘Orthogonal defect classification—A concept
for in-process measurements,’’ IEEE Trans. Softw. Eng., vol. 18, no. 11,
pp. 943–956, 1992.

[49] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and
R. Hierons, ‘‘Smart contracts vulnerabilities: A call for blockchain soft-
ware engineering?’’ in Proc. Int. Workshop Blockchain Oriented Softw.
Eng. (IWBOSE), Mar. 2018, pp. 19–25.

[50] Z. Wan, D. Lo, X. Xia, and L. Cai, ‘‘Bug characteristics in blockchain
systems: A large-scale empirical study,’’ in Proc. IEEE/ACM 14th Int.
Conf. Mining Softw. Repositories (MSR), May 2017, pp. 413–424.

[51] J. Dourlens. (Aug. 2017). SafeMath to Protect From Overflows. Accessed:
Oct. 19, 2020. [Online]. Available: https://ethereumdev.io/using-safe-
math-library-to-prevent-from-overflows/

[52] P. Müller, Modular Specification Verification Object-Oriented Programs.
Cham, Switzerland: Springer, 2002.

[53] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,
‘‘Boogie: A modular reusable verifier for object-oriented programs,’’ in
Formal Methods for Components and Objects (Lecture Notes in Computer
Science), vol. 4111. Cham, Switzerland: Springer, 2006, pp. 364–387.

[54] C. Barrett and C. Tinelli, ‘‘Satisfiability modulo theories,’’ inHandbook of
Model Checking. Cham, Switzerland: Springer, 2018, pp. 305–343.

[55] The State Machine Contract. Accessed: Oct. 19, 2020. [Online]. Available:
https://github.com/Azure-Samples/blockchain

[56] The Wallet Contract. Accessed: Oct. 19, 2020. [Online]. Available:
https://github.com/SRI-CSL/solidity

[57] E. T. S. Anon. Erc20 Token Standard—The Ethereum Wiki. Accessed: Oct.
19, 2020. [Online]. Available: https://en.bitcoinwiki.org/wiki/ERC20

[58] CVE-2018-10299: Beauty Ecosystem Coin (BEC), NIST National
Vulnerability Database. (2018). BatchOverflow. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2018-10299

[59] The Escrow Contract. [Online]. Available: https://github.com/
OpenZeppelin/openzeppelin-contracts.

[60] Solidity Compiler. [Online]. Available: https://github.com/ethereum/
solidity

[61] The Specific Error Codes. [Online]. Available: https://
github.com/aklenik/caliper/blob/ fabric-evm/src/adapters/fabric-ccp/src/
github.com/hyperledger/fabric-chaincode-evm/evmcc/vendor/
github.com/hyperledger/burrow/execution/errors/errors.go#L24

[62] R. S. Hanmer, Patterns for Fault Tolerant Software. Hoboken, NJ, USA:
Wiley, 2013.

190782 VOLUME 8, 2020



Á. Hajdu et al.: Using Fault Injection to Assess Blockchain Systems in Presence of Faulty Smart Contracts

ÁKOS HAJDU is currently pursuing the Ph.D.
degree with the Budapest University of Tech-
nology and Economics. He was a Visiting
Researcher with McGill University and held
internships at CERN and SRI International. His
research interests include formal methods and
logic, with the primary focus on SMT-based soft-
ware verification. In his field, he has authored
more than 20 peer-reviewed articles, participated
in national/international research projects, and
contributed to various open-source tools.

NAGHMEH IVAKI (Member, IEEE) received the
Ph.D. degree from the University of Coimbra, Por-
tugal. She is currently a Postdoctoral Researcher
and a Full Member with the Centre for Informat-
ics and Systems (CISUC), Software and Systems
Engineering Group (SSE), Department of Infor-
matics Engineering, University of Coimbra. She
specializes in the scientific field of informatics
engineering, with a particular focus on security
and dependability of computer systems. In her

field of specialization, she has authored more than 25 peer-reviewed publica-
tions and participated in several national and international research projects.

IMRE KOCSIS received the Ph.D. degree from
the Budapest University of Technology and Eco-
nomics. He is currently anAssistant Professor with
the Budapest University of Technology and Eco-
nomics. He has authored numerous papers in ref-
ereed conferences and journals in the dependabil-
ity and cloud computing fields, and participated
in several national and international projects. His
research interests include the resilience assurance
of distributed ledger technology-based solutions,

and the resilience assurance of cloud and edge systems in a broader context.

ATTILA KLENIK is currently pursuing the Ph.D.
degree in computer science engineering with
the Faculty of Electrical Engineering and Infor-
matics, Budapest University of Technology and
Economics. His research interests include bench-
marking of distributed ledger technologies,
exploratory analysis of performance data, and
performability assessment of distributed systems
in general.

LÁSZLÓ GÖNCZY received the Ph.D. degree
from the Budapest University of Technology and
Economics (BME), Hungary. He is currently an
Assistant Professor with BME. He has authored
more than 40 papers in refereed conferences
and journals and participated in several national
and international projects. His research inter-
ests include system modeling (with an emphasis
on business process modeling) and data-driven
dependability evaluation, recently in the context of

blockchain-based applications.

NUNO LARANJEIRO (Member, IEEE) received
the Ph.D. degree from the University of Coimbra,
Portugal. He is currently an Assistant Professor
with the University of Coimbra. His research inter-
ests include robustness of software services as well
as experimental dependability evaluation, web ser-
vices interoperability, services security, and enter-
prise application integration. He has contributed,
as the author and a reviewer, to leading confer-
ences and journals in the dependability and ser-

vices computing areas, and participated in several national and international
projects.

HENRIQUE MADEIRA (Member, IEEE) is cur-
rently a Full Professor with the University
of Coimbra, where he has been involved in
research on dependable computing, since 1989.
His research interests include software quality and
software reliability, experimental evaluation and
benchmarking of dependability and security, and
fault injection techniques. His current research
projects involve two research directions such as
assured AI, focusing on providing safety and secu-

rity guaranties in critical applications that use AI; and human factors in soft-
ware engineering, particularly on the use of biometrics to improve software
quality.

ANDRÁS PATARICZA graduated in elec-
trical engineering. He received the D.Sc.
degree from the Hungarian Academy of Sci-
ences (MTA) and the Dr.Habil. degree from
BUTE. In 1994, he founded the Fault-Tolerant
Systems Research Group, Department of
Measurements and Information Systems. He
received multiple recognition awards from differ-
ent scientific and industrial organizations, like the
AcademicAward of theMTA, and six IBMFaculty

Awards. He has published over 180 articles in international journals, confer-
ences, and workshops in the field of dependable computing, cyber-physical
systems, and model-driven engineering. He was the General Chair of 43rd
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN 2013). He serves as the Honorary Chair of the Computer Science and
Engineering Branch of the National Council of Student Research.

VOLUME 8, 2020 190783


