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Abstract

In multiobjective optimization, usually due to the complex nature of the problems considered, it is

sometimes not possible to find all optimal solutions in a reasonable amount of time. One alternative is

to use methods to find good approximation sets, such as Stochastic Multiobjective Optimizers. To assess

the outcomes produced by these multiobjective optimizers, quality indicators such as the hypervolume

indicator have been proposed. The hypervolume indicator is one of the most studied unary quality

indicators, and algorithms are available to compute it in any number of dimensions. It has also been

included in stochastic optimizers, such as evolutionary algorithms. Therefore, the time spent computing

the hypervolume indicator is an important issue. An alternative to the hypervolume indicator is the

Empirical Attainment Function (EAF), which is oriented towards the study of the distribution of the

output of different executions of the same optimizer, but the algorithms available are restricted to two

and three dimensions. In this thesis, new efficient algorithms to compute the hypervolume indicator are

proposed, and new algorithms to compute the EAF in two and four dimensions are developed. As a

result, the scope of application of the EAF is extended to four objective problems, and the current upper

bound on the complexity of the hypervolume indicator in four dimensions is improved to O(n2). Finally,

the divide-and-conquer paradigm is shown to hold promise for the development of this type of algorithms.
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Resumo

Em optimização multiobjectivo, geralmente devido à natureza complexa dos problemas considerados,

por vezes não é posśıvel encontrar todas as soluções óptimas em tempo razoável. Uma alternativa é

usar métodos para encontrar bons conjuntos de aproximação, tais como os Optimizadores Multiobjectivo

Estocásticos. Para avaliar os resultados produzidos por optimizadores estocásticos, têm sido propostos

indicadores de qualidade, como o indicador de hipervolume. O indicador de hipervolume é um dos indi-

cadores de qualidade mais estudados, havendo dispońıveis vários algoritmos para o calcular em qualquer

número de dimensões. Este tem também sido inclúıdo em optimizadores estocásticos, como os algorit-

mos evolutivos, sendo por isso o tempo dispendido a calculá-lo um factor importante. Uma alternativa

ao indicador de hipervolume é a Função de Aproveitamento Emṕırica (FAE), que está orientada para

o estudo da distribuição dos resultados de diferentes execuções do mesmo optimizador, mas os algorit-

mos dispońıveis estão limitados a duas e três dimensões. Nesta tese são propostos novos algoritmos

eficientes alternativos aos existentes para calcular o indicador de hipervolume, e desenvolvem-se novos

algoritmos para calcular a FAE em duas e quatro dimensões. Em consequência, o âmbito de aplicação

da FAE é alargado a problemas envolvendo quatro objectivos e o limite superior para a complexidade do

cálculo de indicador de hipervolume é melhorado para O(n2). Finalmente, mostra-se que o paradigma

de divisão-e-conquista multidimensional é promissor para o desenvolvimento de algoritmos deste tipo.
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1Introduction
The goal of optimization is to find the best solution for a problem, where the possible solutions are

evaluated according to one or more objective functions. The set of all possible solutions consists of the

decision space, and the corresponding evaluations of all of these solutions according to the objective

functions are elements of the objective space. Therefore, given a problem with d objectives, a possible

solution is seen as a point in a decision space which is mapped onto a point in the objective space. The

objective space is usually considered to be Rd. In an optimization problem, the goal is to find the solution

that has the lowest value in every objective (considering minimization, without loss of generality). When

the problem involves only one objective to be minimized, the best solutions are those that have the lowest

possible value for that objective. Consequently, comparing two possible solutions to know which one is

the best one is a trivial problem, since the best of the two is the one with the lowest objective value.

For more than one objective, the situation is not trivial, since one of the two solutions may have better

values for some objectives while the other has better values for other objectives.

Usually, problems with more than one objective (multiobjective problems) do not admit a single

optimal solution, but a set of (Pareto-) optimal solutions. A solution is said to be Pareto-optimal [2] if

there is no other solution that is at least as good as itself according to all objectives, and is strictly better

according to at least one objective. The set of all Pareto optimal solutions in decision space is called the

Pareto set, and the correspondent set of points in the objective space is called the Pareto front [5].

Frequently, the Pareto set is not known, and finding it is not an easy task [22]. So, the goal becomes

finding a good approximation set, i.e., a set of solutions whose images in the objective space approximate

the Pareto front as well as possible. This is the goal of multiobjective optimizers. Since the Pareto front

is not known, it is usually not possible to know how good an approximation set is. Therefore, when

comparing optimizers in order to decide which one produces better approximations, it is necessary to

compare their outcomes, by comparing the corresponding sets of points in objective space. The problem

that arises is that the points of a given outcome of an optimizer might not be all better or all worse than

the points of the outcome of another optimizer, or even of a different run of the same optimizer, which

may happen when the optimizer is stochastic.

Many quality indicators, which map an approximation set to a real value, have been proposed to

compare the quality of different approximation sets [22]. Perhaps the most popular is the Hypervolume

Indicator [21] (also called S-metric or Lebesgue Measure). It is used in comparative studies, and it

has also been integrated into multiobjective optimizers, such as Evolutionary Multiobjective Algorithms

(EMOAs) [6]. Hence, it is crucial that the algorithms to compute the hypervolume indicator have good
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performance.

Unary quality indicators are known to have limitations. For example, they typically consider the

outcome of a single run of an optimizer. In the case of Stochastic Multiobjective Optimizers, due to their

randomized nature, each execution on a particular problem instance might produce a different outcome.

Therefore, using the outcome of a single execution is not enough to conclude whether or not an optimizer

is better than another. In this case, the Empirical Attainment Function (EAF) [13] can be used to study

the distribution of the outcomes of several executions of a multiobjective optimizer. Current use of the

EAF is still limited, since algorithms are available to compute it only in the two and three-objective cases.

The main contribution of this thesis is the proposal of new and efficient algorithms to compute the

hypervolume indicator and the EAF. In the case of hypervolume indicator, a new upper bound for the

four dimensional case is established with the development of a new algorithm with O(n2) time complexity,

which considerably outperforms the existing algorithms. Moreover, a new algorithm using a divide-and-

conquer approach for the three dimensional case is proposed. This algorithm has asymptotically optimal

time complexity O(n log n), and is the first step towards the development of an algorithm for the general

case, using a multidimensional divide-and-conquer approach.

Regarding the EAF, a new algorithm for the four-dimensional case is proposed, establishing new upper

bounds both on the number of output points and on the time complexity of the problem. Moreover, a new

alternative algorithm to compute the two-dimensional case is proposed, which outperforms the existing

one. This new algorithm has the important feature of being output-sensitive, which allows it to perform

better for inputs which do not result in the worst case. This is a characteristic that none of the EAF

algorithms to date have.

This document is organized as follows. Chapter 2 introduces the hypervolume indicator and the

Empirical Attainment Function. Existing algorithms for both problems are reviewed. Moreover, the

multidimensional divide-and-conquer approach, which has not yet been applied to either hypervolume

indicator or EAF computation, is described. Chapter 3, is dedicated to the description of the two

new algorithms to compute the EAF. Moreover, the performance of their implementations is analyzed

experimentally, and in the two dimensional case is compared to the performance of the other algorithm

available. New algorithms to compute the hypervolume indicator are described in Chapter 4, and their

performance is evaluated experimentally against other, state-of-the-art, algorithms. Finally, the thesis

concludes with some final remarks and ideas for future work.
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2Related Work

In Chapter 1, the importance of the hypervolume indicator and of the Empirical Attainment Function

(EAF) was explained. The hypervolume indicator is a widely studied quality measure for which a consid-

erable number of algorithms are already available, but the search for more efficient algorithms is ongoing.

However, there are only two algorithms to compute the EAF, one for two dimensions and another for

three dimensions, which were published only very recently [11]. Most of the existing algorithms to com-

pute the EAF and the hypervolume indicator follow the same approach, namely, the dimension-sweep

approach. Therefore, the use of alternative approaches, especially those which have proved successful on

related problems, is worth researching, as it may lead to new contributions in this area.

In this Chapter, the first Section will introduce the notation used, as well as some definitions needed

to understand this work. Section 2.2 will be dedicated to the hypervolume indicator, which will be

formally defined, and the most relevant algorithms to compute it will be briefly described. The following

Section will be concerned with the definition of the EAF. The two existing algorithms to compute it

will be described, but more relevance will be given to the three dimensional case. The multidimensional

divide-and-conquer approach is described in Section 2.4 as a promising alternative to dimension sweep in

the context of this work, and the Chapter concludes with some final remarks.

2.1 Notation and definitions

Throughout this work, the first to fourth Cartesian coordinates will be represented by the letters x, y, z

and w, respectively. When referring to a given coordinate of some point p, the corresponding letter will

appear in superscript. For example, px represents the value of the first coordinate of point p. Alternatively,

but only when considering a larger or an unspecified number of dimensions, the corresponding number

may appear in superscript. For example if p ∈ Rd for some value of d, then pi denotes the value of the

ith coordinate of p. The letter d will always represent the number of dimensions of the d-dimensional

Euclidean space, Rd. When enumerating points or sets, the corresponding index will appear in subscript.

For example, k points may be represented as p1, ..., pk.

To introduce the hypervolume indicator and the empirical attainment function, the following defini-

tions are needed. Minimization is assumed throughout.

Definition 1 (Weak dominance). A point x ∈ Rd is said to weakly dominate a point y ∈ Rd, iff

xi ≤ yi holds for all 1 ≤ i ≤ d. This is represented as x ≤ y.
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Figure 2.1: A two-objective example of the hypervolume indicator.

Definition 2 (Incomparability). Two points x, y ∈ Rd are said to be incomparable, if neither x ≤ y

nor y ≤ x are true. This is represented as x ‖ y.

Definition 3 (Non-dominated point set). A set of points X = {x1, . . . , xm ∈ Rd} is said to be a

non-dominated point set, iff ∀x,y∈X, x 6= y ⇒ x ‖ y

Definition 4 (Attainment). A set X = {x1, . . . , xm ∈ Rd} is said to attain a point z ∈ Rd iff ∃x ∈ X :

x ≤ z. This is represented as X E z.

Note that the image in objective space of the set of solutions produced by a multiobjective optimizer

is always a non-dominated point set. In the remainder of this work, the outcome of an optimizer will

always refer to such a non-dominated point set in objective space. Moreover, the inputs used to compute

the hypervolume indicator and the EAF are assumed to be non-dominated point sets.

2.2 Hypervolume indicator

The Hypervolume Indicator [21] is a quality indicator widely studied in the area of multiobjective op-

timization. It allows an easy comparison between the output of different multiobjective optimizers, by

assigning a real value to a set of points. Additionally, it is a particularly interesting indicator since it

reflects well a number of important quality criteria, such as the proximity of the non-dominated point

set to the Pareto front, and the distribution of the non-dominated points along the Pareto front. A

good multiobjective optimizer is one that produces a set of non-dominated points which are close to, and

well-spread along, the Pareto front. Moreover, the hypervolume indicator has other important properties

such as the ability to detect that a point set A cannot be worse than a point set B [22].

Definition 5 (Hypervolume indicator). The Hypervolume Indicator is the measure of the region

dominated by a point set P ⊂ Rd and bounded above by a reference point r ∈ Rd [21].

An example of the hypervolume indicator is depicted in Figure 2.1, where the region dominated by the

set of points {p1, ..., p4} and bounded above by the reference point r is shaded gray.

Since the computation of the hypervolume indicator has been widely studied, there is a range of

algorithms proposed in the literature. There are algorithms that compute the exact hypervolume and
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others, such as HypE [1], that compute an approximation. There are also algorithms to calculate the

contribution of each point to the hypervolume (also called exclusive hypervolume), such as IHSO [7, 9].

The contribution, or the exclusive hypervolume, of a point p to a set of points S is the hypervolume

dominated by S ∪ {p} minus the hypervolume dominated by S. Since this work is concerned only with

the exact computation of the total hypervolume, the following review will be focused on algorithms for

that purpose.

Currently, there are five main exact algorithms to calculate the hypervolume indicator: HSO, FPL,

HOY, IIHSO and WFG. While et al. [20] proposed the Hypervolume by Slicing Objectives (HSO) algo-

rithm, which is a dimension-sweep algorithm with time complexity O(nd−1), where n is the number of

points, and d is the number of dimensions. Assuming an input set with n input points in Rd, the HSO

algorithm starts by dividing the hypervolume of the input set into n d-dimensional slices. Considering

the input points in ascending order of the first dimension, each point defines the bottom of a slice, and

the next point defines the top of that slice. The hypervolume of each slice is given by multiplying the

hyperarea of its (d− 1)-dimensional base by its height.

The hyperarea of each such base is computed by sweeping along the second dimension and recursively

calculating the hypervolume of the resulting (d − 1)-dimensional slices, until a base of dimension 2 is

reached. The sum of the hypervolume of all d-dimensional slices gives the exact value of the hypervolume.

When d = 2, the hypervolume can be calculated in linear time after sorting by sweeping points in

ascending order of one of the dimensions and adding the areas of the rectangles defined by each point

and the next one.

Fonseca et al. [12] proposed an improved version of HSO, which has been referred to as FPL, using

dedicated data structures and keeping extra information in order to avoid having to compute the whole

hypervolume for k dimensions (3 < k < d) when possible. It also includes an O(n log n) asymptotically

optimal algorithm for the three-dimensional case, which was later described in more detail by Beume

et al. [5]. The FPL algorithm has a time complexity of O(nd−2 log n). HSO and FPL algorithms are

sensitive to the order in which objectives are processed, and their performance can be improved by using

heuristics to find a good objective order, as described by While et al. [19].

The HOY algorithm takes advantage of the fact that Hypervolume is a special case of Klee’s Measure

Problem, which is also known as the measure of the union of rectangles [14]. HOY is currently the

algorithm with best time complexity for d ≥ 4, which is O(nd/2 log n). It was proposed by Beume et

al. [4], and is a simplification of Overmars and Yap’s algorithm [16] for Klee’s Measure Problem. This

algorithm starts by defining the tightest axis-parallel (d− 1)-dimensional space that includes the (d− 1)-

dimensional hyperarea of the non-dominated point set, where the last dimension is left out. Then, it

recursively divides this space into smaller parts, by defining axis-parallel cut planes and keeping points

associated to each subspace to which they contribute. The division stops when a portion of the initial

space is reached for which the hypervolume is easy to compute. The computation is performed by

sweeping points along the last dimension, d. This algorithm is not as sensitive to the order of objectives

as FPL [8].
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Recently, Bradstreet et al. [8] proposed a new algorithm based on IHSO [7], which is itself an algorithm

based on HSO to calculate the hypervolume contribution of a point. That new algorithm is called Iterated

Incremental HSO (IIHSO), and retains the time complexity of HSO, which is O(nd−1). It iterates through

each point p in the input set P, and computes its exclusive hypervolume contribution to an initially empty

set S, before adding p to S. The sum of all exclusive hypervolumes is the total hypervolume of P. Also,

as IHSO is sensitive to the objective order, the best order to process the objectives is determined at each

step as long as five or more dimensions remain. Since this step is included in the algorithm, the final

IIHSO algorithm is not sensitive to the objective order of the input set for five or more dimensions.

More recently, a new algorithm to compute the exact hypervolume indicator was proposed, known

as WFG [18]. Although its worst-case complexity is stated to be exponential in the number of points

(O(2n)), experiments performed by While et al. [18] show that its runtime is good for problems with

five or more dimensions. This algorithm is inspired in IIHSO in the sense that it sweeps every point

p according to the last coordinate, and computes its contribution. It differs, though, in the order in

which points are swept, which is now in descending order, and on how the contribuition of each point

is computed. The contribution of a point p in d dimensions is computed by multiplying the absolute

distance between p and r in dimension d by the exclusive contribution of p in (d − 1) dimensions. The

contribution of p in (d− 1) dimensions is obtained by computing the difference between the hypervolume

of the cuboid [p,r] and the hypervolume of the region dominated both by p and by any of the points not

yet swept. This common hypervolume is computed recursively using WFG itself. WFG also includes the

optimal O(n log n) algorithm [5] for the three dimensional base case.

While et al. [18] compared the performance of FPL, HOY, IIHSO and WFG. It was shown that,

although HOY has the best worst-case complexity for d ≥ 4 (when d = 4, FPL achieves the same time

complexity as HOY), it exhibits the worst runtime performance for any number of objectives. In the

four dimensional case, IIHSO obtained the best runtime. In five dimensions, IIHSO and WFG were the

fastest, both with close performance. For more than five objectives, WFG had by far the best runtime,

while FPL and IIHSO were slower but competitive between them, since their runtimes were close, and

they outperformed one another on different data sets. To conclude, IIHSO has the best runtime for four

dimensions, IIHSO and WFG are fastest for the five-dimensional case, and for more dimensions the WFG

algorithm has the best performance. In spite of HOY having the best complexity, it performs worst in

practice, as seen in [8] and in [18].

2.3 Empirical attainment function

2.3.1 Definition

The notion of Attainment Function was first formally introduced by Grunert da Fonseca et al. [13].

It studies the distribution of a random non-dominated point set by providing information about the

probability of a given point being weakly dominated, i.e. attained, by such a random set. The Empirical
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Figure 2.2: Example of three runs of a multiobjective optimizer on the same two-objective problem.

Attainment Function (EAF) estimates the attainment function using experimental data, obtained as

the outcomes of independent runs of a multiobjective optimizer. Figure 2.2 shows an example of three

different outcomes of such an optimizer on a given two-objective problem. This figure will be used as the

base example for the explanations that follow.

As detailed in Fonseca et al. [11], the outcome sets of a multiobjective optimizer applied to the

same problem are seen as realizations of a random non-dominated point set (RNP set). The empirical

attainment function is defined as:

Definition 6 (Empirical attainment function). Let I{·} : Rd 7−→ {0, 1} denote the indicator func-

tion, and let X1,X2, . . . ,Xn be non-dominated point set realizations drawn independently from some

RNP set distribution. The empirical attainment function (EAF) is the discrete function αn : Rd 7−→ [0, 1],

where

αn(z) = αn(X1, . . . ,Xn; z) =
1

n

n∑
i=1

I{Xi E z}

Recall that X E z denotes the attainment of a point z by a set X, i.e., there is at least one x ∈ X such

that x ≤ z.

To formalize the empirical attainment function computation problem, the notion of Minima of a point

set is useful.

Definition 7 (Minima). Given a set of points X = {x1, . . . , xm ∈ Rd}, the set of minima of X under

the component-wise order is the set

min X = {x ∈ X : ∀y ∈ X, y ≤ x⇒ y = x} (2.1)

The minima of a point set is a non-dominated point set, which means that a set X is a non-dominated

point set iff X = min X.

The idea of studying the distribution of multiobjective optimizer outcomes based on the attainment

function builds upon the notion of attainment surfaces. An (empirical) attainment surface was originally

defined as the tightest set of goals attained in one optimization run [10]. Then it was extended to consider
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(a) (b) (c)

Figure 2.3: The colored regions in (a), (b) and (c) represents the superlevel sets V1/3, V2/3 and V3/3 for
the example in Figure 2.2, respectively.

multiple runs, so that any point dominated by a given attainment surface has a higher probability of

being attained than a point not dominated by that attainment surface. More accuratelly, attainment

surfaces can be seen as the lower boundary of the EAF superlevel sets. A t/n-superlevel set of αn(z)

is defined as the region of the objective space where the probability of a point z being attained is at

least t/n. Figure 2.3 shows an example of the t/n-superlevel sets of the EAF associated with the data

represented in Figure 2.2. The t/n-superlevel set of an empirical attainment surface αn(z) is formally

defined as:

Vt/n = {z ∈ Rd : αn(z) ≥ t/n} t = 1, . . . , n (2.2)

Considering the set of minima of Vt/n, which will be denoted as Lt = min Vt/n, it follows that Vt/n is

also equal to the upper set of Lt, i.e.,

Vt/n = {z ∈ Rd : Lt E z} (2.3)

because αn(z) is coordinatewise monotonic.

With these definitions, the EAF computation problem is formalized as [11]:

Problem 1 (EAF computation). Given an input sequence of non-empty non-dominated point sets:

S = (X1,X2, . . . ,Xn) (2.4)

containing

m =

n∑
i=1

mi, mi = |Xi| (2.5)

input points, find the output sequence

R = (L1,L2, . . . ,Ln) (2.6)

where Lt, t = 1, . . . , n, denotes the set of minima of the t/n-superlevel set, Vt/n, of αn(X1, . . . ,Xn; z).
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(a) (b) (c)

Figure 2.4: Squares in (a), (b) and (c) represent the points that define J1, J2 and J3, respectively, for the
example in Figure 2.2.

The total number of output points is

` =

n∑
t=1

`t, `t = |Lt| (2.7)

As shown by Fonseca et al. [11], the output sets Lt may be computed by finding the minima of suitable

auxiliary sets Jt (Lt = min Jt), defined as:

Jt =

{
t∨

i=1

zi : (z1, . . . , zt) ∈
t∏

i=1

Xji , ji ∈ {1, . . . , n} ∧ (a < b⇔ ja < jb)

}
(2.8)

where
∨t

i=1 zi denotes the join (component-wise maximum, or least upper bound) of points z1, . . . , zt ∈

Rd,
∏t

i=1 Xji denotes the Cartesian product of sets Xj1 , . . . ,Xjt , and (Xj1 , . . . ,Xjt) is any length-t sub-

sequence of S. Jt contains all points resulting from the join of t points, each from a distinct input set,

component of S. This can be visualized in Figure 2.4. It can be seen that J1 (Figure 2.4(a)) is the union

of the outcomes of all runs. J2 (Figure 2.4(b)) and J3 (Figure 2.4(c)) contain all points that are the join

of two and three points from distinct input sets, respectively.

Figure 2.5 shows the result of computing the EAF. Figure 2.5(a) shows the initial example that was

previously shown in Figure 2.2. Figures 2.5(b) and 2.5(c) show the points in L1, L2 and L3. These are

the points that should be returned by an algorithm that solves the EAF problem. In Figure 2.5(b), it

can be seen that each set of points Lt, where 1 ≤ t ≤ 3, is the set of minima of Jt, previously represented

in Figure 2.4. In Figure 2.5(c), it is possible to observe that each Lt dominates the corresponding t/n-

superlevel (Vt/n), previously shown in Figure 2.3.

Observe that Lt can be obtained by finding the minima of Jt (Lt = min Jt). However, the two

algorithms for the EAF computation problem in two and three dimensions proposed by Fonseca et al. [11]

do not enumerate the whole sets Jt in order to obtain Lt. These two algorithms are, so far, the only

algorithms available to solve the EAF computation problem, with time complexities of O(m logm+nm)

and O(n2m logm) for the two and three-dimensional cases problem, respectively. Algorithms for d > 3
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(a) (b) (c)

Figure 2.5: (a) Example of three runs of an optimizer on the same problem. (b) Circles, squares and
diamonds represent the points in L1, L2 and L3, respectively. (c) The regions dominated by L1, L2 and
L3 are shown.

have not been reported so far. In spite of this, a lower bound on the time complexity for any algorithm

that solves the d-dimensional EAF problem is known to be Ω
(
m logm+mbd/2c

)
[11]. Upper bounds on

the total number of output points are given by Fonseca et al. [11], being Θ(nm) and O(n2m) for the

two and three dimensional cases, respectively. In the d-dimensional case, the maximum total number of

output points is Ω
(
mbd/2c

)
.

2.3.2 Algorithms

In this Subsection, the existing algorithms to compute EAF will be explained in order to support the

development and presentation of new EAF algorithms in Chapter 3.

Two dimensional case

Fonseca et al. [11] proposed an O(m logm+nm) time algorithm to compute the EAF in two dimensions.

This algorithm is characterized by determining each Lt (t = 1, ..., n) at a time. To achieve this, two

queues, Qy sorted in ascending order of coordinate y and Qx sorted in descending order of coordinate x,

are used. For simplicity, assume that all input points have distinct coordinates.

When a given Lt is to be computed, the algorithm sweeps points in ascending order of coordinate y

by popping from Qy until points from t different input sets have been swept. Denoting the last point

swept by p, it is known that there is a point in Lt whose y coordinate is py. In order to determine the

value of the x coordinate of that point, points are swept in descending order of x by popping from Qx

until a point q is found such that qy ≤ py and that points from t − 1 different input sets (other than

the one to which q belongs to) are below py and strictly below qx (according to coordinate y and x,

respectively). Hence, (qx, py) is a point in Lt. Finding q can be done by remembering how many points

in each of the t input sets were seen up to py, and keeping track of how many of these points are to the

left of the point from Qx currently being swept. When all such points from one input set are swept, then

q is found. Keeping track of which input set are below (qx,py), the next points in Qy are popped until

a point from an input set different from the t − 1 sets strictly below qx is found (point p). Then, the
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Figure 2.6: Example of three runs of a multiobjective optimizer for the same three-objective problem.

algorithm continues by popping from Qx until it finds another point q such that (qx, py) is a point of Lt,

and so on. This is repeated for every Lt that is to be computed.

Three dimensional case

The algorithm proposed by Fonseca et al. [11] to compute the EAF in three dimensions has an important

role in the algorithm for the four-dimensional case that will be presented later in this thesis. Since it is

important to fully understand the algorithm for the three dimensional case, it will be described here in

detail. It is a dimension sweep algorithm with O(n2m logm) time complexity, and will be referred to as

EAF3D for short. A general idea of which points are sought will be given next, followed by a detailed

description of how that task is achieved by the algorithm.

Throughout this description, it will be considered that all input points have distinct values of co-

ordinate z. This condition will be lifted later, and an explanation of how the algorithm behaves when

repeated values of coordinate z are considered will be given. Figure 2.6 is one of the figures that will be

used as an example to help explain the algorithm. The expected result for this specific example is:

L1 = {(3, 1, 1), (2, 4, 2), (1, 3, 4)}

L2 = {(3, 4, 2), (4, 2, 3), (2, 4, 4)}

L3 = {(4, 4, 3)}

The EAF3D algorithm is detailed in Algorithm 1. As it is a dimension sweep algorithm, it sweeps

all points in ascending order of the third coordinate (the outer loop in line 13) and, for each point being

swept (let us call it p), it computes an EAF in two dimensions, according to the projection on the (x,y)-

plane of the points swept so far. Figure 2.7 depicts all iterations of EAF3D for the initial problem given

in Figure 2.6.

At each iteration, Algorithm 1 determines on the (x,y)-plane the minimal points that were attained

by only t− 1 input sets in the previous iteration, not including the set to which p belongs, and which are

attained also by p in the current iteration, i.e., by one more input set. These are points that belong to

Lt in three dimensions and whose coordinate z is equal to pz.
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(a) z = 1 (b) z = 2 (c) z = 3 (d) z = 4

Figure 2.7: The projection of the sets of points of the example in Figure 2.6 onto the (x, y)-plane for a
given value of coordinate z.

Looking at the example of Figure 2.6, since point a1 is the first point to be swept, its projection

on the (x,y)-plane is a point in L∗1 (note that (L∗1, ...,L
∗
n) denotes the EAF in two dimensions given

the projections on the (x,y)-plane of the points swept so far) in the current iteration (Figure 2.7(a)).

Therefore, point a1 itself is a point in L1 in three dimensions. When point b1 is swept, (2, 4) and (3, 4)

are minimal points attained by one and two inputs sets, respectively (Figure 2.7(b)). Note that (3, 1) is

attained by the same number of input sets as in the previous iteration. Therefore, these points belong

to L1 and L2 in three dimensions, respectively, with coordinate z equal to bz1, i.e., (2, 4, 2) ∈ L1 and

(3, 4, 2) ∈ L2. When sweeping point c1, the output points found are (4, 2, 3) ∈ L2 and (4, 4, 3) ∈ L3, and

when sweeping point a2, the points (1, 3, 4) ∈ L1 and (2, 4, 4) ∈ L2 are found.

These points can be found by determining the points in each L∗t which, in each iteration, are not

attained by L∗t in the previous iteration. Therefore, for each new point p being swept, Algorithm 1

has stored in X∗t and L∗t , respectively, the minima of the projections onto the (x, y)-plane of the points

swept so far (not including p) in each Xt and in each Lt determined in the previous iteration, where

t = 1, ..., n. For example, when point c1 is selected to be swept, X∗1 = {(3, 1)}, X∗2 = {(2, 4)}, X∗3 = {},

L∗1 = {(3, 1), (2, 4)}, L∗2 = {(3, 4)}, L∗3 = {}. L∗t is updated as new points are found in the current

iteration. After that, X∗j is updated to include p, since p ∈ Xj . Both X∗t and L∗t are maintained using

height-balanced binary search trees that store only non-dominated points sets on the (x,y)-plane. Thus,

it is possible to search them either by x or by y coordinate. The following operations are available for

these data structures [11]:

floorx(p,X∗) The point q ∈ X∗ with the greatest qx ≤ px

lowerx(p,X∗) The point q ∈ X∗ with the greatest qx < px

ceilingx(p,X∗) The point q ∈ X∗ with the least qx ≥ px

higherx(p,X∗) The point q ∈ X∗ with the least qx > px

The operations are performed in O(logm) time, and are available also for searching by y. Note that, since

both X∗t and L∗t are initialized with sentinels, these operations always return a point. Note also that, in

spite of considering only the projections onto the (x,y)-plane of the points in L∗t , the points added to L∗t
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Algorithm 1 EAF computation in three dimensions

Input: S = (X1, . . . ,Xn) // a sequence of non-dominated point sets
Output: R = (L1, . . . ,Ln) // a sequence of non-dominated point sets

1: X =
⊎n

i=1 Xi // multiset sum, duplicate points are allowed
2: m←

∑n
i=1 |Xi|

3: Q is X sorted in ascending order of the z coordinate
4: Lt ← ∅, t = 1, . . . , n
5: L∗t ← {(−∞,∞,−∞), (∞,−∞,−∞)}, t = 1, . . . , n // Sentinels
6: X∗i ← {(−∞,∞,−∞), (∞,−∞,−∞)}, i = 1, . . . , n // Sentinels
7: p← pop(Q)
8: j ← input set(p)
9: insert(p,X∗j )

10: insert(p,L∗1)
11: A← {j}
12: tmax ← 1
13: while Q 6= ∅ do
14: p← pop(Q)
15: j ← input set(p)
16: q ← floorx(p,X∗j )
17: if py < qy then // always true if Xj is indeed a non-dominated point set
18: t← tmax

19: tmin ← 1
20: first intersection // part 1
21: dominated points // part 2
22: last intersection // part 3
23: submit p to X∗j
24: submit p to L∗tmin

25: if j 6∈ A then
26: A← A ∪ {j}
27: tmax ← min(tmax + 1, n− 1)
28: Lt ← Lt ∪ (L∗t \ {(−∞,∞,−∞), (∞,−∞,−∞)}), t = 1, . . . , n
29: return (L1, . . . ,Ln)

Algorithm 2 first intersection

1: // q = floorx(p,X∗j )
2: while t ≥ tmin do
3: r ← floorx(p,L∗t )
4: if ry ≤ py then
5: tmin ← t+ 1
6: else if ry < qy then
7: st ← (px, ry, pz)
8: else
9: st ← lowery(q,L∗t )

10: t← t− 1

do have their third coordinate value set. This allows them to be added to the corresponding output set

Lt at a later time.

To summarize, Algorithm 1 sweeps each input point p in ascending order of coordinate z (indepen-

dently of the input set to which it belongs) by popping points from Q, while maintaining X∗t and L∗t

updated according to the current cut plane defined by the z coordinate of the point being swept.

Having understood which points are sought, the issue of how to actually find them arises. The search

for these points is made by sections, i.e., by non-overlapping subregions of the region attained by the
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Algorithm 3 dominated points

1: // sxt ≥ px, q = floorx(p,X∗j )
2: repeat
3: q ← higherx(q,X∗j )
4: b← max(py, qy)
5: for t = tmax down to tmin do
6: while syt ≥ b and (syt > b or b > py) do
7: if sxt ≥ qx then
8: st ← lowery(q,L∗t )
9: else

10: submit (sxt , s
y
t , p

z) to L∗t+1

11: st ← higherx(st,L
∗
t )

12: until qy ≤ py

Algorithm 4 last intersection

1: // st = floory(p,L∗t )
2: for t = tmax down to tmin do
3: if sxt < qx then
4: submit (sxt , p

y, pz) to L∗t+1

Algorithm 5 submit u to L∗t
1: v ← floorx(u,L∗t )
2: if uy < vy then
3: for all w ∈ L∗t : (ux, uy) ≤ (wx, wy) do
4: if uz > wz then
5: Lt ← Lt ∪ {w}
6: remove(w,L∗t )
7: insert(u,L∗t )

Figure 2.8: Example of a given iteration, where p is the point being swept. Points a1, ..., a4 represent
the points from the same set as p. Points b1, ..., b7 are points from some Lt. A1 ∪A2 ∪A3 represents the
region dominated by p and not by any other point from its set.

current point swept and not attained by any other point already swept in its set. An example can be

seen in Figure 2.8, where A1, ..., A3 represent these subregions defined by p and by the points from its set.

These subregions are swept in descending order of y, and for each subregion, each L∗k (k = n− 1, ..., 1) is

swept in order to determine the minimal points that are attained by L∗k and by p, which are not attained

by another point from p’s set. Therefore, when sweeping L∗k, new points might be added to L∗k+1.

Hence, there are four main cases to consider while sweeping p, given X∗j (p ∈ Xj and p /∈ X∗j ) and L∗t
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(t = n− 1, ..., 1), at coordinate z equal to pz:

first intersection (Algorithm 2) Assume that r is the point in L∗t with lowest coordinate y that satisfies

the following conditions: rx ≤ px, ry > py and X∗j 5 (px, ry). If such point r exists then (px, ry) is

attained by one more input set (p’s set) starting from height pz, and therefore (px, ry, pz) is a point

of Lt+1. r∗ corresponds to point b1 in Figure 2.8, and (px, ry) corresponds to point c1.

dominated points (Algorithm 3) For every point s ∈ L∗t such that conditions p∗ < s∗ and X∗j 5 s∗ are

true, (sx, sy, pz) is a point in Lt+1 because at height z = pz, s∗ is attained by one more input set

(p’s set) then it was in the previous iteration. This is the case of points b2, b3 and b6 in Figure 2.8.

last intersection (Algorithm 4) This case is similar to the first case (first intersection), but here x and y

have their roles reversed. This is the case of point b7, which corresponds to point r∗, and (rx, py),

which corresponds to c2 in Figure 2.8.

p is itself a point in Ltmin
, where tmin is the lowest index t such that L∗tmin

does not attain p (line 24).

Looking back at Figures 2.7(a) to 2.7(d), when a1, b1, c1 and a2 are swept, tmin is 1, 1, 2 and 1,

respectively.

Note that the first three cases are only considered for t ≥ tmin. Since the algorithm determines

all points in each Lt by regions delimited in y by two consecutive points of X∗j (as depicted in Fig-

ure 2.8), points that satisfy the first case (first intersection) are added to L∗t+1 later in the second phase

(dominated points). This is just to avoid adding points to L∗t+1 that would wrongly have influence later

on the dominated points phase. Algorithm 1 uses tmax and A to skip L∗t which are still empty.

When the restriction of not having points with equal z coordinate is lifted, some of the assumptions

made earlier are no longer true in all cases. For example, when there are no input points with equal z

coordinate, it is sure that, when a point is submitted to some L∗t , it is definitely a point belonging to

Lt in three dimensions because any point added later to L∗t that dominates it on their projection on to

the (x,y)-plane, will have a higher third coordinate. But this is not guaranteed to happen when there

are input points with equal z coordinates. For example, if the input points of the following example,

X1 = {(1, 1, 1)}, X2 = {(2, 2, 2)} and X3 = {(3, 3, 2)}, are swept in the following order (1, 1, 1), (3, 3, 2),

(2, 2, 2), then when (3, 3, 2) is swept, it is added to L∗2, but it is not a minimal point of L2 because it is

dominated by (2, 2, 2) that will be added to L∗2 later. To avoid adding wrong points to Lt, the decision

that a point is definitely in Lt is delayed until it becomes clear that it is true. That decision is made only

if that point is only dominated in its projection by a point with higher coordinate z (line 4 of Algorithm 5)

or because there are no more points that invalidate it (line 28 of Algorithm 1). Note that points are

submitted to L∗t using Submit routine, and so are points submitted to X∗j . However, it is considered that

lines 4 and 5 of Submit do not apply to the latter case

Note that, although the problem with equal values of coordinates x and/or y was not mentioned

yet, it is present, and is also solved in Submit (Algorithm 5). What can happen when there are input

points with equal coordinates x and y is to have points that the algorithm finds to be points of a given
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Lt, but which in fact are not because they were already attained by t input sets in previous iterations.

For example, consider the initial problem X1 = {1, 1, 3}, X2 = {(2, 2, 1)} and X3 = {(2, 2, 2)}. Where

sweeping point (1, 1, 3), when Algorithm 3 is executed it claims that point (2, 2) should be added to L∗2

and L∗3, but point (2, 2) is already in L∗2. Therefore, in this current iteration, (2, 2) is added to L∗3 and is

discarded when trying to add it to L∗2 (the condition in line 2 of Algorithm 5 is not verified).

In general terms, if input points have no equal coordinates, then it is possible to admit that when

sweeping two consecutive values of coordinate x, y or z (and fixing the other two coordinates), the number

of input sets that attain them differs, by one at most. For example, in Figure 2.6, point (2, 4) in z = 3

is attained by 1 input set and in z = 4 it is attained by one more. The problem of having input points

with equal coordinates is that this is no longer true in all cases. For example, considering X1 = {1, 1, 1},

X2 = {(2, 2, 2)} and X3 = {(3, 3, 2)}, then when z = 1, point (3, 3) is attained by only one input set and

in z = 2 it is attained by 3 input sets. This is an issue that concerns in all EAF algorithms, the ones

currently available and the new ones that will be proposed later. Because initial algorithm development

often relies on this assumption, it can sometimes be difficult to adapt the initial algorithm to handle

input points with repeated coordinates correctly. Note that in EAF3D, if input points do not have equal

coordinates, then any point submitted to some L∗t would always be minimal, because when compared to

any point already in L∗t it would have at least one coordinate that would be better.

2.4 Multidimensional divide-and-conquer

Dimension Sweep is an approach that is used frequently, and that appears naturally in computational

geometry [17]. As it was discussed before, it is characterized by defining a set of points to be swept in

ascending, or descending, order of a specific dimension. For each point being visited, an easier subproblem

is solved. Examples of the use of this approach include the computation of the hypervolume indicator

and of the EAF, as seen in the previous Sections. Considering a problem with d dimensions, the input

points are swept in one specific dimension, and a (d− 1)-dimensional subproblem is solved for each point

visited.

Although the dimension-sweep approach has led to the efficient solution of many computational geom-

etry problems, this has happened mainly in low dimensions, typically d = 2, 3. An alternative approach

which has been useful in addressing higher-dimensional problems is known as Multidimensional Divide-

and-Conquer [3].

The Multidimensional Divide-and-Conquer paradigm is briefly described by Bentley [3] as follows: To

solve a problem of N points in d-space, first recursively solve two problems each of N/2 points in d-space,

and then recursively solve one problem of N points in (d − 1)-dimensional space. Therefore, the idea is

to divide the main problem into several subproblems. These subproblems are then solved in three steps:

1. Division step, divide the problem involving N points into two problems involving N/2 points.

2. Recursive step, solve each of the N/2-point problems recursively in d-space.
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(a) (b) (c)

Figure 2.9: (a) A set of N = 12 points. (b) The set of points is divided into two sets, A and B, containing
N/2 = 6 points each. Points in the sets of minima of A and B are marked with circles and squares,
respectively. (c) Points in the set of minima of the original problem are marked with circles.

3. Marriage step, join the solutions of the two N/2-point problems, by recursively solving a problem

involving N points in (d− 1)-space.

The recursive step is a recursion on the size of the set, while the marriage step is a recursion on the

number of dimensions. Each of these two steps has a stopping criterion. The recursive step stops when

a small number of points is reached, usually N = 1, while the marriage step usually stops when d equals

2 or 3, where a more or less straightforward algorithm is used to solve the problem for that number of

dimensions. The marriage step is seen as a problem in (d− 1)-space by taking advantage of the fact that

the d-coordinate values of all points of one of the subproblems (let us call this set of points A) are lower

than the values of all points in the other subproblem (lets call it B). In this step, the solution of one of

the subsets (A or B) is correct, while the correctness of the solution for the other subset (B or A) depends

on the points in the first subset (A or B). Which solution is correct (for subset A or B), depends on the

problem being solved.

Multidimensional divide-and-conquer can be applied, for example, to the Maxima problem [3]. Given

a set of points P ⊂ Rd, the Maxima problem is defined, in maximization, as the problem of finding the

points in P that are not weakly dominated by any other point in P, in a maximization sense. Since in this

thesis minimization is assumed, the analogous problem in minimization will be explained instead, i.e.,

the Minima problem (find the minima set). The application of the multidimensional divide-and-conquer

can be seen in the example which is explained next.

Consider the example in Figure 2.9. A set of N = 12 points represented in Figure 2.9(a), is divided

into two subsets, A and B, containing N/2 = 6 points each, as represented in Figure 2.9(b). This

corresponds to the division step. The recursive step consists of finding the set of minima of each of the

subsets, A and B. In Figure 2.9(b), the set of minima of A and B are identified by circles and squares,

respectively. Since all points in A have lower value of coordinate x than all points in B, the points in A

found to be part of the set of minima also belong to set of minima of the original problem. Not all points

found to be part of the set of minima of B are minima of the original set, since some of them are weakly
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dominated by at least one point in A.

Next, the marriage step is performed. Since all points in A have lower x coordinate values than the

points in B, only the points in B that have lower y coordinate values than the points in A belong to the

set of minima of the original problem. Therefore, the marriage step consists of sweeping through each

point of the initial problem, in ascending order of the y coordinate, which becomes a problem in d−1 = 1

dimension. All points in B that are swept before the point in A with the lowest value of the y coordinate

remain marked as being part of the set of minima, while the others are unmarked. Note that each point

of the initial problem is labeled as being in A or in B. Figure 2.9(c) shows the points that belong to the

set of minima of the original problem. This method can also be generalized to d dimensions.

The marriage step is the most crucial step when using this approach to solve a problem, since it is

necessary to figure out how to efficiently join the solutions for the two subproblems. Preparata et al. [17]

apply multidimensional divide-and-conquer to the marriage step itself, dividing it into three subproblems,

two problems in (d− 1)-space with a smaller number of points and a problem in (d− 2)-space.

The multidimensional divide-and conquer approach was already used for problems related to the ones

discussed here, such as the Maxima problem (already described but from a minimization point of view)

and the ECDF (it will be described further ahead), for which this approach reached better results than

dimension-sweep. Actually, the algorithm to compute the hypervolume indicator in three dimensions [5],

which was proved to be asymptotically optimal [5], is based on the dimension sweep algorithm for the

Maxima problem [15]. The minimization version of the Maxima problem can also be related to the EAF

problem, as the points that compose Lt are the minima of Jt, as explained in Section 2.3.1. Preparata and

Shamos [17] compared the two approaches in the resolution of the Maxima problem. In four dimensions,

the dimension sweep approach has time complexity O(N2), whereas the multidimensional divide-and-

conquer approach achieves a time complexity of O(N log2N). Subsequent generalization to d dimensions

led to O(N logd−2N) time complexity being obtained.

The univariate CDF (Cumulative Distribution Function) problem is defined in statistics as the prob-

ability of a random variable taking a value lower than or equal to some given value. The multivariate

CDF generalizes it to a vector of random variables, and is defined as the probability of each of the

random variables Xi taking values less than or equal to some given value xi, where i ≥ 1. The ECDF

(Empirical CDF) is an estimator for the CDF. Given a point u ∈ Rd and a set of points P ⊂ Rd, where

each dimension corresponds to a random variable and each point in P corresponds to an experiment,

the ECDF search problem consists of finding the probability of each random variable i, according to P,

taking a value lower or equal to ui, simultaneously [3]. Consequently, the multivariate ECDF is related

to the EAF problem, since the probability of each random variable i, according to P, taking a value

lower or equal to ui can be seen as the probability of u being attained by P. However, note that the

EAF computation problem is not restricted to computing the EAF at the input points only. Still, given

that |P| = n, the multivariate ECDF can be seen as a special case of the EAF [13], where |mi| = 1, for

i = 1, . . . , n and where n denotes the number of sets.

18



Bentley [3] described the Multidimensional Divide-and-Conquer approach and applied it to a range of

geometry problems, where the ECDF and Maxima problems are classified as Domination Problems. The

time complexity obtained for the Maxima problem was O(N logd−2N), and for the ECDF search problem

was O(N logd−1N). Knowing that the multidimensional divide-and-conquer approach was successfully

applied to problems related to the ones discussed here, it is worth investigating to what extent this

paradigm may be applied to the computation of the hypervolume indicator and/or the EAF.

2.5 Concluding remarks

Hypervolume indicator is a widely studied quality measure, but the time complexity and the performance

of existing algorithms can still be improved, as it will be shown in Section 4.1. Moreover, given the good

results obtained by applying the multidimensional divide-and-conquer approach to similar problems,

using this approach to compute the hypervolume would seem promising. This will also be discussed in

Section 4.2.

The applicability of the Empirical Attainment Function is currently restricted, since algorithms to

compute it are available only for 2 and 3 dimensions. In the next Chapter, a new algorithm for the

four-dimensional case is proposed, and the computation of the EAF in two dimensions is revisited.
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3Empirical Attainment Function

This Chapter is dedicated to the development of new algorithms for the computation of the EAF in two

and four dimensions. In Section 2.3 it was seen that, so far, algorithms are available for the computation

of the EAF in two and three dimensions only, having O(m logm+mn) and O(n2m logm) time complexity,

respectively. In Section 3.1, two new algorithms for the four-dimensional case are described, a simple

one and an improved one, both with O(n2m2 logm) time complexity. In Section 3.2 a new algorithm

is proposed which improves upon the current one by being output-sensitive, i.e., its complexity depends

not only on the size of the input, but also on the size of the output. The contributions presented are

reviewed and discussed in the last Section.

3.1 EAF in four dimensions

This Section is dedicated to the description of new algorithms to compute the EAF in four dimensions.

Subsection 3.1.1 describes a base algorithm, which is improved in Subsection 3.1.2. Their complexity will

be analyzed in Subsection 3.1.3 and, finally, their performance will be experimentally assessed.

3.1.1 Base algorithm

The EAF computation problem in 4 dimensions can be approached using a dimension-sweep strategy,

which leads to solving m EAF computation problems in three dimensions. Hence, the final complexity

will be O(m2n2 logm). In the following, it will be explained how to look at the problem in a way that

leads to the dimension sweep algorithm.

Figure 3.1 will be used as an example to explain the idea. It shows the projection on the (x, y)-plane

Figure 3.1: Example of three runs of a multiobjective optimizer for the same four-objective problem.
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of three points, a = (1, 3, 1, 1), b = (2, 2, 3, 2) and c = (3, 1, 2, 3), each of them belonging to a distinct

outcome set. Given these sets of points, the expected output of an algorithm that computes the EAF in

four dimensions is:

L1 = {(1, 3, 1, 1), (2, 2, 3, 2), (3, 1, 2, 3)}

L2 = {(2, 3, 3, 2), (3, 3, 2, 3), (3, 2, 3, 3)}

L3 = {(3, 3, 3, 3)}

Since all input points have distinct coordinate values, the value of the forth coordinate of each point

identified as belonging to Lt (1 ≤ t ≤ n) must correspond to one, and only one, point from one of the

input sets. Let that input point be called p. This can be seen in the expected output for this example,

since every point in L1, L2 and L3 has the 4th coordinate equal to either aw, bw or cw. Any point q in Lt

that has the 4th coordinate equal to pw is the result of the join between p and t− 1 points (if t = 1, then

q = p). For this to happen, those t − 1 points must have the 4th coordinate less than pw, or qw would

not be equal to pw. The case where t is equal to 1 (and q = p) can be seen in the previous example,

since every point in L1 is a point from one of the input sets. The case where q is the join between p and

t − 1 points (t > 1) can be seen, for example, for points in L2, since each point in this set is the join

of two points. For example, the point (2, 3, 3, 2) in L2 is the join of points a and b. Since (2, 3, 3, 2) has

the 4th coordinate equal to bw, then it is guaranteed that aw < bw, otherwise the 4th coordinate of that

point would not be the maximum of aw and bw, and therefore, it could not be the join of a and b. This

means that those points q in Lt that have the 4th coordinate equal to pw belong to Lt only because p is

present. Otherwise, they would be attained by only t− 1 sets. Moreover, if t = 1, q would not be weakly

dominated by any point from the input, if p was not present.

Consider a point set T ⊂ R4 and a point p ∈ R4 where p /∈ T. Consider that each point in T

belongs to one of the input sets (not necessarily the same set) and that so does p. The key idea is that

if every point in T has the 4th coordinate lower than the 4th coordinate of point p, then the points in Lt

(t = 1, . . . , n) that have the 4th coordinate equal to pw would be the ones that are considered to be in Lt

in the projection of T ∪ {p} on the (x, y, z)-space and that are not in Lt on the projection of T on the

(x, y, z)-space.

An algorithm to compute the EAF in four dimensions can be described as follows. Each point is

added, one by one, in ascending order of the 4th coordinate, to some multiset, P. Every time a new

point p is added to P, the projection of P on the (x, y, z)-space (represented as P∗) is used as the input

to the EAF3D algorithm.1 Note that P∗ may have points dominated by other points in P∗ from the

same set, and even though the EAF computation problem expects points in the same input set to be

non-dominated, EAF3D is prepared to deal with dominated points. Note also that it is assumed that the

1Strictly speaking, the input to the EAF computation problem, and to the EAF3D algorithm, is a sequence of non-
dominated point sets S. However, in the preprocessing stage of the algorithm, all input sets are merged into a single
multiset, X. To simplify both the notation and the explanation of the EAF4D algorithm, the input to EAF3D is abusively
considered here to consist of such a multiset.
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Algorithm 6 EAF4D

Input: S = (X1, . . . ,Xn) // a sequence of non-dominated point sets
Output: R = (L1, . . . ,Ln) // a sequence of non-dominated point sets

1: X←
⊎n

i=1 Xi // multiset sum
2: Qw is X sorted in ascending order of the 4th coordinate
3: P← {}
4: R∗1 ← ({}, ..., {}) // R∗1 = (L∗1,1, ...,L

∗
1,n)

5: while Qw 6= ∅ do
6: repeat
7: p← pop(Qw)
8: P← P ∪ {p}
9: until Qw = ∅ or top(Qw)w 6= pw

10: R∗2 ← EAF3D(P∗) // R∗2 = (L∗2,1, ...,L
∗
2,n)

11: for all i ∈ {1, ..., n} do
12: for all q ∈ L∗2,i − L∗1,i do
13: Li ← Li ∪ {(qx, qy, qz, pw)}
14: R∗1 ← R∗2
15: return (L1, . . . ,Ln)

set to which each point in P∗ belongs is known to the EAF3D algorithm. Every point found to be in L∗t

after the addition of p to P∗ that was not in L∗t before, will be in Lt ⊂ R4, and its fourth coordinate value

will be equal to pw. These points can be found by sweeping each L∗t returned by EAF3D and filtering

out the points that were in the corresponding L∗t in the previous iteration. A fourth coordinate with

value pw is added to the points that remain. A base algorithm that proceeds in this way to compute the

EAF in four dimensions is given as Algorithm 6. This algorithm is able to deal with points with equal

w-coordinate by adding to P, at each iteration, all points with the same value of coordinate w as p.

Taking Figure 3.2 as an example, assume that P is initially empty. The first point to be added

is a, since it is the point with the lowest 4th coordinate. Therefore, P = {a}, let us call it P1 (see

Figure 3.2(a)). Then, point b is added, since it is the point with lowest 4th coordinate among the

remaining points. Hence, Figure 3.2(b) represents the projection of P = {a, b} on the (x, y)-plane, let us

call it P2. Similarly, Figure 3.2(c) represents P = {a, b, c}, let us call it P3. Consider that the output of

the EAF algorithm for three dimensions is of the form R = (L1, . . . ,Ln) and that P∗1, P∗2 and P∗3 are the

projections of P1, P2 and P3 on the (x, y, z)-space, respectively. Assuming that R∗k is the corresponding

output of the EAF3D algorithm for the input P∗k, for the current example, where 1 ≤ k ≤ 3, the expected

outputs are:

R∗1 = ({(1, 3, 1)}, {}, {})

R∗2 = ({(1, 3, 1), (2, 2, 3)}, {(2, 3, 3)}, {})

R∗3 = ({(1, 3, 1), (3, 1, 2), (2, 2, 3)}, {(3, 3, 2), (2, 3, 3), (3, 2, 3)}, {(3, 3, 3)})

R = (L1,L2,L3) is the desired output of the EAF4D algorithm on the current problem. In this

example, since P∗1 = {} ∪ {a∗}, where a∗ is the projection of a on the (x, y, z)-space, all points in R∗1

are added to R, and their 4th coordinate is aw. In the next iteration, b∗ is added, and P∗2 = P∗1 ∪ {b∗}.

Therefore, only the points in each L∗t computed based on R∗2 that were not in the corresponding L∗t based
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(a) z = 3 and w = 1 (b) z = 3 and w = 2 (c) z = 3 and w = 3

Figure 3.2: The projection of the sets of points of the example of Figure 3.1 on the (x, y)-plane for a
given value of coordinates z and w.

on R∗1, should be added to Lt in R, with 4th coordinate equal to bw. Note that if the point (1, 3, 1) in

L∗1, that is present in R∗1 and in R∗2, were added to L1 in R with 4th coordinate equal to bw, it would be

weakly dominated by the point (1, 3, 1, aw), added previously. In the next iteration, having added c∗ to

obtain P∗3, the points in R∗3 with the 4th coordinate equal to cw are obtained following the same reasoning

used to add points with coordinate equal to bw.

Deciding which points are new at each iteration of Algorithm 6 is performed in lines 11-13. In order

to be able to perform this filtering step linearly in the number of output points, it is necessary to sort L∗t

from the current iteration (L∗2,t) and the previous iteration (L∗1,t). After having sorted each L∗t , points

from each L∗2,i, where i = 1, ..., n which are not in the corresponding L∗1,i are identified as final output

points, their fourth coordinate is set, and they are added to Li.

The base algorithm proposed in this Subsection can be modified in order to avoid having to sort and

filter points at each iteration, in order to achieve better performance. The next Subsection describes an

improved version of the base algorithm.

3.1.2 Improved algorithm

The base algorithm to compute the EAF in four dimensions can be improved by making some modifica-

tions to EAF3D that allow the sorting and filtering steps of EAF4D to be removed. These modifications

should allow algorithm runtime to be reduced while keeping the same worst-case complexity.

Following the example of the previous Section, every time a point p is added to P, it is possible to

verify which points are new in each L∗t (t = 1, . . . , n) without having to sort and compare the outputs

of the EAF3D algorithm for the current and the previous iteration. The idea is to modify the current

EAF3D algorithm [11] to return only those points that belong to the output sequence R = (L1, . . . ,Ln)

exclusively due to the presence of p. Moreover, as in the base algorithm, when considering that there are

more input points with coordinate w equal to pw, they are also added to P in the same iteration as p.

In this case, EAF3D is modified to return those points that belong to the output sequence R exclusively

due to the presence of one or more input point with pw as coordinate w. Then, the expected output of
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Algorithm 7 Improved EAF4D (IEAF4D)

Input: S = (X1, . . . ,Xn) // a sequence of non-dominated point sets
Output: R = (L1, . . . ,Ln) // a sequence of non-dominated point sets

1: R∗ ← ∅
2: X←

⊎n
i=1 Xi // multiset sum

3: Qw is X sorted in ascending order of the 4th coordinate
4: p← pop(Qw)
5: P← {}
6: while Q 6= ∅ do
7: N← (∅, ...,∅) // N = (N1, ...,Nn)
8: repeat
9: p← pop(Qw)

10: P← P ∪ {p}
11: s← input set(p)
12: Ns ← Ns ∪ {p}
13: until Qw = ∅ or top(Qw)w 6= pw

14: R∗ ← EAF3D(P∗,N∗)
15: for all L∗i ∈ R∗ where 1 ≤ i ≤ n do
16: for all q ∈ L∗i do
17: Li ← Li ∪ {(qx, qy, qz, pw)}
18: return (L1, . . . ,Ln)

the modified EAF3D algorithm, on the previous example, would be:

R∗1 = ({(1, 3, 1)}, {}, {})

R∗2 = ({(2, 2, 3)}, {(2, 3, 3)}, {})

R∗3 = ({(3, 1, 2)}, {(3, 3, 2), (3, 2, 3)}, {(3, 3, 3)})

Note that adding each point in R∗1, R∗2 and R∗3 with the 4th coordinate equal to aw, bw and cw, respectively,

to the corresponding Lt would result in the expected output of the EAF4D algorithm, described in the

previous Subsection.

The pseudo code for the modified EAF algorithm for 4 dimensions (IEAF4D) is presented in Algo-

rithm 7. The function EAF3D is the modified version of the EAF algorithm for three dimensions. In

this newer version, only the new points in each set L∗t are returned. Let us say that a point is a new

point if it belongs to some L∗t in the current iteration and did not in the previous iteration. Points are

inserted into P in ascending order of the 4th coordinate, and points with equal fourth coordinate are all

added to P in the same iteration. These last points added to P that have equal 4th coordinate are also

added to their corresponding Nt. Note that, N = (N1, ...Nn) is a sequence of sets, where Nt, t = 1, .., n,

contains only the input points of Xt that are in P in the current iteration of Algorithm 7, and were not

in the previous iteration. P∗ and N∗t (t = 1, ..., n) are, respectively, the projection of P and Nt on the

(x, y, z)-space. These two data structures, P∗ and N∗, will be passed as input to EAF3D. For simplicity,

consider only input points with distinct coordinate w and that p is the last point added to P (and to the

corresponding Nj , where p ∈ Xj). The original EAF3D [11] has to be modified to return only the new

points that are in each L∗t just because p∗ is present. This can be done by marking the points which are
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Algorithm 8 EAF computation in three dimensions

Input: X =
⊎n

i=1 Xi // multiset sum, duplicate points are allowed

Input: N = (N1, ...,Nn) // Nt has the new points from input set t

Output: R = (L1, . . . ,Ln) // a sequence of non-dominated point sets
1: m←

∑n
i=1 |Xi|

2: Q is X sorted in ascending order of the z coordinate
3: Dt ← ∅, t = 1, . . . , n // Dt has the points in L∗t that might be new
4: Lt ← ∅, t = 1, . . . , n
5: L∗t ← {(−∞,∞,−∞), (∞,−∞,−∞)}, t = 1, . . . , n // Sentinels
6: X∗i ← {(−∞,∞,−∞), (∞,−∞,−∞)}, i = 1, . . . , n // Sentinels
7: p← pop(Q)
8: j ← input set(p)
9: insert(p,X∗j )

10: insert(p,L∗1)

11: if p ∈ Nj then

12: if Q = ∅ or top(Q)z 6= pz then

13: L1 ← {p}
14: else
15: D1 ← {p}
16: A← {j}
17: tmax ← 1
18: while Q 6= ∅ do
19: p← pop(Q)
20: j ← input set(p)
21: q ← floorx(p,X∗j )
22: if py < qy then // always true if Xj is indeed a non-dominated point set
23: t← tmax

24: tmin ← 1
25: first intersection // part 1
26: dominated points // part 2
27: last intersection // part 3
28: submit p to X∗j
29: submit p to L∗tmin

given o and p

30: if j 6∈ A then
31: A← A ∪ {j}
32: tmax ← min(tmax + 1, n− 1)

33: if Q = ∅ or top(Q)z 6= pz then

34: add new points

35: return (L1, . . . ,Ln)

“influenced” by p∗, either because they are the point p∗ itself or because they are the join of p∗ and other

points. While marking the points, it is necessary to take into account that some of the points added to

L∗t are also weakly dominated by points in the same set as p∗ besides p∗. Therefore, it is necessary to

be careful to check whether a specific point is only weakly dominated by p∗ among the points in its set.

When considering points with equal coordinate w essentially the same thing happens, and it is necessary

to mark the points in each L∗t that are influenced by at least one input point in one of the Nt.

Algorithm 8 is the modified version of Algorithm 1. Most of the changes consists of the introduction of

new statements (shaded). Moreover, a new subroutine (add new points - Algorithm 13) was introduced
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Algorithm 9 first intersection

1: // q = floorx(p,X∗j )

2: o← nil
3: while t ≥ tmin do
4: r ← floorx(p,L∗t )
5: if ry ≤ py then
6: o← r
7: tmin ← t+ 1
8: else if ry < qy then
9: st ← (px, ry, pz)

10: gt ← rt
11: else
12: st ← lowery(q,L∗t )
13: gt ← st
14: t← t− 1

Algorithm 10 dominated points

1: // sxt ≥ px, q = floorx(p,X∗j )
2: repeat
3: q ← higherx(q,X∗j )
4: b← max(py, qy)
5: for t = tmax down to tmin do
6: while syt ≥ b and (syt > b or b > py) do
7: if sxt ≥ qx then
8: st ← lowery(q,L∗t )
9: gt ← st

10: else
11: submit (sxt , s

y
t , p

z) to L∗t+1 given gt and p

12: st ← higherx(st,L
∗
t )

13: gt ← st
14: until qy ≤ py

Algorithm 11 last intersection

1: // st = floory(p,L∗t )
2: for t = tmax down to tmin do
3: if sxt < qx then

4: submit (sxt , p
y, pz) to L∗t+1 given gt and p

and a second version of submit (Algorithm 5) is defined as Algorithm 12. Note that, in Algorithm 8,

the submit routine referred to in line 28 corresponds to the first version of submit (Algorithm 5 without

lines 4 and 5) while the remaining references to submit correspond to the second version (Algorithm 12).

Previously, in the explanation of Algorithm 1, it was seen that the decision that a point u belongs to

Lt, t ∈ {1, ..., n}, was delayed until it was sure that u was definitely a minimum of Jt. Therefore, that

decision was made only when u was removed from tree L∗t (in submit) or when the algorithm terminated.

In Algorithm 8, this decision had to be delayed even further because it is necessary to know also whether

u is new with respect to the Lt of EAF3D of the previous iteration of EAF4D algorithm. This can only

be guaranteed after processing all points with the same coordinate z as u (in Algorithm 8). Therefore,

when a point might be a new point of Lt, it is added to Dt. Whether points in Dt are really new or not is

decided after processing all points with coordinate z equal to uz, so that all points that could invalidate
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Algorithm 12 submit u to L∗t given h and p

1: v ← floorx(u,L∗t )
2: if uy < vy then
3: for all w ∈ L∗t+1 : (ux, uy) ≤ (wx, wy) do
4: if uz > wz then
5: if p ∈ Nj or (t > 1 and (h ∈ Lt−1 or h ∈ Dt−1)) then

6: Dt ← Dt ∪ {u}
7: remove(w,L∗t )

8: Dt ← Dt − {w}
9: insert(u,L∗t )

Algorithm 13 add new points

1: for t = 1 to t = n do
2: for all u ∈ Dt do
3: e←

∑n
k=t I(u ∈ Dk)

4: if e = 1 then
5: if ∃k∈{1,..,n}.(X∗k E u and (X∗k −N∗k) 5 u) then
6: Lt ← Lt ∪ {u}
7: else
8: m←

∑n
k=1(I(X∗k E u) and I((X∗k −N∗k) 5 u))

9: for i = 0 to e−min(e,m)− 1 do
10: Dt+i ← Dt+i − {u}
11: for i = e−min(e,m) to e− 1 do
12: Dt+i ← Dt+i − {u}
13: Lt+i ← Lt+i ∪ {u}
14: Dt ← ∅, t = 1, . . . , n

u are processed. The ones that are indeed new are added to the corresponding Lt (line 34).

To know whether a point might be new in Lt (to add it to Dt), it is necessary to know if it is in

L∗t possibly due to a new input point. Note that each point that is submitted to some L∗t is submitted

because of the influence of one or two points. It is always influenced by the point being swept (p) and

sometimes, by a point of L∗t−1 (whenever t > 1 is true). Therefore, a point submitted to some L∗t might

be new if at least one of the points that are responsible for its submission is a new input point or it is

influenced by at least one of the new input points (lines 5 and 6 of Algorithm 12).

After all points with equal coordinate z are swept, it is verified which points in each Dt are really new.

This is the goal of Algorithm 13. If all input points were guaranteed to have distinct coordinates, then

lines 1, 2, 5, 6 and 14 of this algorithm, would suffice. What these lines do is to add to Lt only the points

u in Dt that are dominated by at least one new input point from some set Nk (note that Nk ⊆ Xk) and

whose points already swept from set Xk which are not new (Xk−Nk) do not dominate u. The rest of the

lines of Algorithm 13 are there because of the issues that arises when dealing with repeated coordinates

of input points.

As seen earlier, the problem of computing the EAF becomes more difficult when considering that

input points might have equal coordinates, as there are assumptions that are no longer true. Therefore,

the problems that arise in the algorithm to compute the EAF in three dimensions, also become a problem

in the computation of the EAF in four dimensions. The solutions introduced in the algorithm to compute
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the EAF in 3 dimensions solve most of the problems related to equal coordinates in the four-dimensional

problem, but not all of them. The remaining problems are solved by delaying the decision of stating that

a point submitted to some L∗t and marked as new, is really new. As in the original version of EAF3D, if

it is determined that some point was wrongly submitted to an L∗t it is removed from L∗t . In the modified

version, if it might be a new point then it is also unmarked as a possible new point of L∗t by removing it

from Dt.

When the same point u is in more than one Dt, then it is necessary to verify if that specific point is

new in all of those Dt, and for that it is not enough to know if the condition in line 5 (Algorithm 13)

is true. If this specific point is in e different Dt, and m is the number of new input sets that satisfy

simultaneously conditions I(X∗k E u) and I((X∗k − N∗k) 5 u), i.e., the number of different input sets that

dominate u in the current iteration and that did not in the previous iteration of EAF4D. Then, the

identification of u as a new point is only correct in the min(e,m) of the highest indices of those Dt. For

example, assume the following initial problem:

1. X1 = {(1, 1, 1, 2)}

2. X2 = {(2, 2, 2, 1)}

3. X3 = {(2, 2, 2, 1)}

The expected result is:

1. L1 = ({(2, 2, 2, 1), (1, 1, 1, 2)})

2. L2 = ({(2, 2, 2, 1)})

3. L3 = ({(2, 2, 2, 2)})

and the computation of the two EAFs in three dimensions results in:

1. R1 = ({(2, 2, 2)}, {(2, 2, 2)}, {})

2. R2 = ({(1, 1, 1)}, {}, {(2, 2, 2)})

So, looking specifically at the second EAF in three dimensions, where the point from the first input set

is the new one ((1, 1, 1, 2) ∈ X1), when (1, 1, 1) is swept, L∗1, L∗2 and L∗3 will be {}, {} and {}, respectively

and so (1, 1, 1) is added to L∗1 (and also to L1). Processing the first and the second (2, 2, 2) would cause

(2, 2, 2) to be added to D2 and D3, respectively. However, (2, 2, 2) in L2 in three dimensions is not new,

as it can be seen in the result returned in the previous iteration of EAF4D. Therefore, (2, 2, 2) is only

new in D3 (note that e = 2 and m = 1).

Both algorithm proposed here have two improvements not described in the pseudocodes. One is that

if a point is detected to be dominated by a point from its set when projected on (x,y,z)-space, then it
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is skipped in the following computations of EAF in three dimensions. The other improvement is that

in line 24 of Algorithm 8, instead of initializing tmin to 1 when the point being swept is not new, it is

initialized to k where L∗k is the set to which the input point was added (the value of tmin after that point

was swept in EAF3D of the previous iteration of EAF4D).

Having a description of a base and an improved algorithm to compute the EAF in four dimensions,

their performances can now be analyzed. This is done in the next Subsection.

3.1.3 Complexity

The main loop of the base algorithm to compute the EAF in four dimensions (Algorithm 6) consists

of computing m EAF in three dimensions involving up to m points each. Since EAF3D has a cost of

O(n2m logm), running it m times has a total cost of O(n2m2 logm). In addition, Algorithm 6 also sorts

each EAF3D output, and compares two EAF3D outputs (filtering step), m times. Sorting m EAF3D

outputs also has a cost of O(n2m2 logm), since the maximum number of output points of the EAF3D in

three dimensions is known to be O(n2m) [11] and n ≤ m. In pratice, the output points of an EAF3D

are not sorted all together, but in disjoint subsets (L1, ..., Ln), which is generally faster. The filtering

step sweeps through each Lt (t = 1, ..., n) of two EAF3D outputs, therefore sweeping O(n2m) points

per EAF3D output. Since the points of each Lt in each EAF3D output are sorted, the filtering step is

performed in linear time for each Lt. Therefore, the total cost of filtering points is O(n2m2) which is

also a new bound on the number of output points. Hence, the base algorithm for the computation of the

EAF in four dimensions has a time complexity of O(n2m2 logm).

The spacial complexity of the algorithm is dominated by the storing of the output points, and is

therefore O(n2m2).

The improved algorithm to compute the EAF in four dimensions has the same time and space com-

plexities as the base version. All modifications introduced in EAF3D are performed in constant time

and need constant extra space, except for the modifications of adding the subroutine detailed in Algo-

rithm 13. Note that verifying if a point is possibly new in Algorithm 12 has constant cost since it is

known in constant time whether a point in each L∗t is in Dt or in Lt and whether an input point is in the

Nj corresponding to its set.

When considering that all points have distinct coordinate w, then it is possible to see that Algorithm 13

adds a cost of log(m) per point added to some L∗t , since it verifies if each of those points is dominated by

the only non-empty Nk and not by (X∗k − Nk), k ∈ {1, ..., n}. Therefore, it adds a cost of O(n2m logm)

per point swept in four dimensions. Note that if c points with equal coordinate w where processed one at

a time, processing these c points would cause Algorithm 13 to have a total extra cost of O(cn2m logm).

In the improved algorithm, all points with equal coordinate w are considered together. Then, if these c

points all belong to distinct input sets, then Algorithm 13 verifies if each possible new point in each L∗t

is dominated by one of these c input points (let us call it q) but not by the other points from q’s sets.

Therefore, having the same O(cn2m logm) time complexity as it would have if points were processed

30



separately. Note, that if some of the c input points belonged to the same input set, then the time

complexity associated to those c input points would be O(kn2m logm), where k is the number of distinct

inputs sets to which the c input points belong to. Hence, the total cost added by Algorithm 13 is

O(n2m2 logm).

Looking in an abstract way to the two algorithms proposed for the computation of EAF in four

dimensions and the existing algorithm for three dimensions, the former are an extension of the later. All

are dimension sweep algorithms to compute EAF in d dimensions (d = 4 in the first case and d = 3

in the second) that compute m EAF in (d − 1) dimensions. For each swept point in dimension d the

points in each Lt in their projection in (d − 1) dimensions that were not present in the corresponding

Lt of the previous sweep are determined. Then, those points are added to the correspondent Lt in d

dimensions with the dth coordinate equal to the dth coordinate of the point being swept in dimension

d. The algorithms for the four dimensional case differ from the three dimensional case in the sense that

the former need to compute the whole EAF in (d − 1) dimensions, i.e., from scratch, in each iteration,

while the latter computes the EAF in (d− 1) dimensions on the top of the EAF in (d− 1) of the previous

iteration, i.e., in a constructive way.

In principle, this method of computing the EAF in d dimensions by computing m EAF in (d −

1) dimensions could also be used to construct an algorithm for any number of dimensions, obtaining

an algorithm with a time complexity of O(md−2n2 logm). However, this complexity might be rather

excessive, since the available lower bound on the maximum number of output points in d dimensions is

Ω
(
mbd/2c

)
. Moreover, the number of output points with more than four dimensions may also become

very high, which may impair the use of EAF in higher numbers of dimensions.

3.1.4 Experimental results

In this Section, it will be explained how the base EAF4D (described in Section 3.1.1) and the improved

version (IEAF4D, described in Section 3.1.2), were tested, how their performance were compared, and in

which conditions.

Both algorithms were implemented in C and were compiled using gcc version 4.6.0. To check that

the implementations were correct, some tests were created, namely, tests to exercise specific parts of the

algorithm. These tests included limit situations, such as input points with the same coordinate values as

other points in the same input set or other input sets. Besides these tests, the data sets made available

by the Walking Fish Group were used [8]1. The results were verified using the invariance of the EAF with

respect to permutations of the objectives, and the property of idempotence, i.e., EAF(EAF(S))=EAF(S).

Although a formal proof of this property is not available yet and will be the subject of further work,

the EAF computation problem was formulated with idempotence in mind, and this property could be

verified experimentally in all cases.

To compare algorithm performance, three different data sets from the Walking Fish Group were used,

1http://www.wfg.csse.uwa.edu.au/hypervolume/index.html#data
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Figure 3.3: Results for the spherical data set (a and b), for the random data set (c and d) and for the
degenerate data set (e and f).

namely the spherical data set, the random data set and the degenerate data set. The spherical data set

was obtained by generating a non-dominated point set with 10000 points, where points are spread along

a spherical front. k points were then randomly selected (k = 10, 50, ..., 1000), 10 times (per each different

value of k). Therefore, they can be seen as 10 different outcomes for the same problem. The disadvantage

of these data sets is that, since the original set of points was a non-dominated point set, the 10 subsets
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will not have dominated points among them, unless there are repeated points in different subsets. The

random data set was constructed in the same way, but the original set of points was generated by

generating randomly non-dominated points. Finally, the same applies also to the degenerate data set,

but in this case, the points have the characteristic that when sorted in ascending order of coordinate w,

all points will also be sorted in descending order of the remaining coordinates.

Tests were performed on an Intel Core 2 Duo P8600, with 2.40GHz and 3MB cache size. Figure 3.3

shows the runtimes of an execution of EAF4D and IEAF4D for each test. It can be observed that in the

spherical and random data set, IEAF4D always outperforms the EAF4D, the former being up to twice

as fast as the latter. On the degenerate data set, when n is constant and small, EAF4D outperforms

IEAF4D. This is not a surprise, since in this particular data set, given its structure, it is known that

in each EAF4D iteration the output of EAF3D consists of one point per output set Lt, which is always

new compared to the previous iteration of EAF4D. Therefore, when m grows under constant n, the effort

spent in the sorting and filtering steps is always the same for each point swept in four dimensions. On the

other hand, in this data set, when m is constant and n grows, the effort spent in sorting and filtering steps

by EAF4D increases. In this case, IEAF4D starts by performing worse than EAF4D, but its performance

improves as n grows.

It can also be seen that, on the spherical and random data sets, the runtime of both algorithms grows

approximately quadratically as expected, both for constant n and for constant m. This is also observed

to the degenerate data set when n is constant, but the runtime grows linearly as n increases when m

is constant, showing that this is a favorable case for both algorithms, specially for IEAF4D. This is

justified by the fact that each point in the degenerate data set either dominates or is dominated by every

other point with respect to dimensions (x, y, z). Therefore, the maximum total number of output points

in this case is O(n) for the three-dimensional subproblems. In this particular case, EAF3D performs

in O((n + m) logm) and EAF4D and IEAF4D will perform in O((m + n)m logm), which explains the

different slopes, for constant m and constant n.

Having these results shows that, in spite of IEAF4D adding a little extra work to the EAF3D algorithm

to avoid having to sort and filter points, it is worth it in general.

3.2 Output sensitive algorithm for two dimensions

It is known that the worst-case time complexity of the algorithms to compute the EAF is directly related

to the maximum number of output points. It is also known that not all inputs result in the maximum

number of points, thereby raising the possibility of developing output-sensitive algorithms in order to

obtain better performance. In Subsection 3.2.1, a new algorithm for the two dimensional case having this

characteristic is described, and its complexity is analyzed in Subsection 3.2.2. Later, in Subsection 3.2.3,

the new algorithm is compared against the existing algorithm for the two dimensional case.
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Figure 3.4: Example of three runs of a multiobjective optimizer for the same two-objective problem.

3.2.1 Description

An algorithm to solve the EAF computation problem in 2 dimensions is currently available [11], with

a complexity of O(m logm + mn). This algorithm exhibits the same complexity independently of the

number of output points, since the number of operations performed after the sorting step is always Θ(mn).

This result can be improved by developing an algorithm that is output sensitive. Such an algorithm will

still perform O(mn) steps in the worst case, but will be able to achieve m steps in the best scenario, which

is the one where each input set either totally dominates, or is totally dominated by, each of the remaining

input sets. The final complexity will still be O(m logm+mn) due to the sorting at the beginning of the

algorithm.

The description of the output-sensitive algorithm will follow next, but since considering points with

equal coordinates makes the task of developing an output-sensitive algorithm harder and less clear, this

description will be divided into four parts. The first part describes a first version of the output-sensitive

algorithm where only input points with distinct coordinates are allowed. In the second part, the problem

of having equal coordinates is explained in detail. A second version of the output-sensitive algorithm

where input points with equal x-coordinate values are allowed is described in the third part. Finally, a

third (and final) version of the algorithm is detailed in the fourth part, where no restrictions on the input

points are imposed.

All input points have distinct coordinates

Algorithm 14 presents the pseudocode for the output-sensitive algorithm to solve the EAF computation

problem in two dimensions. Figure 3.4 illustrates the input sets that will be used as an example to explain

the main ideas. It is assumed that all points have distinct coordinate values.

This algorithm follows the idea of sweeping through every point in ascending order of the y-coordinate

and keeping track of the last point visited for every set. For example, in Figure 3.4, after processing point

b3, the last visited points of each set are a2, b3 and c1. These points are kept sorted with respect to the

x-coordinate. Following the same example, the order in which they are kept, is b3, a2 and c1. Each time

a new point is selected (the next one is c2), it is checked which of the points kept have the x-coordinate

between the x-coordinate of the new point (cx2) and the last point visited in the same set (cx1), which
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Algorithm 14 EAF 2D

Input: S = (X1, ...,Xn)
Output: R = (L1, ...,Ln)

1: X←
⊎n

i=1 Xi // multiset sum
2: Xy is X sorted in ascending order of y
3: Lt ← ∅, t = 1, . . . , n
4: vt ← nil, t = 1, . . . , n
5: at ← 0, t = 1, . . . , n
6: c← 1
7: while Xy 6= ∅ do
8: p← pop(Xy)
9: s← input set(p)

10: if as = 0 then
11: as ← c
12: c← c+ 1
13: vas ← p
14: k ← as − 1
15: while k ≥ 1 and px < vx

k do
16: Las ← Las ∪ {(vx

k , p
y)}

17: switch(v, a, k, k + 1)
18: k ← k − 1
19: Las ← Las ∪ {p}
20: return (L1, . . . ,Ln)

are a2 and b3 in the given example. These points in between are swept in descending order of their

x-coordinate. The join of the new point and each of these points are points to be added to some Lt

(where t is the number of points kept that are to the left of each of the points in between, plus 1). In

the given example, the join of c2 and a2 results in the point (ax2 , c
y
2), and, since a2 is the second point

of the points kept, it is added to L3. Following the same reasoning, the join of c2 and b3 results in the

point (bx3 , c
y
2), and since b3 is the first point of the points kept, it is added to L2. Finally, the new point

is added to the Lt set to which it belongs, where t is the number of points kept to its left plus one. In

this case, since c2 does not have any points to its left, it is added to L1.

In Algorithm 14, the last visited points in every set are kept in v (they are kept sorted in ascending

order of their x-coordinate), where v maps each position (order number) to one of these points. For

example, after processing b3, v would be (b3, a2, c1). Vector a is used to keep track of the position of the

point of each set that is in v, mapping the index of each set to the position of its last visited point in

v. Hence, in this example, assuming that indices 1, 2 and 3 correspond to sets a, b and c, respectively,

vector a would be (2, 1, 3). To maintain the points in v sorted while points in v are swept, the new point

p ∈ X being processed starts from the last position of the point from its set in v (or from position t if

only points from t− 1 sets were processed so far and p’s set is not one of them), and switches positions

in v with each point of v swept (line 17).

Vector v is responsible for indicating from which value of coordinate x, at the current height, the

region is dominated by each Lt (t = 1, ..., n). For example, if p is the point being processed, (vx
t , p

y)

indicates that the region attained by at least t input sets above py in y-coordinate is the one dominated

by (vx
t , p

y). Therefore, assume that p is indeed the point being processed, and that px dominates a value
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Algorithm 15 EAF 2D - switch(v, a, i, j)

Input: v, a, i, j
1: p← vj

2: s← input set(p)
3: vj ← vi

4: ainput set(vj) ← j
5: vi ← p
6: as ← i

of x where some Lt begins (vx
t ). If (vx

t , p
y) is not dominated by any other previously processed point from

p’s set, it indicates that the region dominated from that value of x, and from the current height (py) is

now dominated by one more input set (p’s set), i.e., it is dominated by at least t+ 1 sets. Hence, (vx
t , py)

is definitely a point in Lt+1, since the region immediately below this point and the region immediately

to its left is dominated by only t points (lines 15-18). This is true because it is assured that the region

immediately below py is dominated by a maximum of t points (if only points from t sets where processed

so far) or because the region immediately below py that is dominated by at least t + 1 sets starts from

a value of coordinate x higher than vx
t . Moreover, if the first t points of v are all the points in v that

are lower than p according to the x-coordinate, then, starting from height py, the region at p’s right is

dominated by at least t + 1 input sets. Therefore, p is itself a point of Lt+1 (line 19). In this case, it is

said that the final position of p in v is t+ 1.

If v contains a point from p’s set, then let such a point be called q, otherwise let q be (∞, py). To

ensure that all output points are found, it is enough to verify the points in v between p and q according

to coordinate x. This is true because at p’s height (py), the points in v to the right of q (q ≤ (vxt , p
y)) and

the points in v to the left of p, are dominated by the same number of input sets as they were immediately

below height py. Therefore, p has no influence on the region to its left or on the region at q’s right.

Hence, given an input where all points have distinct coordinate values, Algorithm 14 is able to produce

all points in each Lt, t = 1, ..., n, and all points produced are correct.

The problem of having input points with equal coordinates

When considering that the input points can have equal coordinates, the input points are swept in ascend-

ing order of coordinate y and points with equal coordinate y are swept in ascending order of coordinate

x. Considering this scenario, the algorithm as it is will still produce all points in each Lt, t = 1, ..., n,

but some of the output points produced might be incorrect. Figure 3.5 shows some examples where the

algorithm would produce incorrect output points. Another problem that arises when using Algorithm 14

with input points with equal coordinates is that it is no longer possible to guarantee the output-sensitivity

of the algorithm.

Looking at Figure 3.5(a), it is possible to observe these problems. In this case, the first points of each

input set have equal coordinate x. After processing points b1, a1 and c1 (all having coordinate x equal to

w), v would be (a1, b1, c1) and L1, L2 and L3 would include points (w, ay1), (w, by1) and (w, cy1), respectively.

The problem arises when processing c2, because since c1 in v is to the right of a1 and b1, and c2 should
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(a) (b) (c)

Figure 3.5: Two-dimensional examples of input sets where points with equal coordinate can be problem-
atic.

be to the left of a1 and b1 in v, then c2 will switch positions in v with these two points. Therefore,

points c2, (w, cy2) and (w, cy2) would be added to L1, L2 and L3, respectively. The last two points are not

minimal points because (w, cy2) and (w, cy2) are dominated by (w, by1) (point already in L2) and (w, cy1)

(point already in L3), respectively. This happens only because it is not possible to guarantee that the new

points added to each Lt (t = 2, ..., n) have lower x coordinates than the points already there, as it would

happen if none of the input points had equal coordinates. Following the same reasoning, processing b2

would incorrectly add point (w, by2) to L3. In this example it is possible to see that the algorithm is no

longer output-sensitive, even if the incorrect points were not added to the corresponding Lt by verifying

whether their x-coordinate is lower than the x-coordinate of the last point added to that Lt. For example,

when processing point c2 only one output point should be produce (add c2 to L1). Therefore, only one

operation should be executed but, instead, processing c2 has a cost of O(n) since it switches positions

with one point in each of the other input sets, and produces a point in each swap.

Figure 3.5(b) shows another example where the problems of Algorithm 14 for the example of Fig-

ure 3.5(a) also occur, but in this case the problem arises because some points have equal y coordinates.

Similarly, as in the example of Figure 3.5(a), when processing point c2, it would switch positions with b1

and a1, would correctly add a point to L1 (point c2), and would incorrectly add a point to L2 and a point

to L3, which would be points (ax1 , h) and (bx1 , h), respectively. The difference relatively to the previous

example is that, at the time c2 is processed, the points incorrectly produced are not dominated by any

point already added to the corresponding Lt. The point added to L2 (L3) when processing c2 is dominated

by a point added after processing b2 (a2), at the time the point b2 (a2) itself is added to L2 (L3). Again,

this only happens because some input points have equal coordinates, in this case y, otherwise it would be

guaranteed that any point added to some Lt would have coordinate x better than the points previously

added, but coordinate y would be worse. As in the previous example, it would be possible to guarantee

that incorrect points would not be in Lt at the end of the algorithm. This could be achieved by verifying,

every time a new point is added to Lt, if it dominates the last point added to that Lt, and removing that

last point if it is dominated. Still, this does not suffice to assure the output-sensitivity of the algorithm.
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Input points can have equal coordinate x

Due to the problems described earlier, it is necessary to use a more elaborate method to ensure the

correctness of the results and the output-sensitivity of the algorithm, independently of input points

having equal coordinates or not. Regarding this, there are a few details that are important to note. One

is that when there are points with equal coordinate x (this only happens between points of distinct sets,

otherwise one or more input sets would not be non-dominated point sets), the order among these points

in v is irrelevant. Consequently, there is a freedom to choose the order among them in v. Another detail

is that if some point p from some input set Xs is processed, and q is the point of Xs in v, then p only

contributes to the region strictly to the left of q, i.e., if q has equal coordinate x as other points in v,

then while sweeping points in v between px and qx, the points with coordinate x equal to qx should not

be swept at all. In the example of Figure 3.5(a) this was seen when point c2 is processed since it does

not contribute to the region starting at value w of x-coordinate it should not sweep points a1 and b1.

The two details explained above lead to the solution to solve the problem of having points with equal

x-coordinate values. The solution, given the previous example, is to move q’s position in v to the leftmost

position in v among points with coordinate x equal to qx. This would avoid producing incorrect points

and extra operations as it was seen in the example of Figure 3.5(a). Hence, in this example, as soon as

point c2 is chosen to be processed, v = (a1, b1, c1) should be modified to (c1, a1, b1). This is what is done

in Algorithm 16, which is a second version of Algorithm 14 which fixes some of its problems, specifically

the ones related with points with equal values of coordinate x. In this algorithm, it is necessary to keep

track of the positions of the points in v where a specific value of x begins and ends, i.e., to know where

the consecutive points with equal coordinate x are placed in v. This allows one to know if a certain point

in v has more points in v with equal coordinate x to its left, or right, and where they are, without having

to search for them in v.

Using the example of Figure 3.5(c), before processing points b2 and c2, the following information

should be available: the points in v that have coordinate x equal to w2 are between positions 1 and

3; the points with x equal to w1 are between positions 4 and 5; and the points with x equal to ax1 are

between positions 6 and 6. This information is obtained through functions begin(x) and end(x) which can

be executed in constant time. It is assumed that this information is updated every time v is modified.

Looking back to the example of Figure 3.5(a), when c2 is chosen to be processed, v = (a1, b1, c1) is

modified to (c1, b1, a1) by switching the position of the point from c2’s set in v (c1) with the leftmost

point in v with coordinate x equal to cx1 (line 9). Therefore, since it is known that cx1 begins and ends in

position 1 and 3 respectively, c1 moves to position 1. When c2 replaces c1 in v (line 10), the information

that cx2 begins and ends in position 1, and that cx1 begins and ends in position 2 and 3, respectively, is

updated. Note that by doing this switch early when a point is chosen to be processed, it allows vt to be

initialize to (∞,−∞), where t = 1, ..., n, and initialize at = t, i.e., initialize with sentinels for each input

set, therefore removing the need to verify whether any point from the same input set as the current one

was already processed (lines 10-12 of Algorithm 14).
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Algorithm 16 EAF 2D

Input: S = (X1, ...,Xn)
Output: R = (L1, ...,Ln)

1: X←
⊎n

i=1 Xi // multiset sum
2: Xy is X sorted in ascending order of y
3: Lt ← ∅, t = 1, . . . , n
4: vt ← (∞,−∞), t = 1, . . . , n
5: at ← t, t = 1, . . . , n
6: while Xy 6= ∅ do
7: p← pop(Xy)
8: s← input set(p)
9: switch(v, a, begin(vx

as), as)
10: vas ← p
11: k ← as − 1
12: while k ≥ 1 and px < vx

k do
13: Lk ← Lk ∪ {(vx

k , p
y)}

14: i← begin(vx
k)

15: switch(v, a, i, k + 1)
16: k ← i− 1
17: Las ← Las ∪ {p}
18: return (L1, . . . ,Ln)

There is one more important detail to notice when dealing with equal coordinates among input points

when a point p is being processed. If while sweeping through points in v, a set of points that have some

value w higher than px as their x-coordinate is found, then p contributes with the addition of only one

output point with w as coordinate x. It means that, at height py, if the region attained by Li,...,Lj

(1 ≤ i ≤ j ≤ n) starts exactly at value w of coordinate x, then the point (w, py) is dominated by j inputs

sets plus one (p’s set), so the only output point with w as coordinate x added when processing p is the

point (w, py) added to Lj+1 (note that in Algorithm 14, (w, py) would be correctly added to Lj+1, but

incorrectly added to Li+1, ...,Lj). All of this can be observed in the example depicted in Figure 3.5(c),

where a2 is point p in the explanation above, the point being processed that, when switching positions

with points with coordinate x equal to w1 (points b1 and c1), should produce only one output point, the

point (w1, h1) added to L3. This point should be produced when sweeping b1 in v and point c1 should

be skipped and not even processed (which does not happen in Algorithm 14, where it would process c1

and add point (w1, h1) to L2, which is dominated by the point (w1,cy1) already in L2).

The solution given above, is what is done in Algorithm 16 in line 13, where (vx
k , p

y) is added to Lk+1

(where k corresponds to j from the explanation above). To avoid producing incorrect output points, the

algorithm takes advantage of the freedom of choosing the order of points in v with equal coordinate x,

and switches the positions in v of p and of the leftmost point in v with coordinate x equal to vx
k (line 15).

Executing this step, and updating k to skip the positions of all points in v with coordinate x equal to vx
k

(line 16), plus the solution explained earlier of line 9, allows to avoid the problems of producing incorrect

points and of executing excessive operations of Algorithm 14 in problems such as the one of Figure 3.5(a).
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Input points can have equal coordinate x and/or y

The last detail explained above, of switching the point of Xy being processed with the leftmost point in

v that has equal coordinate x as the point in v being verified, can be generalized. This is needed when

considering points with equal y-coordinate values. Consider a set of points A in v whose coordinate x is w

and whose points fill positions i to j in v (1 ≤ i ≤ j ≤ n). Also consider a set of points B whose coordinate

y is h and which are the next points to be processed by the algorithm after the points in v. Moreover,

consider that expressions ∀p ∈ B ⇒ px < w and ∀p ∈ B ∧ p ∈ Xs ⇒ vx
as > w are true. In this scenario,

the point (w, h) should be added to Lt, were t = i+ max(|A|, |B|), ..., i+ max(|A|, |B|) + min(|A|, |B|)− 1.

This can also be observed in Figure 3.5(c), considering A = {a2, d1, e1} (in this case i = 1 and j = 3) and

B = {c2, b2}, point (w2, h2) should be added to L4 and L5. Note that if points d1 and e1 were not input

points, therefore having A = {a2} (i = j = 1), the only output point that should be produced would be

point (w2, h2) added to L3.

The previous considerations indicate that processing all points with equal y coordinates together and

swapping, when necessary, a point’s position in v with another point with equal coordinate x, might be

a good way to get around all the problems seen earlier related to input points with equal coordinates.

Algorithm 16 gets around of some of these problems, but only the problems related to equal values of

coordinate x and not of coordinate y. Algorithm 17 is the final version of an algorithm to compute the

EAF in 2D dimensions which fixes the flaws of Algorithm 16 by processing the points in X with equal

coordinate y at the same time, as suggested before.

Algorithm 17 uses a stack (T) to keep the next point to be swept and all the following points that

have equal coordinate y. This stack is created in the loop between lines 9 and 17. To manipulate the

stack, a few functions are used. Function push(p,T) allows to insert p at the top of the stack T, pop(T)

removes and retrieves the point at the top of the stack T, and peek(T) only retrieves the point at the top

without modifying the stack T. Note that, similarly to what was done in Algorithm 16, the points q from

the same set as the points in T are all moved to the leftmost position in v of all points with coordinate x

equal px (line 13), and are then replaced by the new points from its set in T (line 14). Since points in X

that have equal y-coordinates are sorted in ascending order of coordinate x, points are inserted in T also

in ascending order of x. k is initialized as the rightmost position in v of the points in T, which indicates

the last position in v which is influenced by, at least, one point in T. Note that bi, i = 1, ..., |T|, indicates

which is initially, the rightmost position in v of the first i points in T.

After the initialization of T and k, the algorithm starts sweeping the points in v (lines 19-39), looking

for the final positions in v of the points in T and adding the output points found. Since points in v are

swept in descending order of coordinate x, the goal while sweeping is to find the final position in v of the

point at the top of the stack because, since it is the point in the stack with higher value of coordinate x

its final position in v will be found first. Therefore, after finding the final position of the point at the top

of the stack, it is removed from the stack, and the algorithm starts looking for the final position of the

next point at the top of the stack. The algorithm stops when there are no more points left in the stack.
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Algorithm 17 EAF 2D

Input: S = (X1, ...,Xn)
Output: R = (L1, ...,Ln)

1: X←
⊎n

i=1 Xi // multiset sum
2: Xy is X sorted in ascending order of y
3: T← ∅ // a stack
4: Lt ← ∅, t = 1, . . . , n
5: vt ← (∞,−∞), t = 1, . . . , n
6: at ← t, t = 1, . . . , n
7: while Xy 6= ∅ do
8: k ← 0
9: repeat

10: p← pop(Xy)
11: s← input set(p)
12: push(p,T)
13: switch(v, a, begin(vx

as), as)
14: vas ← p
15: b|T| ← max(k, as)
16: k = b|T|
17: until Xy = ∅ or py 6= top(Xy)
18: l← 0 // number of points of T seen in v so far
19: while T 6= ∅ do
20: if k ≥ 1 and vk ∈ T then
21: l← l + 1
22: k ← k − 1
23: else
24: if k < 1 or peek(T)x ≥ vx

k then
25: q ← pop(T)
26: s← input set(q)
27: switch(v, a, as, k + l)
28: Lk+l ← Lk+l ∪ {q}
29: l← l − 1
30: if l = 0 and T 6= ∅ then
31: k ← b|T|
32: else
33: m← end(vx

k)− begin(vx
k)

34: i← begin(vx
k)

35: for j ← 0 up to min(m, l)− 1 do
36: t = i+ max(m, l) + j
37: Lt ← Lt ∪ {(vx

k , p
y)}

38: switch(v, a, i+ j, t)
39: k ← i− 1
40: return (L1, . . . ,Ln)

When sweeping points in v, given a stack T, every time a point in T is found in v, the information of

how many points of T were found so far, l, is updated. This is performed in lines 20-23. These l points

will be kept in consecutive positions in v, where the order among them is irrelevant. This is because

when a point in vk is found not to be in T and has vx
k higher than peek(T)x, then to know which are the

new output points, it is enough to know how many are the input sets that dominate the point (vx
k , p

y).

Let q be the point at the top of the stack (the rightmost point in stack). If the final position of q

in v is found, then q is added to Lt, where t = k + l, and then q is removed from the stack, and l is

decremented (lines 24-29). If the stack is still not empty, but for now there is no point from it to place
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(a) (b)

Figure 3.6: More two-dimensional examples of input sets where points have equal coordinates.

Table 3.1: Execution of Algorithm 17 for the example in Figure 3.6(b) when d2 and b2 are processed,
after adding them to stack T (lines 19-39).

k T l v vk ∈ T peek(T)x ≥ vx
k output points

7 (d2, b2) 0 (f1, e1, c1, g1, d2, a1, b2) T - -

6 (d2, b2) 1 (f1, e1, c1, g1, d2, a1, b2) F F L7 ← L7 ∪ {(ax1 , h)}
5 (d2, b2) 1 (f1, e1, c1, g1, d2, b2, a1) T - -

4 (d2, b2) 2 (f1, e1, c1, g1, d2, b2, a1) F F
L6 ← L6 ∪ {(w, h)}
L5 ← L5 ∪ {(w, h)}

1 (d2, b2) 2 (f1, b2, d2, g1, c1, e1, a1) F T L3 ← L3 ∪ {(bx2 , h)}
1 (d2) 1 (f1, d2, b2, g1, c1, e1, a1) F F L2 ← L2 ∪ {(fx1 , h)}
0 (d2) 1 (d2, f1, b2, g1, c1, e1, a1) F T L1 ← L1 ∪ {(dx2 , h)}
0 () 0 (d2, f1, b2, g1, c1, e1, a1) - - -

(l = 0), then the points in v between positions k and the current position of the current rightmost point

in T (b|T|) are not influenced by points in T, i.e., these points vk are dominated in coordinate x by the

same number of input sets as they were in the region immediately below py (line 30). Therefore, k is

updated to b|T| which is the current position in v of the rightmost point in T, which allows to skip points

in v with no interest without having to go through them. Figure 3.6(a) is an example where this happens

and where it is necessary to avoid unnecessary operations. When d2 and a2 are being processed, after

defining 4 as the final position in v of a2, points b1 and c1 should not be swept since the remaining point

in T (d2) only has influence in values of coordinate x lower than dx1 . Therefore, after placing a1 and

removing it from T, since l = 0 and T has d2, k is updated to 1, which is the rightmost position of the

remaining points in T.

If the current point being seen in v (vk) is not in T but there are output points to be produced (lines

35-38), considering m as being the number of points with coordinate x equal to vx
k , the first min(m, l)

points with coordinate x equal to vx
k in v, will switch position with the last min(m, l) points of T in v seen

so far. This allows to add point (vx
k , p

y) to Lt, where t = i+ max(m, l), ..., i+ max(m, l) + min(m, l)− 1

(py is the value of coordinate y of the points in T).

To help understand how the algorithm works when the stack has more than one point, Table 3.1 shows

the steps performed by Algorithm 17 in lines 19-39, when processing points b2 and d2 of the example of
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Figure 3.6(b). For example, line 1 of Table 3.1 indicates that when the algorithm enters the first iteration

of the while loop in line 19, k is equal to 7 and l is zero. The stack T contains (d2, b2) and v contains

(f1, e1, c1, g1, d2, a1, b2). Note that the consecutive points in v with equal x coordinates are underlined.

Given this, it is explicit whether v7 is in T, which is true (b2 ∈ T). It is also explicit whether the point

at the top of the stack is to the left of the current point being seen in v (v7), but since v7 is in T, the

answer to this question is irrelevant. Also in row 1, it is seen that no output points are produced in this

iteration.

3.2.2 Complexity

The algorithm that computes the EAF in 2D sweeps each input point once (let us call it p) and for each

point swept it might sweep n other points, the points that p switches places with, in v. Therefore, the

time complexity of processing a point of X is directly related to the number of points in v to which p

switches positions with. In Algorithm 14 it was shown that for problems where all points have distinct

coordinates, the algorithm is output-sensitive. This is true because when a new point from X is processed,

it is inserted in v and then only switches positions with another point in v if it generates a new output

point (and the points generated are all correct). Moreover, each exchange between two points is performed

in constant time.

Algorithm 17 is an algorithm based on Algorithm 14 but where input points with equal coordinates

are admitted. In order to preserve the output-sensitivity property of Algorithm 14, Algorithm 17 has to

maintain some properties from Algorithm 14. These algorithms differ in that Algorithm 14 sweeps points

in X, while Algorithm 17 sweeps values of coordinate y in X, i.e., in each sweep, it considers all points

with some specific value of coordinate y. Therefore, to preserve the output-sensitivity, Algorithm 17 has

to meet 4 requirements as it sweeps through points with a value of coordinate y equal to h (let us call A

the set of points with coordinate y equal to h):

1. The switch between two points in v has to be performed in constant time.

2. There can only be a constant number of switches between a point in A and a point in v where no

output points are produced.

3. Every value w of coordinate x of points in v should only be swept if there is, at least, one output

point equal to (w, h) ((w, h) belongs to, at least, one Lt, t = 1, ..., n). The exception is only allowed

when the previous case is fulfilled.

4. For each value w of coordinate x of swept points in v, the number of points switched with x equal

to w is equal to the number of output points equal to (w, h), i.e., the number of Lt in which (w, h)

appears (t = 1, ..., n).

To deal with equal x coordinates, Algorithm 17 needs a way of keeping information about the positions

in which the points with a specific value of x coordinate in v begin and end. This information can be
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accessed and updated in constant time, which is required by requirement 1. Hence, it is only necessary

to relate each point in v with some structure that indicates in which position the corresponding value of

x begins and ends. Points with equal x coordinates are all related to the same structure. As a result,

adding or removing a point from a set of points with equal coordinate x can be done in constant time,

by modifying the starting or the end position in v of the structure related to that value of x. These

structures (only the ones affected) are updated when a new point replaces an older one in v, and when

a point is moved to another position, affecting only the structure related to the points to its left, to its

right and/or its own. Therefore, updating this information is performed in a constant number of constant

time operations, per switch.

Algorithm 16 sweeps points in X. Let us call the point currently being swept p. For each point p,

considering that q is the point in v from the same set as p, a switch is made once between q and the

leftmost point in v with value qx as coordinate x (line 9) and then p substitutes q in v. Therefore, as

soon as a point is selected to be processed, there is maximum of one exchange of two points, in order

to guarantee that no wrong output points are produced and that no unnecessary exchanges between

points are performed, as seen earlier for the example of Figure 3.5(a). This is true even in the case of

Algorithm 17 which processes a set of points in X altogether (points in T with coordinate y equal to h).

This agrees to requirement 2 because, for each point p ∈ A, this is the only case where p switches with a

point where no output point is produced.

When there is only one point with coordinate y equal to h, and this point is being swept, Algorithm 17

meets requirement 3, since, in this sense, it works in the same way as Algorithm 14 because it only sweeps

a point vk (k = 1, ..., n) if it has a value of x of interest, i.e., if (vx
k , h) is an output point. It differs from

Algorithm 14 when there is more than one point that has coordinate y equal to h (let us consider the set

of points in A), since all of points are processed together and points of v are swept until all points in A

are in their final positions in v. In that case, there might be some position of v (vk) where all points in

A that are to its right are in their final position and the points in A to its left have other points from the

same set that dominate (vx
k , h), as it was seen in Figure 3.6(a). In this case, requirement 3 is guaranteed

to be met by updating k when this situation is detected (line 30) to a value that is kept in b that indicates

a position of v of interest.

Finally, requirement 4 is also assured by Algorithm 17. This is true because, given a set of points in

v with coordinate x equal to w, there are as many switches of points as there are output points (w, h)

produced (lines 35-38). Therefore, Algorithm 17 is an output-sensitive algorithm with O(m logm+mn)

worst-case time complexity, and a O(m logm+m) time complexity in the best case.

The space complexity of the algorithm to compute the EAF in 2 dimensions is also output-sensitive,

having O(mn) in the worst case and O(m) in the best case. This space complexity is achieved because,

during the execution of the algorithm, it is only necessary to keep the m points in memory once in a

queue (X). It is also necessary to keep a fix number of arrays of size n, for example v and other arrays

that keep the information needed to know in which position of v, a value of x begins and ends. This space

is always needed, independently of the resulting number of output points. Since m is always greater or
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equal to n, the final space complexity needed by the algorithm is O(m) plus the number of output points

which are kept in memory until the algorithm terminates.

3.2.3 Experimental results

Algorithm 17 was implemented in C. In order to test if the implementation was correct, a few data

sets were created. Among these data sets, tests were created to test specific parts, as, for example, limit

situations as when points with equal coordinate are present in the input. These tests include, for example,

the problems depicted in Figure 3.5 and 3.6, to check whether the program behaves as expected. Other

data sets used to test the performance of the algorithm were also used to verify if the results were correct.

To test if the outputs were correct, three methods were used. One method consisted of comparing the

results of the implementation of Algorithm 17 against those produced by the implementation of the other

algorithm available [11]. The other two methods exploited the properties of EAF, the idempotence, and

the invariance with respect to the switch of dimensions.

To test the performance of the algorithm, three types of data sets were created, named worst-case

data set, spherical data set and best-case data set. The worst case was constructed using the formula

described in [11] where, given a number of input sets n and a number of input points m, a data set is

produced whose corresponding output of the EAF has the maximum number of output points possible

for those values of n and m (l = (2m− n+ 1)/2). The best case was constructed using the output of the

EAF for the worst case data set. This data corresponds to a data set where the output is equal to the

input. Finally, the spherical data set was constructed using the following formula to generate the points

of each input set: pi = 1− |Xi|/||X||, Xi ∼ Normal(0, 1), i = 1, 2. The number of output points for this

type of set is approximately half of the maximum number of output points possible.

For each data set type, two sets of tests were constructed, one having n constant and varying m

and the other maintaining m constant and varying n. The implementations of both algorithms were

compiled using gcc version 4.5.1. Tests were performed on an Intel Core 2 Duo P8600, with 2.40GHz

and 3MB cache size. Figure 3.7 shows the performance of the output-sensitive algorithm presented here

(named OSEAF2D) against the other algorithm known to compute the EAF in two dimensions [11]

(named EAF2D). For each test, an execution of each algorithm was considered. The results show that

the output-sensitive algorithm is in general faster than the other algorithm. In general, the output-

sensitive algorithm, becomes even more efficient compared to the other algorithm as n grows when m

is constant. One important fact that is clear in Figure 3.7(b) is the output-sensitivity of the algorithm

proposed here, since in the best case data set where the number of input sets (n) has no influence on

the number of output points, when fixing the number of input points and varying n, the run time does

not vary, as expected. Moreover, this fact results also as a way of validating the output-sensitivity of the

algorithm in the presence of input points with equal coordinates. This is because the best-case data set

was constructed as the output of the EAF for the worst-case data set, therefore corresponding to a data

set where each distinct value of coordinate x and y in each test appears once in each input set, i.e., each

value is repeated n times.
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Figure 3.7: Results for the best-dcase data set (a and b), for the spherical data set (c and d) and for the
worst-case data set (e and f).

Further experiments were made to try to improve algorithm performance. As it will be seen here and

for the algorithms in the following Chapter, the way in which points are kept in memory has influence on

the algorithm’s performance. Since algorithms to compute the EAF (and also the hypervolume indicator)

usually sweep points according to, at least, one dimension, keeping points in memory sorted in the same

way as they will be swept (and in consecutive memory positions), instead of just sorting references to

the points (which probably will not be in consecutive memory position and will not be in any particular

order), might be enough to improve significantly the algorithm’s performance. This was implemented in
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Figure 3.8: Performance of the improved version of the algorithms. Results for the best-case data set (a
and b), for the spherical data set (c and d) and for the worst-case data set (e and f).

both algorithms, the output-sensitive algorithm described here (OSEAF2D) and the previously published

algorithm [11] (EAF2D), by ordering in memory the input points in ascending order of y-coordinate.

Figure 3.8 shows the performance of the improved algorithms. It is possible to observe that in the case

of the output-sensitive algorithm, this modification has little effect. On the opposite, the performance of

the other algorithm (EAF2D) improved significantly. It became up to 10 times faster than the version

without this improvement. It is possible to see that EAF2D became faster and in many cases is almost

as fast as OSEAF2D, as it is the case for the spherical and worst case data sets. It also obtained good
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results in the best case data set. The explanation for the fact that this improvement had a big influence in

EAF2D but not in the OSEAF2D is that, in the output-sensitive algorithm, points are swept according to

coordinate y only once, while EAF2D sweeps points according to coordinate y, exactly n times. Therefore,

this improvement has greater impact on the latter.

Figure 3.9 shows this improvements in terms of cache-misses (the Linux tool perf was used in order

to gather this information), where EAF2DS and OSEAF2DS correspond, respectively, to the versions of

EAF2D and OSEAF2D, where points are previously sorted in memory. This figure shows that, with this

improvement, EAF2DS uses the cache much more efficiently than the previous version (EAF2D), i.e.,

when EAF2DS algorithm sweeps to the next point, since it is next to the current point in memory, it

is probably already loaded in cache, therefore, not occurring a cache-miss and not having to fetch that

missed point. On the other hand, Figure 3.9 shows that OSEAF2D already uses cache efficiently, since
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Figure 3.9: Number of cache misses of EAF algorithms for d = 2, in best case data set where m = 1e6

the number of cache-misses does not vary much in comparison to OSEAF2DS. This fact is one more

advantage of the output-sensitive algorithm.

Comparing both algorithms for the EAF in two dimensions, the one proposed here and the one

published in [11], the latter has the advantage of allowing each front to be computed separately. On the

other hand, in spite of both algorithms sharing the same worst-case time complexity, O(m logm+mn),

the the new algorithm being output-sensitive allows it to adapt to the type of the input problem and to

be more efficient on simpler problems. The experiments presented here show that output-sensitivity can

be very important in problems such as the EAF, where algorithm complexity depends especially on the

number of output points, allowing the algorithms to perform faster when the input does not result in the

worst case. For problems in two dimensions, this property already has a positive and significant impact

in algorithm performance. Furthermore, it was shown that this algorithm also has the advantage of using

cache efficiently. Therefore, algorithms of this type for more dimensions would probably have an even

greater impact. Moreover, the ideas used in this new algorithm can also be useful in the development of

other algorithms to compute the EAF in more than 2 dimensions.
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3.3 Concluding remarks

In this Chapter, two contributions were made. Firstly, two O(n2m2 logm) time algorithms were proposed

to compute the EAF in four dimensions, a problem for which no algorithm was available to date. More-

over, a new output-sensitive algorithm to compute the EAF in two dimensions (OSEAF2D) is proposed.

The algorithms to compute the EAF in four dimensions, besides being the first algorithms for the

four dimensional case, also establish O(n2m2) as an upper bound on the number of output points, and

O(n2m2 logm) as an upper bound on the time complexity of the four-dimensional case. Between the two

algorithms proposed, it was seen that IEAF4D outperforms the base version (EAF4D) most of the times,

being up to twice as fast.

The proposal of the OSEAF2D, besides improving upon the current state-of-the-art algorithm (EAF2D),

highlights the importance of developing output-sensitive algorithms to compute the EAF as a way of

achieving performance which depends on actual input sets and side-stepping the fast growth of the num-

ber of output points in the worst case. Another feature of the output-sensitive algorithm is that it is

already cache efficient, drawing attention to the fact that algorithms to compute the EAF might benefit

from having points previously sorted in memory in order to become more cache efficient.

Comparing the OSEAF2D with EAF2D, the former has the advantage of being more efficient when

computing all output sets Lt (t ∈ {1, ..., n}), especially when the input does not approach the worst case,

while the latter has the advantage of allowing just a few output sets to be computed without having

to compute all of them, as OSEAF2D does. Moreover, OSEAF2D may turn out to be helpful when

developing algorithms for higher numbers of dimensions, whether output-sensitive or not.

All of the available algorithms to compute the EAF, except for the state-of-the-art algorithm for two

dimensions, follow the same abstract idea. They sweep points according to the last dimension d and

compute m EAF in (d − 1) dimensions. In the case of the algorithms for four dimensions, they have to

compute the whole EAF in (d − 1) dimensions from scratch, whereas the OSEAF2D and the algorithm

to compute the EAF for three dimension use an incremental method, i.e., compute the EAF in (d − 1)

dimensions starting from the EAF in (d − 1) dimensions from the previous iteration. Although this

method can be generalized to more than four dimensions, it will probability have a complexity worse

than required, which may compromise its usefulness in practice.
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4Hypervolume Indicator

Two new algorithms to compute the hypervolume indicator are proposed in this Chapter. The first one,

in Section 4.1, is a dimension-sweep algorithm which establishes a new, quadratic, upper bound on the

time complexity of the four-dimensional case, and is also very fast in practice. The second algorithm

implements a divide-and-conquer approach to the computation of the hypervolume indicator in the three-

dimensional case, and is described in Section 4.2. This algorithm is proposed as a first step towards the

development of a full multi-dimensional divide-and-conquer algorithm for any number of dimensions, and

is shown to be asymptotically optimal like the existing algorithm of Beume et al.. [5]. The Chapter

concludes with a brief discussion of the implications of the work presented for the development of new,

efficient algorithms for the hypervolume indicator.

4.1 New dimension-sweep algorithm for the four-dimensional

case

In this Section, a quadratic-time algorithm to compute the hypervolume indicator in four dimensions is

proposed. Like the WFG algorithm [18], the new algorithm follows a dimension-sweep approach, and

implements an iterated incremental computation of the hypervolume indicator. However, the resulting

time-complexity upper bound is better than the currently established upper bound of O(n2 log n) for the

four-dimensional case [4, 12].

The next Subsection presents the main ideas behind the proposed algorithm. An algorithm to compute

the individual contribution of a point in three dimensions, on which the main algorithm relies, is described

in Subsection 4.1.2. A description of the data structures used by the algorithms and a detailed description

of their operation are given in Subsections 4.1.3 and 4.1.4. Subsection 4.1.5 discusses in detail how the

O(n2) time complexity is achieved and, finally, experimental results are presented in Subsection 4.1.6.

4.1.1 General description

The proposed algorithm operates by sweeping the input points in ascending order of their fourth coordi-

nate values. For each point swept, the hypervolume of a slice bounded below by the current point and

bounded above by the next point to be swept is computed. The hypervolume of a slice can be determined

by multiplying its height (the absolute difference between the fourth coordinate values of the next point

and of the current point) by the volume produced by the projection of the points swept so far, including
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Algorithm 18 HV4D - Main algorithm

Input: X // a set of n points in R4

Input: r // r ∈ R4 is the reference point
Output: h // Total hypervolume

1: Q is a queue containing X ∪ {(−∞,−∞,−∞, rw)} sorted in ascending order of coordinate w
2: S∗ ← ∅
3: v ← 0
4: h← 0
5: p← pop(Q)
6: while Q 6= ∅ do
7: v ← v + contribution(p∗,S∗, r∗)
8: S∗ ← S∗ ∪ {p∗}
9: q ← pop(Q)

10: h← h+ (qw − pw) · v
11: p← q
12: return h

the current point, onto the (x,y,z)-space. This volume can be calculated by adding the individual contri-

bution of the point being swept to the volume associated with the previous slice. Therefore, the problem

of computing the hypervolume of a slice reduces to the simpler problem of computing the volume of the

region exclusively dominated by a point in three dimensions. Algorithm 18 details this procedure, where

contribution(p∗,S∗, r∗) denotes the contribution of a point p∗ to a non-dominated point set S∗, given a

reference point r∗, all in three-dimensional space. As before, the ∗ is used here to denote the projection

onto (d− 1)-dimensional space of (sets of) points in d-dimensional space (d = 4 in this case).

Algorithm 18 can be related to the WFG algorithm [18], which has a similar structure and works for

any number of dimensions. The main difference between the two algorithms consists of the way in which

individual contributions are defined and computed, which leads to different time complexities for each

one.

In Algorithm 18, it is possible to observe that sweeping through every point is performed in O(n)

steps, and that, in order to obtain O(n2) time complexity for this algorithm, the contribution of each

point must be computed in (amortized) O(n) time. Although it is not clear how to achieve this when S∗

includes points dominated by p∗, Algorithm 18 may be modifed to guarantee that individual contributions

are computed while involving only non-dominated points, as detailed in Algorithm 19.

Denoting by T∗ the set of all points in S∗ which are dominated by p∗, Algorithm 19 computes the

contribution of p∗ to the set S∗ by determining the contribution of the set T∗ to the set S∗ − T∗ first,

and then subtracting it from the volume dominated by S∗ before computing the contribution of p∗ to the

set of points S∗ − T∗. On the example in Figure 4.1(a), Algorithm 19 proceeds by first removing point

q∗1 from S∗, then calculating the contribution of q∗1 to S∗ − {q∗1}, and finally subtracting it from volume

v before computing the contribution of p∗ to S∗−{q∗1}, which includes the volume previously dominated

exclusively by q∗1 . Note that, since each point is added to and removed from S∗ at most once, the total

number of calls to contribution() remains O(n). Algorithm 19 can also be seen as a generalization of

Beume et al.’s algorithm [5] to four dimensions.
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Algorithm 19 HV4D - Main algorithm – second version

Input: X // a set of n points in R4

Input: r // r ∈ R4 is the reference point
Output: h // Total hypervolume

1: Q is a queue containing X ∪ {(−∞,−∞,−∞, rw)} sorted in ascending order of coordinate w
2: S∗ ← ∅
3: v ← 0
4: h← 0
5: p← pop(Q)
6: while Q 6= ∅ do
7: for all s∗ ∈ S∗ : p∗ ≤ s∗ do
8: S∗ ← S∗ − {s∗}
9: v ← v − contribution(s∗,S∗, r∗)

10: v ← v + contribution(p∗,S∗, r∗)
11: S∗ ← S∗ ∪ {p∗}
12: q ← pop(Q)
13: h← h+ (qw − pw) · v
14: p← q
15: return h

4.1.2 Individual contribution of a point in three dimensions

In order to achieve O(n) time complexity in the computation of the contribution of a single point to a non-

dominated point set S∗ in the conditions stated above (i.e., p∗ ∈ R3, S∗ ⊂ R3, and @q∗ ∈ S∗ : p∗ ≤ q∗), a

method inspired in Emmerich and Fonseca’s algorithm [9] to compute all individual contributions given

a set of non-dominated points in three dimensions is proposed.

Given a non-dominated point set S ⊂ R3 and a reference point r ∈ R3, the method proposed by

Emmerich and Fonseca [9] computes the contribution of each point p in S to the set S − {p}. The

volume dominated exclusively by each point is divided into cuboids (or boxes), and the sum of their

volumes is computed. This is done by sweeping through every point p in S in ascending order of the

third coordinate.1 For each of these points, the region of the (x,y)-plane at z = pz which is exclusively

dominated by p is partitioned into smaller non-overlapping rectangular areas. This partitioning can be

obtained by sweeping those points that have coordinate z lower than pz along one of the dimensions x

or y.

The example in Figure 4.1 will be used throughout the remainder of this Section to illustrate the

computation of single-point contributions. The base problem is depicted in Figure 4.1(a), and the cor-

responding division into rectangles is shown in Figure 4.1(b). After this division, the height of each

box is determined by sweeping the points with z coordinate higher than pz in ascending order of that

coordinate. In that process, some boxes might be closed and new boxes might be added. One important

aspect is that the boxes that need to be updated can be efficiently accessed, in constant time.

In contrast with the algorithm of Emmerich and Fonseca [9], in the present algorithm it is sufficient to

update the height of the boxes corresponding to the single point whose contribution is to be determined.

Ignoring the presence of q1 in the example of Figure 4.1(a), as it would have been removed in a previous

1Note that, in [9], maximization is assumed. For clarity and consistency, the description here considers minimization
problems instead.

53



r

x

y

q1

p

s1

s2

s3 s4

s5

s6

s7

s8

q2

q3

q4

q5

q6

(a) Base example

x

y

p

r
s1

s2

s3 s4

s5

s6

s7

s8

q2

q3

q4

q5

q6

b1
b2

b3

b4
b5

(b) Initialize boxes

r

x

y

b7

b6p

s3 s4

s5

s6

s7

s8

q2

q3

q4

q5

q6

b1
b2

b3

b4
b5

(c) Simulate closeBoxesLeft and closeBoxesRight

x

y

3
3

3

2
2

5

6r3

5

p

r
s3 s4

s5

s6

s7

s8

q2

q3

q4

q5

q6

(d) Expected result

Figure 4.1: Example of a problem in 3 dimensions, where the goal is to determine the contribution of p
to S (S = {q1, ..., q6}∪ {s1, ..., s8}), given the reference point r. In this problem, szt ≤ pz (t = 1, ..., 8) and
qzi > pz (i = 1, ..., 6). It is assumed that pz = 0 and qzi = i.

Algorithm 20 HV4D - contribution

Input: p ∈ R3

Input: S ⊂ R3

Input: r ∈ R3 // The reference point
Output: c // contibution

1: S1,S2 ← split(S, pz) // S1 = {q | q ∈ S : qz ≤ pz}, S2 = {q | q ∈ S : qz > pz}
2: B← createBoxesBase(p,S1)
3: c← determineBoxesHeight(p, S2,B, r)
4: return c

step, the contribution of p would be computed as the sum of the volumes of the boxes depicted in

Figure 4.1(d), where the numbers indicate their heights.

The main steps of the computation of the contribution of a point p ∈ R3 to a set S ⊂ R3, as described

above, are detailed in Algorithm 20. All of them can be implemented in O(n) time, as long as S is a

non-dominated point set and there are no points in S which are dominated by p, which is guaranteed to

happen by Algorithm 19. Furthermore, points must be kept sorted with respect to dimensions two, in

order to delimit the base of the boxes (see Figure 4.1(b)), and dimension three, to allow their heights to

be determined.
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4.1.3 Data structures

Algorithm 19 receives a non-dominated point set X ⊂ R4 as input, and sets up a queue Q containing all

points in X in ascending order of the fourth coordinate, w. A sentinel is added to Q in order to ensure

that point q in line 12, which is used to determine the height of the slice, always exists. During the

execution of Algorithm 19, S∗ is updated. S∗ is stored in a data structure that maintains all points sorted

in ascending order of coordinates y and z, using two doubly linked lists. These sorted lists are maintained

also for the two subsets S1 and S2 of S in Algorithm 20, and support the following operations:

nexty(p, S) The point following p in S with respect to coordinate y

nextz(p,S) The point following p in S with respect to coordinate z

highery(p, S) The point q ∈ S with the least qy > py

higherz(p,S) The point q ∈ S with the least qz > pz

getXRightBelow(p,S) The point q ∈ S with the least qx ≥ px such that qy ≤ py

Operation next is performed in constant time as long as p is itself in S, while the remaining ones are

performed in linear time.

In Algorithm 20, the volume exclusively dominated by a point is partitioned into cuboids, here referred

to as boxes. Each box b is defined by its lower corner (lx, ly, lz) and its upper corner (ux, uy, uz). Boxes

are kept in a doubly-linked list (B) in order to make it possible to easily access those that need to be

updated or removed. Since there is no overlap between boxes in the list, it is possible to keep the list

of boxes sorted in ascending order of coordinate x. When a box is created, only (lx, ly, lz) and (ux, uy)

are known. Boxes are kept in the list as long as their upper limit uz is not known. When this value is

determined, the box is closed, i.e., its hypervolume is calculated, and the box is removed from the list.

In order to manage the list of boxes, the following operations are implemented:

pushLeft(B, b) Add box b to the left of the list of boxes B

closeAllBoxes(B, z) Close all boxes in list B, setting the corresponding value of uz to z and returning

the sum of the volumes of those boxes.

closeBoxesLeft(B, y, z) From left to right, close all boxes in list B for which uy > y, setting the corre-

sponding value of uz to z and ly to y. After closing those boxes, push to the left of B a new box

whose lower corner coincides with p, and has uy = y and ux equal to the ux of the last box removed.

Finally, return the total volume of the closed boxes.

closeBoxesRight(B, x, z) From right to left, close all boxes in list B for which ux > x, setting their uz to

z. If the last removed box is such that lx < x, lx is updated to x before closing it, and a new box

is pushed to the right of B with the same corners, but with ux set to x. Return the total volume

of the closed boxes.
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Algorithm 21 HV4D - contribution - createBoxesBase

Input: p ∈ R3

Input: S1 ⊂ R3 // ∀q ∈ S⇒ qz ≤ pz
Input: r ∈ R3 // The reference point
Output: B // boxes list

1: S1 ← S1 ∪ {(rx,−∞,−∞), (−∞, ry,−∞)}
2: B← ∅
3: q ← highery(p,S1)
4: m← getXRightBelow(p,S1)
5: while qx > px do
6: if qx < mx then
7: b← ((qx, py, pz), (mx, qy, pz))
8: pushLeft(B, b)
9: m← q

10: q ← nexty(q,S1)
11: b← ((px, py, pz), (mx, qy, pz))
12: pushLeft(B, b)
13: return B

Operation pushLeft is performed in constant time. Operation closeAllBoxes is performed in k steps,

and the remaining operations in k + 1 steps. Therefore, all have a cost of O(k), where k ≤ n represents

the number of boxes removed, and n represents the total number of points.

4.1.4 Detailed description

Algorithm 19 sweeps every point p in Q and determines the contribution of its projection on (x,y,z)-space,

p∗, to the volume dominated by S∗. This may cause the removal of points in S∗ that are dominated by

p∗. Point removal can be performed in constant time, but requires the computation of the corresponding

contributions, as well. After computing the contribution of p∗, it is added to S∗ while keeping the lists

used to maintain S∗ sorted in ascending order of both y and z coordinates, which can be implemented

in linear time. Furthermore, Algorithm 19 guarantees that, when calculating the contribution of any

point p∗, all points in S∗ are kept sorted in ascending order of coordinates y and z, and no point in S∗

is dominated by any other point in S∗ or by p∗ itself. As described before, these constraints allow the

contribution of a point to be computed in linear time.

Algorithm 20 computes the 3-dimensional contribution of p to the set of points in S. The computation

consists of two parts: the bases of an initial set of boxes are determined first (Algorithm 21) and then

box heights are found (Algorithm 22).

To determine the bases of the boxes, the points in S whose z coordinate is lower than or equal to pz

(S1) and which are dominated by p with respect to the x and y coordinates, but not by any other point in

S1, are swept (points s4, ..., s7 in Figure 4.1(a)). Boxes are created from right to left by sweeping points

in S1 in ascending order of coordinate y, starting from point highery(p,S1) (s7), which is the lowest point

in S1 higher than py, and stopping when a point to the left of p is found (s3). Note that such points

always exist because of the presence of the sentinels (rx,−∞,−∞) and (−∞, ry,−∞), although this is

not represented in Figure 4.1. All points between the starting (s7) and the end (s3) points that do not
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Algorithm 22 HV4D - contribution - determineBoxesHeight

Input: p ∈ R3

Input: S2 ⊂ R3 // ∀q ∈ S⇒ qz > pz

Input: B is a list of boxes
Output: c // contribution

1: S2 ← S2 ∪ {(−∞,−∞, rz)}
2: q ← higherz(p, S2)
3: while not empty(B) do
4: if qx ≤ px then
5: if qy ≤ py then
6: c← c+ closeAllBoxes(B, qz)
7: else
8: c← c+ closeBoxesLeft(B, qy, qz)
9: else

10: c← c+ closeBoxesRight(B, qx, qz)
11: q ← nextz(q,S2)
12: return c

fulfill all the above conditions are skipped (s2). Each of the points that satisfy the above conditions (s7,

s6, s5, s4) defines lx and uy of a box as well as ux of the next box. For example, in Figure 4.1(b), point

s5 defines lx and uy of box b3 and ux of box b4. The value of ux for the first and rightmost box created is

determined by getXRightBelow(p) (s8). Finally, the end point (s3) only defines uy of the last and leftmost

box. In the example of Figure 4.1(a), after executing the first part of the algorithm, the list of boxes

contains b1, ..., b5 as depicted in Figure 4.1(b).

The next step consists of determining the height of the boxes, updating and closing them (Algo-

rithm 22), which may imply shrinking the base of one or more boxes and closing them, and then adding

another box. For this purpose, only points with a value of coordinate z higher than pz (S2) are needed

(q2, ..., q6). Therefore, points in S2 are swept in ascending order of coordinate z as long as there are still

boxes to be closed. While processing each point q, there are three cases to consider, depending on its

projection on the (x, y)-plane:

1) q is to the left of and above p (e.g. q2, q5)

2) q is to the right of and below p (e.g. q3, q4, q6)

3) q dominates p (e.g. the sentinel (−∞,−∞, rz) which is not represented in Figure 4.1)

Note that q is never dominated by p on the (x,y)-plane, because it would also be dominated in (x, y, z)-

space in that case, but those points were previously removed in Algorithm 19.

Case 1 causes the algorithm to call function closeBoxesLeft. Looking at q2 in Figure 4.1(c), it is possible

to observe that boxes are popped from the left until a box whose upper corner is not dominated by q2

is found, and are closed only partially by updating their lower corner and determining the z coordinate

value of the upper corner which is qz2 in this case (darker area of boxes b4 and b5). The sum of the

volumes of the closed boxes is added to c. In order to account for the area which becomes uncovered due

to the shrinking of the boxes before they are closed (lighter area), a new box is inserted to the left of the

list of boxes (b6) covering that area.
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Case 2 causes the algorithm to call function closeBoxesRight, which is what happens while processing

point q3 in the example. This function closes all boxes that are to the right of q3, popping them from the

right, and setting the z coordinate of their upper corner to qz3 . If there is any box whose upper corner

is dominated by p on the (x, y)-plane, but whose lower corner is not (b3), the box is updated by setting

coordinate x of its lower corner to qx3 , and then closed. A new box is added to the right of the box list

(b7), covering the area left unaccounted for by the last box closed. The sum of the volumes of all boxes

closed is added to c.

Finally, the last case causes the algorithm to call closeAllBoxes to close all remaining open boxes. The

z coordinate of their upper corners is set to qz (in the example, this is equal to rz, due to the presence of

the sentinel). The volume of all of the closed boxes is added to c and the algorithm terminates returning

the total volume of the region exclusively dominated by p. Figure 4.1(d) shows the expected result, i.e.,

all the boxes closed and their corresponding heights.

4.1.5 Complexity

Starting with Algorithm 20, it is not difficult to show that its complexity is O(n). The reasoning is

that splitting S in two subsets (S1 and S2) and each of the two main stages of the algorithm can be

performed in O(n) time. Regarding the box initialization stage, note that for each point in S1 with

coordinate y higher than py, of which there are at most n points, at most one box is created (in constant

time). Therefore, O(n) complexity is achieved. The second stage processes all points with coordinate z

higher than pz, which are also at most n points. For each of these points, k boxes are closed, k ∈ [0, n].

Moreover, at most one box is created, which can happen only if at least one box is closed. Note that

if there are t points with the third coordinate lower or equal to pz, then, the first stage can create up

to t boxes, while the second step can create at most n − t boxes, which gives a total of up to n boxes

created. Therefore, the maximum number of closed boxes is also n. Independently of which function is

used to close boxes (closeBoxesRight, closeBoxesLeft or closeAllBoxes) k steps are performed if boxes are

only closed, or k + 1 steps, if is also created a box, leading to O(k) cost either way. Therefore, the total

cost of the operations of Algorithm 20 amortizes to O(n).

Algorithm 19 sweeps through n points and, for each one, it determines the highest points in S lower

than p according to coordinates y and z, in order to keep the lists of points associated to S∗ sorted, at

a cost of O(n). Moreover, for each point swept, it computes the contribution of k dominated points and

the contribution of the point being swept. Note that each point of the initial set X is added to S∗ and

removed from it at most once. Therefore, the algorithm computes a maximum of 2n contributions, each

at a cost of O(n), which results in O(n2) amortized time complexity.

4.1.6 Experimental results

In this Section, the performance of the algorithm to compute the hypervolume indicator in four dimen-

sions, described earlier (here referred to as HV4D) is compared against the state-of-the-art algorithms.
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IIHSO is the fastest algorithm known for the four-dimensional case, but unfortunately it was not possible

to compare HV4D directly against IIHSO, for the lack of an available implementation. Therefore, in

order to infer how HV4D compares to IIHSO, the same experiments performed by While et al. [18] were

reproduced on a similar machine. This allows HV4D to be compared directly against the algorithms

tested by While et al. [18], which then allows the performance of HV4D and IIHSO to be compared

indirectly, based on the referred observation that IIHSO is up to 2.5 times faster than WFG, on the data

sets used.

Previous experiments have shown that presorting points in memory may have a good impact on

dimension sweep algorithm performance. HV4D seems to be sensitive to this feature and, therefore, two

C implementations were tested: HV4D and HV4DS, where the latter includes the presorting of points in

memory. Previous testing showed that, for four dimensions, the other algorithms considered did not seem

to be sensitive to this feature, or at least, any gain in runtime did not seem to compensate the amount

of extra work needed to sort points in memory. Therefore, the original versions of HOY, FPL (version

1.3) and WFG were used. The implementations of all algorithms were compiled using gcc version 4.6.0.

The experiments were performed on an Intel Core 2 Duo P8600, with 2.40GHz and 3MB cache size.

The data sets used were the spherical, random and discontinuous data sets made available by the Walking

Fish Group1. Each data set contains several fronts with sizes ranging from 100 to 1000 points. There

are 20 fronts of each size in each data set. Each point in the plots depicted in Figure 4.2 represents the

average runtime on a front of a specific size, taking into account all objective permutations and all 20

fronts. The error bars represented in those plots show the minimum and maximum observed runtime in

each case. In order to avoid overlapping error bars and to make them more visible, point markers were

shifted slightly to the left or to the right in each case.

A fourth data set is considered, which will be referred to as the “hard” data set. This is a data set

designed to make S∗ grow as much as possible. In this case, every time a point’s contribution is computed,

HV4D has to sweep all points in memory. This is a set of points that, when sorted in ascending order of

the fourth coordinate, is also sorted in ascending order of the first coordinate and in descending order of

the second and third coordinates. In the “hard” case data set only one front of each size, and the original

objective order are considered.

Figure 4.2 shows that comparing HV4D and HV4DS, the latter can be up to two times faster. This

improvement is more evident in the “hard” case data set. Regarding the remaining algorithms, HOY

is the slowest, as expected. FPL and WFG have similiar behavior in the random, discontinuous and

spherical data sets, where WFG was a little faster than FPL. Comparing the performance of HV4DS

against WFG on the three WFG data sets, it is observed that HV4DS can be up to 10 times faster than

WFG. It is also possible to observe that the observed maximum runtime for HV4DS is still up to 2.5

times lower than the minimum runtime achieved by WFG. Knowing that the fastest algorithm so far for

the four-dimensional case (IIHSO) is up to 2.5 times faster than WFG in these data sets, it is possible to

1http://www.wfg.csse.uwa.edu.au/hypervolume/index.html#data
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Figure 4.2: Comparison of the performance of HV4D, HV4DS, WFG, FPL and HOY. For each algorithm
the minimum, average and maximum runtime for a given front size in each data set is depicted: random
(a), discontinuous (b), spherical (c), and the “hard” case (d).

conclude that HV4DS is at least as fast as IIHSO. HV4DS is expected to be 4 times faster than IIHSO

on these data sets.

Looking at the results on the “hard” data set, as expected, HV4D and HV4DS run more slowly than

on the other data sets of similar sizes. Looking at the performance of WFG, it can be seen that the

“hard” case data set is actually an easy data set for WFG. In this case, WFG achieves a performance

similar to HV4DS, and is faster than HV4D. In this case, nothing can be concluded with respect to IIHSO

performance, since there is no information about how IIHSO behaves on this specific data set.

It is also possible to observe that the runtime of all algorithms varies with different fronts of the same

size and/or different objective order, and that WFG seems to be the one whose runtime varies less. Not

much can be said with respect to the runtime variation of HV4D and HV4DS based on these experiments

because the algorithms are so fast that their runtime is close to clock accuracy, which is 1 ms on the

machine used to perform the experiments.
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Based on the experimental data presented, it should be reasonable to claim that HV4DS is now the

fastest algorithm for computing the hypervolume indicator in four dimensions. HV4DS can be up to 10

times faster than FPL and WFG on the WFG data sets, and it is expected to be up to 4 times faster

than IIHSO on average on those data. The “hard” case data set indicates that it might be reasonable

to expect HV4DS to perform faster on any other data set than on the “hard” data set for a front of

the same size. Moreover, it is necessary to test HV4DS on larger data sets in order to be able to draw

conclusions relatively to its runtime variability when using different objective orderings. To conclude,

HV4DS establishes a new, tighter upper bound (O(n2)) on the complexity of the hypervolume indicator.

In addition, the plots suggest that the advantage of HV4DS over the other algorithms will be even larger

for larger fronts.

4.2 Divide-and-conquer algorithm for the three-dimensional case

4.2.1 Description

As a first step towards the development of a multidimensional divide-and-conquer algorithm to compute

the hypervolume indicator in any number of dimensions, the three-dimensional case is considered here.

Given a non-dominated point set X ⊂ R3 of size |X| = n and a reference point r ∈ R3 as input, the

proposed algorithm operates as follows:

Division step If n = 1, let x denote the single element of X. Return the volume of the cuboid [x, r] if

x ≤ r, and zero otherwise.

If n > 1, partition X into two subsets, A and B, with n/2 points each, in such a way that ∀a ∈

A,∀b ∈ B, az ≤ bz.

Recursive step Let sz denote the lowest z-coordinate value of the points in B. Recursively compute

the hypervolume indicator of A given the reference point s = (rx, ry, sz) and that of B given r.

Marriage step Compute the volume not yet accounted, i.e., the volume of the region above the cut

plane z = sz which is dominated by A but not by B, given the reference point r.

This procedure is performed after having sorted all points according to coordinates y and z. Since

points are kept sorted according to coordinate z, the division step can be easily performed in linear time,

while keeping points in the two subsets A and B sorted by y and z coordinates. Keeping points sorted

according to coordinate y is important for the marriage step.

Figure 4.3(a) illustrates a problem with 14 points divided into two sets of 7 points each, sets A =

{a1, ..., a7} and B = {b1, ..., b7}. Figure 4.4(a) depicts the 3-dimensional volume dominated by the 14

points represented in Figure 4.3(a). Figure 4.4(b) represents the volume dominated by A and B returned

by the recursive step, given their respective reference points. Note that for visualization purposes, the

cut plane defined by sz was considered to be below 1. Finally, figure 4.4(c) represents the volume above
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(a) (b)

Figure 4.3: (a) An example where r = (18, 18, 10). The initial input set is divided into two subsets
A = {a1, ..., a7} and B = {b1, ..., b7}, by the cut plane set at z = 1. Assume that azi = −i and bzi = i for
i = 1, ..., 7. (b) The expected result of the marriage step applied to A and B given the reference point r.

(a) (b) (c)

Figure 4.4: (a) The total volume dominated by the points represented in Figure 4.3(a). (b) The volume
of A given the reference point s = (rx, ry, 1) and B volume given the reference point r. (c) The darker
volume represent the volume above the cut plane z = sz dominated by A but not by B.

the cut plane dominated by A but not by B in a darker color, i.e., the volume computed in the merge

step.

The most important step of the algorithm is the marriage step. Since the recursion tree will have

O(log n) depth, in order to achieve the goal of O(n log n) time complexity established by the optimal

algorithm of Beume et al. [4], the marriage step must have O(n) time complexity. However, it is not

trivial to achieve this goal.

Computing the desired volume can be achieved by partitioning the region dominated by A on the

(x,y)-plane into non-overlapping sub-regions of constant height. For example, given the problem of

Figure 4.3(a), the expected result is represented in Figure 4.3(b). These sub-regions will be divided further

into rectangles (or boxes), similarly to what was done in the four-dimensional hypervolume indicator

algorithm when computing a contribution of a point in three dimensions, as explained in Section 4.1.
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Figure 4.5: S1, ...,S12 represent all slices of the problem represented in Figure 4.3. Boxes separated by
dashed lines indicate that bottom one is created and computed only once, and then are kept unchanged.
Boxes with yellow background are boxes which will not be stretched along coordinate x anymore.

However, these boxes will have a different representation/data structure in the algorithm of this Section.

Note that in Figure 4.3(b), the base of all sub-regions starts at coordinate z equal to 1 (sz) and their

top ends at z = k, where k is the number depicted in the center of each sub-region (or box). This value

of coordinate z that defines the top of each sub-region (or box) will be referred to its height, while the

absolute difference between the value of coordinate z of the top and the bottom of a sub-region (or box)

will be referred as the absolute height. Moreover, since points in A which are dominated by other points

in A in their projection onto the (x, y)-plane do not contribute to the volume to be computed in the

marriage step, these points are ignored (a6 and a7).

Points in A and in B are merged and swept in ascending order of coordinate y (independently of the

set to which each point belongs) and, for each one, the volume of the corresponding slice is computed,

i.e., the volume between two consecutive points in y, or between the last point and the reference point.

Figure 4.5 shows all slices (S1, ...,S12) for the problem depicted in Figure 4.3. To compute the volume of

a slice, it must be divided into non-overlapping boxes along coordinate x, where each box has a different

height (in z coordinate) (see Figure 4.5). While sweeping points, if the point being swept is from A

it will cause the stretching along coordinate x of the leftmost box and, eventually the addition of new

boxes. If the point being swept is from B, it may cause the ceiling of some boxes to be lowered and the

union between boxes with the same height, which can also be seen as the removal of old boxes and the

introduction of a new box.

Algorithm 23 details the computation of the marriage step. As input, the split sets A and B, the

reference point r and the value of the z coordinate of the cut plane are received. The algorithm sweeps

every point qi, i = 1, ..., |q| and, while doing this, it keeps track of the height of boxes in the current

slice, which are defined by points from B which have been swept so far that are not dominated on the

(x,z)-plane by any other swept point in B. These points are kept in a list H which is kept sorted in

ascending order of the z coordinate (and consequently, sorted in descending order of x). As the algorithm

runs, it is necessary to keep track of point l and values t and a. t indicates up to which value of y the
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volume has been computed. l is the last visited point from A with lowest x coordinate. l is conveniently

set to (rx,−∞,−∞) until the first point from A is swept. a is the lateral area, i.e., the area on the

(x,z)-plane of the current slice, which is delimited between lx and rx in coordinate x. The boxes and

their heights are defined by point c (c is in H) and all points in H before c (with lowest z coordinate and

therefore, with highest coordinate x).

The height of the lateral area between lx and the point before c in H (prev(c,H)) is cz. Considering

k = prev(c,H), if k is not the first point of H, the region between kx and prev(k,H)x in coordinate x,

has height kz, and so on. For example, when point a4 is chosen to be swept, the information about slice

S7 (see Figure 4.5) it is available, and H would be ((rx,−∞,−∞), b1, b3, b7, (−∞,−∞, rz)). c, l and a

would be b3, a3 and 10, respectively. Therefore, a = 10 is the lateral area which is between ax3 and rx,

where the height between ax3 and bx1 is bz3 and between bx1 and rx is bz1. In this example, t indicates that

the volume has been computed up to by3 in coordinate y. Therefore, the volume of slice S7 is a · (ay4 − t)

which is 30.

There is one more data structure that is fundamental to achieve the desired time complexity, which

is v. vi is the point after which qi should be inserted in H, where i = 1, ..., n and where |q| = n. Before

starting the divide-and-conquer process and after the presorting step, each vi (i = 1, ..., n) is initialized

as (rx,−∞,−∞). This value is then updated while moving up the recursion tree. Later on it will be

explained how to update vi, but for now it is only important to know what it represents.

Line 8 of Algorithm 23 computes the volume of the current slice whose lateral area was computed

in the previous iteration and is zero in the first iteration. Lines 10-19 deal with the cases where qi is a

point from A and lines 20-35 deal with the cases where qi is a point from B. In the case where qi ∈ A,

the algorithm updates the lateral area to account for the area between qx
i and lx. For example, when

qi = a4, the lateral area to be added in lines 10-19 is the area between ax4 and ax3 . To do this, c and

the following points in H which contribute to this lateral area are swept. Note that if qi is dominated on

the (x,y)-plane by another point in A, there is no need to update the lateral area and, therefore, qi is

skipped (fails check of line 11). After updating the lateral area, l is updated.

When qi ∈ B, then H has to be updated, and so does the lateral area. Therefore, it is necessary to

add qi to H, in line 21, (for now ignore the subsequent lines 22 and 23) and to remove the points from H

which are dominated by qi on the (x,z)-plane. When a point is removed from H, the box defined by that

removed point (if any) has to be lowered to qz
i (lines 26-31). If only points in H to the right of lx (that

have higher coordinate x) are removed, then the leftmost box height has to be lowered and therefore,

the lateral area is updated. If qi defines the height of the left most box in the lateral area, c is updated

(line 34). Note that qx
i < lx is always true, otherwise qi would be dominated.

The last aspect that needs to be explained is how to know where qi should be inserted in H when

qi is a point from B, i.e., how to update vi (i = 1, ..., n) in order to know where to add qi in H in

constant time. For example, in Figure 4.5, the problem is how to know that when i = 7 (q7 = b3) then v7

should be b1. Remember that after the initial presorting before starting the divide-and-conquer process,

64



Algorithm 23 marriage(A,B,r,sz)

Input: A ⊂ R3

Input: B ⊂ R3

Input: r // r ∈ R3 is the reference point
Input: sz // ∀a ∈ A⇒ az ≤ sz and ∀b ∈ B⇒ az ≥ sz (z = sz is the cut plane)
Output: h // Volume above sz dominated by A but not by B

1: (q1, ..., qn) is A ∪ B sorted in ascending order of the y coordinate
2: H← [(rx,−∞,−∞), (−∞,−∞, rz)]
3: l← (rx,−∞,−∞) // l is the point of set A visited so far with lowest x
4: a← 0 // Lateral area
5: t← −∞ // up to which height in y the hypervolume is computed
6: c← last(H) // current slice boxes are defined by points in H up to c
7: for i = 1 to i = |q| do
8: h← h+ a · (qy

i − t)
9: t← qy

i

10: if qi ∈ A then
11: if qx

i < lx then
12: k = lx // the area accounted in a is the area in the (x,z)-plane between k and rx of coordinate

x
13: while qx

i ≤ cx do
14: a← a+ (cz − sz) · (k − cx)
15: k ← cx

16: c← next(c,H)
17: a← a+ (cz − sz) · (k − qx

i )
18: if qx

i ≤ lx then
19: l← qi

20: else
21: insert(qi, vi,H) // insert qi after vi in H
22: if lx ≥ qx

i and lx ≤ vx
i then

23: vi ← l
24: k ← prev(qi,H)x // the area on the (x,z)-plane between k and rx in coordinate x, is correctly

computed
25: w ← next(qi,H)
26: while (qx

i , q
z
i ) ≤ (wx, wz) do

27: if lx < k then
28: a← a− (wz − qz

i ) · (k −max(wx, lx))
29: k ← wx

30: remove(w,H)
31: w ← next(qi,H)
32: if lx < k then
33: a← a− (wz − qz

i ) · (k − lx)
34: if cz ≥ qz

i then
35: c← qi

36: h← h+ a · (ry − t)
37: return h

vi (i = 1, ..., n) was initialized to (rx,−∞,−∞), which is the first point in H. This value is then updated

when l is between qi and vi in coordinate x, which is not needed in the current execution of the marriage

step, but may be useful in the marriage step at higher levels of the recursion tree. What this means is

that the information about vi comes from the recursion on set B. For example, let us see, in the example

of Figure 4.5, that when v7 = b1 when i = 7 (q7 = b3). For that, let us simulate the recursion on the sets

where b3 is present (the number indicates the recursion level):
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(a) r = (18, 18, 4), sz = 3 (b) r = (18, 18, 4), sz = 2 (c) r = (18, 18, 10),sz = 4

Figure 4.6: The marriage steps where point b3 (of Figure 4.3) is present, moving towards the top of the
recursion tree. sz indicates at which value of coordinate z was set the cut plane to obtain the two sets of
each figure, i.e., from which value of z, the hypervolume of A has to be accounted in the marriage step.

1. A = {a1, ..., a7} and B = {b1, ...b7} (Figure 4.3 where b3 = q7)

2. A = {b1, ..., b3} and B = {b4, ..., b7} (Figure 4.6(c) where b3 = q4)

3. A = {b1} and B = {b2, b3} (Figure 4.6(b) where b3 = q2)

4. A = {b2} and B = {b3} (Figure 4.6(a) where b3 = q1)

Let us now see how the point in v corresponding to b3 is updated through all of the marriage steps

at these levels of recursion:

1. level 4 When b3 (q1) is swept, v1 is (rx,−∞,−∞) and l is (rx,−∞,−∞). b3 is then correctly

added to H after (rx,−∞,−∞). Since no point from A was swept and l is (rx,−∞,−∞), v1

remains unchanged.

2. level 3 When b3 (q2) is swept, v2 is still (rx,−∞,−∞) and l is b1. b3 is again correctly added to

H after (rx,−∞,−∞). Since l is b1 and bx3 ≥ bx1 ≥ rx, then v2 is updated to b1.

3. level 2 When b3 (q4) is swept, since it is a point from A, it is not added to H and v4 is kept

unchanged (b1).

4. level 1 Finally, when reaching the first level, when b3 is swept it is added to H after q7 = b1, as

desired. Since in this case l = a3 and bx3 ≥ ax3 ≥ bx1 , v7 is updated to a3.

Note than when level 1 is reached, v7 is updated to a3. This will only be useful if b3 is again part of

set B in even higher levels of the recursion tree, which is not the case in this example.

It is guaranteed that vi is always correct and therefore, that qi is inserted in H in the correct place,

because to correctly add qi to H it has to be ensured that vi is in H, at the time qi is swept, and it is

the closest point to qi according to coordinate x with higher coordinate x (which is also the closest point

to qi according to coordinate z with lower coordinate z). This is guaranteed because, in the bottom
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marriage steps, by having vi set to (rx,−∞,−∞), the above conditions are fulfilled. In the following

recursion levels, by updating each vi to the leftmost point seen so far in set A (whose projection onto the

(x, z)-plane will always be non-dominated according to A ∪ B), it is assured that vi will be in H at the

time qi is inserted in H. Moreover, vi is only updated if this point from A, according to coordinate x, is

closer or is as close to qi as the current vi. Therefore, vi is always correct.

4.2.2 Complexity

The complexity of the algorithm depends mostly on the marriage step, which must be performed in

linear time in order for the algorithm to achieve asymptotically optimal O(n log n) time complexity. The

division step poses no difficulty, as it can clearly be implemented in linear time after sorting. To achieve

O(n) time complexity in the marriage step, the box height updates have to be performed by sweeping

only the points that determine the height of the boxes that need to be updated. These box height updates

can happen when only updating the lateral area, either by sweeping points from A or by sweeping points

from B and eventually removing points from H.

Each point qi in B, is associated with the height of at most one box. This box can be a partial box

or a complete box. Denoting by k the bottom left corner of some slice where ky ≥ qy
i and where qi is

in H when y = ky, it is said that a box associated to qi is complete if qx
i ≥ kx. It is said that is a

partial box if qx
i < kx and prev(p,H)x ≥ kx (see Figure 4.3, where partial boxes are represented with a

white background, while complete boxes have a yellow background). For example, in slice S7, there is

one complete box associated to points b1, a partial box associated to b3, and b7 has no box associated

with it. Note that there is at most one partial box per slice, because there is no overlap between boxes.

Therefore, updating the lateral area can be seen as creating partial boxes, completing boxes or removing

boxes (removing points from H).

After completing a box associated to a point qi, qi is no longer processed unless it is removed from

H. Each point is swept once, it can be added to and removed from H once and it can only complete

a box once. Since all of these steps are performed in constant time per point, they lead to an overall

time complexity of O(n). Finally, there can only be a total of n partial boxes, one per each slice, in each

marriage step. Hence, the time complexity of the marriage step amortizes to O(n) and consequently a

O(n log n) time complexity is obtained for the whole algorithm. The main features responsible for the

achievement of this time complexity are having points already sorted in ascending order of coordinate y

before executing the marriage step, and the maintenance of v.

The space complexity of the algorithm is O(n). In the implementation of this algorithm, each point

was stored as a node of a multiple doubly-linked list containing besides the point’s coordinates, the

information of the next and the previous points according to coordinate y and z. Moreover, such a node

also keeps the information about which set, A or B, the point belongs to, and the information about

where in H it should be inserted, i.e., vi.

67



4.2.3 Experimental results

To test whether the algorithm was returning correct results, its output was compared against FPL (version

1.3) [12] using the data sets made available online by the Walking Fish Group [18]. A small tolerance, of

about 10−15 was considered. Some specific tests were constructed by hand, including tests with repeated

coordinates. For some of those tests, each step of the algorithm was observed in order to guarantee that

the algorithm was behaving correctly.

To test the performance of the divide-and-conquer algorithm, three sets of tests were constructed,

which were the spherical data set, the cliff data set and the uxuydz data set. The spherical data set was

generated using the following formula: pi = |Xi|/||X||, Xi ∼ Normal(0, 1), i = 1, 2, 3. The cliff data set

was generated using the formula: pi = 1 − |Xi|/||X||, Xi ∼ Normal(0, 1), i = 1, 2, p3 ∼ Uniform(0, 1).

In the uxuydz data set, if points are sorted in ascending order of x coordinate, then they will be also

sorted in ascending order of y and in descending order of z coordinate. For each type of data, different

size data sets were constructed (1× 106,2× 106,...,10× 106).

The divide-and-conquer algorithm proposed here, referred to as HVDC3D, was compared against

the asymptotically optimal algorithm proposed by Beume et al. [5] for three dimensions. The WFG

implementation of this algorithm was used, and will be referred to as HVDS3D (DS from Dimension

Sweep). Since it was observed in the previous algorithms proposed in this thesis that presorting the

input points in memory can help to speed up the algorithm by enabling a more efficient use of the cache,

this characteristic was included from the start in this HVDC3D implementation.

Each algorithm was run on all six permutations of the objectives for each data set. Average runtimes

are represented on the plots of Figure 4.7. On those plots, error bars are used to represent the minimum

and maximum runtime observed for each set. Note that in some cases the bars are not visible, because

the algorithm runtime did not vary much with objective ordering.

In Figure 4.7 it is possible to observe that the divide-and-conquer approach did not outperform the

dimension sweep approach, but the most important fact to notice is that the runtime grows similarly

in both cases. Since HVDC3D is recursive, some overhead was expected in comparison to an iterative

implementation. Therefore, a full multidimensional divide-and-conquer algorithm for the hypervolume

indicator may still be competitive with the current ones.

It could be argued that HOY already uses a divide-and-conquer approach, but not multidimensional

divide-and-conquer, which is the final goal of what was started in this Section. The divide-and-conquer

approach applied to HVDC3D is still a new way to approach the problem, since it differs from HOY in

the sense that HVDC3D divides the problem according to the number of points while HOY divides the

problem according to the space that includes the area dominated by the initial set of points. Therefore,

HVDC3D introduces a new perspective on how to approach hypervolume indicator computation.
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Figure 4.7: Comparison of HVDC3D and HVDS3D performance.

4.3 Concluding remarks

The work presented in this Chapter makes two major contributions to the current state-of-the-art of

the hypervolume indicator. The first main contribution is the proposal of a new algorithm (HV4DS)

to compute the hypervolume indicator in four dimensions that establishes O(n2) as a new tighter upper

bound on the time complexity for d = 4. The second main contribution is the introduction of a new divide-

and-conquer approach to the computation of the hypervolume indicator. This is achieved by proposing an

algorithm (HVDC3D) for the base case in three dimensions, whose time complexity matches the optimal

O(n log n) time complexity of d = 3.

It was also shown that, in addition to having the lowest complexity, HV4DS was faster in practice than

the other algorithms tested, up to 10 times in most cases. In most of the tests performed, it improved
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upon WFG performance, at least, up to 10 times. Therefore, it is expected to improve upon IIHSO

(which was, to date, the fastest algorithm for d = 4) performance by about 4 four times. HV4DS is also

characterized by its efficient use of cache in comparison to HV4D.

Although, it does not outperform the current fastest algorithm for the three dimensional case,

HVDC3D shows how divide-and-conquer can be applied to the computation of the hypervolume in-

dicator, and that it may be possible to develop efficient algorithms using the multidimensional divide-

and-conquer approach. Matching the optimal time complexity, this algorithm is just the starting point

for the development of a multidimensional divide-and-conquer algorithm for the hypervolume indicator.
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5Concluding Remarks

As discussed in Chapter 1, quality indicators such as the hypervolume indicator are important methods

for the assessment of optimizer performance. In particular, the hypervolume indicator has been widely

studied, and has even been integrated into some evolutionary multiobjective optimizers [6]. Therefore,

it is very important that algorithms to compute it have a good performance. On the other hand, the

Empirical Attainment Function, which provides a deeper look into optimizer performance by allowing

certain aspects of the distribution of the different outcomes of stochastic multiobjective optimizers to be

studied, is still limited by the unavailability of algorithms to compute it in more than three dimensions.

The aim of this thesis was to contribute to the state-of-the-art in algorithms for the assessment of

stochastic multiobjective optimizers, such as those to compute the hypervolume indicator and the EAF.

This goal was achieved through three different types of contributions: new algorithms that outperform

existing ones were developed; new algorithms were developed for a case for which no algorithm was

available; and an asymptotically optimal algorithm based on different paradigm was developed.

Specifically, in the hypervolume indicator case, this work contributes with two new algorithms: an

algorithm for the four-dimensional case and another for the three dimensional case. The algorithm for

d = 4 (HV4D), proposed in Section 4.1, is an important contribution since it establishes a new, tighter

upper bound of O(n2) for d = 4. It was also shown to outperform the existing algorithms in practice.

The algorithm for d = 3 (HVDC3D), proposed in Section 4.2, contributes to the introduction of a

new approach to the computation of hypervolume indicator, the multidimensional divide-and-conquer

approach, by defining its base case. This algorithm achieves the optimal O(n log n) time complexity of

the three dimensional case.

For the EAF, two new algorithms were presented: an algorithm for the four dimensional case and

another for the two-dimensional case. The former was proposed in Section 3.1 and is the first algorithm

available for the four-dimensional case. In Section 3.2, a new algorithm for d = 2 (OSEAF2D) which

outperforms the existing one was proposed. This new algorithm has the interesting characteristic of being

output-sensitive, a desirable feature which has not been investigated in connection with the EAF, so far.

Especially in the case of HV4D and EAF2D, the issue of cache efficiency was raised. Experiments

indicate that algorithms to compute the hypervolume indicator and the EAF, which usually follow a

dimension sweep approach, may benefit considerably from the presorting of points in memory in order

to reduce the number of cache misses and improving their runtime.

To conclude, it was shown that existing algorithms could still be improved upon. Issues such as cache

efficiency and output-sensitivity were approached in order to arrive at more efficient algorithms. A new
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point of view on the computation of hypervolume indicator was introduced by implementing a divide-and-

conquer approach. Overall, new and efficient algorithms for the assessment of stochastic multiobjective

optimization were developed.

The work developed in this thesis opens up some new directions for future work. In the case of the

hypervolume indicator, it should be possible to extend the approach used by HV4D to at least five di-

mensions, although it is not yet clear how this may be achieved. HVDC3D should be generalized to any

number of dimensions by implementing the remaining aspects of a multidimensional divide-and-conquer

algorithm, which is also not an easy task because of the O(n2) and O(nd/2 log n) time complexity bounds

for d = 4 and d > 4, respectively, already imposed by the existing algorithms. Moreover, the applicability

of multidimensional divide-and-conquer to hypervolume indicator computation also encourages the ap-

plication of this paradigm to the computation of the EAF. Finally, a new direction for the computation

of EAF was pointed out, i.e., pursuing output-sensitive algorithms. The good results obtained by sorting

points in memory, applied to EAF2D and hypervolume indicator algorithms, also highlight this as an

issue worth considering in other algorithms, such as those to compute EAF in three and four dimensions.
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