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ABSTRACT 
The standard Database Management Systems (DBMS) query processing model picks a single non-

adaptive plan and executes it to completion. The chosen plan aims to minimize running time by carefully 

optimizing the use of secondary storage, memory, and CPU. DBMS optimizers estimate plan costs by 

using statistics–information describing the datasets, the queries, and the system. When statistics needed to 

cost plans are not available in the database catalog, the optimizer estimates them by using heuristics and 

default values. These estimates may contain errors and these errors grow exponentially with the number 

of estimated statistics derived from other estimated statistics. This may lead to selecting query plans that 

are sub-optimal by several orders of magnitude. Having more information in the catalog (e.g., histograms) 

reduces the problem but does not scale with the number of relations and attributes in the database. In 

addition, several hardware and software trends are making this hard problem harder. For example, the 

optimization space is increasing exponentially because there are more operators to considerer, larger 

datasets to manage, and more complex queries to optimize. Thus, optimizers are increasingly more likely 

to select sub-optimal plans.  

In the general case, DBMS optimizers may have insufficient information to choose a single, good, 

non-adaptive query plan. Instead of focusing on providing more information to the optimizer, we propose 

several Adaptive Query Processing (AQP) techniques as alternatives or extensions to the non-adaptive 

architecture employed by today’s commercial database systems. Our proposals are targeted to: i) correct 

or avoid query processing problems due to the use of incorrect and partial information at optimization 

time and ii) collect information not available at optimization time and dynamically determine and assign 

different plans for different subsets of the data. The work presented here complements, extends, or 

supersedes previous AQP proposals. 
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CHAPTER 1 

INTRODUCTION 
Users and application programs typically use the language SQL to access information in a relation 

database system (DBMS). As a declarative language, SQL allows the user to specify what information 

from the database is needed without having to specify how to retrieve it. It is the responsibility of the 

DBMS to translate each SQL query into an efficient execution plan. 

As shown in Figure 1, SQL queries are first translated into a DBMS internal representation of the 

query called a logical plan  through a module called a parser . 

 

 
Figure 1 – Query processing overview 

 

Logical plans specify what to do and not how to do it. There are many different alternatives to 

execute the query specified by a logical plan. Each of those alternatives, called a physical plan , has an 

execution cost. Query optimization , performed by the optimizer , is the name given to the task of selecting, 

for each logical plan, the corresponding physical plan with the lowest cost. Finally, query execution, 

performed by the executor, takes the chosen optimal physical plan, executes it to completion, and returns 

the output to the user. The entire process of parsing, query optimization, and query execution is called 

query processing. 
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To select an execution plan, the optimizer considers, or enumerates, many physical plans (henceforth 

simply called plans). A plan is a tree of operators. Leaf operators  retrieve records from a single relation 

and pass those records to their parent operator. Almost always, intermediate operators  retrieve and join 

records from two children operators and pass the joined records to their parent operator. (The set of 

records output by an operator is called an intermediate relation; relations are called base relations to 

distinguish them from intermediate relations.) Each operator represents one algorithm. Algorithms that 

retrieve records from a single base relation–e.g., file-scan (FS) and index-scan (IS)–are called access 

methods. Algorithms that join records between relations–e.g., nested-loops join (NLJ) and sort-merge join 

(SMJ)–are called join methods. Each enumerated plan is different from the rest in one or more operators 

or in the shape of the tree (i.e., in the way the operators are connected). Figure 2 shows three plans for 

executing the same query: joining relations R, S, and T. Plan 2 is different from Plan 1 in the operators 

marked gray. Plan 3 has the same operators of Plan 1, but the inputs to the top operator are reversed. 

 

 

Figure 2 – Three different plans joining relations R, S, and T 
 

The cost of a plan is the sum of the costs of the operators that compose it. The task of the optimizer is 

to enumerate alternative physical plans, estimate their cost, and prune  all plans except the one with 

minimal cost. The exact cost of each operator, and therefore of the entire plan, is very hard to compute. 

Indeed, the cost of each operator may depend on: 
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• The state of the system running the DBMS (e.g., the amount of memory available to hold pages of 

base and intermediate relations) 

• The parameters of the SQL query 

• The sizes of base relations and intermediate relations 

• The data distributions of values in the relations 

 

To correctly cost and prune plans, the optimizer needs to obtain all the information mentioned above. 

Each piece of information used during costing is called a statistic. Some statistics can be obtained from 

the DBMS. For example, the DBMS might know much memory is available at optimization time. Other 

statistics can be obtained from the query itself. Still, others can be obtained from the database catalog. 

The database catalog (or simply, catalog) is a repository of meta-information in the DBMS, describing, 

among others, sizes of base relations and (approximations of) data distributions. 

However, the catalog is far from complete: most DBMS data distributions are not represented there. 

Other times, queries are not fully specified. That is, there are queries, referred to as parametric queries , 

with placeholders for parameters that are known at execution time but not at optimization time. In 

addition, the state of the system at execution time may be different from the state of the system at 

execution time. In any of these situations, the optimizer needs to cost plans without having access to all 

the statistics needed to accurately estimate their cost. Whenever this happens, the optimizer uses a number 

of heuristics to estimate the unknown statistics which are then used to estimate the cost of operators, and 

the cost of plans. 

1.1. Query Optimization Problems 

Sometimes, the inputs to the optimizer may be incorrect or partially missing. When that happens, 

correctly estimating the cost of all operators in all enumerated plans is virtually impossible and the 
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optimizer may select a plan that is sub-optimal. Below we describe scenarios that can lead to sub-optimal 

plan choices. 

1.1.1. Statistics not in the Catalog, Heuristics Incorrect 

Based on the query, the optimizer determines which statistics to retrieve from the catalog: sizes of base 

relations, sizes of records, distributions of values, etc. The optimizer then estimates the cost of operators 

and plans using those statistics. However, frequently, statistics needed to compute costs of operators are 

not stored in the catalog. When this happens, the optimizer estimates the missing statistics by using a 

combination of heuristics. For example, if a distribution of values is unknown, it is typically assumed to 

be uniform. Likewise, if the relationship between two distributions is unknown, they are typically 

assumed to be independent. However, frequently the assumptions do not hold and the resulting estimates 

may be incorrect. Throughout the query optimization process, estimated statistics may be used to produce 

other estimated statistics. For example, to estimate the size of the join of relation R with S, the optimizer 

will likely estimate the sizes of R and S separately. If the sizes of R and S were incorrectly estimated, the 

estimate of the size of the join of R with S will also likely be incorrect. It has been shown that, not only 

this propagation of errors happens, in fact, the propagated error grows exponentially with the number of 

statistics estimated from other estimated statistics [51]. As the errors in estimated statistics grow, the 

optimizer is more likely to select a sub-optimal plan. 

1.1.2. Parametric Queries 

Parametric queries are queries with one or more input parameters that are unknown at optimization time. 

Different input parameter values may yield different results and may require different optimal plans. Not 

knowing what values to expect, the optimizer guesses those values and proceeds with optimization. 
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Again, due to unknown statistics, in this case the input parameters to the parametric query, the optimizer 

may produce sub-optimal plans. 

1.1.3. Detailed Statistical Information not Considered 

Another prevalent assumption used during query processing is that there is a single efficient plan for a 

given query based on current statistical properties of the data. However, different subsets of the data can 

sometimes have very different statistical properties. In such scenarios it can be more efficient to process 

different subsets of the data using different plans. Even if catalogs contained statistics at the level of detail 

necessary, current optimizers are not designed to consider this scenario and may use sub-optimal plans. 

1.1.4. Changing Statistics 

Finally, traditional query processing has been extended to consider potentially infinite, continuous queries 

over streams of data. Throughout the life of such long running queries, the conditions of the Data Stream 

Management System (DSMS) and the characteristics of the data can change, possibly changing the 

optimality of running plans. Dealing with the changing environment typical of DSMSs has been the focus 

of other work [5, 12, 20, 21, 27, 39, 67] and will not be addressed in depth in this thesis. However, in both 

DBMS and DSMS, the problems and the architectured solutions have major points in common: incorrect, 

missing, or changing information lead to the execution of sub-optimal plans, sub-optimality is detected at 

run-time, and a new optimal plan is generated to replace the sub-optimal plan being executed [10]. 

Because of these common points, some of the solutions developed in this thesis are also applicable to 

DSMSs [see Chapter 2, or reference 15]. 
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1.2. Trends Exacerbating Query Processing Problems 

The traditional DBMS architecture described above has been widely successful and it has been used 

virtually by all databases, ever since its introduction, almost three decades ago [79]. However, while the 

basic DBMS architecture has remained the same, there have been spectacular improvements in hardware 

and software: the average improvement in price-performance since 1985 is 68%/year (beating Moore’s 

Law at 58%/year) [42]. For example, the best hardware and software combination of 1985 could sort 0.05 

GB/$, while the best combination in 2005 could sort 1660 GB/$, a 33200-fold increase in 20 years [75]. 

With so much increased processing capacity, DBMSs are able to handle larger and larger databases. 

For example, in 1983, the pioneer Wisconsin Benchmark [14] had 3 relations totaling less than 5 MB 

while in 2006, the TPC-H [85] site reports systems handling up to 10,000 GB, a two-million-fold increase 

in dataset size over 20 years. 

There have been also many new operators; in 1979 optimizers only had to consider a handful of 

operators when building plans [79], while in the latest SQL Server DBMS, the optimizer has close to 100 

operators to consider [65]. Query size has also increased substantially in the last two decades. Initial 

systems aimed at joining two or three relations efficiently [14, 79]. Nowadays it is common for real-life 

DBMS to process queries joining 20 relations. 

In summary, datasets have been growing exponentially with time, DBMSs have become very 

complex systems with dozens of operators, and it is common for queries to access dozens of tables. These 

trends present significant optimization challenges. The optimization space increases exponentially with 

the number of relations joined and with the number of operators to consider. The number of statistics 

needed to correctly cost all possible plans grows exponentially with the number of relations and number 

of attributes in the relations. Thus, larger and more complex datasets are likely to have more information 

missing in the catalog. All this makes the job of the optimizer increasingly harder: every optimization call 

may have to consider and cost thousands of plans, each with tens of operators. In addition, due to better 
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software and hardware, optimizer mistakes are becoming, not only more common, but also more costly. 

That is, the percentage difference between an optimal plan and a sub-optimal plan is likely to increase 

with hardware and software improvements. 

Assuming the described trends will continue, we believe query processing will have to be re-

architectured in order to be able to deal with the challenges described in Section 1.1. The next section 

describes the contributions that this thesis makes towards addressing these problems. 

1.3. Contributions and Thesis Organization 

This thesis proposes several Adaptive Query Processing (AQP) approaches as alternatives or extensions 

to the non-adaptive architecture employed by today’s commercial database systems. Our proposals are 

targeted to: i) correct or avoid query processing problems due to the use of incorrect and partial 

information at optimization time and ii) collect information not available at optimization time and 

dynamically determine and assign different plans for different subsets of the data. 

We note that adaptive query processing proposals over DBMSs are not new [5, 26, 28, 40, 46, 55, 56, 

58, 61, 63, 83]. The work presented here represents a second-generation of adaptive query processing 

techniques that complements, extends, or supersedes some of those previous proposals. Our main 

contributions were developed in four different projects: 

 

• Content-Based Routing (CBR), described in Chapter 2. Query optimizers in current database 

systems are designed to pick a single efficient plan for a given query based on current statistical 

properties of the data. However, different subsets of the data can sometimes have very different 

statistical properties. In such scenarios it can be more efficient to process different subsets of the input 

datasets using different plans. We propose a new query processing technique called content-based 

routing that eliminates the single-plan restriction in current systems. We present low-overhead, 

adaptive algorithms that partition input data based on statistical properties relevant to query execution 
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strategies, and efficiently route individual tuples through customized plans based on their partition. 

We have implemented CBR as an extension to the Eddies [5] query processor in the TelegraphCQ 

system [21], and we present an extensive experimental evaluation showing the significant 

performance benefits of CBR. 

 

• Proactive Re-Optimization (Rio), described in Chapter 3. First generation AQP systems used a 

traditional optimizer to pick a plan, and then reacted to estimation errors and resulting suboptimalities 

that were detected in the plan during execution. The effectiveness of this approach is limited because 

traditional optimizers choose plans unaware of issues affecting re-optimization. We address this 

problem using proactive re-optimization, a new approach that incorporates three techniques: i) the 

uncertainty in estimates of statistics is computed in the form of bounding boxes around these 

estimates, ii) these bounding boxes are used to pick plans that are robust to deviations of actual values 

from their estimates, and iii) accurate measurements of statistics are collected quickly and efficiently 

during query execution. We present an extensive evaluation of these techniques using a prototype 

proactive re-optimizer named Rio, implemented in open-source DBMS Predator [81]. In our 

experiments Rio outperforms current re-optimizers by up to a factor of three. 

 

• Streaming, Highly Adaptive Run-time Planner (SHARP), described in Chapter 4. SHARP is a 

new multi-join, adaptive, relational operator that joins three or more relations of a star-join. SHARP 

reduces the possible impact of optimizer mistakes by determining which plan to execute 

independently of optimization estimates. During normal query processing, SHARP collects statistics, 

and by using a combination of late-binding plan decisions and tuple routing strategies, it is able to 

change join order and table access methods. However, unlike previous tuple routing operators used 

for in-memory stream processing, SHARP was designed to process local relations with sizes much 

larger than available memory. We have implemented SHARP in the open-source DBMS Predator, 
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and we present an extensive experimental evaluation showing the significant performance benefits 

that the SHARP operator can provide. 

 

• Progressive Parametric Query Optimization (PPQO), described in Chapter 5. Many commercial 

applications rely on pre-compiled parameterized procedures to interact with a database. 

Unfortunately, executing a procedure with a set of parameters different from those used at 

compilation may be arbitrarily sub-optimal. Parametric query optimization (PQO) attempts to solve 

this problem by exhaustively determining the optimal plans in each point of the parameter space at 

compile time. However, PQO is likely not cost-effective if the query is executed infrequently or if it 

is executed with values only within a subset of the parameter space. We propose instead to 

progressively explore the parameter space and build a parametric plan during several executions of 

the same query. We introduce algorithms that, as parametric plans are populated, are able to 

frequently bypass the optimizer but still execute optimal or near-optimal plans. We present an 

extensive performance evaluation of PPQO using a prototype implementation and SQL Server 2005. 

 



10 

CHAPTER 2 

CONTENT-BASED ROUTING 
Content-Based Routing (CBR) is a new technique that overcomes the single-plan restriction in current 

systems. CBR uses low-overhead adaptive algorithms that partition input data and efficiently route tuples 

through customized plans based on their partition. 

2.1. Introduction 

The conventional approach to query optimization is to pick a single efficient plan for a query, based on 

statistical properties of the data along with other factors such as system conditions. In many application 

domains, different partitions of the data accessed by a query may have very different statistical properties. 

For example, statistical properties of the observations collected by different sensors in a sensor network 

environment may be very different [33]. In such cases it can be more efficient to process the different 

partitions using different plans. In this chapter we propose a new general-purpose query processing 

technique called Content-Based Routing (CBR) that eliminates the single-plan restriction in current 

systems. CBR automatically identifies tuple classes —partitions of the input data that differ in relevant 

statistical properties—and processes the query using multiple plans, each of which is customized for an 

individual tuple class. CBR is low-overhead and it is adaptive, revisiting its decisions as changes in data 

characteristics are detected. 

Adaptive approaches to query optimization have received a great deal of attention recently, with a 

focus on handling data properties and system conditions that may change while a query is running [5, 12, 

20, 21, 27, 39, 67]. Our problem is different: We do not focus on adapting a single plan as data 

characteristics change, but rather on detecting classes of data characteristics that can be used to route 
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different data to different plans. Note that even Eddies [5], which can potentially adapt at the tuple 

granularity, still uses a single plan for (nearly) all tuples at any point of time. 

2.1.1. Eddies and Source-Based Routing 

Our CBR algorithms are implemented as an extension to Eddies [5]. However, our approach applies to 

any query processing environment where the data movement can be modeled as streams, e.g., stream 

systems, regular database systems using iterators [41], and "pull" systems like acquisitional query 

processors [62]. The Eddy is an operator that routes tuples through a pool of operators until they are 

processed by all operators or are dropped along the way [5]. The Eddy continuously observes the 

performance of the operators by collecting statistics at run-time (e.g., selectivity and cost) and routes 

tuples to the most efficient operator1. Since these statistics are potentially changing, the process is 

automatically adaptive, possibly sending different tuples through different routes. 

Without CBR, an Eddy makes routing decisions based on the selectivity of each operator over all 

tuples the operator has processed recently. Tuples are not differentiated based on content, so all tuples 

from the same stream source are routed identically. We denote this type of routing as source-based 

routing (SBR). 

2.1.2. Motivations for Content-Based Routing 

When CBR is added to Eddies, correlations between tuple content and operator selectivity are detected, 

and they are exploited during routing to eliminate tuples sooner, reduce latency, and improve overall 

system throughput relative to SBR. Next we motivate CBR using two examples. 

 



12 

Example 2.1. Figure 3(a) is an intrusion detection query for an enterprise network [13, 82]. The lookup 

table T may contain addresses of subnetworks in the enterprise that are exposed to the public Internet. The 

byte sequences represent patterns common to a specific type of network attack [13]. Figure 3(b) shows an 

Eddy for this query with three filter operators–O1, O2, and O3–corresponding to the three conditions, over 

an incoming stream S of network packets. Operator O1 performs a prefix-based join on the destination 

address attribute of incoming S tuples with T. Operators O2 and O3 perform the 100-byte and 256-byte 

sequence matches respectively. 

Let ci denote the current average processing cost per tuple for operator Oi, and let σi, 0 ≤ σi ≤ 1, denote 

the current expected selectivity of Oi.
2 Suppose the following conditions hold for the example: c3 > c1 > c2 

and σ3 > σ1 > σ2. Given these statistics, the Eddy's routing will converge to the ordering O2, O1, O3, i.e., 

most tuples will follow this route as shown in Figure 3(b). 

Now suppose the monitored attack is underway on a subnetwork whose prefix is not in T. (The 

subnetwork may be secured separately by a firewall.) In this case, σ2 and σ3 will be very high, and σ1 will 

be very low for packets (tuples) coming from the attacker(s). So, O1, O2, O3 will be the most efficient 

ordering for processing these “attack packets”. For other packets, O2, O1, O3 will remain the best ordering 

as before. Since an attack happens typically from some group of compromised hosts, CBR can distinguish 

between the attack and non-attack packets based on the source address, and use the appropriate ordering 

(Figure 3(c)). Without CBR, the Eddy will continue using the O2, O1, O3 ordering, limiting performance. ■ 

                                                                                                                                                                    

 

1 In reality, the Eddy routes most, but not all, tuples through the route expected to be most efficient (in a process 
called exploitation ) and simultaneously routes some few tuples through other routes to discover if any of those other 
routes has become the most efficient (exploration ). 

2 Cost is the time spent by the operator processing the tuple. Selectivity refers to the fraction of input tuples passed 
by the operator. 
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Figure 3 – (a) A continuous query; (b) Eddies; (c) Eddies with CBR 
 

 

 

Query: “Track packets with 
destination address matching a 
prefix in table T, and containing 
the 100-byte and 256-byte 
sequences “0xa...8” and “0x7...b” 
respectively as subsequences” 

SELECT * FROM packets 
WHERE matches(destination, T) 
AND contains(data, “0xa...8”) 
AND contains(data, “0x7...b”); 
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Example 2.2. Consider the following query over a distributed sensor network in a large warehouse 

building: 

SELECT * FROM sensors 
WHERE light < 1000 lux3 AND temperature > 20ºC; 

To answer this query, data must be acquired from sensors. However acquiring readings from sensors 

is a power-consuming operation. Since sensors are power-constrained, one of the main goals of 

acquisitional systems is to minimize power consumed by data acquisitions [33]. Note however, that 

sensors that are placed close to windows receive more natural light and likely report higher temperatures 

than sensors located in interior rooms. Therefore, for those sensors close to windows, the probability that 

the predicate on light will fail may be higher than that for the temperature predicate. On the other hand, 

for sensors that are placed in interior locations, the probability that the predicate on light will fail may be 

lower than that for the temperature predicate. Therefore, instead of using a single fixed order for 

evaluating the two predicates across all sensors, we may want to use CBR: use different operator 

evaluation orders depending on the sensor location. For each sensor location, CBR chooses an operator 

evaluation order that evaluates the most selective operator first. On average, CBR will reduce the number 

of predicates evaluated per sensor and the number of data acquisitions required, resulting in significant 

power consumption savings in this setting. ■ 

2.1.3. Contributions and Outline 

The major contributions of this chapter are: 

• In Section 2.3 we define classifier attributes, an important concept in CBR. 

                                                   

 

3 A value of 1 Lux corresponds to moonlight, 400 Lux to a bright office, and 100,000 Lux to full sunlight. 
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• In Section 2.4 we present algorithms to automatically and efficiently learn classifier attributes, to 

partition the underlying data into tuple classes, and to route tuples from these classes optimally 

through the operators in an Eddy. 

• In Section 2.5 we discuss the adaptive nature of our algorithms to handle changes in input data 

properties and system conditions while the query is running. 

• Finally, in Section 2.6 we present an extensive experimental evaluation of CBR using a prototype 

implementation in TelegraphCQ. Our results show good performance improvements over not using 

CBR. 

2.2. Related Work 

Work related to CBR can be grouped into four categories: exploiting correlations among attributes during 

query processing, adaptive query processing, identifying correlations in large datasets, and computing 

complex statistical information over data streams. 

The work most closely related to CBR is identifying conditional plans  in an acquisitional query 

processing system [31, 33]. Like CBR, a conditional plan partitions the input data and processes each 

partition with a different plan. The approach taken in [33] is to learn a single good conditional plan based 

on an initial training sample of the data, and then to use this plan unchanged throughout query execution. 

That initial training is done offline, requires a large amount of collected training data, and learns the 

conditional plans using complex decision tree building algorithms. On the other hand, CBR uses light-

weight machine learning techniques over the streaming tuples that enable a continuously adaptive 

approach to query processing. Thus, CBR does not require previous knowledge of the data and is not 

dependent on previous learned models of the world. 

While many adaptive query processing systems have been built to date, most of them use a single 

plan for almost all tuples at any point of time [5, 9, 11, 53, 58, 63]. Some of these systems, including 

Eddies, on which we have implemented CBR, process almost all of the input tuples using the current best 
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plan, and the remaining tuples are processed using other plans to track the performance of these plans (to 

identify plans to change to) or to collect run-time statistics [5, 9]. Ives et al describe a technique that 

combines hash join and merge join operators to take advantage of mostly-ordered inputs [56]. Tuples 

following the expected order are routed to the merge join; remaining tuples are routed to the hash join. A 

final phase joins tuples across the two operators to produce the complete join result. This technique, 

complementary to ours, can be seen as providing adaptivity within a single join operator while CBR 

provides adaptivity in a query plan by allowing different join orders. 

There has been some recent work on identifying correlations in large datasets. None of this work has 

been used to identify different plans for processing different partitions of the data for a query. CORDS 

identifies sets of attributes that are correlated [50]. Deshpande et al use the lack of correlation 

(independence) among attributes to build compact multi-dimensional histograms [30]. Getoor et al use 

probabilistic models like Bayesian networks to capture the statistical relationship among attributes so as 

to compute cardinalities accurately for intermediate results in query plans [36]. 

There has been work on computing complex statistical information over data streams, for example, 

decision trees [34], correlated aggregates [37], and histograms [43]. None of this work includes 

computing correlations between tuple content and selectivities of operators, identifying tuple classes, or 

finding different plans for different subsets of data. 

2.3. Classifier Attributes 

Our goal is to identify tuple classes where each class has a different optimal operator order for processing. 

CBR considers tuples classes that can be distinguished from one another based on tuple content, namely, 

the attributes in the tuples. In this context, different tuple classes may have different optimal operator 

orders if the selectivity of one or more operators is correlated with the content of one or more input 

attributes. Attributes used to distinguish tuple classes are called classifier attributes. Informally, an 

attribute A is called a classifier attribute for an operator O if the content of A is correlated with the 
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selectivity of O. As illustrated by Example 2.3, CBR is based on identifying and exploiting such classifier 

attributes. 

 

Example 2.3. Consider an input stream S processed by three operators O1, O2, and O3. Let A be an 

attribute of tuples in S which takes one of three values a, b, or c with equal probability. Table 1 shows the 

respective selectivities of O1–O3 for the tuple classes with A=a, A=b, and A=c, and the overall selectivity 

of each operator on S tuples. Assuming O1–O3 have the same execution costs, if only overall selectivities 

are considered, then the best ordering for S tuples is O1, O2, O3. However, note that the selectivity of O2 is 

correlated with the value of A: the selectivity of O2 for A=a and A=b is much lower than O2's overall 

selectivity, and it is much higher for A=c. Therefore, for tuples with A=a or A=b, the ordering O2, O1, O3 

will outperform O1, O2, O3, while O1, O3, O2 will outperform O1, O2, O3 for tuples with A=c. ■ 

 

Table 1 – Content specific selectivities 
Value of A σ1 σ2 σ3 

A=a 32% 10% 55% 
A=b 31% 20% 65% 
A=c 27% 90% 60% 

Overall 30% 40% 60% 
 

The degree of correlation between two distributions may be specified in a number of ways [66]. We 

use a specification from Information Theory which is based on the concept of gain ratio [66], described 

next. 

Let R be a random sample of tuples processed by an operator O. (We assume all operators are filters; 

an extension to non-filter operator is discussed in Section 2.4.5.) Let σ be the overall selectivity of O for 

tuples in R. Each tuple in R belongs to one of two classes: tuples that O passes and tuples that O drops. 

The entropy  [66] of R, which is an information-theoretic metric used to capture the information content of 

R, is defined as: 
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where c is the number of classes in R and p i is the fraction of R belonging to class i. In our case c=2, 
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Let A be an attribute of tuples in R. Let v1, v2, …,vd be the distinct values of A in R. The information 

gain of A with respect to R, which represents the increase in information about R gained by knowledge of 

A, is defined as [66]: 
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Here, Ri is the subset of R with A=vi and |R| (|Ri|) is the number of tuples in R (Ri). Gain ratio is a 

normalized representation of information gain [66]: 
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Gain ratio is used widely in decision-tree learning algorithms (e.g., ID3 [66]) to determine the 

attribute that best classifies a given data set. Since classifier attributes serve a similar purpose in our case, 

our formal definition of a classifier attribute is based on gain ratio. 

 

Definition 3.1 (Classifier Attribute) An attribute A is a classifier attribute for an operator O if for any 

large random sample R of tuples processed by O, we have GainRatio(R, A) > γ, for some threshold γ. ■ 

 

Example 2.4. We revisit Example 2.1. Let Table 1 now represent the selectivities computed from random 

samples R1, R2, and R3 of tuples processed by operators O1, O2, and O3 respectively. Since A takes one of 

values a, b, or c with equal probability, the samples will contain tuples with A=a, A=b, and A=c in 
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roughly equal proportion. We can use Equations (2) – (5) to compute the gain ratio of attribute A with 

respect to R1, R2, and R3: GainRatio(R1, A) = 0.33, GainRatio(R2, A) = 0.63, and GainRatio(R3, A) = 0.37. 

Notice that GainRatio(R2, A) dominates the others because of the strong correlation between the 

selectivity of O2 and the content of A. ■ 

 

Our definition of classifier attributes extends to classifier attribute sets where the selectivity of an 

operator is correlated with a set of attributes instead of with any single attribute in that set. That is, tuple 

classes in the input may be determined by a set of attributes instead of a single attribute. We do not 

consider classifier attribute sets in this work; instead we focus on single-attribute classifiers. Note, 

however, that CBR considers multiple single-attribute classifiers when making routing decisions. While 

some of our techniques extend directly to classifier attribute sets, we defer a detailed exploration of this 

issue to future work. 

2.4. Learning Routes Automatically 

We are now ready to consider the problem of learning good content-based routes automatically for the 

CBR framework introduced in Section 2.3. We will consider a single input stream S with tuples having 

attributes C1, C2, …, Ck that are processed by operators O1, O2, …, On, and describe our Content-Learns 

algorithm to learn good content-based routes automatically in this setting. For now we will consider all 

operators O1, O2, …, On, and for each operator, we consider all attributes C1, C2, …, Ck as potential 

classifier attributes for CBR. In Section 2.4.4 we will present heuristics to prune the space of attributes 

and operators that we consider for CBR. Content-Learns consists of two continuous, concurrent steps: 

1. Optimization: In this step, for each operator Ol ∈ O1, …, On, if one or more attributes in C1, …, Ck 

are classifier attributes for Ol, then we keep track of the best classifier attribute for Ol. Informally, we 

identify the attribute in C1, …, Ck based on whose content we can make the best routing decisions 

with respect to Ol. The operator-attribute combinations identified during optimization are used for 
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CBR by the routing step as described in Section 2.4.2. Details of the optimization step are described in 

Section 2.4.1. 

2. Routing: In this step we perform CBR using the current operator-attribute combinations identified by 

the optimization step. If the selectivity of operator Ol is not correlated with the contents of any 

attribute, then we do not use any Ol-attribute combination but instead make routing decisions 

regarding Ol using the selectivity of Ol alone. Our routing algorithm for CBR is described in Section 

2.4.2. 

2.4.1. The Optimization Step of Content-Learns 

The goal of optimization is, for each operator Ol ∈ O1, …, On, to identify the best classifier attribute for 

Ol in C1, …, Ck. We cycle through the operators in a round-robin fashion, so each operator is considered 

periodically. When we consider operator Ol, termed profiling  Ol, we identify the best classifier attribute 

for Ol. To identify the classifier attributes for Ol, we have to measure the gain ratio of C1, …, Ck based on 

a random sample of tuples processed by Ol; recall Section 2.3. To collect this random sample R when Ol 

is profiled, the Eddy routes a fraction of input tuples to Ol before they are routed to any other operator, 

and notes whether Ol dropped each such tuple or not. (Note that we profile operators using tuples straight 

from the input stream. However, in some scenarios it may make sense to profile tuples after they have 

been filtered by some operators. We can extend our profiling to track such conditional selectivities as in 

[9] which we intend to do as future work.) 

Our profiling technique requires the specification of two parameters: a probability P for sampling an 

input tuple so that it will be routed first to Ol, and a sample size to fix |R|. Once R has been collected, we 

can compute GainRatio(R, Cj) for each Cj ∈ C1,…,Ck, to determine the classifier attributes for Ol. If there 

are two or more such attributes, then the attribute with maximum gain ratio is the best classifier attribute 

for Ol. Details of our implementation for profiling O are outlined next. 
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Let Dj denote the domain of potential classifier attribute Cj. For each Cj we choose a partitioning 

function fj that partitions Dj into d partitions. If Cj is a discrete-valued attribute, we choose a hash function 

that maps any v ∈ Dj to one of d buckets. If Cj is a continuous-valued attribute, we maintain running 

estimates of max(Dj) and min(Dj) and use a range-partitioning function to map any v ∈ Dl into one of d 

partitions. Without loss of generality, let v1,v2,…,vd denote the d partitions of each domain. (Note that, 

e.g., partition v1 of domain D1 is not necessarily the same as partition v1 of domain D2.) 

Content-Learns maintains the following run-time data structures, as shown in Figure 4. 
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Figure 4 – Run-time data structures 
 

1. Classifier Attribute Matrix, CA[]. CBR keeps an array that, for each operator Ol, stores the attribute 

index of the best classifier attribute, i.e., the attribute with highest gain ratio for Ol. If Ol has no 

classifier attributes, CBR assigns CA[l] = -1. CBR recomputes CA[l] after R random sample tuples 
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are used to profile operator Ol. In Figure 4, the classifier attribute for operator 3 (marked in gray) is 

attribute 1. 

2. Tuples In, In[], and Tuples Out, Out [], Matrices: These matrices track which tuples in which 

partitions of all attributes pass (increments both  In[] and Out[] entries) or fail (increments only In[] 

entries) the operator being profiled. For each one of the R random sample tuples, k entries are updated 

in each one of these matrices. The entries to be updated are (j, i), with j =1,…,k, and vi=fj(t.Cj). 

3. Detailed Selectivities Matrix, S[]. Each column in this matrix stores the running selectivities for an 

Ol–Cj operator–classifier-attribute pair. Entries in the matrix are updated at two different times: 

(i) Run-time: Each time a tuple passes or fails an operator, one entry in this matrix is updated.4 For a 

tuple t being processed by Ol, the column to update in the matrix is l, and the row is vi=fj(t.Cj), 

with j being the index of the classifier attribute for Ol, i.e., j =CA[l]. 

(ii) Initialization: After profiling operator Ol has been completed and its classifier attribute Cj found, 

CBR updates Ol’s column: S[l,i]←Out[j,i]/In[j,i], with i=1,..,d. If In[j,i]=0, then S[l,i]←W[l], 

where W[l] is the overall selectivity of operator Ol as described next. 

4. Overall Operator Selectivities, W[]. This matrix (not shown in Figure 4) is non-CBR specific 

information and it is kept both by CBR and by the non-CBR implementation in TelegraphCQ. W[l] 

tracks the recent overall selectivity of operator Ol over all tuples processed by Ol. 

 

Once we have collected the random sample R of tuples processed by operator Ol while profiling Ol, 

we can compute GainRatio(R,Cj) (Equation (5)) for all Cj ∈ C1,…,Ck using matrices In and Out. From 

                                                   

 

4 The formula used to update selectivity after a tuple is known to pass or fail an operator is: selectivity = selectivity * 
α + pass * (1- α), where selectivity is a percentage between 0 and 100, pass is 100 if the tuple passes the operator or 
0 if it is dropped, and α = 0.95. 
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Equation (2), Entropy (R) depends only on the overall selectivity of Ol over R, which is the number of 

output tuples over all tuples profiled: ( ) R]i,j[Out
d

1i∑ =
 for any j. 

Similarly, Entropy (Ri) in Equation (3) for InformationGain(R,Cj) depends only on In and Out. 

Finally, |Ri| in Equations (3) and (4) for InformationGain(R,Cj) and SplitInformation  (Cj) is equal to 

In[j,i]. 

So far we have seen how the classifier attributes for Ol can be determined by profiling Ol. If there are 

one or more such attributes, then the attribute with maximum gain ratio, denoted Cmax, is the best 

classifier attribute for Ol. Note that after computing gain ratio values for C1,…,Ck while profiling Ol, we 

may realize that Ol has no classifier attributes. In either case, we move on to profile the next operator in 

our round-robin schedule.  

2.4.2. The Routing Step of Content-Learns 

In this section we describe how we extended the original Eddy routing algorithm to incorporate the 

operator-attribute combinations identified in the optimization step for CBR. This algorithm routes tuples 

to operators according to a probability that is inversely proportional to the operators' selectivities (stored 

in matrix W in our implementation). We call this algorithm Source-Based Routing (SBR).5 

When an Eddy using Content-Learns has to route a tuple t to one of operators O1,…,On, the Eddy 

routes t to the operator with minimum value σ, where σ is defined as follows for an operator Ol: 

• If Ol is tagged with classifier attribute Cj, then σ is the expected selectivity of Ol for tuples t' with 

fj(t'.Cj)=fj(t.Cj), which is equal to S[l,i] where fj(t.Cj)=vi and j=CA[l]. (We have used the same 

notation as in Section 2.4.1.) 

                                                   

 

5 We call this algorithm Source-Based Routing because without looking at the content, an Eddy treats all tuples 
coming from the same source the same way. 
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• If Ol is not tagged with a classifier attribute, then σ is W[l], the expected overall selectivity of Ol, 

which is the same value as used by the SBR algorithm. 

 

Intuitively, for operators that have a classifier attribute, CBR uses the content-specific selectivity of 

the operator while making routing decisions. The content-specific selectivity is available from the 

selectivity matrix for the operator. For operators that do not have a classifier attribute, CBR uses the 

overall selectivity of the operator across all tuples as done by SBR. 

2.4.3. Overheads and Benefits of CBR 

There are two forms of overhead associated with CBR: the routing overhead of evaluating content-based 

conditions while making routing decisions, and the learning overhead of learning and maintaining good 

routes automatically. The routing overhead was designed to be very low, as it is incurred each time a tuple 

is routed by the Eddy. The learning overhead is amortized across a large number of tuples as this 

overhead is incurred once after |R| sample tuples are observed. Section 2.6.8 presents experiments where 

the overheads of CBR can be observed to be very low. 

The benefit of CBR comes from finding routes that drop tuples sooner. As such, the benefit of CBR is 

proportional to the percentage of time that a query spends evaluating operators. In Section 2.6.7 we 

explore the performance of CBR while varying operator costs. 

2.4.4. Pruning Operators and Attributes 

So far we considered all attributes and all operators as potential candidates for CBR. We now describe 

some heuristics to prune this space. These heuristics likely reduce the learning overhead of CBR 

significantly without any noticeable effect on the quality of content-based routes. 

CBR applies when optimal operator orderings differ across input tuple classes. If an operator is very 

cheap or very selective relative to the other operators, or both, then its position will mostly remain 
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unchanged across the orderings. This intuition translates into an effective pruning heuristic where we do 

not consider very inexpensive or very selective operators for CBR. Similarly, we can ignore operators that 

are very expensive or not very selective with respect to the other operators because their position is likely 

to remain unchanged across those orderings as well. 

Similar to pruning operators, there are some effective heuristics to prune the attributes considered for 

CBR. For example, we can ignore monotonically increasing (or decreasing) attributes such as timestamps 

or sequential identifiers which typically are generated synthetically. Discrete-valued attributes with large 

domains, e.g., a comments string attribute, can also be ignored. (It is advisable to ignore long attributes as 

classifier attributes for CBR to keep routing overhead low.) While it is not hard to detect such attributes 

automatically, the required information often is available from the schema definitions. 

2.4.5. CBR for Non-Filter Operators 

We have focused so far on filter operators that either pass or drop an input tuple. This class does not 

capture, for example, non-foreign-key join operators, limiting the scope of our techniques. However, our 

techniques apply to non-filter operators with one simple modification. We have used the filter property of 

an operator only to compute entropy in Equation (2) which contributed to the gain ratio value used to 

identify classifier attributes. The two-class notion of passed and dropped tuples is meaningless for non-

filter operators whose “selectivity”–the expected number of tuples produced per input tuple–can be any 

non-negative real number. Our real purpose here is to quantify the skew in content-specific operator 

selectivities with respect to the overall selectivity. Gain ratio is one proven technique to quantify this 

skew. There are other techniques, e.g., variance, which apply to non-filter operators. Therefore, our 

techniques for CBR apply to non-filter operators provided the gain-ratio-based test for classifier attributes 

is replaced by an appropriate test that applies to non-filter operators. 
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2.5. Adaptivity 

Since the Eddies architecture has been designed to support adaptive processing, a relevant question to ask 

is how our extensions to support CBR in Eddies affect adaptivity. Adaptivity refers to the ability of the 

system to find an efficient plan quickly for the new data and system characteristics when these change. 

The changes in the data stream characteristics that can affect routing decisions are changes in operator 

selectivities and changes in correlations between attributes and operators’ selectivities. 

CBR increases both the learning overhead and the routing overhead of Eddies. Fundamentally, 

reducing run-time overhead is at odds with improving adaptivity [21]. The approach we have adopted is 

to keep run-time overhead as low as possible while being as adaptive as the SBR routing policy in 

TelegraphCQ. 

To be as adaptive as SBR, CBR keeps the operator selectivity matrix W up to date. Note that W is 

common across both policies. In exchange, CBR settles for slower adaptivity with respect to changes in 

classifier attributes by profiling only one operator at a time. This design decision may fail to detect a new 

correlation if the classifier attribute for an operator changes between two of its profiling phases. However, 

in spite of this decision, CBR is designed to never be less adaptive than SBR. Example 2.5 illustrates 

why. 

 

Example 2.5: CBR as adaptive as SBR. Consider that CBR finds Cj to be the classifier attribute for Ol. 

Then, when routing tuple t, CBR assumes the selectivity of Ol to be S[l,i], with vi=fj(t.Cj). However, it 

may be the case that the correlation between Cj and Ol no longer holds since Ol was last profiled due to 

one of two reasons: 

• No attribute is correlated with Ol. If this is the case, then the selectivity of Ol is given by W[l] and not 

S[l,i]. However, if Cj is not actually correlated to Ol, then all entries S[l,i], with i=1,…,d will quickly 

converge to W[l] (because CBR updates entries in S[] as frequently as those in W[]). 
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• Another attribute is correlated with Ol. If this is the case, then we have an argument for more 

aggressive content-based routing statistics tracking (e.g., profiling multiple operators simultaneously 

as done in [8]), not less. In any case, given that Cj is not correlated with Ol, all entries S[l,i], with 

i=1,…, d will still quickly converge to W[l]. ■ 

 

The assumption behind the current CBR design is that operators’ selectivities change more frequently 

than the correlations between operators and tuple content. As such, selectivity is tracked continuously 

(quick to detect changes) while profiling is performed only for a sample of the tuples (slower to detect 

changes). For example, in the real-life dataset, we observed changes in selectivity from 1% to 96% in one 

operator while the best classifier attribute for that operator stayed the same (Section 2.6.6). 

2.6. Experimental Evaluation 

We now describe an experimental evaluation of our CBR techniques using a prototype implementation in 

TelegraphCQ [21]. We evaluate the CBR prototype using both synthetic and real life datasets. The 

synthetic dataset is used to evaluate CBR by varying parameters hard to control in a real-life dataset: 

skew, selectivity, and aggregate selectivity. The real-life dataset is used to evaluate CBR’s adaptivity and 

performance under varying operator costs and overhead. 

2.6.1. Datasets 

The prototype implementation of CBR was evaluated with the synthetic and real-life datasets described 

below: 
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• Stream-Star: We created a synthetic benchmark, Stream-Star, based on a star schema. Instead of a 

central fact table, we used a data stream S.6 Our experiments use N-way join queries of the following 

form which join incoming S tuples with N dimension tables d1, d2, …, dN: 

 SELECT  * 
 FROM stream S, d1, d2, …, dN 
 WHERE s.fkd1 = d1.pk // Operator Op1 
 AND s.fkd2 = d2.pk // Operator Op2 
   … 
 AND s.fkdN = dN.pk; // Operator OpN 

Each stream consisted of 100,000 tuples. Depending on the query, between two and eight dimension 

tables containing 10,000 tuples each are used. Stream S contains tuples with a single classifier 

attribute, attrC, which is correlated with the selectivities of all operators. (We note that in the real-life 

dataset described next, different operators can have different correlated attributes and these 

correlations can change, appear, or disappear with time. CBR worked equally well in both settings.). 

Our stream generator is able to produce tuples with any kind of non-independence between the 

classifier attribute attrC and the selectivity of the join operators. For example, it can generate a stream 

with the characteristics shown in Table 1 (on page 17). 

• Lab: The Lab dataset is a trace of readings from 54 sensors in the Intel Research, Berkeley Lab. The 

readings were taken between end of February and beginning of April of 2004. The schema consists of 

one single stream, sensors. Tuples in the stream have attributes light, humidity, temperature , voltage, 

sensorID, and timestamp information (year, month, day, hour, minute, and second) [33]. We cleansed 

this dataset by removing tuples with missing values or impossible values (e.g., negative humidity) 

that sometimes happen when the sensor batteries run low. There are 2.2 million records in the 

                                                   

 

6 A star schema was chosen for two reasons: (i) queries over streams normally refer to one single stream source that 
joins with zero or more local tables; and (ii) data stream applications have streams that represent facts, e.g., traffic 
information, which then join with dimensions, e.g., speed sensors and cars. 
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cleansed dataset. For this dataset the readings are sent to TelegraphCQ in generation order, as they 

would if the tuples were being collected from the sensors in real-time. 

2.6.2. Algorithms, Metrics, and Default Values 

Section 2.4.2 described most of the details of our implementation of CBR in TelegraphCQ, Content-

Learns (Learns in the figures), and the non-content-based SBR algorithm in TelegraphCQ. To illustrate 

the differences between the learning overhead and the routing overhead of CBR, in the Stream-Star 

experiments we include a routing algorithm called Content-Knows (Knows in the figures) which does not 

need to learn classifier attributes automatically. Instead, Content-Knows is a theoretical bound that 

simulates a routing policy that is “told” which attribute is the best classifier for each operator and what is 

the best routing order for each class. 

In addition to the running time, we also use the number of routing calls as a performance metric. The 

number of routing calls shows a clear picture of the quality of the routing algorithm: a bad routing 

algorithm will miss opportunities to route a tuple to the most selective operator, e.g., a tuple may be 

routed several times before being dropped. In addition, the improvement in routing calls due to using 

Content-Learns instead of SBR acts as a ceiling in the improvement we can expect in total running time. 

Unless otherwise stated, the default values used in the experiments are the ones listed in Table 2 and 

the results are averages over five runs. 

 

Table 2 – Defaults used in experiments and graphs 
Parameter Defaults Comment 

P 6% Tuple sampling probability 

|R| 150 tuples Sample size to compute GainRatio 

d 24 Number of buckets in hash partitions 

Confidence 95% Confidence intervals in graphs 
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2.6.3. Varying Skew 

In this section we use the Stream-Star dataset to show how CBR performs in the presence of skew among 

the content-specific selectivities of operators. We set the stream to have as many tuple classes as joins. 

(Each tuple class is identified by a unique value of attribute attrC.) Skew was created by setting the 

selectivity of one operator to A, and setting the selectivity of the all other N-1 operators to B, as shown in 

Table 3. 

A was varied from 5% to 95% with B varying accordingly such that the overall aggregate selectivity 

remained constant at 5%. (Section 2.6.4 reports experiments where selectivities are chosen randomly and 

Section 2.6.5 reports experiments where the aggregate selectivity is varied.) There were 8 other attributes 

in tuples in the stream not correlated with the selectivities of the operators. Thus, Content-Learns must 

learn that, among all these attributes, attrC is the best classifier attribute for all operators. The N-way join 

query was run for two, four, six, and eight join operators. Due to space constraints, we only show results 

for two and six joins in Figure 5 and Figure 6. 

Note that when A<B (negative skew), a good routing policy should exploit the selectivity skew by 

routing tuples first to the lower selectivity operator corresponding to A. When A>B, a good routing 

algorithm will avoid the operator with selectivity A and route tuples through all the other operators first. 

Overall, the higher the skew between A and B, especially when A<B, the greater the extent by which 

Content-Learns outperforms SBR. At most, Content-Learns outperforms SBR by performing 67.8% 

fewer routing calls (with eight operators and the largest skew). Across all experiments, when A<B, 

Content-Learns required on average 26.9% fewer routing calls and when A>B, Content-Learns required 

10.2% fewer routing calls. That is, it is more useful to know which operator is different by being more 

selective than it is to know which operator is different for being less selective. This happens because more 

selective operators will appear earlier in operator orderings affecting more tuples and having greater 

performance impact than less selective operators that appear later in the operator order. 
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Table 3 – Selectivities for class/operator pairs 
 Op1 Op2 … OpN 

Class 1 A B … B 

Class 2 B A … B 

… … … … … 

Class N B B … A 
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Figure 5 – Improvement with varying skew (2 joins) 
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Figure 6 – Improvement with varying skew (6 joins) 
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2.6.4. Varying Selectivities 

In Section 2.6.3, the choice of selectivities made routing tuples to operators difficult for SBR because all 

operators appeared to be equally selective. Each operator had selectivity A for one class of tuples and B 

for all other classes. Thus, in all cases, to SBR, all operators appeared to have a selectivity of (A + B * 

(N-1))/N, for the N-way join query. 

We continue to use the Stream-Star dataset in the following experiments. Each query was run against 

50 different streams. Attribute attrC was correlated with the selectivities of the operators. However, this 

time we assigned random selectivities to each operator. As before, we included additional attributes 

(constants, sequences, and foreign keys) whose content was not correlated with any of the selectivities of 

the operators. Figure 7 shows that Content-Learns is very effective at learning the right classifier; out of 

the 16 million routing calls, Content-Learns used the wrong classifier only 6.4% of the time. 

 

 

Breakdown of routing calls:
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Figure 7 – Breakdown of routing calls 
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Figure 8 – Improvement with random selectivities 
 

Figure 8 shows the improvement of Content-Learns over SBR both in terms of routing calls and total 

execution time. Note that the larger the number of operators involved, the more opportunities are 

available for improvement. 

2.6.5. Varying Aggregate Selectivity 

In Section 2.6.3 the overall aggregate selectivity was kept at 5%. In Section 2.6.4 the operator selectivities 

were randomly selected without any guarantee on the aggregate selectivity. On average, the aggregate 

selectivity was 8% across all streams. This section explores the space of aggregate selectivities from 5% 

to 35%. For this experiment, we ran a 6-way join query over Stream-Star with the operators having 

random selectivities under the restriction that the overall aggregate selectivity was kept at some pre-

determined value. The aggregate selectivity is varied in Figure 9. Each point in the plot represents the 

average improvement of CBR over SBR for 50 streams of 100,000 tuples each. 
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Figure 9 – Improvement with varying aggregate selectivity (6 joins) 

2.6.6. Adaptivity Experiments 

In this and subsequent sections, we will use the real-life Lab dataset. In the Lab dataset the best classifier 

attributes for operators change as time progresses. Query Q1 is used to illustrate how CBR adapts in the 

presence of variations of selectivity and variations of correlation. 

 SELECT * FROM sensors WHERE light>500 (Q1) 

For example, the amount of light varies with the time of day in the obvious way: during the day there 

is more light than during the night. However, the predicate that evaluates “light>500” may actually be 

correlated with sensorID and not with, say, hours. This happens because some sensors are placed in 

illuminated areas like windows or in offices, while others are placed in hallways with less human activity 

and light. Furthermore, if the operator that checks if light>500 evaluated to true for, say, sensor 7, at 

12h34pm, then it is very likely that it will evaluate to true for the same sensor 1 minute later. During the 

night, when it is dark and when people have left the building, the operator that tests for light will almost 

always have zero selectivity. When that is the case, no attribute can be found to be correlated with the 
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operator; that is, if the selectivity of an operator is 0% (or 100%), then all attributes have zero information 

gain ratio. 

Figure 10 shows the result of running query Q1 for three days and nights of data. The top part of the 

figure shows the selectivity of the predicate; note that during the day the selectivity does not reach 100%, 

thus, some sensors are in darker areas than others. In the middle of the figure, we show what attribute is 

most correlated with the selectivity of the operator for each moment in time. sensorID is almost always 

the best classifier attribute. Sometimes, especially during transitions night-day or day-night, the attribute 

hours is the best classifier attribute. In three other moments, one of the other attributes was found to be 

the best classifier. In all other periods not covered by any of the black lines from “sensorID”, “hours”, and 

“All others”, CBR could not find any attribute correlated with the selectivity of the operator (because its 

selectivity was 0%). Finally, the lower part of the Figure 10 shows how the information gain of attribute 

sensorID varies with time. Although Figure 10 is indicative that data characteristics in the stream change 

dramatically and that CBR is able to adapt to them, queries with only one operator (like query Q1) do not 

require good routing policies. 

To evaluate the adaptivity of CBR on the Lab dataset, we ran queries similar to query Q2 below: 

 SELECT * FROM sensors (Q2) 
 WHERE light BETWEEN lowL AND highL 
 AND temperature BETWEEN lowT AND highT 
 AND humidity BETWEEN lowH AND highH 
 AND voltage BETWEEN lowV AND highV; 

For each attribute, the parameter lowX was randomly chosen from among the lowest 25% values in 

the attribute’s domain and the parameter highX was randomly chosen from the highest 25% values in the 

domain. 

For 50 different random Q2 queries, we obtained on average an improvement of 8% in routing calls, 

5% in total execution time, 7% in time spent evaluating operators, and 18% in routing calls needed until a 

tuple is dropped. The results are positive but modest. Two reasons explain why CBR does not provide 

greater improvements: 
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(i) There are overheads in TelegraphCQ unrelated to routing or operator execution [29], for instance, the 

IO required to get the stream tuples from the network and the overhead of queuing those tuples before 

they get to the Eddy. These overheads limit the benefit we can obtain from a better routing policy. In 

Section 2.6.7 we explore operators with higher execution costs and show that as operator costs 

increase, CBR’s performance improves. 

(ii) CBR can only obtain improvements when the selectivities of the operators are not close to 0% or 

100%. As seen in Figure 10 there are large intervals in the dataset where the selectivities of operators 

stay very close to 0% or very close to 100%. The selectivity graphs for the other operators (not 

shown) have similar intervals very close to 0% or to 100%. For Q2, this happened 57.2% of the time, 

CBR yields improvements only on the other 42.8% of the time. 

 

 

Figure 10 – Change in selectivity, best classifiers, and gain ratio 
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2.6.7. Varying Operator Cost 

In this section we vary the time it takes an operator to process a tuple and report the corresponding CBR’s 

performance improvements. There are two motivations for exploring the space of higher operator costs: 

(i) there are applications where operator costs can be very high (for example, [33] reports operator costs, 

expressed in terms of power consumption, with cost differences of two orders of magnitude between 

operators) and (ii) the implementation of TelegraphCQ we used has overheads [29] that overshadow 

operator costs. By increasing the operator costs, we decrease the weight of these overheads in the overall 

execution time. 

Figure 11 shows the improvement in performance from using Content-Learns in queries like Q2. The 

improvement in the number of routing calls remains constant throughout and is shown only for reference. 

The improvement in execution time improves as the operator cost increases. The increase in operator cost 

was obtained by running CPU intensive computations every time a tuple had to be processed by an 

operator. 
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Figure 11 – Improvement with varying operator cost 

2.6.8. Run-Time Overhead Of CBR 

As mentioned in Section 2.4.3, CBR has two overheads: routing overhead and learning overhead. We 

instrumented the code to determine the time spent by each of these overheads. The routing overhead was 
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measured as the time taken by the function that performs routing decisions (the algorithm of Section 

2.4.2). The learning overhead was measured as the time taken for updating the data structures described in 

Section 2.4.1 together with the time spent computing the best classifier attributes for each profiled 

operator. We also instrumented the SBR version to report its routing and updating overheads (although 

SBR does not determine classifier attributes, it spends time updating statistics as well). Figure 12 reports, 

per routed tuple7, these overheads, in microseconds, for both SBR and CBR policies for the experiments 

of Section 2.6.4 (Stream-Star dataset). For both policies, the total overhead (routing together with 

learning and updating statistics) was around 4-5% of the total execution time. 
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Figure 12 – Per tuple overhead 
 

                                                   

 

7 Per tuple overhead is computed as total overhead divided by the number of routing calls. Note that the number of 
routing calls is equal to the number of times the Eddy has to route tuples. 
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In addition, we also measured the worst case scenario for CBR: when the routing policy is irrelevant, 

as is the case for queries with one operator only. If there is just one operator, no benefit can be gained 

from different routing policies. Thus, differences in total execution time must be from overhead and not 

from better decisions. For this experiment we run query Q1 from Section 2.6.6 over the Lab dataset 

(without using the operator delays mentioned in the previous section) for both CBR and SBR. The 

average over 10 runs of query Q1 shows that, when no benefit is possible, CBR is about 0.8% worse than 

SBR in total execution time. 

2.7. Conclusions 

In this chapter we proposed a new concept: assigning different query execution plans for subsets of data 

with different statistical properties. As such, we developed a new query processing technique called 

content-based routing that eliminates the single-plan restriction in current systems. We showed how the 

adaptive architecture of a data stream management system, TelegraphCQ, can be extended with content-

based routing to enable the system to exploit correlations between tuple content and operator selectivities. 

Our most important contribution was to show that content-based learning and routing can be 

simultaneously inexpensive and adaptive while still achieving significant performance improvements. We 

presented the Content-Learns algorithm which learns good content-based routes automatically, and we 

showed that the overhead of maintaining the extra statistics and computing classifier attributes is 

negligible when compared to a non-CBR algorithm. 

Our prototype implementation indicates that CBR can improve execution time by up to 35% when 

compared with routing based on operator statistics alone. For all queries with more than one operator, 

CBR yielded better results than SBR, both in the number of routing calls as well as in absolute running 

time. In addition, the performance comparison between Content-Learns and Content-Knows showed that 

Content-Learns learns classifier attributes correctly in real time. 
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CHAPTER 3 

PROACTIVE RE-OPTIMIZATION 
While addressing some of possible mistakes done by traditional optimizers, first generation AQP systems 

still use a traditional optimizer to pick a plan. The effectiveness of this approach is limited because 

traditional optimizers choose plans unaware of issues affecting re-optimization. For example, previous 

AQP approaches are more likely to start execution with a sub-optimal plan. In addition, detection of sub-

optimality can be inefficient, re-optimization can lead to lost and repeated work, and convergence to 

optimal plan can be slow. We address this problem using proactive re-optimization, a new approach that 

is less likely to start with a risky plan, it is more likely to detect sub-optimalities faster and is more likely 

to converge to the optimal plan in less steps. 

3.1. Introduction 

As described in Chapter 1, most query DBMS use a sequential, non-adaptive approach to query 

processing–the optimizer enumerates plans, computes the cost of each plan, and picks the plan with 

lowest cost which is then executed [79]. This approach relies heavily on the accuracy of estimated 

statistics of intermediate subexpressions to choose good plans. It is a well-known problem that errors in 

estimation propagate exponentially in the presence of skewed and correlated data distributions [24, 51]. 

Such errors, and the consequent suboptimal plan choices, were not a critical problem when datasets were 

smaller, queries had only a few joins and simple predicates, and hardware resources were limited. In the 

last two decades, datasets, query complexity, and the hardware resources to manage DBMS have grown 

dramatically.  Query optimizers have not kept pace with the ability of database systems to execute 

complex queries over very large data sets. 
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Several techniques have been proposed to improve traditional query optimization. These techniques 

include better statistics [70], new algorithms for optimization [25, 49, 52], and adaptive architectures for 

execution [5]. A very promising technique in this direction is re-optimization , where the optimization and 

the execution stages of processing a query are interleaved, possibly multiple times, over the running time 

of the query [56, 58, 63, 87]. Markl et al show that re-optimization can improve the performance of 

complex queries by an order of magnitude [63]. 

Current re-optimizers take a reactive approach to re-optimization: they first use a traditional optimizer 

to generate a plan, and then track statistics and respond to estimation errors and resulting suboptimalities 

detected in the plan during execution. Reactive re-optimization is limited by its use of an optimizer that 

does not incorporate issues affecting re-optimization, and suffers from at least three shortcomings: 

• The optimizer may pick plans whose performance depends heavily on uncertain statistics, making re-

optimization very likely. 

• The partial work done in a pipelined plan is lost when re-optimization is triggered and the plan is 

changed. 

• The ability to collect statistics quickly and accurately during query execution is limited. 

Consequently, when re-optimization is triggered, the optimizer may make new mistakes, leading 

potentially to thrashing. 

 

In this chapter we propose proactive re-optimization  to address these shortcomings. We have 

implemented a prototype proactive re-optimizer called Rio that incorporates three new techniques: 

• Bounding boxes are computed around estimates of statistics to represent the uncertainty in these 

estimates. 

• The bounding boxes are used during optimization to generate robust and switchable plans that 

minimize the need for re-optimization and the loss of pipelined work. 
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• Random-sample processing is merged with regular query execution to collect statistics quickly, 

accurately, and efficiently at run-time. 

 

Our experimental results demonstrate that proactive re-optimization can provide up to three times 

improvement over a strictly reactive re-optimizer. The rest of this chapter is organized as follows. Section 

3.2 discusses related work. Section 3.3 uses a series of examples to illustrate the problems with reactive 

re-optimization, and Section 3.4 shows how proactive re-optimization addresses these problems. Section 

3.5 describes the Rio implementation and Section 3.6 presents an experimental evaluation. 

3.2. Related Work 

In previous work, we classify adaptive query processing systems into three families: plan-based, routing-

based, and continuous-query-based [10]. In this chapter we focus on plan-based systems, the more closely 

related to Rio being ReOpt [58] and POP [63]. Other related projects include Ginga [69], Tukwila [53], 

query scrambling [87], and corrective query processing [56]. ReOpt and POP use a traditional optimizer 

to pick plans based on single-point estimates of statistics. These reactive re-optimizers augment the 

chosen plan with checks that are verified at run-time. The query is re-optimized if a check is violated. 

The use of intervals instead of single-point estimates for statistics has been considered by least-

expected-cost optimization (LEC) [25], error-aware optimization (EAO) [89], and parametric 

optimization [49, 52]. LEC treats estimated statistics as random variables to compute the expected cost of 

each plan. Unlike LEC, Rio does not assume knowledge about the underlying distribution of statistics. 

Instead, Rio computes the uncertainty in these estimates based on how they were derived. Like Rio, EAO 

considers intervals of estimates and proposes heuristics to identify robust plans. However, the techniques 

in EAO assume a single uncertain statistic (memory size) and a single join. Furthermore, LEC and EAO 

do not consider re-optimization or the collection of statistics during query execution. Therefore, these 

techniques use execution plans that were picked before the uncertainty in statistics is resolved. Parametric 
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optimization identifies several execution plans during optimization, each of which is optimal for some 

range of values of run-time parameters. Parametric optimization, along with the choose-plan operator 

[40], enables the optimizer to defer the choice of plan to run-time. Switchable plans and switch operators 

in Rio are similar. However, unlike choose-plan operators, switch operators may occur within pipelines. 

Furthermore, parametric optimization does not consider uncertainty in estimates, collection of statistics 

during execution, robust plans, or re-optimization. 

Rio combines the processing of random samples of tuples with regular query processing to obtain 

quick and accurate estimates of statistics during execution. This approach differs from previous uses of 

random samples, e.g., providing continuously-refined answers in an online manner [47], computing 

approximate query results [1, 22], or building base relation statistics from samples [24]. Robust 

cardinality estimation (RCE) uses random samples for cardinality estimation, to deal with uncertainty, 

and to explore performance-predictability tradeoffs [6]. However, RCE does not consider re-optimization. 

Furthermore, RCE does not consider techniques such as merging random-sample processing with regular 

query execution, or propagating random samples through joins.  

3.3. Problems With Reactive Re-Optimization 

In this section we present a series of examples to highlight the problems with current approaches to query 

re-optimization. One known problem with traditional optimizers, e.g. [79], is that they rely frequently on 

outdated statistics or invalid assumptions such as independence among attributes. Consequently, they may 

choose suboptimal query plans that degrade performance by orders of magnitude [24, 63]. Example 3.1 

illustrates this problem. 

 

Example 3.1. Consider the query “select * from R, S where R.a=S.a and R.b>K1 and R.c>K2”. Assume 

the database buffer-cache size is 200MB, |R|=500MB, |S|=160MB, and |σ(R)|=300MB, where σ(R) 

represents the result of the “R.b>K1 and R.c>K2” selection on R. However, because of skew and 
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correlations in the data distributions of R.b and R.c, the optimizer underestimates |σ(R)| to be 150MB. 

With this incorrect estimate, the optimizer would pick plan P13a for this query (Figure 13). P13a is a hash 

join with σ(R) as the build input and S as the probe. (We use the convention that the left input of a hash 

join is the build and the right input is the probe.) However, since |σ(R)| is actually 300MB, Plan P13a’s 

hash join requires two passes over R and S. Plan P13a is suboptimal because plan P13b, which builds on 

S, finishes in one pass over R and S.  ■ 

 
Figure 13 – Two plans for the σ(R) S query 

 

Re-optimization can avoid problems similar to the one in Example 3.1. Current systems that use re-

optimization first use a traditional optimizer to pick the best plan, and then add check operators to the 

chosen plan. The check operators detect sub-optimality during execution, and trigger re-optimization if 

required. For example, the check-placement algorithm used by POP computes a validity range for each 

plan [63]. Let P be a left-deep plan. The root operator of P is a binary join operator with subtree D and 

base relation R as inputs. Let |D| denote the result size of D. POP defines the validity range of P as the 

range of values of |D| for which P has the lowest cost among all plans P’, where P’ is logically equivalent 

to P, P’ is rooted at an operator with the same inputs D and R, and P’ gives the same interesting orders as 

P. 

During execution, each check operator collects statistics on its inputs. If these statistics satisfy the 

validity ranges for the plan picked by the optimizer, then execution proceeds as usual. Otherwise, re-

optimization is invoked to choose the best plan based on the statistics collected. The reuse of intermediate 
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results that were materialized completely in a previous execution step is considered during re-

optimization. Example 3.2 illustrates the overall technique. 

 

Example 3.2. Consider the scenario shown in Example 3.1 and Figure 13. A re-optimizer like POP will 

choose the same plan (P13a) as a traditional optimizer. Additionally, POP will compute validity ranges 

for the chosen plan. For example, a validity range for P13a is 100KB≤|σ(R)|≤160MB. If |σ(R)|<100KB, 

then it is preferable to use an index nested-loops join with tuples in σ(R) probing a covering index on S. If 

|σ(R)|>160MB, then plan P13b is optimal. In this example, the check |σ(R)|≤160MB will fail during 

execution, invoking re-optimization. ■ 

3.3.1. Limitations of Single-Point Estimates 

Although re-optimization preempts the execution of the suboptimal plan P13a in Example 3.1 when 

|σ(R)|>160MB, it incurs the overhead of calling the optimizer more than once and the cost of repeating 

work. For example, the (partial) scan of R in plan P13a (of Figure 13) until re-optimization is lost and 

must be repeated in P13b. The optimizer may be better off picking plan P13b from the start because P13b 

is a robust plan  with respect to the uncertainty in |σ(R)|; see Figure 14. 

When |σ(R)|≤Memory, both plans finish in one pass and involve the same amount of IO. However, 

when |σ(R)|>Memory, only P13b finishes in one pass. 

Current re-optimizers do not account for robustness of plans since they consider single-point 

estimates for all statistics needed to cost plans. (To arrive at these single-point estimates, optimizers are 

often forced to make assumptions like uniformity and independence [79].) Non-robust plans may lead to 

extra optimizer invocations and wasted work, as we will show in Section 3.3.3. 

 



46 

 

Figure 14 – Cost of plans P13a and P13b as |σ(R)| varies 

3.3.2. Limited Information For Re-Optimization 

Current re-optimizers make limited effort to collect statistics quickly and accurately during execution. For 

instance, the validity check in Example 3.2 will fail when |σ(R)|=160MB, and re-optimization will be 

invoked. However, the optimizer does not know |σ(R)| accurately at this point–it only knows that 

|σ(R)|≥160MB–which may cause it to chose a suboptimal plan again. Example 3.3 illustrates an extreme 

instance of the thrashing that can result. 

 

Example 3.3. Consider the query “select * from R, S, T where R.a=S.a and S.b=T.b and R.c>K1 and 

R.d=K2”. Assume that the sizes of the tables are known accurately to be |R|=200MB, |S|=50MB, and 

|T|=60MB. Further assume that |σ(R)|=80MB, but that the optimizer underestimates it significantly as 

40KB.8 Based on these statistics, the optimizer chooses plan P15a shown in Figure 15. 

A reactive re-optimizer may compute validity ranges for plan P15a as shown by the gray boxes in this 

plan. For example, the validity range for the index nested-loops join between σ(R) and S in P15a is 
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|σ(R)|≤100KB. This validity-range check will fail at run-time, triggering re-optimization. Plan P15b will 

be picked next with a validity range as shown in Figure 15. This check will fail and re-optimization will 

be triggered again, and so on until the optimal plan P15d is chosen finally. ■ 

3.3.3. Losing Partial Work in a Pipeline 

In addition to the multiple re-optimization steps as illustrated in Example 3, current re-optimizers also 

lose the partial work done by a pipeline in execution when re-optimization is triggered. For example, plan 

P15c in Figure 15 has a pipeline PPL2 (enclosed with dotted lines) that scans R, probes S in HashJoin1, 

and builds joining tuples into HashJoin2. The validity-range check before HashJoin2 will fail before 

pipeline PPL2 finishes, and the partial work done by this pipeline will be lost. On the other hand, work 

done by completed pipelines, like PPL1–scanning and building S–can be reused. However, in this 

example, the build of S in plan P15c cannot be reused in plan P15d because the hash tables are built on 

different join attributes. 

3.4. Proactive Re-Optimization 

In this chapter we propose proactive re-optimization , a new paradigm for query re-optimization. Proactive 

re-optimization addresses the problems with current reactive approaches that were illustrated in Section 

3.3. A proactive re-optimizer incorporates three new techniques: 

• Computing bounding boxes–intervals around estimates–as a representation of the uncertainty in 

estimates of statistics. 

• Using bounding boxes during optimization to generate robust plans  and switchable plans  that avoid 

re-optimization and loss of pipelined work. 

                                                                                                                                                                    

 

8 A recent paper from IBM reports cardinality estimation errors on real datasets that exceed six orders of magnitude 
[63]. 
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• Using randomization to collect statistics quickly, accurately, and efficiently as part of query 

execution. 

 

 
Figure 15 – Thrashing with reactive re-optimization 
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Figure 16 – Proactive re-optimization 

 

Figure 16 shows the architecture of a proactive re-optimizer. In Section 3.5 we introduce Rio, our 

specific implementation of a proactive re-optimizer. 

3.4.1. Representing Uncertainty in Statistics 

Current re-optimizers compute a single-point estimate for any statistic needed to cost plans. One way to 

account for possible errors in estimates is to consider intervals, or bounding boxes, around the estimates. 

If the optimizer is very certain of the quality of an estimate, then its bounding box should be narrow. If 

the optimizer is uncertain of the estimate’s quality, then the bounding box should be wider. There are 

different ways of computing bounding boxes, e.g., using strict upper and lower bounds [23] or by 

characterizing uncertainty in estimates using discrete buckets that depend on the way the estimate was 

derived [58]. Our implementation uses the latter approach as described in Section 3.5.2. 

 

Example 3.4. Consider the scenario from Example 3.1. The costs of plans P13a and P13b depend mainly 

on |σ(R)| and |S|. Suppose a recent estimate of |S|=160MB is available in the catalog. However, in the 

absence of a multidimensional histogram on R, |σ(R)| must be estimated from the estimated selectivities 
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of R.b>K1 and R.c>K2 and an assumption of independence between these predicates. This estimate of 

|σ(R)|=150MB is thus very uncertain. In this case, Figure 17 shows an example bounding box around the 

single-point estimate (|σ(R)|=150MB, |S|=160MB).  ■ 

 

 
Figure 17 – Bounding box around estimates of |σ(R)| and |S| 

3.4.2. Using Bounding Boxes During Optimization 

Since current re-optimizers consider single-point estimates only, their plan choices may lead to extra re-

optimization steps and to the loss of partial pipelined work if actual statistics differ from their estimates. 

Bounding boxes can be used during optimization to address this problem. While there is always one plan 

that is optimal for a single-point estimate, one of the following four cases can occur with a bounding box 

B: 

(C.i) Single optimal plan . A single plan is optimal at all points within B. 

(C.ii) Single robust plan . There is a single plan whose cost is very close to optimal at all points within B. 

(C.iii) A switchable plan . Intuitively, a switchable plan in B is a set S of plans with the following properties: 

a) At each point pt  in B, there is a plan p  in S whose cost at pt  is close to that of the optimal plan at pt ; 

b) The decision of which plan in S to use can be deferred until accurate estimates of uncertain 

statistics are available at query execution time; and c) If the actual statistics lie within B, an 
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appropriate plan from S can be picked and run without losing any significant fraction of the execution 

work done so far. 

(C.iv) None of the above. Different plans are optimal at different points in B, but no switchable plan is 

available. 

 

A proactive re-optimizer identifies which of the above four cases B falls into. Note that a single 

optimal plan is also robust, and a robust plan is a singleton switchable plan. Example 3.5 illustrates how a 

proactive re-optimizer can exploit robust plans and switchable plans. Details of how to enumerate and 

choose robust and switchable plans are given in Section 3.5. 

 

Example 3.5. Consider the scenario from Example 3.1. Figure 18 is the same as Figure 14 except that it 

considers the bounding box B=[75MB, 300MB] for |σ(R)|. As seen, plan P13a is optimal for the estimated 

|σ(R)|=150MB, but not in the entire bounding box. While plan P13b is not optimal for the estimated 

|σ(R)|, P13b is robust because its cost is very close to optimal at all points in B. Therefore, picking plan 

P13b would be a safe option. However, as we will see in Section 3.5, P13a and P13b (which are hybrid 

hash joins with build and probe reversed) are switchable. It is preferable to pick the switchable plan 

P={P13a, P13b} instead of the robust P13b because P is guaranteed to run the optimal plan as long as 

|σ(R)| lies within B.  ■ 
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Figure 18 – Robust and switchable plans 

3.4.3. Accurate Run-Time Statistics Collection 

As seen in Example 3.3, the lack of accurate run-time statistics collection can lead to thrashing during re-

optimization. In general, accurate run-time estimates are needed to pick the right plan from a switchable 

set, to detect when to trigger re-optimization, and to pick a better plan in the next optimization step. 

For efficiency, we hide the cost of collecting accurate statistics by combining statistics collection with 

regular query execution. Furthermore, for early detection of the need to re-optimize, the run-time 

estimates must be computed both quickly and accurately. We achieve these goals by using a new 

technique of merging the processing of random samples of tuples along with regular query execution. 

Example 3.6 illustrates this approach. Implementation details are given in Section 3.5.4. 

 

Example 3.6. Consider Example 3.3. Assume that the optimizer had picked the suboptimal Plan P15a 

which contains a pair of index nested-loops joins with σ(R) as the outer input. Suppose tuples in R are 

physically laid out in random order on disk. Then, once 5% of the R tuples have been scanned and 

processed, a fairly accurate estimate of the selectivity of σ is available. Thus, |σ(R)| can be estimated 

reliably. This estimate enables a proactive re-optimizer to detect quickly that P15d is the optimal plan, 

thereby avoiding the thrashing problem in reactive re-optimizers. ■ 
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3.5. Proactive Re-Optimization With Rio 

Section 3.4 presented an overview of proactive re-optimization without providing specifics about the 

implementation. We now describe our prototype proactive re-optimizer Rio. 

3.5.1. Building Rio 

Rio was built using the Predator DBMS [81] by extending it as follows: 

• Equi-height and end-biased histograms were added [70]. 

• Predator has a traditional cost-based dynamic-programming optimizer [79] which we refer to as 

TRAD. We added: 

 A Validity-Ranges Optimizer  (VRO), our implementation of the algorithms used by POP [63]. 

 Rio, our proactive re-optimizer. 

 Uncertainty buckets and rules from [58] to generate and propagate uncertainty buckets during 

query optimization. 

• The following operators were added: 

 A hybrid hash join operator [59] that processes tuples from two input subtrees. At most one of the 

subtrees is a deep subtree and at least one is a subtree with one base relation. Either subtree can 

be the build input of the hash join. Thus, this operator enables us to consider arbitrary linear plan 

shapes, e.g., right-deep join trees like plan P22c in Figure 22. Recall our convention that the left 

input to the hash join is the build and the right input is the probe. 

 A switch operator to implement switchable plans. 

 Operators to read random samples from base relations and to generate random samples of joins as 

part of query execution. 

 Buffer operators to buffer tuples and delay processing in a pipeline until the statistics necessary to 

choose among the set of plans in a switch operator have been collected. 
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 Operators to scan previously materialized expressions for reuse after re-optimization. 

Materialized expressions that may be reused include completed builds of hash joins and the sorted 

temporary files created by a sort operator. 

 The original validity-ranges algorithm [63] uses checks on buffers to trigger re-optimization when 

the buffers overflow or underflow. In our VRO implementation, validity ranges are checked by 

buffer operators placed appropriately in the plan which buffer and count incoming tuples. The 

buffer operators trigger re-optimization if any validity range is violated. 

• Execution engine: 

 The ability to stop query execution midway, re-optimize, and restart execution. 

 An in-memory catalog to track statistics collected at run-time as well as expressions materialized 

as part of query execution. The optimizer consults this catalog during re-optimization. 

 An inter-operator communication mechanism based on punctuations [86] that, e.g., allows an 

operator C to signal to its parent operator that C has generated a 1% random sample of its output. 

3.5.2. Computing Bounding Boxes 

Recall that a proactive re-optimizer uses bounding boxes instead of single-point estimates for statistics 

needed to cost plans. Currently, Rio restricts the computation of bounding boxes to size and selectivity 

estimates. For each such estimate E, a bounding box B is computed using a two-step process: 

• An uncertainty bucket U is assigned to the estimate E 

• The bounding box is computed from the (E, U) pair 

 

To compute U, we adopted a technique from [58] that uses a set of rules to compute uncertainty. In 

the original approach [58], the value of U belongs to a three-valued domain {small, medium, large} that 

characterizes the uncertainty in the estimate E. The value of U is computed based on the way E is derived. 

For example, if an accurate value of E is available in the catalog, then U takes the value small that denotes 
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low uncertainty. In Rio, we augmented the domain of U to an integer domain with values from 0 (no 

uncertainty) to 6 (very high uncertainty). 

A bounding box B of an estimated value E is an interval [lo, hi] that contains E. The uncertainty value 

U is used to compute the values lo and hi as shown in Figure 19. Example 3.7 illustrates the computation 

of uncertainty buckets and bounding boxes for our running example. 

 

Example 3.7. Consider the scenario from Example 3.1. The optimizer needs to cost plans P13a and P13b 

which depend on |σ(R)| and |S|. Recall that σ represents R.b>K1 and R.c>K2. The single-point estimates 

for |S| and |σ(R)| are ES=160MB and ER=150MB respectively. Assume that ES was obtained from the 

catalog. Therefore, our rules adapted from [58] for derivation of uncertainty set US=1 (low uncertainty in 

ES). From Figure 19, the bounding box for ES is BS=[144, 192]. On the other hand, assume that the 

estimate ER was computed from the estimated selectivities of R.b>K1 and R.c>K2 based on the 

assumption that these predicates are independent (no multidimensional histogram was available). Thus, 

the uncertainty in ER is high. Accordingly, our rules for derivation of uncertainty set UR=5. From Figure 

19, the bounding box for ER is BR=[75, 300]. ■ 

 

ComputeBoundingBox( Inputs: estimate E, uncertainty U 
 Outputs: lo, hi) { 
   ∆+ = 0.2; // increment step 
   ∆- = 0.1; // decrement step 
   hi = E * (1 + ∆+ * U); 
   lo = E * (1 - ∆- * U); 
} 

Figure 19 – Computing bounding boxes for an (E, U) pair 

3.5.3. Optimizing With Bounding Boxes 

The TRAD optimizer enumerates and groups plans based on their join subset (JS) and interesting orders 

(IO) [79]. For each distinct (JS, IO) pair enumerated, TRAD prunes away all plans except the plan with 

the lowest cost, denoted BestPlan. The cost of each plan is computed based on estimated statistics. 
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VRO takes the same steps as TRAD initially, so VRO will find the same optimal plan (BestPlan) for 

each (JS, IO) pair. However, VRO then adds validity ranges on the inputs to the join operators in 

BestPlan [63]. Consider a join operator O with inputs RD and RB, where RD is the deep subtree input and 

RB is the base relation input. The validity range of O is the range of values of |RD| where operator O has 

the lowest cost among all join operators with the same inputs RD and RB, and giving the same set of 

interesting orders as O. The validity range of O is computed by varying |RD| up (and down) until the cost 

of O is higher than that of some other join operator with the same inputs RD and RB and giving the same 

set of interesting orders as O. The Newton-Raphson method  can be applied to the join cost-functions to 

compute validity ranges more efficiently than linear search; see [63]. 

Unlike TRAD and VRO, Rio computes bounding boxes for all input sizes used to cost plans. Then it 

tries to compute a switchable plan (which may also be a single robust plan or a single optimal plan) for 

each distinct (JS, IO) pair based on the bounding boxes on the inputs to the plan. If Rio fails to find a 

switchable plan for a (JS, IO) pair, then it picks the optimal plan for (JS, IO) based on the single-point 

estimates of input sizes (BestPlan), and adds validity ranges like VRO. 

Rio computes switchable plans in two steps. First, it finds three seed plans for each (JS, IO) pair. 

Then, it creates the switchable plan from the seed plans as described next. 

3.5.3.1. Generating the Seed Plans 

In traditional enumeration, plan cost is computed using single-point estimates of statistics. In Rio, the 

enumeration considers three different costs for each plan, CLow, CEst, and CHigh. Cost CEst is computed 

using the single-point estimate of statistics exactly like in traditional enumeration. Cost CLow (CHigh) is 

computed at the lower left corner (upper right corner) of a bounding box as illustrated in Figure 20. 

Rio augments the (JS, IO) pair used during traditional enumeration with an extra cost bucket CB that 

takes values Low, Estimated, or High. Like the interesting order concept, the cost bucket defines which 

plans and costs are comparable during cost-based pruning, e.g., a plan P for (JS, IO, CB=Low) is pruned 
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if and only if there exists a plan P' for (JS, IO, CB=Low) with a lower cost CLow than P. For each distinct 

(JS, IO) pair, Rio enumerates and prunes plans for the three triples (JS, IO, CB=Low), (JS, IO, 

CB=Estimated), and (JS, IO, CB=High). The plans that remain after pruning are the three plans 

corresponding to the minimum CLow, CEst, and CHigh for (JS, IO). 

 

 
Figure 20 – Computing plan costs 

 

Note that the best plan for (JS, IO, CB=Estimated) is the same plan as computed by TRAD for (JS, 

IO). Also, the addition of the extra cost bucket guarantees that the optimal plan for the estimated statistics 

will not prune away plans that are optimal at the upper right or lower left corners of the bounding boxes 

for input sizes. For each (JS, IO) pair, we end up with three seed plans from which a switchable plan will 

be created: 

• BestPlanLow, the plan with minimum cost CLow 

• BestPlanEst, the plan with minimum cost CEst 

• BestPlanHigh, the plan with minimum cost CHigh 

3.5.3.2. Generating the Switchable Plan 

Given the seeds BestPlanLow, BestPlanEst, and BestPlanHigh, one of four cases arises: 
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(C.i) The seeds are all the same plan. 

(C.ii) The seeds are not all the same plan, but one of them is a robust plan. 

(C.iii) The seeds are not all the same plan, and none of them is robust, but a switchable plan can be created 

from the seeds. 

(C.iv) We cannot find a single optimal plan, a single robust plan, or a switchable plan from the seeds. 

In Case (C.i), the single optimal plan is the switchable plan. (Recall that an optimal plan is also robust 

and a robust plan is a singleton switchable plan.) In Case (C.ii), the optimizer checks if any of the seeds is 

a robust plan. A necessary test to determine whether BestPlanLow is robust is to check whether (i) cost 

CEst of BestPlanLow is close to (e.g., within 20% of) CEst of BestPlanEst, and (ii) cost CHigh of 

BestPlanLow is close to CHigh of BestPlanHigh. Intuitively, we are testing whether BestPlanLow has 

performance close to optimal at the estimated point and at the upper corner of the bounding box as well. 

While this test is not sufficient to guarantee robustness–because we do not check all points in the 

bounding box–Rio currently labels a plan as robust if it passes this plan-robustness test. If one of the 

seeds passes this test, then Rio uses that seed as a singleton switchable plan. 

 

Example 3.8. Consider the scenario from Example 3.1. As seen in Figure 21, 

BestPlanLow=BestPlanEst=P13a and BestPlanHigh=P13b. The cost of P13a is not within 20% of the cost 

of P13b at the upper corner of the bounding box (|σ(R)|=300MB). Thus, P13a is not a robust plan within 

the bounding box. On the other hand, P13b is within 20% of the cost of P13a both at the estimated point 

(|σ(R)|=150MB) and at the lower corner of the bounding box (|σ(R)|=75MB). Therefore, P13b passes the 

plan-robustness test.  ■ 
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Figure 21 – Finding a robust plan in |σ(R)|’s bounding box  

 

If none of the seeds is a single optimal plan or a single robust plan (Case (C.iii)), then the optimizer 

tries to find a switchable plan. A switchable plan for a (JS, IO) pair is a set of plans S where: 

(i) All plans in S have a different join operator as the root operator. (Hybrid hash joins with the build and 

probe reversed are treated as different operators.) 

(ii) All plans in S have the same subplan for the deep subtree input to the root operator. 

(iii) All plans in S have the same base table, but not necessarily the same access path, as the other input to 

the root operator.  

 

Figure 22 contains an example of a switchable plan with three member plans for (JS={R,S,T}, 

IO=∅). Any two members of a switchable plan are said to be switchable with each other. In Section 3.5.4 

we illustrate how the switchable plan chooses one of its members at execution time. 
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Figure 22 – Possible members of a switchable plan 
 

If the seed plans for a (JS, IO) pair have the same subplan for the deep subtree, then the seeds 

themselves constitute a switchable plan. If these subplans are different, then Rio picks one of the seed 

plans, say BestPlanLow, and enumerates the set SW_Low of all plans that are switchable with 

BestPlanLow based on Conditions (i)—(iii) of switchable plans above. Then, among the plans in 

SW_Low, Rio finds the plan, planMinEst , with minimum cost at the estimated statistics point, and the 

plan, planMinHigh , with minimum cost at the upper right corner of the bounding box. If CEst of 

planMinEst  is close to (e.g., within 20%) CEst of BestPlanEst, and CHigh of planMinHigh  is close to CHigh 

of BestPlanHigh, then {BestPlanLow, planMinEst , planMinHigh } is a switchable plan. If not, Rio tries 

the same procedure with the two other seed plans. 

 

Example 3.9. Suppose BestPlanLow=plan P22a, BestPlanEst =plan P22b (from Figure 22), and 

BestPlanHigh=plan P23 (from Figure 23) for R S T with no interesting orders. The subplan for the 

deep subtree of the outer join is different between P22a and P23, so they are not switchable. Thus, Rio 

enumerates SW_Low, which contains plan P22c. If CHigh of plan P22c is close to that of P23, then {P22a, 

P22b, P22c} is a switchable plan. ■ 
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If these techniques fail to find a switchable plan (Case (C.iv)), then Rio picks BestPlanEst–the 

optimal plan for the single-point estimates–and adds validity ranges, just like VRO. 

 

 
Figure 23 – Plan P23 

3.5.4. Extensions to the Query Execution Engine 

A switchable plan S defers the choice of which member plan to use for a join until the uncertain input 

sizes can be estimated accurately at run-time. S ensures that no (partial) work done by the pipeline 

containing the join is lost whenever the actual input sizes lie within the corresponding bounding box. Our 

implementation of switchable plans uses the following operators and communication framework: 

• A switch operator  that corresponds to the chosen switchable plan. This operator decides which 

member plan to use based on run-time estimates of input sizes, and instantiates the appropriate join 

operator and base relation access path. 

• A buffer operator  that buffers tuples until it can compute an input-size estimate needed by the switch 

operator. 

• Randomization-aware operators that prefix their output with a random sample of their complete 

output. 
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• An inter-operator communication mechanism  based on punctuations [86] that allows operators to 

send size estimates and to demarcate random samples in their output stream. 

3.5.4.1. Implementing Switchable Plans 

For a switchable plan chosen by Rio during optimization, the execution-plan generator creates a switch 

operator and a buffer operator. Figure 24 shows these two operators generated for the switchable plan in 

Figure 22. Note that the buffer operator is placed above the common subplan for R  S (marked in gray 

in both figures). The switch operator is placed above the buffer operator. 

 

 
Figure 24 – Implementation of switchable plan from Figure 22 

 

During query execution, the buffer operator buffers tuples from the deep subplan until it gets an end-

of-sample punctuation  eos(f). (Generation of such punctuations is described in Section 3.5.4.2.) 

Punctuation eos(f) signals that the set of tuples buffered so far is an f % random sample of the output of 

the deep subplan. Based on the number of buffered tuples n, 100n/f is a fairly accurate estimate of the 

final output cardinality of R S. The switch operator uses this cardinality estimate to compute the total 

input size of R S, and instantiates the appropriate member plan. 

Rio currently uses only the size of the deep subtree input RD to the join to choose the best member 

plan. In terms of Figure 20 (repeated below in Figure 25a), this limitation means that for a switchable plan 

P={Plo, Pest, Phi}, where plans Plo, Pest, and Phi were chosen for (loD, loB), (estD, estB), and (hiD, hiB) 
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respectively (Figure 25a), Rio has to choose among Plo, Pest, and Phi based solely on the estimate of |RD|. 

Plo is picked if [ [2)est(lo,lo |R| DDDD +∈ , Pest is picked if [ [2)hi(est2)est(lo |R| DDDDD ++∈ , , and Phi is picked if 

[ ]DDDD hi2)hi(est |R| ,+∈ . If |RD|<loD or |RD|>hiD, then the switch operator triggers re-optimization after 

adding the collected estimate of |RD| to the catalog (Figure 25b). 

 
Figure 25 – Bounding box (a); and which plan to choose (b) 

3.5.4.2. Random-Sample Processing During Execution 

To generate eos(f) punctuations required by buffer operators, we altered the regular processing of some of 

Predator’s operators so that, with minimal overhead, they can prefix their output with a random sample of 

their entire output. Each such operator O first outputs an f % random sample of its entire output. (f is a 

user-defined parameter.) Next, O generates an end-of-sample punctuation eos(f) to signal the end of the 

sample. Finally, O sends its remaining output tuples. As shown in Figure 26, tuples output as part of the 

random sample are not generated again. 
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Figure 26 – Random samples in the operator output 

 

Reordering the output of an operator O is not an option if any of the operators above O in the plan 

depend on the order of O's output.  Thus, random sample generation seems inapplicable to operators such 

as sorts and ordered scans from B-trees. However, there are ways around this problem. For example, the 

buffer operator above O can regenerate the order using a merge of the initial sample with the later output. 

Furthermore, blocking operators9 like sorts provide simpler ways of estimating input sizes without 

requiring random samples or buffering. 

Next we describe how eos(f) punctuations are generated by table scans and certain join operators. 

Note that our techniques never transform a non-blocking operator into a blocking operator. 

3.5.4.3. Randomization in Table-Scan Operators 

We developed two techniques to enable a scan operator over a table T to first return a random sample of 

tuples from T: 

(i) If tuples in T are laid out in random order on disk, a sequential scan will produce the tuples in the 

desired order. Whether T has a random layout pattern or not can be a physical property of the table, 

enforced when the table is created and updated. Additionally, such a layout pattern can be detected 

                                                   

 

9 A blocking operator reads all of its input before producing any output. 
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using the Kiefer-Kolmogorov-Smirnov test when runstats is invoked to collect statistics on T; see [18]. 

This additional statistic can be maintained in the catalog. 

(ii) An f % random sample of T, denoted T_sample , can be maintained explicitly as a separate table, e.g., 

using the techniques from [38]. Each tuple in T contains an extra bit to denote whether the tuple is also 

present in T_sample  or not. At run-time the table scan first returns tuples from T_sample , followed by 

an eos(f). Then it scans T, returning all tuples not contained in T_sample . Note that having tuples 

duplicated in T_sample  and T allows indexes over T to be built and used without any changes. The 

storage overhead is minimal. 

3.5.4.4. Randomization in Join Operators 

Adding randomization to the nested-loops join operators–tuple, block, and index–was straightforward. 

These operators simply pass on the eos(f) punctuations from their outer input, and ignore eos(f) from their 

inner input. A join sample produced in this fashion is a true random sample of the join if the outer table’s 

join column is a foreign key referencing the inner table [1]. 

To produce a random sample first from a hybrid hash join, we made the following modifications to 

the standard algorithm: 

(i) First, tuples from the probe input are read into memory until an eos(f) punctuation is received. These 

tuples represent an f % sample of the complete probe input. The join operator inserts these tuples into an 

in-memory hash table.  

(ii) Next, the build input is read and partitioned completely. In addition, as these tuples are being processed, 

they are immediately joined with the in-memory sample of the probe input. Joining tuples are sent in the 

join output. At the end of this phase, an eos(f) punctuation (using the value of f received from the probe) 

is generated, and the in-memory sample is discarded. The tuples output so far correspond to taking an 

f % sample from the probe and joining it with the complete build. This sample is guaranteed to be a true 

join random sample if the probe input’s join column is a foreign key referencing the build input [1].  
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(iii) The scan of the probe input, which was paused after the eos(f) in Step (i), is resumed. The tuples are 

partitioned and joined with the memory-resident build partitions.  

(iv) The on-disk partitions are joined to complete the join. 

3.6. Experimental Evaluation 

In this section we describe an extensive experimental evaluation of the Rio prototype. We compare Rio 

with the traditional optimizer (termed TRAD in Section 3.5.1) and with the Validity-Ranges re-optimizer 

(termed VRO in Section 3.5.1) under a variety of conditions. In our experiments we used a synthetic data 

generator provided by IBM. The generated dataset has four tables whose properties are shown in Table 4. 

 

Table 4 – Summary of dataset used in the experiments 
Table Size, # of Tuples Sample Correlated Attributes 

Accidents (A) 420 MB, 4.2 M 
accident_with & damage, 
seat_belt_on & driver_status 

Cars (C) 120 MB, 1.7 M make & model & color 
Owner (O) 228 MB, 1.5 M city & state & country 

Demographics (D) 60 MB, 1.5 M age & salary & assets 
 

All experiments were done on a 1.7 GHz Pentium machine with 2 MB L2 cache, 512 MB memory, 

and a single 5400 rpm disk. The buffer cache size is 128 MB. Each hybrid hash join operator is allocated 

a fixed amount of memory which we vary in some of the experiments; the default value is 50 MB. Buffer 

operators in Rio and VRO are allocated the same amount of memory as a hybrid hash join. The buffers 

spill to disk when they fill up. B-tree indexes were available on all primary-key attributes. Equi-height 

and end-biased histograms were available on all integer attributes. The bounding box computation in Rio 

happens as described in Figure 19 with ∆+=0.6 and ∆–=0.1. The cost threshold for robustness tests is 20% 

(Section 3.5.3.2). The random-sample percentage for size estimation is 1% (Section 3.5.4.2). 
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3.6.1. Two-Way Join Queries 

Our first experiment studies the performance of TRAD, VRO, and Rio with respect to the error in 

estimates. We use a query joining Accidents (A) with Cars (C) on the car_id attribute. (All joins we 

consider are foreign key to primary key joins.) There is a selection predicate on A, denoted σ(A), of the 

form A.accident_year>[year], where [year] is a parameter whose value is varied in this experiment. We 

removed the equi-height histogram on attribute A.accident_year from the catalog to force the optimizer to 

use the default selectivity estimate of 0.1. Thus, the optimizer always estimates |σ(A)|=42MB. By varying 

the value of [year], we vary the error between the estimate of |σ(A)| and its actual size. 

3.6.1.1. Using Robust Plans 

The memory limit for a hybrid hash join was set to 150MB in this experiment. When |σ(A)| is less than 

the size of C (120MB), the optimal plan is a hybrid hash join with σ(A) as the build, denoted plan PAC. 

When |σ(A)|>120MB, the optimal plan is a hybrid hash join with C as the build, denoted plan PCA. 

(120MB corresponds to around 180% in Figure 27.) Although B-tree indexes are available on the join 

attributes, index-nested-loop joins never outperform hybrid hash joins in our setting.  

Figure 27 shows query completion times, including both optimization and execution times,  for 

TRAD, VRO, and Rio as we vary the error in the estimate of |σ(A)|. The error plotted on the x-axis is 

computed as |σ(A)|Actual / |σ(A)|Estimate - 1. A positive error indicates an underestimate and a negative 

indicates an overestimate. Figure 27 also shows the performance of the optimal plan which we determined 

manually in each case. 

Since the optimizer's estimate of |σ(A)| is 42MB, TRAD always picks plan PAC which is optimal at 

|σ(A)|=42MB. As |σ(A)| is increased (and the estimation error increases), the cost of plan PAC increases 

linearly at a small rate until |σ(A)|=150MB. (|σ(A)|=150MB corresponds to an error around 2.5 in Figure 

27.) When |σ(A)|>150MB, the hybrid hash join in plan PAC starts spilling to disk. Because of this extra 
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IO, the cost of plan PAC increases at a steep rate when |σ(A)|>150MB, as shown by the plot for TRAD in 

Figure 27. 

VRO always starts with the same plan as TRAD, i.e., plan PAC. However, VRO adds a validity range 

to the join and verifies this range before starting the join execution. The upper bound of the validity range 

for the hybrid hash join in plan PAC is 120MB: if |σ(A)|>120MB, then plan PCA performs better. 

Therefore, as long as |σ(A)|≤120MB, the validity range is not violated and the performance of VRO 

matches the performance of the optimal plot in Figure 27. When |σ(A)|>120MB, the validity range is 

violated and VRO is forced to re-optimize. Plan PCA is picked on re-optimization. VRO cannot reuse the 

work done by the pipeline in execution in plan PAC when re-optimization was invoked, namely the scan of 

A and evaluation of σ(A) up to that point. This loss of work results in the region in Figure 27 where VRO 

performs worse than TRAD. However, as the error increases, the re-optimization pays off quickly 

because when |σ(A)|>150MB, the join in plan PAC spills to disk while PCA scans A and C only once. 
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Figure 27 – σ(A) C, 150MB per hash join 

 

Rio first computes bounding boxes for |σ(A)| and |C|. Since there are no selection predicates on C, the 

estimate of |C| available from the catalog is accurate. To illustrate robust plans, in this experiment alone 
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we set ∆+ and ∆– in Figure 19 to very high values so that the bounding box on |σ(A)| is [0MB, 420MB]. 

Rio identifies that Plan PCA is a robust plan within this bounding box. (Rio identifies Plan PCA to be a 

robust plan even if the bounding box is smaller.) Because the bounding box [0MB, 420MB] covers the 

entire range considered in the experiment, Rio runs Plan PCA at all points in Figure 27. Although Plan PCA 

is not optimal at all points in the bounding box, note that Rio’s performance is close to the optimal plot at 

all points in Figure 27, showing the robustness of Plan PCA. Since |C| is less than the memory available to 

the hash join, PCA always finishes in one scan of A and C. 

For our default settings of ∆+ and ∆–, the bounding box on |σ(A)| is [16.8MB, 193.2MB]. In this case 

Rio used a combination of solutions (re-optimization, switchable plans, and robust plans) to provide near-

optimal performance. This graph is omitted because Section 3.6.1.2 shows Rio’s performance in a similar 

situation. 

3.6.1.2. Using Switchable Plans 

Our next experiment, reported in Figure 28, considers the same query as in the previous section, but now 

hash joins are allocated only 50MB of memory for in-memory hash partitions. In this experiment, the 

behavior of Optimal, TRAD, and VRO regarding the choices of plans and re-optimization points are the 

same as in the previous section. However, Rio behaves differently. Rio computes the bounding box on 

|σ(A)| to be [16.8MB, 193.2MB]. The large width of the box corresponds to the high uncertainty in |σ(A)| 

since this estimate used a default value of selectivity. The bounding box on |C| has zero width since an 

accurate estimate of |C| is available from the catalog. Rio finds that plan PAC is optimal at 

(|σ(A)|,|C|)=(16.8MB, 120MB), which is the lower corner of the bounding box, and also at the estimated 

point (|σ(A)|,|C|) = (42MB, 120MB). However, for (|σ(A)|,|C|) = (193.2MB, 120MB), which is the upper 

corner of the bounding box, plan PCA is optimal. Furthermore, neither PAC nor PCA is robust in this case. 

However, Rio identifies that plans PAC and PCA are switchable plans (see Section 3.5.3). Therefore, for 

this query, Rio starts with a plan containing a switch operator with the two hybrid hash joins 
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corresponding to PAC and PCA as member plans. Rio estimates |σ(A)| during execution. Based on this 

estimate, Rio chooses one of the two joins or it re-optimizes. 

The accident_year attribute in A is not correlated with the layout of A on disk, so a sequential scan of 

A produces tuples in random order to estimate the selectivity of σ(A) (recall Section 3.5.4.2). Rio gets a 

very accurate estimate of |σ(A)| from the default setting of 1% sampling. For example, when |σ(A)|=6MB 

in Figure 28, which corresponds to an error of -85% and lies outside the bounding box, Rio invokes re-

optimization. Since the optimizer now has accurate estimates of |σ(A)| and |C|, it correctly picks plan PAC 

which is optimal at this point. Note that Rio’s performance is very close to that of the optimal plan for 

|σ(A)| = 6MB, which shows that the overhead incurred by Rio to sample 1% of A, obtain a run-time 

estimate of |σ(A)|, and to re-optimize the query is very small. 

When |σ(A)| lies within the bounding box computed by Rio, re-optimization is avoided. In this case, 

the switch operator picks plan PAC or plan PCA appropriately, avoiding loss of work. For example, the 

switch operator picks Plan PAC when |σ(A)|=32MB, which corresponds to an error of -26% in Figure 28. 

Plan PCA is picked when |σ(A)|=160MB, which corresponds to an error of 284% in Figure 28. When 

|σ(A)|>193.2MB, which lies outside the bounding box, Rio will re-optimize with a fairly accurate value of 

|σ(A)| estimated via sampling. In this case, the optimal Plan PCA gets picked. Therefore, Rio’s 

performance is always close to that of the optimal plan for this query. 
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Figure 28 – σ(A) C, 50MB per hash join 

3.6.2. Three-Way Join Queries 

We now repeat the experiments in Section 3.6.1 with a query joining A, C, and O. There are selection 

predicates on A.accident_year (σ1) and O.cars (σ2). We removed the equi-height histogram on 

A.accident_year so that the optimizer uses a default estimate, and we vary the estimation error as in 

Section 3.6.1. The results are shown in Figure 30. The cardinality of σ2(O) is estimated accurately from 

an equi-height histogram. 

The optimal plan for this query for low values of |σ1(A)| is plan P29a shown in Figure 29. For higher 

values of A, plan P29b becomes optimal. Plan P29a is also the optimal plan for the single-point estimates 

of input sizes, hence TRAD always picks plan P29a. Therefore, in the left part of Figure 30, TRAD 

performs as well as the optimal plan, but its performance deviates more and more from the optimal as the 

error increases.  
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Figure 29 – Plans for A C O used in experiments 
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Figure 30 – σ1(A) C σ2(O), 50MB per hash join 

 

Rio starts with plan P29c shown in Figure 29. This plan has two switch operators corresponding to 

the two joins. (Buffer operators are not shown in Figure 29.) The two member plans in the first switch 
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operator are (i) hybrid hash join with σ1(A) as build and C as probe, and (ii) hybrid hash join with C as 

build and σ1(A) as probe. The switch operator will choose between these plans based on a run-time 

estimate of |σ1(A)| computed from a 1% sample of A. The two member plans in the second switch 

operator are (i) hybrid hash join with σ1(A) C as build and σ2(O) as probe, and (ii) hybrid hash join 

with σ2(O) as build and σ1(A) C as probe. The choice between these two plans will be made based on 

an estimate of |σ1(A) C| from a 1% sample of σ1(A) C obtained by sampling the join (recall Section 

3.5.4.4). The bounding box on |σ1(A)| is the same as that in Section 3.6.1. The bounding boxes on |C| and 

|σ2(O)| effectively have zero width since these estimates are known to be accurate. When |σ1(A)|=6MB 

(Point 1 in Figure 30 and in Table 5), which corresponds to an error of -85% and lies outside the 

bounding box, Rio invokes re-optimization and picks the optimal plan P29a. Similarly, when 

|σ1(A)|=160MB (Point 3 in Figure 30 and in Table 5), which corresponds to an error of 284% and is 

within the bounding box, both switch operators will pick the base relation input as the build, and execute 

plan P29d in Figure 29. Thereby, when |σ1(A)|=160MB, Rio avoids re-optimization and the loss of 

pipelined work which results in the difference of around 72 seconds between Rio and VRO in this case. 

 

Table 5 – Plans used at points 1, 2, 3, and 4 of Figure 30 
Point |σ1(A)| TRAD VRO Rio Optimal 

1 6 MB P29a 
Inside validity range, runs 
plan P29a 

Outside bounding box, re-
optimize, picks plan P29a 

P29a 

2 80 MB P29a 
Inside validity range, runs 
plan P29a 

Inside bounding box, switch 
operator picks plan P29a 

P29a 

3 160 MB P29a 
Outside validity range, re-
optimize, picks plan P29d 

Inside bounding box, switch 
operator picks plan P29d 

P29b 

4 310 MB P29a 
Outside validity range: re-
optimize, picks plan P29d 

Outside bounding box, re-
optimize, picks plan P29b 

P29b 

 

The performance of Rio is always close to that of the optimal plan in Figure 30 except for an 

intermediate range of estimation errors. In this region, Rio picks plan P29d which turns out to be 

suboptimal compared to plan P29b. This region is a transition region where plan P29d stops being optimal 
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with respect to plan P29b. Because of an overestimate of the join selectivity of C σ2(O), Rio continues 

to pick plan P29d as the optimal plan beyond the actual transition point. However, as the error in |σ1(A)| 

increases, Rio converges to the optimal plan again around an error of 400% in Figure 30. 

VRO starts with the same plan P29a as TRAD, but with validity ranges added. When 

|σ1(A)|≤120MB, none of the validity ranges are violated. (|σ1(A)|=120MB corresponds to around 180% 

in Figure 30.) When |σ1(A)|>120MB, the validity range on σ1(A) C is violated and VRO is forced to re-

optimize. Note that at this point, VRO does not have an estimate of the actual size of |σ1(A)|. Based on 

the amount of A it has seen so far, VRO always picks plan P29d on re-optimization and adds validity 

ranges. In addition to the overhead of re-optimization and the loss of pipelined work, the choice of plan 

P29d illustrates another problem with VRO. VRO gets stuck in a suboptimal plan as the validity ranges in 

plan P29d will never fail because of an underestimate of |σ1(A)|: there is no better plan to join C and 

σ1(A) for large |σ1(A)| than the hybrid hash join with σ1(A) as the probe, even though there is a better 

plan for the entire query. Although Rio could also fail to detect a sub-optimal plan, it is the fact the VRO 

uses incorrect estimated statistics during the second optimization call that leads it to execute a sub-

optimal plan. Since Rio collects accurate statistics at run-time it is less likely to execute sub-optimal plans 

after re-optimization calls. 

A similar situation arises for the second join since σ1(A) is part of the probe input here as well. 

Hence, as illustrated by the results in Figure 30, VRO performs badly as the estimation error in |σ1(A)| 

increases. This experiment illustrates one of the pitfalls of reactive re-optimization where the execution 

plan is decided before the issues affecting re-optimization are considered. 

3.6.3. Correlation-Based Mistakes 

So far the estimation errors we considered were due to selection predicates on an attribute on which there 

was no histogram. A more common case of estimation errors is the presence of correlated attributes, 

which we consider in this section. We use a three-way join query on A, C, and O with selection predicates 
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σ1(A) and σ2(O). Figure 31 shows the performance of three queries Q1, Q2, and Q3 which have different 

sets of correlated predicates on A, causing the optimizer to underestimate |σ1(A)| in each case. 

(Correlations usually lead to underestimates [63].) For example, Query Q2 contains predicates 

A.accident_with="car", A.driver_status="injured", and A.seat_belt_on="on". |C| and |σ2(O)| are always 

estimated accurately. Figure 31 indicates that the estimation errors caused by correlated attributes result in 

performance trends for TRAD, VRO, and Rio similar to those shown in Sections 6.1 and 6.2. The reasons 

for these trends are also similar to those observed in Sections 6.1 and 6.2. The optimal plan for each query 

is plan P29e in Figure 29 which Rio picks either because it is a robust plan (Q1) or because Rio discovers 

the estimation error and the actual estimate quickly because of randomization (Q2 and Q3). 
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Figure 31 – Errors due to correlated predicates 

3.6.4. Thrashing 

So far we considered queries where the size of a single input is estimated incorrectly. In this section we 

consider the performance of VRO and Rio when the size of more than one input is estimated incorrectly. 

We use a three-way join query on A, C, and O with selection predicates σ1(A) and σ2(C). |σ1(A)| is 

underestimated significantly because σ is on an attribute with no histograms, while |σ2(C)| is 

underestimated slightly because the histogram on the corresponding attribute was built from a small 



76 

sample of C. For this query, VRO thrashes and takes 690.38 seconds compared to 327.57 seconds for Rio. 

VRO starts with the optimal plan for the estimated statistics which is similar to plan P29a in Figure 16. 

Because |σ2(C)| is underestimated, VRO computes an incorrect validity range for |σ1(A)|. This validity 

range is violated at run-time, and re-optimization picks plan P29f. Since VRO does not have correct 

estimates of |σ1(A)| or |σ2(C)| at this point, it computes incorrect validity ranges which fail again. This 

thrashing results in the factor two slowdown of VRO compared to Rio. Rio invokes re-optimization once 

for this query when its run-time estimate of |σ1(A)| falls outside the bounding box. Because Rio estimates 

|σ1(A)| accurately at run-time using sampling, and also uses bounding boxes to allow for error in the 

estimate of |σ2(C)|, it finds the optimal plan in the first re-optimization step. 

3.6.5. Increasing Query Complexity 

In this section we compare the relative performance of TRAD, VRO, and Rio as we increase the number 

of joins in the query. The results are shown in Figure 32. 
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Figure 32 – Increasing query complexity 
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The dataset provided to us had four tables only (the actual dataset has around 30 tables [63]). For this 

experiment, we vertically partitioned each table into two and padded each partition with string fields to 

make it the same size as the original table. Each query had correlated predicates on half of the joined 

tables. Figure 32 shows the same trends observed in previous sections. The fraction of time spent by Rio 

and VRO in optimization steps was less than 1.7% in all cases in Figure 32. Roughly, the cost of each 

optimization phase in Rio is three times the cost of the single optimization phase in TRAD.  

Figure 32 also shows the relative performance of VRO-R, which is the validity-ranges optimizer 

enhanced with our random-sample processing techniques from Section 3.5.4.2. While randomization 

improved the overall performance of VRO by reducing the time required to trigger re-optimization, the 

amount of wasted work, and the number of re-optimization steps, Rio still outperforms VRO-R by a 

significant amount. 

3.7. Conclusions 

Rio is a second-generation AQP system that improves on previous AQP proposals in several ways. 

Previous AQP systems, although able to correct some optimizer mistakes, still suffered from the 

optimizer mistakes in an indirect way. By using a traditional optimizer, those systems were more likely to 

start execution with a sub-optimal plan. The sub-optimal plan could frequently be detected and replaced 

by an optimal plan. However, the process could be inefficient if the sub-optimal plan was not quickly 

detected, or, if it was, query processing work had to be thrown away and repeated. In addition, previous 

AQP approaches would sometimes only find an optimal plan after multiple re-optimization steps, each 

with its own potential inefficiencies. With Rio, we extensively re-engineered query optimization and 

query execution to make the system as insensitive as possible to optimizer mistakes. The optimization 

module was changed to give priority to robust plans, i.e., plans insensitive to incorrect estimates. This was 

partially done with a series of heuristics that assign levels of uncertainty to estimated statistics based on 

the way they were estimated. Given the uncertainties, the optimizer computes bounding boxes around the 
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estimates, i.e., intervals of estimated low and estimated high values for the statistics. The bounding boxes 

of statistics are combined during optimization to produce estimated low and estimated high costs for plans 

instead of using a single value as in traditional query processing. This, in turn, reveals which plans are 

robust and which plans are risky. 

New switch operators were proposed to avoid re-optimization and minimize lost work by deferring 

the decision of which plan to run until run-time. Switch operators require switchable plans to be found at 

optimization time. At a high level, a switchable plan is a set of plans that share a common execution 

prefix, i.e., all plans in the set must start executing the same operator(s) over the same relation(s) and in 

the same order to be switchable. The common part of the switchable plan set is partially executed first. 

Then, the switch operator receives statistical information about the data seen in that common execution 

prefix and chooses the best plan in the switchable plan set to finish execution. While it is unknown how 

frequently switchable plans can be found for complex optimization spaces, our experiments showed that 

switchable plans can be used to avoid lost work due to common optimizer mistakes. 

Finally, query execution was changed to generate and propagate tuple random samples up the query 

execution tree. The tuple random samples were used to generate run-time estimates for the switch 

operator, allow faster detection of sub-optimal plans, and faster convergence to the optimal plan. 

However, our modifications of join operators are guaranteed to produce a true random sample of the join 

only in certain situations. In addition, although we suggested some ways to propagate tuple random 

samples across operators that take advantage of ordered tuple streams, this issue was not addressed in this 

work. Nevertheless, tuple random samples were generated and propagated at marginal costs during query 

execution for a variety of operators including some join operators. 

These three components of proactive re-optimization, robust plans, switchable plans, and efficient 

run-time statistics estimation through propagation of tuple random samples, were implemented in the 

open source database Predator in a prototype called Rio. Rio was compared with previous reactive re-

optimization approaches and with traditional non-adaptive approaches. Rio proved to be less likely to 
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start with a risky plan, faster to detect sub-optimalities, converged to the optimal plan in fewer steps, and 

showed total execution times up to three times faster than the reactive re-optimization approach. 
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CHAPTER 4 

ADAPTIVE AND ROBUST QUERY PROCESSING WITH 

SHARP 
This chapter describes SHARP, a new multi-join, adaptive, relational operator that joins three or more 

relations of a star-join. SHARP reduces the possible impact of optimizer mistakes by determining which 

plan to execute independently of optimization estimates. During normal query processing, SHARP 

collects statistics, and by using a combination of late-binding plan decisions and tuple routing strategies, 

it is able to change join order and table access methods. Unlike previous tuple routing operators used for 

in-memory stream processing, SHARP was designed to process local relations with sizes much larger 

than available memory. 

4.1. Introduction 

As described in Chapter 1, database optimizers cost and choose query plans as if they have precise 

information about data distributions. However, that is rarely the case. When statistics are not available in 

the catalog, the optimizer estimates them by assuming that some data distributions are uniform or 

independent, by using a combination of other (possibly estimated) statistics, or even by using default 

values [79]. These estimates may contain errors that grow exponentially with the number of estimated 

statistics derived from other estimated statistics [51] and the chosen plans may be sub-optimal by several 

orders of magnitude [63]. Having more information in the catalog (e.g., histograms [70]) reduces the 

problem, but the information needed to correctly cost all possible query plans is likely to increase 

exponentially as datasets sizes grow, as queries become larger, and as query languages become more 

complex. If that is the case, then database optimizers may have insufficient information to choose good, 
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non-adaptive query plans for all queries. Instead, decisions about which query plan to run may have to be 

made at run-time–using adaptive operators and/or late binding decisions–after some of the data is 

observed. 

One AQP approach is proactive re-optimization, examplified by the Rio prototyped described in the 

previous chapter. However, in spite of all its benefits, Rio required substantial changes to the query 

optimization and query execution modules including small modifications in all operators to generate or 

propagate tuple random samples. Rio is able to take corrective actions and yet avoid losing work but only 

in the presence of switchable plans–sets of plans that share a common execution prefix. However, it is not 

clear if switchable plans can be found for complex queries prone to optimizer mistakes. In addition, 

switchable plans cannot correct sub-optimal join orders, a common optimizer mistake. 

By contrast, in this chapter we propose SHARP10, an AQP strategy fundamentally different from Rio. 

The proposed SHARP operator is able to correct optimizer mistakes leading to the execution of sub-

optimal operators and sub-optimal join orders. In addition, SHARP encapsulates almost all AQP changes 

needed; the remaining query processing engine is largely unaffected. 

However, instead of executing arbitrarily query plans, SHARP is an adaptive, relational operator for 

processing star-joins with three or more relations. In addition, instead of being able to preempt execution 

and re-invoke optimization at any moment, SHARP adopts a two-step adaptive approach. First, run-time 

late-binding decisions determine the driving relation–the first relation to be read and the “outer side” of 

subsequent joins. Second, tuple routing continuously potentially changes the join order within the orders 

available after the driving relation was fixed. 

Note that, although tuple routing has been previously used mainly for in-memory data processing, 

SHARP does not keep all the joins completely in memory. This allows SHARP to have both a smaller 
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memory footprint than other adaptive operators [32, 90], and to have an efficient second pass to process 

relations much larger than available memory. 

4.1.1. Contributions and Outline 

The main contributions of this chapter are the following: 

• In Section 4.3.1, we introduce SHARP, a new, multi-join, adaptive, operator to process star-joins. 

• We show that tuple routing policies used in data stream systems can be used in traditional databases 

processing relations larger than memory. We also provide the first apples-to-apples comparison of 

three tuple routing policies [5, 8, 29] in the same system. These policies are described in Section 

4.3.2. 

• We propose a series of late-binding decisions that can opportunistically change the query plan at run-

time to improve performance. These decisions, described in Section 4.3.3, are taken after SHARP has 

seen some tuples, but before deciding on the final execution plan. 

• We propose a new multi-join second-stage processing algorithm in Section 4.3.4. This algorithm 

shows good improvements over alternative techniques and its performance is insensitive to optimizer 

mistakes. 

• As described in Section 4.4, we implement and evaluate a prototype implementation of SHARP in 

Predator [81]. The results show good performance improvements over plans not using SHARP. 

4.2. Eddies and MJoins 

The operators most related to SHARP are the Eddy [5] and the MJoin [90], both multi-join adaptive 

operators using tuple routing. They are described here to provide context for the SHARP contributions in 

the next Section. Other related work appears in Section 4.5. 
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4.2.1. Terminology 

For an operator Op  joining two or more relations, we say relation B is a build relation when tuples from 

that relation are inserted into some lookup structure (e.g., hash tables). We say relation D drives Op , or is 

a driving (or probing ) relation for Op , if each input tuple t1 coming from D probes the build lookup 

structures of Op  and potentially produces output tuples, or schedules t1 for second-stage processing, 

before any other tuple t2 from D is processed11. A relation may be simultaneously a build and driving 

relation. In the figures, driving relations are marked with arrowed lines and build relations are marked 

with dotted lines. 

4.2.2. The Eddy 

As described in Section 2.1.1, the Eddy [5] is an operator that routes tuples through a pool of operators 

until they are processed by all operators or are dropped along the way. The Eddy continuously observes 

the performance of the other operators and routes tuples to the most efficient operator available. The Eddy 

adapts its routing decisions as the performance of the other operators change, possibly sending different 

tuples through different routes throughout the life of a query. (However, at any single moment, most 

tuples follow the same route.) The ability to efficiently change routes (i.e., query plans) relies on 

operators with moments of symmetry [5], moments after which joins can be reordered. The symmetric 

hash join (SHJ) [91], typically used with Eddies, is an operator with frequent moments of symmetry. Each 

SHJ consists of two in-memory hash tables12, one for each relation being joined; tuples from one relation 

build into its hash table and probe the other. An Eddy with SHJs can then execute several plans, 

depending on the tuple source and routing policy. For example, the Eddy in Figure 33b executes 

                                                   

 

11 For example, in a nested-loops join operator the left input is the driving source, and in a hybrid hash join operator 
the right input is the driving source. 

12 Each one of the two hash-tables that composes a SHJ is called a SteM in the Eddies nomenclature [74]. 
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R aS bT by sending R tuples to first probe hash table S.a and then probe T.b, T tuples first probe S.b 

and then R.a, and S tuples have two options: either they first probe T.b and then R.a, or first they probe 

R.a and then T.b (hash tables are represented as grey rectangles in Figure 33). This design, albeit 

providing very adaptive plans, introduces a considerable overhead [29]: it requires maintaining two hash 

tables per join and requires that all joins be completely and simultaneously in memory (e.g., the Eddy of 

Figure 33b needs to maintain the four hash tables, R.a, S.a, S.b, and T.b in memory). Although the Eddy 

has the potential to join any number of relations in any order, its memory limitations restrict the Eddy for 

in-memory processing of data streams (possibly infinite, window-bounded, remote tuple sources that 

deliver tuples at unpredictable and bursty rates). 

 

 
Figure 33 – SHARP, Eddy, and MJoin processing R S T 

4.2.3. The MJoin 

The MJoin [90] is a completely symmetric multi-way data stream join operator, with one hash table per 

data stream. As with the Eddy using SHJs, tuples from a particular source build on that source’s hash 

table and probe the others. The MJoin uses fewer hash tables than the Eddy because it assumes that a data 

stream uses the same joining attribute for the all joins (see Figure 33c). This assumption also allows more 

join orders in the MJoin than in the Eddy. For example, the MJoin of Figure 33b can process any of the 
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six join orders (RST, RTS, SRT, STR, TRS, and TSR), being restricted only by the incoming tuple 

source. 

The important contributions of MJoins are i) producing tuples sooner than a tree of binary non-

blocking join operators (e.g., SHJs), ii) extending the streaming behavior of SHJs to allow memory 

overflow, and iii) providing a rate-based cost model of the data stream join problem it addresses. 

In contrast, we address the problem of joining local relations. Our goal is to execute plans that are 

insensitive to optimizer mistakes and our evaluation metric is time to completion. Other differences 

between the MJoin and SHARP are: the MJoin does not redistribute memory dynamically between joins, 

requires more memory then SHARP, does not evaluate routing policies, and, for the second-pass, assumes 

that all relations join on the same attribute. 

4.3. SHARP 

SHARP is an operator that keeps the inexpensive [29], tuple-routing, run-time adaptivity of the Eddy 

without incurring the overhead of SHJs [29] and without the requirement that all joins fit completely in 

memory. The trade-off is that, while Eddies and MJoins can process arbitrary plans, SHARP processes 

only star-joins and segments of linear-joins as shown in Figure 34. In spite of that, SHARP still has the 

potential to adaptively decide at run-time which join order to use. In addition to reducing memory usage, 

not using SHJs also allowed the development of a new technique to process joins between relations much 

larger than memory. 
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Figure 34 – SHARPs processing a star-join and a linear-join 
 

SHARP’s functionality is described as follows. Section 4.3.1 describes the in-memory behavior of 

SHARP and minor multi-join improvements. Section 4.3.2 describes three tuple routing techniques 

implemented in SHARP. Section 4.3.3 introduces late-binding decisions that allow SHARP to change the 

query plan before tuple routing starts. Then, Section 4.3.4 describes how SHARP processes relations 

larger than memory. Finally, Section 4.3.5 summarizes SHARP and compares it with Eddies and MJoins. 

4.3.1. In-Memory Processing 

When a SHARP joins n relations, one relation is the single driving relation and all other n-1 relations are 

build relations. SHARP starts by reading tuples from the build relations and creates an in-memory hash 

table for each one13. (Processing of build relations bigger than available memory is described in Section 

4.3.4) Then, SHARP reads tuples from the driving relation, probes the in-memory build hash tables and 

outputs join results. Figure 33 (in page 84) shows a SHARP joining R aS bT, where R and T are the 

                                                   

 

13 An alternative to create an in-memory hash table for each build relation is to use, previously built indexes on the 
build relations. Depending on the number of driving tables and/or the selectivities of the joins, this alternative 
could be more effective then creating the in-memory hash tables. 
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build relations and S is the driving relation. Tuples from the driving relation–henceforth called driving 

tuples –probe the build hash tables in an order specified by an adaptive tuple routing policy, as described 

in Section 4.3.2. 

Note that since driving tuples probe the build hash tables one by one, at any single moment, SHARP 

executes a linear-join plan; i.e., bushy-tree plans are never executed.  

4.3.1.1. Adaptive Redistribution of Memory. 

In SHARP, each build hash table is given a memory budget. If the total build size is larger than the 

budgeted amount, then the hash table must write hash partitions to disk for second-stage processing. 

However, before writing them to disk, SHARP first loads the remaining build tables into memory until 

they either consume their entire memory budget or load completely. If any budget is underutilized, 

SHARP reassigns the available memory to the yet to finish build hash tables. In contrast, the process of 

redistributing memory across joins is non-trivial for tree-shaped execution plans of binary operators. The 

process is more difficult because operators lower in the tree cannot obtain excess memory from operators 

higher in the tree as they have not begun execution. 

Note that many memory redistribution policies are possible. For simplicity, SHARP assigns all 

unused build memory to the first hash table build that did not fit its budget. If that build completes 

without using all the newly assigned extra memory, SHARP further reassigns it to the next yet to finish 

build and so on. 

4.3.1.2. Multi-Join Optimizations. 

SHARP takes advantage of its multi-join nature to obtain two performance benefits. First, SHARP avoids 

creating some intermediate results: when a tuple s from driving relation S, probes build relation R and 

finds a matching tuple r, the resulting rs tuple is not generated. Instead, SHARP (like the Eddy’s 

implementation in TelegraphCQ [21]) merely keeps a pointer to r and proceeds to probe the other build 
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relation T using tuple s. Then, an rst intermediate tuple is generated only if a matching tuple t of T is 

found. If the probe on T fails, no intermediate tuple is ever generated. 

Another benefit is the reduction of getNext calls. Consider a traditional plan, using a binary tree of 

hash joins. Assume tuple s from S probes operator Op 1 (the in-memory build hash table for R) and gets a 

first matching tuple r1. The resulting intermediate join tuple sr1 is returned to Op 2 before any more calls 

are made to Op 1. Even if the sr1 probe on Op 2 fails, the iterator model will try and get a new tuple from 

Op 1, r2. The new intermediate tuple sr2 will also probe Op 2 and fail because it is using the same s 

component that failed the previous probe on Op 2; see Figure 35. In constrast, when using a SHARP, if a 

driving tuple probes a build hash table and returns no matches, then any outstanding open probes on other 

build hash tables are closed and spurious getNext calls are avoided. 

These two factors explain why SHARP shows a small performance advantage over trees of binary 

operators, even in scenarios where its adaptive mechanisms provide no benefit. 

4.3.2. Adaptive Tuple Routing Strategies Used 

In SHARP, we implemented three routing policies adapted from three previous proposals [5, 29, 8]. The 

first routing policy, which we call Continuous or simply Cont, is a modification on the original routing 

policy in the first Eddies paper [5]: a probabilistic routing mechanism based on lottery scheduling is used 

to determine where to route tuples next and routing decisions happen each time an operator finishes 

processing one tuple. The variation is that in Cont, we make a routing plan once per each driving tuple, 

instead of once per probe. In addition, instead of lottery scheduling, we route every r-th tuple to a random 

route. This makes the exploration mechanism independent of the currently estimated best route. For all 

other tuples Cont uses the estimated best routing order. Also, as in the Eddies implementation in 

TelegraphCQ [21], the selectivity of operators (the join selectivity of build hash tables in our case) is 

continuously updated after each probe and dropped tuples do not affect the selectivity of operators they do 

not probe.  
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Figure 35 - Tuple s from S probes Op 1 and Op 2 in iterator model 
 

Continuous-Batch, or simply ContB, the second tuple routing policy implemented, is taken from 

Deshpande [29]: instead of computing a routing order once per driving tuple, routing orders are computed 

once per batches of tuples. Policies Cont and ContB minimize the overhead of gathering statistics–tuples 

are not used to explore operators after being dropped–but they provide no optimality guarantees on the 

chosen routes: they may take too long to discover new optimal routes or may never discover them. 

An alternative is A-greedy, a routing policy that uses a small percentage of tuples, called profile 

tuples , to keep a profile window : a moving window of pass/fail bits for each operator [8]. Because the 
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profile window contains information even from otherwise dropped tuples, A-greedy can estimate the 

selectivities of operators even for routes that it never executes. This information is then used to provide 

strong guarantees on the optimality of routes that A-greedy selects [8]. However, A-greedy has a higher 

state update overhead then Cont or ContB and that is why it collects information just after every profile 

tuple, instead of after every tuple. A-greedy, developed for data stream scenarios where data and system 

characteristics are expected to change very quickly, computes a new routing order after every profile 

tuple. Since SHARP is processing local relations instead of data streams, and to lower the overhead of 

computing routes and to produce the first routing order faster, our implementation of A-greedy, called 

Profile, uses the first n out of every p  tuples as profile tuples. Thus, Profile, the third tuple routing policy 

implemented in SHARP, computes a new routing order after every n+K*p  tuples, with K≥0, and uses that 

routing order for the next p  driving tuples. Table 6 summarizes the routing policies implemented. 

 

Table 6 – Routing policies implemented, p>n>r, K∈∈∈∈  
Routing  
Policy 

New Route Update State Exploration Optimality 
Guarantees 

Cont 
After every 

tuple 
Every tuple 

Random route every r 
tuples 

None 

ContB 
After n*K 

tuples 
Every tuple 

Random route every r 
tuples 

None 

Profile 
After n+K*p  

tuples 
n out of every p  

tuples 

n out of every p  tuples 
probe all builds, even if 

dropped 

Greedy 4-
approximation 
algorithm [8] 

4.3.3. Late Binding Decisions 

In this Section we describe a series of late binding decisions–decisions made at run-time after some tuples 

are observed–that change the structure of the query plan executed by SHARP. 

The late binding decisions can be made after SHARP loads any build relation, Bi, into hash table ti, 

with i=1..n, where n is number of builds. While it creates ti, SHARP also constructs a histogram hi on 

attribute Bi.d, the attribute of Bi that joins with the driving relation. If ti fits in memory, then SHARP uses 

the histogram created, consults the catalog and estimates how many driving tuples, di, would join with Bi. 
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At this point, SHARP can change the query plan in three different ways, summarized in Table 7 and 

described next, or it can continue the query processing as described in Section 4.3.1. We note that 

although the late binding decisions can happen after any build table is loaded, in this first prototype, they 

will happen only once per query: i.e., if SHARP makes late binding decisions after the first build is 

loaded, then it will not make more late binding decisions after any other build is loaded. 

Table 7 – Summary of late binding decisions 
Decision Type of D Read D Access D Buffer D? 

Uinl Base After Bn Index No (stream) 
Uibf Base After Bi Index Yes 
Ufbf Base, intermediate After Bi Unchanged Yes 

4.3.3.1. Using an Indexed Nested-Loop (Uinl). 

If the driving relation D is a base relation with an index, idxi, on the attribute(s) D.ai of D that join with 

Bi.d, then, depending on di, on the costs of random and sequential reads, and on properties of index idxi, it 

may be better to use an indexed nested-loop to access the driving tuples–with hash table ti and index idxi 

as the outer and inner components of the loop–than to use a file scan on D. At this point (Figure 36a), 

SHARP makes a cost-based decision14. If the file scan is the better access for D, then SHARP does not 

change the query plan (Figure 36b). Otherwise, driving tuples will be obtained using the indexed nested-

loop (Figure 36c),. Note that this change effectively makes Bi the driving relation. In addition, if the 

indexed nested-loop access is used, then the late binding decision “Using INL and Bloom-Filters”, below, 

is considered before any other build relation is processed. 

                                                   

 

14 The cost-based decision is similar to the access path selection that happens at optimization. However, during 
optimization the statistics needed to cost the indexed-nested loop plan may be missing. On the other hand, SHARP 
computes part of the statistics it needs from observed tuples and is thus less likely to produce incorrect estimates. 
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Figure 36 – Late binding decision Using-INL 

4.3.3.2. Using INL and Bloom-Filters (Uibf). 

Given di and the average size of a driving tuple, SHARP computes the total expected size of those di 

tuples, Ti. If Ti is less than the budget given to any build hash table, then SHARP reads all the di driving 

tuples into memory before proceeding to read other builds (Figure 37, ). For each driving tuple it loads 

into memory, SHARP reads attribute aj that joins with build relation Bj and updates a bloom filter bfj, for 

j=1..n, j≠i (Figure 37, ). Each bloom filter, bfj, is a bitmap of length k [16]. When driving tuples are 

read, attribute aj is hashed to a value between 0 and k-1, and the corresponding bit in bfj is set. Later, 

when the other build relations are read, for each tuple, SHARP hashes its join attribute, Bj.d, with the hash 

function used for bfj. If the bit corresponding to that value in bfj is 0, then the tuple is dropped, otherwise 

the tuple is processed normally (Figure 37, ). Filtering Bi with its corresponding bloom-filter bfi should 

decrease ti considerably. Finally, driving tuples in di continue their path and probe the already filtered in-

memory hash tables ti. 
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Figure 37 – Late binding decision Using Bloom Filters 

4.3.3.3. Using Driving Relation Pre-Filtering and Bloom Filters (Ufbf). 

As described in Section 4.3.4, SHARP’s if any build relation requires a second pass then the driving 

relation requires a second pass also. As such, filtering the build relations with bloom-filters may improve 

performance significantly because it could save both the builds and the driving relations from spilling to 

disk. Thus, even if SHARP decides not to use an indexed nested-loop to retrieve the driving tuples, it will 

still check, after building any ti, if the Ti (the size of all tuples of D estimated to match ti) fits the budget 

given to build hash tables. If it does, then, as in the case Uibf above, SHARP reads driving tuples into 

memory ahead of time. Each driving tuple read probes ti and if it finds no match, it is dropped. Otherwise, 

it is kept in an in-memory buffer and it is used to update bloom-filters on the other build relations. Then, 

build relations are loaded into memory while being filtered by the bloom-filters. Finally, driving tuples 

are read from the in-memory buffer, and used to probe the builds. 

4.3.4. Second-Stage Processing 

Even after redistributing memory across joins (Section 4.3.1) and filtering tables using the late binding 

decisions (Section 4.3.3) it is still possible that one or more relations do not fit in memory. Those portions 

will have to be temporarily written to disk and processed at a later stage, typically referred to as second-

stage. This Section describes SHARP’s second-stage processing algorithms. 
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4.3.4.1. Split Tables into Partitions and Portions. 

When SHARP reads build relation Bi, it creates an in-memory hash table ti with p  partitions. If there is no 

more memory space for Bi tuples, one in-memory partition of ti is selected, its current records are moved 

to a temporary file on disk, the partition is marked as frozen, and SHARP continues loading records from 

Bi. Future records that hash to frozen partitions are held in very small memory buffers and flushed to disk 

when the buffers fill up. Then, for each ti, the partitions are assigned to sets of consecutive partitions 

called portions , such that the size of each portion does not exceed available memory. Figure 38a shows 

the state of a SHARP after it has completed the build stage. In the example, build hash table t1 has four 

portions. Portion 0 is in memory, and the remaining three portions contain the frozen partitions. 

After the builds are partitioned, SHARP reads the driving table and partitions it along all n join 

attributes with the build relations. This multi-dimensional split of D is shown in Figure 38b for the case of 

two build relations. Note that the split of D is done in terms of portions of the ti, instead of partitions of ti. 

To split D, incoming driving tuples are routed to some ti for probing (according to SHARP’s routing 

policy as described in Section 4.3.2). When SHARP probes ti with driving tuple dt, using join attribute 

dt.ai, it gets one of three results: “match”, “fail”, or ti(dt.ai), the number of the in-disk partition of ti that 

dt.ai hashes to. We note that a “match” also includes the set of pointers to the dt matching tuples in ti and 

implicitly implies that portion ti(dt.ai) is in memory (i.e., ti(dt.ai)=0). 

If any ti probe returns “fail”, tuple dt is dropped; otherwise the tuple is routed to another hash table. If 

dt is not dropped, there are three cases to consider, corresponding to the dotted, white, and gray portions 

of D in Figure 38b: 

If all ti probes return “match” (dt belongs to the dotted portion of D), then the resulting one or more 

join tuples are output by SHARP and not written for second-stage processing. 

If all ti(dt.ai)>0 (dt belongs to a white portion of D), then it is not known if tuple dt joins or not with 

any of the builds. Tuple dt is then written to a temporary file for second-stage processing. 
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If at least one, but not all tables, ti returned “match” (ti(dt.ai)=0) then driving tuples dt belongs to a 

grey portion of D. In this situation, dt tuples can be processed in two ways: Save Intermediate Tuples  

(SIT) or Save Driving Tuples  (SDT). In option SIT, SHARP writes to temporary files the intermediate join 

between dt and its matching tuples (from the hash tables that returned “match”). In option SDT SHARP 

writes just dt to temporarily files and discards any matching tuples, which are then obtained again during 

the second-stage processing of dt. 

When option SIT is used some D portions (marked gray in Figure 38b) will contain wider, 

intermediate join tuples, but the probing work will not be lost. When option SDT is used, all D portions 

contain just driving tuples, but the probing work will be lost and will have to be repeated later by 

reloading portions of build tables from disk. Depending on the relative sizes of driving tuples and their 

matching records, and on the selectivity of the joins, either option can be better. Furthermore, the choice 

between SIT and SDT made for driving tuples for which ti(dt.ai)=0 can be different of the choices 

between SIT and SDT for tuples for which tj(dt.aj)=0, j≠i. For example, in Figure 38b, choice SIT can be 

used for D portions marked 4, 6 and 8, and option SDT can be used for D portions 11 and 20. To simplify 

the second-stage algorithm, the prototype implementation of SHARP always uses option SDT. 



96 

 

Figure 38 – Second stage processing 

4.3.4.2. Second-stage Joins. 

After the multi-dimensional split of D is complete, SHARP begins the second-stage of the join. First 

SHARP orders the build hash tables based on the ascending number of portions and, if there is a tie, based 

on their descending total size. This order is represented by O(i), such that O(i) represents the i-th build hash 

table in the order. In the example of Figure 38, O(1)=t2 and O(2)=t1 because t2 has just three portions while 

t1 has four portions. Assume also that |O(i)| represents the number of portions in hash table O(i) and that 

O(i).load(k) loads portion k, with k<|O(i)| of hash table O(i) into memory, deleting from memory the current 
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in-memory portion of O(i) and that function Dportion(i1, i2, …, in) returns the portion of D that 

corresponds to the i1-th portion of O(1), to the i2-th portion of O(2), …, and to the in-th portion of O(n). In the 

example of Figure 38, Dportion(1,2) corresponds to the portion of D marked with a circle. 

Then, as shown in the pseudo-code of Figure 39, SHARP executes a series of loops, loading portions 

of O(1) to O(n) into memory, getting tuples from the corresponding D portion, probing the in-memory 

portions of O(1) to O(n) and outputting matches. This algorithm loads the on-disk portions of D one time 

and loads the in-disk portions of O(i) a number of times equal to ∏j=1..i-1|O(j)|. The numbers in Figure 38b 

represent the order in which portions of the example of Figure 38a are loaded. 

In contrast, a right deep tree of binary Dynamic Hash Joins (DHJ) [68], reads each input relation just 

once, but may have to save to and read from disk (during the second-stage processing) the intermediate 

results multiple times. For example, if no Bi, i=1,2,3 fits completely in memory, the execution plan 

corresponding to the right-deep tree of Figure 40 will need to do a second-pass for each of the joins, 

saving to and reading from disk part of the intermediate results corresponding to D B1, D B1 B2, and 

D B1 B2 B3. To minimize the size of those intermediate results, an accurate optimizer estimates the 

join selectivities between D and Bi, and other things being equal, sets D’s join order to be from the most 

to the least selective Bi. However, join selectivities are hard to estimate correctly and an optimizer may 

choose an incorrect join order which negatively affects performance. 

On the other hand, the performance of SHARP depends only very slightly on the join order defined 

by the optimizer. If the builds fit in memory, the join order is determined by an adaptive tuple routing 

policy at run-time. If the builds do not fit in memory, the cost of SHARP’s second-stage depends mainly 

on the order O(i), but this order is determined only after all build tuples are observed; no estimates are 

needed. However, the performance of SHARP’s second-stage suffers from the “curse of dimensionality”: 

if several build relations are much larger than memory, then the repeated readings of the inner most build, 

O(n), (which is read ∏i=1..n-1|O(i)| times) may dominate the total cost of the join. In Section 4.4 we explore 
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how the available memory affects the performance of SHARP. It is also shown that even with an amount 

of available memory equal to just 10% the size of the largest build table, SHARP’s second-stage can still 

outperform other methods. 

 

for (i1=0; i1<|O(1)|, O(1).load(i1); i1++) 
  for (i2=0; i2<|O(2)|, O(2).load(i2); i2++) 
    … 
      for (in=0; in<|O(n)|, O(n).load(in); in++) 
        for all tuples dt in Dportion(i1, i2, …, in) 
          dt probes in-memory portions of O(i), …, O(n); 
          output matches between dt and O(i), …, O(n); 
        end for; 
      end for; 
    … 
  end for; 
end for; 

Figure 39 – Second-stage pseudo code 
 

 

Figure 40 – Right-deep tree of DHJs 
 

4.3.5. Summary of SHARP 

SHARP does not use symmetry plans (like the MJoin) or symmetric operators (like the Eddy).and instead 

of allowing all relations to be used as builds or probes, the optimizer chooses one single driving relation. 

Since only build relations have hash tables, this design reduces the memory footprint of a SHARP to 
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essentially half of what an Eddy and its SHJs would consume. The routing policy is then responsible for 

determining the order with which driving tuples probe the build sources. 

By having a single driving relation, routing policies in SHARP have fewer routes to choose from than 

in Eddies (because routing decisions affect only tuples coming from driving relations). However, because 

SHARP is a pull-based operator–in charge of obtaining new tuples from its sources–we were able to 

design a series of late binding decisions that, in some cases, are able to promote any of the builds to be the 

driving relation before the tuple routing stage starts. 

In short, an Eddy is able to change execution from any route to any other route at any stage of 

execution, while a SHARP first determines which source is the driving relation and then continuously 

adapts the sequence in which the driving tuples probe the build sources. With this two-step adaptive 

process, SHARP still has the potential to adaptively decide at run-time which one of all15 possible join 

orders to use but with a much smaller memory footprint. 

4.4. Experimental Evaluation 

We now describe an experimental evaluation of the query processing techniques described for SHARP 

using a prototype implementation in Predator [81]. All results were obtained using a dedicated machine 

with 512 MB of main memory and a buffer pool of 2000 16-Kbyte pages (hash table builds are kept 

outside the buffer pool). Results are averages of three cold runs. 

We note that the first experimental results (Section 4.4.2) do not evaluate any adaptivity feature of 

SHARP and exhibit only marginal improvements of a SHARP over competing plans. The purpose of that 

section, though, is twofold. First, we want to show that, not only is the adaptivity overhead of SHARP 

very low, but also, even in scenarios where the adaptivity yields no benefit, SHARP still provides a 

                                                   

 

15 Ignoring join orders using Cartesian products. 
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marginal performance advantage due to its multi-join nature. Second, the adaptivity benefits of SHARP 

compound these initial multi-join improvements. 

4.4.1. Datasets 

The SHARP prototype was evaluated using two datasets, Star and TPCH, described below. Star, a 

synthetic dataset we created, allowed us to more easily explore different selectivities, join selectivities and 

table sizes. TPCH is used to evaluate SHARP’s adaptivity and robustness in a widely known benchmark: 

• Star: We created a synthetic benchmark, Star, based on a star schema, with a central fact table F, and 

four dimension tables, A, B, C, and D. F has 1,000,000 152-byte records and A, B, C, and D have 

100,000 40-byte records. Our experiments use 2-way, 3-way, and 4-way join queries of the following 

form: 

 SELECT * 
 FROM F, A, B, …, D 
 WHERE F.fkdA = A.pk 
 AND F.fkdB = B.pk 
 … 
 AND F.fkdD = D.pk 
 AND σ1(A) 
 AND σ2(B) 
    … 
 AND σ4(C); 

Where σi, i=1,..,4 represent selection predicates with selectivities between 0% and 100%. 

• TPC-H: TPC-H is the decision support benchmark from the Transaction Processing Performance 

Council [85]. We used tables lineitem (L), orders (O), part (P), customer (C), and supplier (S), with 

scale size 1. We included an extra column in L (a foreign-key to C) to allow star-schema queries 

using one central fact table (L) and up to four dimension tables (O, P, C, and S). Our queries join 

either all tables, or all except O (the largest dimension), or all except S (the smallest dimension), and 

we use varying selection predicates on the dimension tables. 
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4.4.2. Evaluating Multi-Join Improvements 

As described in Section 4.3.1, SHARP has two benefits over plans composed of a tree of binary 

operators: it can avoid unnecessary intermediate tuple generation and unnecessary getNext calls. We note 

that these benefits are not due to any adaptive feature of SHARP. Instead, they are a positive side effect of 

the multi-join nature of SHARP. 

In the results shown in Figure 42, table F from schema Star, was joined with two, three, and four 

dimension tables. All the dimension tables fit in memory, and all join selectivities16 are 100%. We 

compare three execution plans: SHARP, SHARP-IR, and RDH. SHARP-IR is a variation of SHARP that 

generates intermediate join tuples after each successful probe.  RDH is a plan composed of a right-deep 

tree of dynamic hash joins (DHJ) [68], with F as the rightmost table17 as shown in Figure 41. Both 

SHARP and SHARP-IR have their run-time statistics collection and adaptive routing policies turned off 

to ensure that the probing sequence is the same in all plans, and to ensure that we are measuring just the 

multi-join benefits. (The performance of routing policies in measured in Section 4.4.4.) All three plans 

use the same hash table implementation code. The benefit of avoiding intermediate results varies between 

5% and 15%. 

 

 

 

 

 

 

                                                   

 

16 We use the term join selectivity of a build table as the average number of returned records per probing record. 
17 The right-deep tree plan creates hash tables on the same relations and executes the same number of build and probe 

operations as SHARP. 
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Figure 41 – a) SHARP; b) RDH plan; c) LDH plan 
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Figure 42 – Avoiding intermediate results 
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Figure 43 – Avoiding getNext calls 

 

In a second experiment, we set the selectivity of the last join to 0% (e.g., for the case of three joins, 

100% of F tuples join with the first and second dimension, and 0% join with the third dimension). These 

contrived plans maximize the number of spurious getNext calls made by the RDH plan and give an upper 

bound on the benefit obtained by avoiding those calls. Figure 43 shows the results for SHARP, SHARP-

IR and RDH: SHARP is between 10% and 23% faster than RDH and SHARP-IR is around 5% faster than 

RDH. 

The results show that, even without taking advantage of adaptivity, a tuple routing operator can 

slightly outperform plans composed of a tree of binary operators. 

4.4.3. Redistributing Memory between Joins 

For each query, our system gives a pre-specified memory budget for each hash table used to implement 

hash joins. Traditionally, if building the hash table requires more memory space than the memory budget, 

some partitions would have to be written to disk and a second-pass on those partitions would be required. 

In addition, if the hash table requires less memory than the allocated budget, then the unused memory–

save some exceptions [28]–is not given to other operators. On the other hand, as described in Section 
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4.3.1, SHARP loads all its builds into memory before reading the driving relation and is therefore able to 

redistribute memory between different hash tables. 

To evaluate the impact of memory redistribution, table F was joined with selections σ1 and σ2 on 

tables A and B. The selections are such that the size of σ2(B), |σ2(B)|, is four times the size of σ1(A), 

|σ1(A)|, and (|σ1(A)|+|σ2(B)|)/2 is the memory budget for each one of the two hash tables. Thus, σ1(A) 

underutilizes its budget while σ2(B) overutilizes it, but on average both fit in memory. 

Four different plans were tested, for the four combinations of using SHARP and a RDH and of using 

two join orders, joining F with A first and then with B, or joining F with B first and then with A. Then, as 

shown in Figure 44, the size of the combined memory budget was varied from |σ1(A)|+|σ2(B)| 

(corresponds to 100%) to 2*|σ2(B)| (160%). 
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Figure 44 – Redistributing memory 

 

SHARP is able to take advantage of memory redistribution and avoid a second-stage for all amounts 

of memory tested. On the other hand, because the RDH executes a tree of independent operators, it does 

not redistribute memory amongst the operators. Thus, the RDH plan only avoids a second-pass in both 

operators when the budget per hash table is at least as large as the largest hash table. This happens only 
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for a combined memory budget of 2*|σ2(B)|, or 160% the size of the |σ1(A)|+|σ2(B)|. If more than 

2*|σ2(B)| of memory is available, the performance of all four plans remains unaffected. If less than 

|σ1(A)|+|σ2(B)| of memory is available, SHARP also needs a second-stage. Experiments showing the 

performance of the SHARP second-stage appear in Section 4.4.5. 

4.4.4. Comparing Routing Policies 

To compare the routing policies described in Section 4.3.2, table F was joined with two, three, and four 

dimension tables. In each query, the join selectivities were 100% for all joins except for one that was 

25%.  To highlight the impact of a good routing policy that quickly discovers sub-optimal plans, the 

initial default join order defined by the optimizer was sub-optimal, executing each of the 100% selectivity 

joins before the 25% selectivity join. 

The experiments explored two variables, the profiling overhead, and the (hash table) probing cost. A 

higher profiling overhead means that the routing policies spend more time exploring alternative routes, 

computing new optimal routes, and updating state. The profiling overhead was varied by setting the 

parameters of Table 6 (in Section 4.3.2) to the following values: 

• High Profiling Overhead: r=10, n=1000, p =10000 

• Low Profiling Overhead: r=50, n=200, p =10000 

 

Parameter r, which specifies how frequently the tuple routing policies Cont and ContB explore 

alternative routes, was set such that r=p/n  to ensure fairness in the comparison (the tuple routing policy 

Profile explores other routes for every n out of p  tuples). The probing cost was varied by artificially 

delaying the probe operation, such that, on average, high probing cost takes about four times longer than 

low probing cost. 

Figure 45 and Figure 46 show the results for the low profiling overhead cases for the three routing 

policies implemented, plus a trivial policy, Static, with no profiling overhead, which simply routes tuples 
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according to the join order defined by the optimizer. The higher profiling overhead cases are not shown 

because they are very similar to these. As expected, a higher probing cost (Figure 46) affects all policies 

negatively, but affects the Static policy more than the others because the adaptive policies, detect and 

avoid the sub-optimal plan while Static continues executing the sub-optimal plan where it performs extra 

probing operations 

The Profile policy was always the best of the three adaptive policies, except when both the profiling 

overhead and probing costs were high (graph not shown). However, even in this case, it was between 25% 

and 33% better than the Static policy. On average, we found that, Profile outperformed Static by 24%, 

ContB outperformed Static by 22%, and Cont outperformed Static by 16%. 
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Figure 45 – Low profiling overhead, low probing cost 
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Figure 46 – Low profiling overhead, high probing cost 

4.4.5. Evaluating the Second-Stage 

To evaluate the performance of the second-stage processing of SHARP, we joined tables F, A, and B in 

one query and tables F, A, B, C, and D in another query. (Further experiments in the next two sections 

also evaluate the second-stage.) Note that SHARP only joins relations along existent join predicates. 

Thus, since all join predicates join F with one different build (F A, F B, F C, and F D), SHARP will 

never perform cross-products (e.g., it will not do A B) and therefore, it will never execute bushy plans 

either (e.g., (F A) (B C)). 

We do not compare SHARP against bushy plans because, although they are optimal for some queries 

and datasets, they were never optimal for the queries we tested. SHARP was compared with plans RDH 

and LDH (see Figure 41 in page 102) which, like SHARP, are linear-join plans. 

The amount of memory was varied such that between 10% and 100% of tables A and B in the first 

query, and A, B, C, and D in the second would fit in memory. We note that both SHARP and RDH are 

non-blocking, and therefore, their execution pipeline uses the in-memory parts of all the build hash tables 

simultaneously (see Figure 41b showing RDH’s execution pipeline in gray). In contrast, the execution 

pipeline of the LDH plan, at any moment only manipulates two hash tables (see Figure 41c). Thus, to 
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ensure the amount of total memory per plan was the same, hash tables in the LDH plan were allowed 

twice the memory of hash tables in SHARP and the RDH plans. The results are shown in Figure 47 and 

Figure 48. 

Except when the amount of memory is very limited, SHARP outperforms the other two plans. If 

several build relations are much larger than memory, then the innermost build will be read many times 

and the performance of SHARP degrades quickly. On the other hand, as shown in Section 4.4.7, if just 

one or two builds are much larger than memory, and the remaining builds either fit in memory or are not 

much larger than memory, then the performance of SHARP degrades much more slowly. 

To address the exponential degradation problem, the SHARP could convert itself to a RDH plan: after 

all the builds are read and partitioned, SHARP can easily determine if its performance will degrade 

quickly or not. At this point, the conversion to a RDH plan is essentially free; all dimension tables are 

already partitioned with the right hash functions, and no work is lost. We leave this late binding decision 

as future work. 
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Figure 47 – Evaluating second-stage, 2 joins 
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Figure 48 – Evaluating second-stage, 4 joins 
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4.4.6. Evaluating Late Binding Decisions 

To evaluate the effectiveness of the late binding decisions proposed in Section 4.3.3, table F was joined 

with dimension tables A and B in one query and with dimension tables A, B, C, and D in another. Both 

queries were run with unlimited memory and with memory limited to 25% the size of the dimension 

tables. A selection predicate σ was applied to table A and the selectivity of σ was varied from 0.01% to 

100%. The execution plan for four joins is shown in Figure 49. Three other plans were also considered, 

RDH, LDH, and INL. Plans RDH and LDH are similar to the plans b) and c) of Figure 41, but with 

predicate σ applied on table A. Plan INL is a tree of binary indexed-nested loop joins; i.e., with the same 

shape as plan LDH, but with the DHJ operators replaced by indexed-nested loop operators. 

The three late binding decisions under consideration are Using an Indexed Nested-Loop (Uinl) to 

obtain the driving tuples, Using Indexed-Nested Loops and Bloom-Filters (Uibf), and Using Driving 

Relation Pre-Filtering and Bloom Filters (Ufbf). Ufbf was implemented as follows: instead of consulting 

the catalog to estimate the number of driving tuples matching an in-memory build table–as described in 

Section 4.3.3–our prototype implementation executes Ufbf every time a build relation had less than 2000 

tuples. To simulate the cost of a SHARP using late binding decisions Uinl and Uibf, the plan of Figure 

49b was forced and for each point in the graphs, the best time for the plans of Figure 49a and Figure 49b 

was chosen as being SHARP. 

Figure 50 measures the impact of the late binding decisions for the 4-join query with memory 

restricted to 25% the size of the builds, by comparing SHARP with SHARP-NLB, a version of SHARP 

where no late binding decisions are allowed. Figure 51 then compares SHARP with plans RDH, LDH and 

INL for the same query. Figure 52 shows the results for the 2-join query with memory equal to 100% the 

size of the builds (note that for this query, SHARP and RDH do not need a second-stage but LDH does). 

These figures show that SHARP is the best plan for a wide range of values of σ, showing the best results 

in all points of the graphs, except possibly in the range σ∈[0%, 0.5%] where the INL plan was sometimes 

better, or in the range σ∈[2%, 20%] where RDH was sometimes better. 
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Figure 49 – Plans used to evaluate late binding decisions 
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Figure 50 – Late binding evaluation: 4 joins; memory=25% size of builds 
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Figure 51 – Late binding evaluation: 4 joins; memory=25% size of builds 
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Figure 52 – Late binding decisions: 2 joins; memory=100% size of builds 
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In the range σ∈[0.01%, 0.1%], the size of σ(A) is so small that it is worthwhile to use late-binding 

decision Uibf. That is, after reading A tuples into memory, and after filtering them with σ, it is best to use 

them to lookup the driving tuples with an index then it is to read the driving tuples using a table scan on 

F. In addition, because the number of driving tuples matching those A tuples is also very small, it is 

worthwhile to read those few driving tuples into memory and create bloom filters on the builds yet to load 

instead of proceeding with the unfiltered load of build tables. 

In the range of σ from 0.1% to 2%, the number of σ(A) tuples was not low enough to use them to 

obtain driving tuples using an index, but it was still low enough to make late-binding decision Ufbf 

worthwhile. In that range, it is best to read A tuples into memory, filter them with σ, read and filter F 

tuples with the σ(A) tuples and create the bloom filters on the yet-to-load build tables than it is to proceed 

with the unfiltered load of build tables. 

Overall, Figure 50, Figure 51, and Figure 52 show that it is possible to construct robust query plans, 

that is, plans whose comparative performance is insensitive to optimizer estimates. In the example, 

regardless of the estimate the optimizer might have had about selection σ, executing SHARP would be a 

good decision: its performance is either optimal or close to optimal in all points in the graphs. 

4.4.7. Evaluating Second-Stage Insensitivity 

In order to further evaluate the performance of second-stage processing and robustness of SHARP in the 

presence of potentially incorrect join orders, SHARP was tested for queries 1, 2, and 3, and the selection 

predicates shown in Figure 53. Then the optimizer was altered to generate plans with a specific join order. 

Figure 54 shows the results of executing Query 1 using two join orders, LPCS (the best join order for 

RDH), and LCPS (the second best join order for RDH), and with 45MB and 15MB of available memory, 

for both SHARP and the RDH plan. (The LDH variant was always worse than RDH in this query.) 

For the same optimizer-specified join order, SHARP completes the query between 2.5 and 7.5 times 

faster than an equivalent RDH. The bulk of SHARP’s performance benefit comes from memory 
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redistribution and from the new second-stage processing technique. When there are 45MB of memory 

available, RDH allocates 15MB for each one of the three DHJ operators. This turns out to be a bad 

strategy: given the selectivities shown in Figure 53, for Query 1, the DHJs that process the join with S, C, 

and P would need 2.2MB, 9.2MB, and 33.2MB respectively to avoid writing records to disk. Thus, 

assigning 15MB to each DHJ operator implies that for one operator, the RDH plan will have to do a 

second-stage. On the other hand, SHARP–which redistributes memory across joins–is able to complete 

the joins in just one pass over the relations when 45MB are available. In this scenario, SHARP is between 

2.5 and 4.6 times faster than the RDH plan. 

When memory is limited to 15MB both the RDH and SHARP plans require a second-stage for 

relations C and P (and also for whichever intermediate relations are joining with C and P). Although both 

plans take significantly more time than in the previous scenario, the restricted memory affects RDH more 

than it affects SHARP. In fact, using the new second-stage processing technique, SHARP is now between 

3.6 and 7.5 times faster than RDH. 

 

 

 



115 

 

Figure 53 – Queries and predicate selectivities used in the TPC-H schema 
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Figure 54 – Execution of Query 1 
 

Query 1 

 SELECT * 
 FROM L, S, C, P 
 WHERE l_suppkey=s_suppkey 
 AND l_custkey=c_custkey 
 AND l_partkey=p_partkey 
 AND σ1(p_partkey) ←   75% 
 AND σ2(c_custkey) ←   25% 
 AND σ3(s_suppkey); ← 100% 

Query 2 

 SELECT * 
 FROM L, C, P, O 
 WHERE l_partkey=p_partkey 
 AND l_custkey=c_custkey 
 AND l_orderkey=o_orderkey 
 AND σ4(o_orderkey) ←  25% 
 AND σ5(p_partkey) ←  25% 
 AND σ6(c_custkey); ←  75% 

Query 3 

 SELECT * 
 FROM L, S, C, P, O 
 WHERE l_suppkey=s_suppkey 
 AND l_custkey=c_custkey 
 AND l_partkey=p_partkey 
 AND l_orderkey=o_orderkey 
 AND σ7(o_orderkey) ←  25% 
 AND σ8(p_partkey) ←  50% 
 AND σ9(c_custkey) ←  25% 
 AND σ10(s_suppkey); ← 100% 
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In addition, not only is SHARP superior to the RDH plan, its performance is also essentially 

independent of the join order specified by the optimizer. In fact, the order specified by the optimizer 

affects the SHARP plan in just two ways: 

• For the very first few driving tuples, before the first tuple route is computed, SHARP uses the join 

order specified by the optimizer as the default route. However, as soon as the routing policy produces 

its first route, the initial join order is forgotten.  

• When redistributing unused memory to hash tables, SHARP favors giving memory to hash tables 

belonging to joins that appear earlier in the optimizer specified join order. This is the reason join 

order LPCS yields better results than LCPS in the right side of Figure 54. 

 

The RDH plan requires 232MB to avoid second-stage processing in Query 2 and SHARP, taking 

advantage of memory redistribution, requires only 116MB to avoid second-stage processing for the same 

query. Query 2 was run with 150MB, 75MB and 30MB of total available memory. The results for 

different join orders for Query 2 with 30MB of memory appear in Figure 55. For Query 3 the RDH plan 

requires 309MB to avoid second-stage processing and SHARP requires 110MB. Query 3 was run with 

both 100MB and 40MB of total available memory. The results for different join orders for Query 3 with 

100MB of memory appear in Figure 56. In both cases, second-stage dominates the total execution time of 

the query. 

As shown in Figures 55 and 56, the cost executing the RDH plan depends on the join order specified 

by the optimizer. Thus, optimizer mistakes may greatly influence the total cost of the RDH plan. 

However, the second-stage of SHARP has two desirable properties: i) the cost of writing partitions to disk 

and the amount that is written is independent of the join order specified by the optimizer; and ii) the 

number of times each partition is read and the order when each partition is read is adaptively determined 

based on the observed sizes of builds, again, decisions independent of the optimizer. 
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For the queries tested, the plan with the worst join order using RDH can take twice as long as the plan 

with the best join order using RDH for the same query. In addition, across all experiments, RDH took, on 

average, twice as long as SHARP to complete execution. 

Note that the results from this section further validate the results of Section 4.4.5: the best join orders 

for the RDH plan take between 1 to 3 times longer than the best results for SHARP. However, in the 

presence of optimizer mistakes leading to sub-optimal join orders, using RDH can take up to 7.5 times 

longer than using the same join orders for SHARP. 

Finally, we created a variation of the TPC-H schema, which we call TPC-H-Thin, to explore how the 

width of the tuples affects SHARP’s relative performance. Each table in TPC-H-Thin is a projection of 

the corresponding table in TPC-H: table L contains only five integer columns, and tables O, P, C, and S 

contain only two integer columns. Queries 1, 2, and 3 were run again, but this time with much less 

available memory, such that not all build tables fit in memory. The results are similar to the ones shown 

in Figures 54, 55, and 56; SHARP is essentially insensitive to the join order specified by the optimizer 

while the RDH can be up to 3 times longer with one join order than another for the same query. 

Furthermore, for the queries we tested in TPC-H-Thin, RDH took, on average, 2.2 times longer than 

SHARP to complete execution. 
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Figure 55 – Execution of Query 2 
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Figure 56 – Execution of Query 3 
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4.5. Related Work 

In addition to the Eddies, MJoin and SHJ operators described in Section 4.2, the work related to SHARP 

can be grouped in five broad categories: adaptive operators, tuple routing strategies, techniques for 

processing joins larger than memory, techniques to change the query plan at run-time, and techniques that 

reduce the need for corrective behavior. 

Other adaptive operators: The XJoin [88] is a binary adaptive operator that takes advantage of the 

non-blocking behavior of SHJ to process push-based remote relations. Although it can process relations 

bigger than memory, the XJoin schedules the join between out-of-memory relations to mask delays and 

bursty transfer rates of those sources. In contrast, SHARP uses adaptivity to execute robust plans over 

pull-based local relations. The operators most related to SHARP’s late-binding decisions are the choose-

plan operator [26, 40] and the switchable plan operator [11], but neither provides the continuous fine-

grained adaptivity of SHARP. 

Tuple routing strategies: In SHARP, we implemented three routing policies adapted from three 

proposals by Avnur [5], Babu [8], and Deshpande [29]. CBR is a tuple routing policy that takes advantage 

of correlation and skew to make better routing decisions [15]. The implementation of CBR in SHARP is 

left as future work. 

Techniques for processing joins larger than memory: The Dynamic Hash Join [68] is the standard 

blocking binary hash join algorithm that adaptively freezes partitions to disk as needed and that we 

extended to join multiple relations simultaneously. Previous proposals extend the SHJ to process relations 

bigger than memory [54, 88]. However, these techniques were designed for binary joins over remote 

sources while SHARP processes multiple joins over local relations. 

Changing query plan at run-time: In addition to the late-binding operators discussed before, there 

are proposals that use query re-optimization to correct possible optimizer mistakes [11, 54, 56, 58, 63]. 

These strategies are orthogonal to SHARP, i.e., a SHARP can be used as an adaptive operator in plans 

generated by those systems. Other proposals keep the same query plan, but reschedule operators to cope 



120 

with unpredictable delivery rates from remote data sources [17, 54, 56, 87, 88, 90] or to improve 

estimates for online queries [44¸45, 57]. In contrast, SHARP reschedules operators to better distribute 

memory between in-memory hash tables and possibly avoid a second pass. (A method to redistribute 

memory in traditional query plans is described in [28].)  Finally, some data stream systems periodically 

determine and change to new query plans [8, 32], and these strategies can be incorporated in SHARP as 

routing policies (e.g., we implemented [8] in SHARP). 

Techniques that reduce the need for run-time corrective adaptivity: Other approaches tackle the 

problem of insufficient information available to the optimizer by somehow modeling the uncertainty 

about estimates used at optimization [6, 11, 40, 52, 89]. Optimizers following this approach are more 

likely to choose robust plans and therefore less likely to need corrective adaptation at run-time. Due to the 

complexity of the search space, we believe that a combination of some of these techniques, together with 

adaptive operators like SHARP will prove to be the best approach. 

More related work can be found in surveys and other publications with extended discussion of related 

work [7, 10, 46, 55, 54, 56, 63]. 

4.6. Conclusions 

The observation that tuple routing is not expensive, but symmetric hash joins are [29] led us to design 

SHARP, a multi-join tuple routing operator without symmetric hash joins (SHJs). To avoid SHJs, we 

explored a new trade-off: instead of executing arbitrarily query plans, and being able to change from any 

join order to any other join order at any point during execution, SHARP adopts a two-step adaptive 

approach. First, SHARP determines which source is the driving relation using late-binding decisions, and 

second, it continuously potentially changes the probing sequence of the build sources using tuple routing. 

This two-step adaptive process yields two benefits: it requires less memory than previous adaptive 

operators and simplifies the design of second-stage processing. 
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In addition, the performance of the second-stage processing strategy is largely unaffected by 

estimates made during optimization. The second-stage was shown to be more effective than both left-deep 

and right-deep trees for a variety of scenarios. Most of the benefit of the proposed second-stage comes 

from avoiding writing intermediate results multiple times to disk. However, this new second-stage 

processing technique suffers from the “curse of dimensionality”, and thus beyond certain parameters 

(very little memory, very large build tables, or a high number of joins), we expect its performance to 

degrade exponentially. Nevertheless, the problem is easily solved: after all build tables are read, if the 

sizes of memory and tables are such that the SHARP’s (second-stage) performance is worse than a right-

deep tree of hash joins, then the SHARP can simply execute the same plan a right-deep tree of hash joins 

would. 

In addition, our initial results suggest that, unless the operator processing cost is very high, the A-

Greedy [8] tuple routing policy is likely to be the best. 
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CHAPTER 5 

PROGRESSIVE PARAMETRIC QUERY OPTIMIZATION 
Many commercial applications rely on pre-compiled parameterized procedures to interact with a database. 

Unfortunately, executing a procedure with a set of parameters different from those used at compilation 

may be arbitrarily sub-optimal. Parametric query optimization (PQO) attempts to solve this problem by 

exhaustively determining the optimal plans in each point of the parameter space at compile time. 

However, PQO is likely not cost-effective if the query is executed infrequently or if it is executed with 

values only within a subset of the parameter space. In this chapter we propose instead to progressively 

explore the parameter space and build a parametric plan during several executions of the same query. We 

introduce algorithms that, as parametric plans are populated, are able to frequently bypass the optimizer 

but still execute optimal or near-optimal plans. 

5.1. Introduction 

There are two trivial alternatives to deal with the optimization and execution of parameterized queries. 

One approach, termed Optimize-Always, is to call the optimizer and generate a new execution plan every 

time the query is invoked. Another trivial approach, termed Optimize-Once, is to optimize the query just 

once with some set of parameter values and reuse the resulting physical plan for any other set of 

parameters. Both approaches have disadvantages. Optimize-Always requires an optimization call for each 

execution. The optimization call may be a significant part of the total execution time especially for simple 

queries. In addition, Optimize-Always may limit the number of concurrent queries in the system, as the 

optimization process itself may consume too much memory and may limit throughput. On the other hand, 

Optimize-Once returns a single plan that is used for all points in the parameter space. The problem is that 
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the chosen plan may be arbitrarily sub-optimal in all points of the parameter space other then the point for 

which the query was optimized for. 

5.1.1. Parametric Query Optimization 

An alternative to Optimize-Always and Optimize-Once is Parametric Query Optimization  (PQO). At 

optimization time, PQO determines a set of plans such that, for each point in the parameter space, there is 

at least one plan in the set that it is optimal. The regions of optimality of each plan are also computed. 

PQO proposals often assume that the cost formulas of physical plans are linear or piece-wise linear with 

respect to the cost parameters or that the regions of optimality are connected and convex. However, in 

reality, the cost functions of physical plans are not necessarily linear or piece-wise linear and the regions 

of optimality are not necessarily connected nor convex. In addition, PQO has a much higher cost than 

optimizing a query a single time (e.g., PQO may require multiple invocations of the optimizer with 

different parameters [48, 49]). Thus, from the database perspective, when a parametric query execution 

request arrives, it is not clear if PQO should be used or not: it may not be cost-effective to solve the PQO 

problem if the procedure is not executed frequently or if it is executed with values only within a sub-space 

of the entire parameter space. 

5.1.2. Contributions 

The main contributions of this chapter are: 

• In Section 5.2 we propose Progressive Parametric Query Optimization  (PPQO), a new technique to 

improve the performance of processing parameterized queries. We also propose the Parametric Plan 

Interface as a way to incorporate PPQO in a DBMS with minimal changes to query processing. 

• In Section 5.3 we propose Bounded, an implementation of PPQO with proven guarantees of 

optimality. 
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• In Section 5.4 we propose Ellipse, another implementation of PPQO with higher hit rates and better 

scalability than Bounded. 

• Finally, in Section 5.5 we present an extensive performance evaluation of PPQO using a prototype 

implementation and Microsoft’s SQL Server 2005 DBMS. 

5.2. Progressive Parametric Query Optimization 

We propose a new technique called Progressive Parametric Query Optimization  (PPQO) that addresses 

the shortcomings of PQO listed in Section 5.1.1. In essence, we want to progressively solve or 

approximate the solution to the PQO problem (formalized in Section 5.2.1) as successive query execution 

calls, with potentially different input parameters, are submitted. Given a query and its parameter values, 

an optimization call returns the optimal physical plan and the estimated cost of executing it. PPQO 

intercepts the inputs and outputs to and from the optimizer and registers which plans are estimated to be 

optimal for which points in the parameter space in a structure called Parametric Plan (PP), as described 

in Section 5.2.2. 

Eventually, as parametric plans are populated, PPQO may be able to bypass the optimization process. 

Instead, when a query execution request arrives, PPQO uses its parametric plan to infer which plan to use 

for a particular set of parameter values. If it is able to find a plan, then optimization is avoided. Otherwise, 

an optimization call is made and its estimated optimal plan and cost is added to the query’s parametric 

plan for future use. Due to the size of the parameter space, parametric plans cannot be implemented 

simply as an exact lookup against a cache of plans as there would be too many cache misses. Also, due to 

the non-linear and discontinuous nature of cost functions, parametric plans should not be implemented as 

nearest neighbor lookup structures as there will be no guarantee that the optimal plan of the nearest 

neighbor is optimal or close to optimal for the parameter point being considered. 
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5.2.1. The PQO Problem 

A formal description of the PQO problem (adapted from other work [35, 48]) is presented below: 

• A (parametric) query Q is a text representation of a relational query with placeholders for m values 

vpt =(v1, …, vm). Vector vpt  is called a ValuePoint. 

• Let plan p  be some execution plan that evaluates query Q for vpt . The cost function of p , p (cpt ), is a 

function of n cost parameters, cpt =(s1, …, sn). Vector cpt  is called a CostPoint and each si is a cost 

parameter with an ordered domain. 

• For every legal value of the parameters, there is some plan that is optimal. Given a parametric query 

Q, the maximum parametric set of plans (MPSP) is the set of plans, each of which is optimal for 

some point in the n-dimensional cost-based parameter space. MPSP = {p  | p  is optimal for some point 

in the cost-based parameter space}. 

• The region of optimality for plan p  is denoted r(p ), r(p ) = {(t1, …, tn) | p  is optimal at (c1=t1, …, 

cn=tn)}. 

• A parametric optimal set of plans (POSP) is a minimal subset of MPSP that includes at least one 

optimal plan for each point in the parameter space. 

• The parametric query optimization (PQO) problem is to find a POSP and the region of optimality for 

each plan in POSP. 

5.2.2. The Parametric Plan Interface 

The Parametric Plan (PP) interface has two operations, addPlan and getPlan described below. PP is used 

during query processing as shown in Figure 57. 

• addPlan(Q, cpt , p , cost) – registers that plan p , with estimated cost cost, is optimal for query Q at 

CostPoint cpt . 

• getPlan(Q, cpt ) – returns the plan that should be used for query Q and CostPoint cpt  or returns null. 
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processQuery ( inputs: Query Q, ValuePoint vpt  
 inputs/outputs: PP pp ) { 
    CostPoint cpt ←φ(Q, vpt ); // Convert ValuePoint to CostPoint 
    Plan p ←pp.getPlan(Q, cpt ); // what plan to use? 
    if (p  == NULL) { 
        Cost cost; // cost is output parameter in call below 
        p ←optimize(Q, vpt , cost); // calls  optimizer 
        pp .addPlan(Q, cpt , p , cost); // stores info in PP 
    }; 
    execute(p ); 
}; 

Figure 57 – Using Parametric Plans 
 

Function φ consults the database catalog and query Q, and transforms ValuePoint vpt  into CostPoint 

cpt . Function φ is optimizer specific. Section 5.2.4 justifies why φ is needed. 

Besides PPQO, strategies Optimize-Always and Optimize-Once can also be coded with simple 

implementations of the PP interface. For Optimize-Always, addPlan is an empty method and getPlan 

simply returns null, forcing an optimization for every query, as shown in Figure 58. For Optimize-Once, 

as shown in Figure 59, addPlan saves the plan it is given as input the first time it is called and getPlan 

returns that plan in all calls. 

 

01: class Optimize-Always implements PP // Implements PP interface 
02: begin-class 
03:    addPlan(inputs: Query Q, CostPoint cpt , Plan p , Cost cost) {}; 
04:    getPlan(inputs: Query Q, CostPoint cpt ; outputs: Plan p ) { 
05:       return null; 
06:    }; 
07: end-class; 

Figure 58 – Implementation of Optimize-Always 
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01: class Optimize-Once implements PP // Implements PP interface 
02: begin-class 
03:    Plan p; 
04:    Optimize-Once() {p==null;} // constructor 
05:    addPlan(inputs: Query Q, CostPoint cpt , Plan p , Cost cost) { 
06:       if (!this.p) {this.p=p;} // saves first plan it gets 
07:    };  
08:    getPlan(inputs: Query Q, Cost-Point cpt ; outputs: Plan p ) { 
09:       return this.p; // returns first plan 
10:    } 
11: end-class; 

Figure 59 – Implementation of Optimize-Once 

5.2.3. Requirements and Goals 

With PPQO we want to avoid as many optimization calls as possible and we are willing to execute sub-

optimal plans if they have costs close to the cost of the optimal plan. Thus, PP implementations must 

obey the Inference Requirement below. 

 

INFERENCE REQUERIMENT: After a number of addPlan calls, there must be cases where 

PP.getPlan(Q, cpt ) returns a (near-)optimal plan p  for query Q and CostPoint cpt , even if PP.addPlan(Q, 

cpt , p , cost)  was never called. 

 

Given a sequence of execution requests of the same query with potentially different input parameters, 

PPQO has two conflicting goals: 

• GOAL 1: Minimize the number of optimization calls; and 

• GOAL 2: Execute plans with costs as close to the cost of the optimal plan as possible. 

 

Note that a cache implementation of the PP interface–storing (Q, cpt ) pairs as the lookup key and (p , cost) 

as the inserted value–cannot fulfill the inference requirement because it would returns hits only for 

previously inserted (Q, cpt ) pairs. Instead, we propose two PPQO implementations, each giving priority 
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to one of the above goals: Bounded–described in Section 5.3–gives priority to Goal 2; Ellipse–described 

in Section 5.4–gives priority to Goal 1. 

5.2.4. The Parameter Transformation Function φ 

This section justifies why φ is needed and how is it implemented. A value parameter refers to an input 

parameter of a parametric SQL query to be executed. A cost parameter is an input parameter in formulas 

used by the optimizer to estimate the cost of a query plan. Cost parameters are estimated during query 

optimization from value parameters and from information in the database catalog. (Physical 

characteristics that affect the cost of query plans but do not depend on the query parameters–e.g., the 

average size of tuples in a table or the cost of a random I/O–are considered physical constants, not cost 

parameters.) 

An important type of cost parameter used during optimization is the estimated number of tuples in 

(intermediate) relations processed by the query plan: most query plans have cost formulas that are 

monotonic with the number of tuples processed by the query. On the other hand, there is no obvious 

relationship between the value parameters and the cost of the query plans. Thus, it becomes much easier 

to characterize the regions of optimality using a cost-based parameter space than using a value-based 

parameter space. In Example 5.1, below, and in what follows, we use a cost-based parameter space whose 

dimensions are (predicate or join) selectivities. (The estimated number of tuples of each relation 

processed by a query is typically derived from selectivities of sub-expressions computed during query 

optimization.) 

 

Example 5.1: Relation FRESHMEN(NAME, AGE) describes 1st-year graduate students. The age distribution 

of students is showed in Figure 60. Consider different queries of the form SELECT * FROM FRESHMEN 

WHERE AGE=$X$ OR AGE=$Y$. Assume that the optimal plan for queries that retrieve less than 5% of 

FRESHMEN tuples is PIDX, a plan using an index on column AGE. For all other queries, the optimal plan is 
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PFS, a full-table scan on FRESHMEN. The parameters of this query can be represented as the absolute 

values used for parameters $X$ and $Y$ or as the selectivities of predicate AGE=$X$ and predicate 

AGE=$Y$. Accordingly, the costs of physical PIDX and PFS can be represented in value-based parameter 

spaces or in selectivity-based parameter spaces as seen in Figure 61.  ■ 

 

In our implementation, function φ takes query Q and its SQL parameters–the ValuePoint vpt –and 

returns cpt  as a vector of selectivities. Computing the selectivities in cpt  corresponds to selectivity 

estimation, a sub-task of query optimization. Other components of query optimization–e.g., plan 

enumeration, rule transformation, plan costing, and plan pruning–are not executed by function φ. (Note 

that the arity of the value-based parameter space and of the selectivity-based parameter space are not 

necessarily the same.) For range predicates and equality predicates, computing selectivity values from 

actual values–the task of φ–can be done efficiently by lookups on cumulative histograms. 
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Figure 60 – Age distribution in table FRESHMEN 
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5.3. The Bounded PPQO Implementation 

The first of the two proposed PPQO implementations, termed Bounded, is described in this section. This 

implementation provides guarantees on the quality of the plans returned by getPlan(Q, cpt ), thus focusing 

on Goal 2 of PPQO (see Section 5.2.3). Either the returned plan p  is null–meaning that an optimization 

call cannot be avoided–or plan p  has a cost guaranteed to be within a bound (specified by the user) of the 

cost of the optimal plan. 

5.3.1. Preliminaries and Definitions 

• Relationship equal (≡≡≡≡): Given cpt 1=(c1,1, …, c1,n) and cpt 2=(c2,1, …, c2,n), cpt 1 ≡ cpt 2 iff c1,i=c2,i, ∀i. 

• Relationships below ( ) and above ( ): Given cpt 1=(c1,1, …, c1,n) and cpt 2=(c2,1, …, c2,n), cpt 1  cpt 2 

(cpt 1 cpt 2) iff c1,i≤c2,i (c1,i≥c2,i), ∀i and ∃i, c1,i≠c2,i. 

• Transitive property of  and . From the definitions it follows that if cpt 1  cpt 2 (cpt 1 cpt 2) and 

cpt 2  cpt 3 (cpt 2 cpt 3) then cpt 1  cpt 3 (cpt 1 cpt 3). 

• Monotonic Assumption (MA): Given plan p  and CostPoints cpt 1 and cpt 2, if cpt 1  cpt 2 then 

p (cpt 1)≤p (cpt 2).
18 

• Opt (cpt): It is the cost of an optimal plan at cpt . 

 

 

 

                                                   

 

18 All cost parameters we use are selectivities. Since higher selectivities imply more tuples to process, the monotonic 
assumption follows the intuition that plans that process more tuples likely cost more than plans that process less 
tuples. Although not true for all queries–e.g., queries using SQL clause NOT EXISTS may have non-monotonic 
costs–plans with non-monotonic costs are less common than plans with costs monotonic with the number of 
processed tuples. 
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Theorem 5.1: If  ∃ti=(cpt i, plan i, costi), ∃tj=(cpt j, plan j, costj), such that plan plan i (plan j) is an optimal 

plan at cpt i (cpt j) with cost costi (costj), cpt i  cpt   cpt j and costj∈[costi, costi*M+A], then 

plan j(cpt )∈[Opt (cpt ), Opt (cpt )*M+A].19  

Proof: See Section 5.8 

 

Theorem 5.1 states that the difference between the cost of plan j at cpt j and the cost of plan i at cpt i can 

be used to bound the cost of plan j at cpt , as long as costs are monotonic and cpt i  cpt   cpt j. 

5.3.2. Implementation of addPlan  

Function addPlan(Q, cpt , p , cost)–shown in –associates with each parametric query Q a list, TQ, of triples 

(cpt , p , cost) ordered by cost, where p  is an optimal plan at CostPoint cpt  with an estimated execution cost 

of cost. 

 

addPlan (inputs: Query Q, CostPoint cpt , Plan p , Cost cost) { 
   List TQ←getList(Q); // Get the list of triples for this query 
   if (TQ ==null) { 
      TQ = new List(); // If there is no list, create one 
   } 
   TQ.insert(cpt , p , cost); // Inserts triple in cost order 
   setList(Q, TQ) // adds or replaces list TQ into catalog 
} 

Figure 62 – Bounded’s addPlan 

5.3.3. Quality Guarantees of getPlan 

Bounded’s getPlan(Q, cpt ) is guaranteed to either return null or to return a plan with an estimated cost as 

close to the estimated optimal cost as desired. Specifically, for any constants M≥1 and A≥0, Bounded’s 

getPlan guarantees that, after calling p =getPlan(Q, cpt ) one of the following holds: 

                                                   

 

19 M is the multiplicative factor and A is the additive factor specified by the user. 
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• p is null or 

• p (cpt )∈[Opt(cpt) , Opt(cpt) *M+A]. 

 

Definition of bounding pair and bounded plan: Given two triples t1=(cpt 1, p 1, cost1) and t2=(cpt 2, p 2, 

cost2), where cpt 1 and cpt 2 are CostPoints, cost1 (cost2) is the positive cost of optimal plan p 1 (p 2) at cpt 1 

(cpt 2), and any constants M≥1 and A≥0. If cpt 1  cpt  cpt 2 and cost2∈[cost1, cost1*M+A] then we say that: 

• (t1, t2) bound cpt . 

• Plan p 2 is bounded at cpt . 

 

Note that, by Theorem 5.1, if p 2 is bounded at cpt  then p 2(cpt )∈[Opt (cpt ), Opt (cpt )*M+A]. Given 

M≥1, A≥0, query Q and CostPoint cpt , Bounded’s getPlan (see Section 5.3.4) searches for a (t1, t2) pair 

that bounds cpt  and returns p 2, a bounded plan at cpt , fulfilling point ii) above. If no (t1, t2) bounding pair 

for cpt  exists, getPlan returns null, fulfilling point i) above. 

 

Example 5.2: For some query Q, assume that Bounded.addPlan was already called for the triples showed 

in Figure 63 (i.e., TQ=(t1, t2, t3, t4, t5, t6, t7). 
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Figure 63 – Triples stored in Bounded 
 

Given, cpt –showed as a black circle–in the cost-based parameter space, M=1.5, and A=0, what plan 

will Bounded.getPlan(Q, cpt ) return? There are six pairs (cpt i, cpt j) such that cpt i  cpt   cpt j: (cpt 1, cpt 5), 

(cpt 1, cpt 6), (cpt 1, cpt 7), (cpt 3, cpt 5), (cpt 3, cpt 6), and (cpt 3, cpt 7). From those pairs, only two triples bound 

cpt : pair (t3, t5), because c5∈[c3, c3*1.5+0]⇔8∈[6, 9], and pair (t3, t6), because c6∈[c3, c3*1.5+0]⇔9∈[6, 

9]. Thus, both plan p 5 and plan p 6 are bounded at cpt  and either of them can be returned by getPlan.  ■ 

5.3.4. Implementation of getPlan  

Consider TQ, the list containing k triples (cpt i, p i, costi) maintained by method addPlan. A naïve 

implementation of getPlan enumerates all pairs of tuples (ti, tj), ti∈TQ, tj∈TQ, ti≠tj and tests if any pair 

bounds cpt . If some pair (ti, tj) bounds cpt , then plan p j can be returned as the answer to getPlan. 

To avoid the enumeration of all of pairs of triples that have to be checked, getPlan divides TQ into two 

lists. Then, given the properties of the two lists (described below), it is possible to trivially select a single 

triple, t1, from one list and a single triple, t2, from the other list such that only pair (t1, t2) needs to be 

checked. 

 

t1=(cpt1, p1, c1=3) 

cpt 

t2=(cpt2, p2, c2=5) 

t4=(cpt4, p4, c4=7) t5=(cpt5, p5, c5=8) 

t6=(cpt6, p6, c6=9) 

t3=(cpt3, p3, c3=6) 

t7=(cpt7, p7, c7=13) 
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Definition of  (below) operator and  (above) operator: Consider a list, TQ, containing k triples (cpt i, 

p i, costi) ordered by costi, with i=0...k-1, where cpt i is a CostPoint and costi represents the cost of 

executing the optimal plan p i at cpt i. Given cpt , another CostPoint, TQ cpt  is the list of triples (cpt i, p i, 

costi) from TQ, ordered by costi, such that cpt i  cpt . Similarly, TQ cpt  is the list of triples (cpt i, p i, costi) 

from TQ ordered by costi, such that cpt i  cpt . TQ cpt  and TQ cpt  are trivially constructed from a single pass 

over TQ. Note that, by definition, cpt b  cpt   cpt a, ∀cpt b:tb=(cpt b, p b, costb) ∈ TQ cpt , ∀cpt a:ta=(cpt a, p a, 

costba)∈TQ cpt . 

 

Example 5.3: Let TQ=(t1, t2, t3, t4, t5, t6,), where the ti are the triples shown in Figure 63. Then TQ cpt =(t1, 

t3) (the triples in the light gray area) and TQ cpt =(t5, t6, t7) (the triples in the dark gray area).  ■ 

 

Theorem 5.2: If ∃cpt b:tb=(cpt b, p b, costb), tb∈T  cpt , ∃cpt a:ta=(cpt a, p a, costa), ta∈T cpt , such that 

costa∈[costb, costb*M+A], then costfirst∈[costlast, costlast*M+A], where costfirst is the cost of the first triple 

in T cpt  and costlast is the cost of the last triple in T  cpt . 

Proof: See Section 5.8 

 

Theorem 5.2 states that when searching list T for a pair of triples that bound cpt , we only need to test 

the pair composed by the last triple from T  cpt  and the first triple from T cpt . 

As shown in Example 5.2 in Section 5.3.3, there is potentially more than one possible solution to 

getPlan(Q, cpt ). However, if there is a solution, by Theorem 5.2, we need only to check if 

costfirst∈[costlast, costlast*M+A], where cfirst is the cost of the first triple in TQ cpt  and clast is the cost of the 

last triple in TQ cpt . If costfirst∈[costlast, costlast*M+A], then p first, the plan in the first triple of TQ cpt , is 

returned. 
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Before addPlan is called the first time, any getPlan call returns null. As new triples are added, the hit 

rate of getPlan is expected to increase. Intuitively, as more triples are added, the more likely it is that 

getPlan returns a plan because it is more likely that any two triples fulfill the requirements of the Theorem 

5.2. Note also that the lower the values of M and A, the less likely it is to find pairs of triples that fulfill 

the requirements of Theorem 5.2, and thus, more added triples are needed to obtain higher hit rates. 

 

getPlan (inputs: Query Q, CostPoint cpt ; outputs: Plan p ) { 
   List TQ ←getList(Q); // gets list of triples for Q 
   if (TQ ==null) { 
      return null; 
   }            
   Triple last=null; // last triple of TQ cpt  
   for Triple t in TQ { // in cost order 
      if (t.cpt  ≡≡≡≡ cpt ) {return t.p ;} // exact match? 
      if (t.cpt   cpt ) {last = t;} // keep track of last triple of TQ cpt  
      if (t.cpt   cpt ) { // first triple of TQ cpt  

         if (last == null) { 
            return null; 
         } 
         if (t.c∈[last.c, last.c*M+A]) { 
            return t.p ; 
         } 
      } 
   } 
} 

Figure 64 – Bounded’s getPlan 
 

Note that getPlan, shown in Figure 64, makes at most a single pass over TQ; thus, it has O(|TQ|) time 

complexity, where |TQ| is the number of elements in TQ. 
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5.4. The Ellipse PPQO Implementation 

Bounded’s getPlan provides strong guarantees on the cost of plans returned. However, we expect low hit 

rates of Bounded’s getPlan for small values of M and A or before Bounded’s TQ has been populated. In 

this section we propose Ellipse, another PPQO implementation of the PP interface, designed to address 

PPQO’s Goal 1: to have higher hit rates. 

To have higher hit rates, Ellipse drops the guarantee of only returning plans with near-optimal costs. 

Instead, Ellipse’s getPlan returns ∆-acceptable plans . 

 

Definition of ∆∆∆∆-Acceptable Plans: For ∆∈[0, 1], if plan p  is optimal at points cpt 1 and cpt 2 in the cost-

based parameter space, then plan p  is ∆-acceptable at point cpt  in the cost-based parameter space iff 

distance(cpt 1, cpt 2)/(distance(cpt , cpt 1) + distance(cpt , cpt 2)) ≥ ∆, where the function distance returns the 

Euclidian distance between two points in an n-dimensional space. 

 

It follows from the definition of ∆-acceptable that if p  is optimal at cpt 1 and cpt 2, then p  is 1-

acceptable only on points between cpt 1 and cpt 2 and p  is 0-acceptable at all points. Note that in a 2-

dimentional space, the area where p  is ∆-acceptable is equivalent to the definition of an ellipse; if p  is 

optimal for cpt 1 and cpt 2, then p  is ∆-acceptable at cpt  if cpt  is on or inside an ellipse of foci cpt 1 and cpt 2 

such that the distance between the foci, distance(cpt 1, cpt 2), over the sum of the distances between cpt  and 

the foci, distance(cpt , cpt 1) + distance(cpt , cpt 2), is ∆. Figure 65 shows the areas where p  is 0.5-

acceptable, 0.8-acceptable, and 1-acceptable if p  is optimal at cpt 1 and cpt 2. 
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Figure 65 – Examples of ∆∆∆∆-acceptable plans 

5.4.1. Implementation of addPlan 

For each query Q and for each plan p  that is optimal in some point of the parameter space, Ellipse’s 

addPlan(Q, cpt , p , cost) function–shown in Figure 66–maintains a list of (cpt , cost) pairs where p  is 

optimal for Q. 

5.4.2. Implementation of getPlan  

The implementation of Ellipse.getPlan consists of, for each optimal plan plan , iterating over pairs of 

points where plan  is optimal for the given query, Q. For each pair of points (cpt 1, cpt 2), we test if plan  is 

∆-acceptable at the given point cpt . If it is, getPlan returns plan , otherwise getPlan continues trying other 

points and other plans. If all pairs of points of all plans for Q are exhausted without an ∆-acceptable plan 

being found, Ellipse.getPlan returns null. The algorithm is shown in Figure 67. 

 

 

 

 

 

 

0.8-acceptable 

cpt 1 cpt 2 
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Plan p  is optimal at these points 

0.5-acceptable 
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addPlan(inputs: Query Q, CostPoint cpt , Plan p , Cost cost) { 
   PointList L←getPointList(Q, p ); // where is p  optimal? 
   if (L==null) { // if no points were p  is optimal for Q… 
      L = new PointList(); // … create new PointList 
      PlanList P←getPlanList(Q); // optimal plans for Q 
      if (P==null) { 
         P=new PlanList(p ); 
      } else { 
         P.insert(p );  // add new optimal plan to list 
      } 
      setPlanList(Q, P); // adds or replaces list P in catalog 
   } 
   L.insert(cpt , cost); // Adds new information about p  to L. 
   setPointList(Q, p , L) // adds or replaces list L in catalog 
} 

Figure 66 – Ellipse’s addPlan 
 

 

 

getPlan (inputs: Query Q, CostPoint cpt ; outputs: Plan p ) { 
   PlanList P ←getPlanList(Q); // gets optimal plans 
   if (P ==null) {return null;} // tests for empty list 
   for Plan plan  in P {  
      PointList L←getPointList(Q, plan ); // gets list of points 
      for PointPair (cpt 1, cpt 2) in L { // enumerates point pairs 
         if (dist(cpt1 , cpt2 ) / (dist(cpt , cpt1 ) + dist(cpt , cpt2 ))≥∆) { 
            return plan ; // found an ∆-acceptable plan 
         } 
      } 
   } 
   return null; 
} 

Figure 67 – Ellipse’s getPlan 
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5.5. Experimental Evaluation 

In this section we describe an experimental evaluation of PPQO using Microsoft’s SQL Server 2005. The 

client application implements the pseudo-code described in Sections 5.2, 5.3, and 5.4; SQL Server is used 

only to obtain estimated optimal plans and estimated costs of plans and to implement function φ (lines 7 

and 3 in Figure 57). 

5.5.1. Dataset, Metrics, and Setup 

The TPC-H benchmark [85] was used to evaluate the PPQO implementations. Table 8, below, shows 

which tables are joined by each query. (The queries’ full SQL text, too large to show here, is shown in 

section 5.9.) The tables are lineitem (L), orders (O), customer (C), supplier (S), part (P), partsupp (T), 

nation (N), and region (R). 

As in Reddy and Haritsa [76], and unless otherwise noted, we added two extra selections to the TPC-

H queries to more easily explore the parameter space. The two selections are of the form coli≤vali, i=1,2, 

where, for each query, coli is one of the two columns shown in Table 8 and vali is a random value from 

the domain of the column.  

 

Table 8 – Description of TPC-H queries used 
Query Tables Joined Column 1 Column 2 

7 LOCSNN c_acctbal o_totalprice 
8 LOCPSNNR s_acctbal l_extendedprice 
9 LOTPSN s_acctbal l_extendedprice 

18 LLOC c_acctbal l_extendedprice 
21 LLLOSN s_acctbal l_extendedprice 

 

For each query tested, we generated 10,000 random val1 and val2 values. (A (val1, val2) pair is a 

ValuePoint.) To guarantee that random parameter values uniformly explore the parameter space, we 

altered the values in the columns subject to the extra selections to enforce uniform distributions. 
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For each query and each ValuePoint vpt  we make a PP.getPlan lookup call (see Figure 57 in page 

126), where PP is an Optimize-Once, Optimize-Always, Bounded, or Ellipse object. If getPlan returns a 

plan we call it a hit and check if the plan is optimal; if it is not optimal we check how its estimated cost 

compares with the estimated optimal cost. These give rise to the following metrics: 

• HitRate: The percentage of PP.getPlan(Q, cpt ) calls that return a plan. 

• OptRate: The percentage of such plans that are optimal. 

• SO: How sub-optimal a returned plan is: p hit(cpt )/Opt (cpt ), with p hit=PP.getPlan(Q, cpt ). SO≥1. 

• AvgSO: The average of all SO 

• MaxSO: The maximum of all SO; reflects how risky a PP implementation can be. 

• Number of points: Number of (cpt , plan , cost) triples stored in a ParametricPlan. Equal to the 

number of misses. 

• Number of plans: Number of distinct optimal plans observed. 

• QP: Number of queries processed. 

 

The experiments were run on a lightly loaded Pentium M at 1.73GHz with 1GB of RAM and using 

TPC-H scale factor 1. Indexes and statistics were built on all columns subject to selections and on all 

primary and foreign key columns. The optimizer cache was emptied before each optimization call. To 

compute some of the metrics above, the cost of sub-optimal plans (returned by PPQO) also had to be 

estimated. To estimate those costs, each sub-optimal plan was forcibly costed by SQL Server [64]. 

Unless stated otherwise, Bounded was run with M=1.1, A=0 and Ellipse was run with ∆=0.95. 

5.5.2. Variation on HitRate and OptRate 

The first experiment consisted of processing 10,000 queries using different random ValuePoints (i.e., 

10,000 different random sets of SQL parameter values) for each query and observing how HitRate and 
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OptRate varied for Bounded and Ellipse. This experiment was performed for five TPC-H queries and the 

results are shown in Figures 68-72. Several trends can be observed: 

• Ellipse always has a higher HitRate than Bounded. 

• Except for Query 8 (more on this below), Bounded always has a higher OptRate than Ellipse. 

• HitRate converges quickly, but OptRate converges slightly faster. 

• HitRate monotonically increases as a function of QP because more queries processed imply a 

monotonically increasing number of misses and each miss adds more information to the 

ParametricPlan, therefore increasing the likelihood of future hits. 

• OptRate naturally varies up and down, as the initial random (cpt , plan , cost) triples are added to the 

ParametricPlan object, until it converges. 
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Figure 68 – Variation of HitRate, OptRate for 10,000 QP; Query 7 
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Figure 69 – Variation of HitRate, OptRate for 10,000 QP; Query 8 
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Figure 70 – Variation of HitRate, OptRate for 10,000 QP; Query 9 
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Figure 71 – Variation of HitRate, OptRate for 10,000 QP; Query 18 
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Figure 72 – Variation of HitRate, OptRate for 10,000 QP; Query 21 
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5.5.3. Number of Plans, Number of Points, Space, and Time 

Figures 73 and 74 show the total number of plans and total number of points stored in the ParametricPlan 

objects at the end of the experiments of the previous section. Bounded has both a higher number of plans 

and a higher number of points because it has a lower HitRate; for every miss there will be a new point 

stored in the ParametricPlan object. Figure 75 shows that space consumed to store the plans and the 

points within the ParametricPlan objects varied between ~600Kbytes to ~1300Kbytes. We used the 

original uncompressed XML plan representations provided by SQL Server. Storing zip-compressed XML 

plans instead would decrease the size of the plan representation by a factor of 10. 

Figure 76 reports the time taken by the Bounded and Ellipse. Time (in seconds) includes time elapsed 

during optimization (if there is a miss), during addPlan, and during getPlan, but not query execution time. 

For comparison purposes, the time taken for Optimize-Once and Optimize-Always is also included. After 

10,000 queries have been processed, Optimize-Always took between 5.2 and 13.6 times longer than 

Bounded and between 10.7 and 18.5 times longer than Ellipse. Ellipse was always faster than Bounded 

because it had fewer optimize and addPlan calls (due to higher HitRates) and faster getPlan calls (because 

it has less information stored in its parametric plans). 
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Figure 73 – Number of plans after 10,000 queries processed 
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Figure 74 – Number of points after 10,000 queries processed 
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Figure 75 – Space consumed after 10,000 queries 
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Figure 76 – Optimization and ParametricPlan time to process 10,000 queries 

 

5.5.4. MaxSO and AvgSO 

Figures 77 and 78 show, respectively, the MaxSO and AvgSO for Bounded, Ellipse, and Optimize-Once 

(OptOnce in the graphs) for the same experiments as in the previous two sections. 
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Figure 77 – MaxSO 
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Figure 78 – AvgSO 

 

Another surprise was how well Optimize-Once did in the AvgSO metric. On average, across all 

queries, Optimize-Once returned plans with costs ~140% the cost of optimal (the same average was 

~101% for Bounded and ~106% for Ellipse). One possible explanation is the following. Optimize-Once 

obtains the optimal plan for the first of the 10,000 random parameter values and reuses that plan for all 

other values. If that first plan happens to be the plan with the minimal cost variation in the plan space, 

then there is a significant chance that that plan will do well in many other points in the space. Consider 

Figure 79, which shows a conceptual representation of the costs of four different plans, each optimal in 

different regions of the parametric space. 

 

Figure 79 – Typical costs of optimal plans 
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Executing either plan p3 or plan p4 for all points of the parameter space would yield costs, on average, 

not much higher than the cost of optimal. Coincidently, the likelihood that any given point lies in the 

space where either p3 or p4 are optimal is very high, and thus, by random chance, Optimize-Once is likely 

to use a plan that is not catastrophic. We will explore this issue further in Section 5.5.6. 

5.5.5. Vary Bounded’s M and Vary Ellipse’s ∆ 

In this experiment the value M of Bounded was varied from 1.1 to 4, for query 21 (to avoid clutter, and 

because its line is similar to the line of M=3, M=4 is not shown). The values of HitRate and OptRate are 

shown in Figures 80 and 81. As expected, a lower value for M (tighter optimality bound) results in a 

higher OptRate but a lower HitRate. 

The same query 21 with the same random parameter values was run using Ellipse while varying ∆ 

from 0.85 to 0.99 (∆=0.85 not shown). As expected, a higher ∆ results in a lower HitRate but a higher 

OptRate. These results appear in Figures 82 and 83. 
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Figure 80 – HitRate for Bounded; Query 21 

 

 

 



150 

 

 

M =1.1

M =1.5
M =3.0

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

 
Figure 81 – OptRate for Bounded; Query 21 
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Figure 82 – HitRate for Ellipse; Query 21 
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Figure 83 – OptRate for Ellipse; Query 21 

5.5.6. Vary Query Order 

This experiment assessed the impact of the order of the incoming queries on the performance of the 

algorithms. The same 10,000 random values used for Query 21 were used again, but the order in which 

those 10,000 queries were processed was chosen randomly. Six random orders were generated and 

processed with Bounded (M=1.1, A=0), Ellipse (∆=0.9), and Optimize-Once. The results are shown in 

Figures 84–87 and summarized in Table 9. 

 

Table 9 – Effects of different query orders 

 

Query order had essentially no effect on the final values of Bounded’s OptRate, Bounded’s HitRate, 

and Ellipse’s HitRate but it had a medium impact on the final value of Ellipse’s OptRate. 

On the other hand, for Optimize-Once, query order had a very significant impact on OptRate, with 

values between 3% and 48%. An interesting observation is that the performance of Optimize-Once was 

 OptRate HitRate 
 Max Min Avg Max Min Avg 

Bounded 89.0% 86.0% 87.8% 86.0% 85.0% 85.8% 
Ellipse 71.0% 59.0% 65.7% 99.0% 99.0% 99.0% 

OptOnce 48.0% 3.0% 35.2% - - - 
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exactly the same for four out of those six random orders. Further analysis showed that, although the very 

first value of each of the six random orders were all different, for four of them, the corresponding optimal 

plan was the same. This follows the observation (Section 5.5.4, Figure 79, and [76]) that some plans have 

very large optimality areas. 
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Figure 84 – HitRate for Bounded, 6 random query orders; Query 21 
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Figure 85 – OptRate for Bounded, 6 random query orders; Query 21 
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Figure 86 – HitRate for Ellipse, 6 random query orders; Query 21 
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Figure 87 – OptRate for Ellipse, 6 random query orders; Query 21 
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5.5.7. Vary Number of Dimensions 

In all the experiments so far, the parameter space was 2-dimensional. The next experiment varies the 

number of dimensions, from 1 to 4. Query 8 is used (with extra parametric selections as needed) because 

it was the one with the largest number of plans and thus, more likely to suffer from the “curse of 

dimensionality”: an exponential growth of complexity with a linear increase in the number of dimensions. 

The query was then run for 10,000 random values for Bounded (M=1.1, A=0) and Ellipse (∆=0.95). The 

results, showed in Figures 88-91 are summarized in Table 10 below. 

 

Table 10 – Variation of number of dimensions 
 OptRate HitRate 
 1-D 2-D 3-D 4-D 1-D 2-D 3-D 4-D 

Bounded 77% 65% 65% 56% 100% 94% 88% 49% 
Ellipse 99% 74% 62% 58% 100% 98% 96% 88% 
 

The results clearly indicate that as the number of dimensions in the parameter space increases, the 

lower the OptRate and HitRate. Some of the reasons that contribute to this effect are: 

• Given a point cpt  centered in the middle of the parameter space, the percentage of space  cpt  (or 

 cpt ) decreases exponentially with the number of dimensions (affects Bounded). 

• The number of unique optimal plans increases exponentially (affects Ellipse). 

 

Even though the number of plans and number of points increase exponentially for both Bounded and 

Ellipse, they increase slower for Ellipse; see Figures 92 and 93. 
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Figure 88 – Vary number of dimensions; HitRate for Bounded; Query 8 
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Figure 89 – Vary number of dimensions; OptRate for Bounded; Query 8 
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Figure 90 – Vary number of dimensions; HitRate for Ellipse; Query 8 
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Figure 91 – Vary number of dimensions; OptRate for Ellipse; Query 8 
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Figure 92 – Number of plans with varying number of dimensions; Query 8 
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Figure 93 – Number of points with varying number of dimensions; Query 8 
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5.6. Related Work 

Parametric query optimization was first mentioned by Graefe [40] and Lohman [61]. This pioneering 

early work also proposed dynamic query plans  and a new meta-operator, the choose-plan  [40]. Dynamic 

query plans include more than one physical plan choice. The plan to use is determined at run-time by the 

choose-plan operator after it costs the multiple alternatives given the now known parameter values. How 

to enumerate dynamic query plans was proposed only later [26] with the concept of incomparability of 

costs: in the presence of unbound parameters at optimization-time, plan costs are represented as intervals; 

if intervals of alternative plans overlap, none is pruned. At run-time, when parameters are bound to 

values, the choose-plan selects the right plan to use. This approach may enumerate a very large number of 

plans, as shown by [77], and all those plans may have to be re-cost at run-time by the choose-plan 

operator. 

Ioannidis et al [52] coined the term Parametric Query Optimization and proposed using randomized 

algorithms to optimize in parallel the parametric query for all possible values of unknown variables. This 

approach is unfeasible for continuous parameters, gives no guarantees on finding the optimal plan for a 

query, and places no bounds on the optimality of the plans produced. 

Ganguly [35] uses a geometric approach to solve the PQO problem for one and two parameters under 

the assumption that cost functions are linear and that regions of optimality of plans are convex. Ganguly 

also solved PQO for restricted forms of non-linear, one-parameter, cost functions. Prasad [71] extended 

the geometric approach to solve PQO for ternary linear cost functions and binary non-linear functions. 

Hulgeri and Sudarshan [48] propose a solution to PQO that handles piecewise linear cost functions for an 

arbitrarily number of parameters but requires substantial changes to the query optimizer. AniPQO [49] is 

a recent technique that approximates the solution to PQO for non-linear functions and for an arbitrary 

number of parameters. AniPQO approximates optimality regions to n-dimensional convex polytopes and 

finds its solution to PQO by calling the optimizer multiple times and evaluating plan costs up to 
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thousands of times. Unlike AniPQO, PPQO never calls the optimizer or costs plans more often than what 

a traditional non-PQO approach would. 

5.7. Conclusions 

Progressive Parametric Query Optimization (PPQO) improves the performance of processing 

parameterized queries by combining the benefits of competing strategies. Like Optimize-Always and 

PQO, most of the times, PPQO selects plans that are estimated to be optimal or near-optimal. Like 

Optimize-Once, PPQO is able to avoid optimization calls in up to 99% of the queries. Like other PQO 

proposals, PPQO discovers most optimal plans and approximated optimality areas. In addition, unlike 

PQO, PPQO does not perform extra optimizer calls or extra plan-cost evaluation calls. At execution time, 

PPQO can select which plan to execute by using only the input cost parameters; there is no need to re-cost 

any plan. Finally, recent work [76] shows that assumptions commonly held by PQO (plan convexity, plan 

uniqueness, and plan homogeneity) do not hold. These discoveries do not affect PPQO. The only 

assumption taken by PPQO is the monotonicity of plan costs. 

PPQO is also amenable to be implemented in a complex commercial database system as it requires 

minimal changes to the optimization or execution processes. 

PPQO was evaluated in a variety of settings, with queries joining up to eight tables, with multiple 

sub-queries, up to four parameters, and in plan spaces with close to 400 different optimal plans. PPQO 

yielded good results in all scenarios except for the Bounded algorithm in complex queries using a 4-D 

parameter space. However, even in this challenging scenario, Ellipse was on average executing plans just 

3% more costly than the optimal, while avoiding 87% of all optimization calls. 

 

 

 

 



160 

5.8. Proofs of Theorem 5.1 and Theorem 5.2 

This section uses the three Lemmas below to prove Theorem 5.1 and Theorem 5.2. Lemma 1 states that if 

the Monotonic Assumption holds for every plan considered, than the cost of the optimal plan at any point 

(regardless of what the optimal plan is at any single point) also increases monotonically with the 

parameters. This result is used later to bound the cost of some plan p  in points where plan p  was never 

executed. 

 

Lemma 1: If cpt 1  cpt 2, cost1=p 1(cpt 1)=Opt (cpt 1), and cost2=p 2(cpt 2)=Opt  (cpt 2) then cost1 ≤ cost2. (1) 

Proof: 

There are only two cases: either p 2 is optimal at cpt 1 or p 2 is not optimal at cpt 1. 

• If p 2 is optimal at cpt 1, then cost1=p 2(cpt 1). (2) 

• If p 2 is not optimal at cpt 1, then cost1< p 2(cpt 1). (3) 

• By (2) and (3), cost1≤ p 2(cpt 1). (4) 

• The Monotonic Assumption and cpt 1  cpt 2 imply: p 2(cpt 1)≤ p 2(cpt 2)=cost2. (5) 

• By (4), (5), cost1≤cost2.  ■ 

 

Lemma 2 and Lemma 3 together state that if M≥1, costz∈[costx, costx*M+A] and costx≤costy≤costz, then 

both costz∈[costy, costy*M+A] and costy∈[costx, costx*M+A]. 

 

Lemma 2: If costz∈[costx, costx*M+A] and costx≤costy≤costz, then costy∈[costx, costx*M+A]. (6) 

Proof: 

• costz∈[costx, costx*M+A]  ∧ costx≤costy≤costz ⇒ 

⇒ costx≤costz≤costx*M+A ∧ costx≤costy≤costz ⇒ costx≤costy≤costx*M+A  

⇒ costy∈[costx, costx*M+A] ■ 
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Lemma 3: If M≥1, costz∈[costx, costx*M+A], and costx≤costy≤costz, then costz∈[costy, costy*M+A]. (7) 

Proof: 

• Since M≥1, it follows that costx≤costy⇒costx*M+A≤costy*M+A (8) 

• By costz∈[costx, costx*M+A] and (8) it follows that costz≤costx*M+A ≤costy*M+A  (9) 

• By costx≤costy≤costz and (9) it follows that costy≤costz≤ costy*M+A (10) 

• (10) is equivalent to costz∈[costy, costy*M+A].  ■ 

 

Theorem 5.1: If  ∃ti=(cpt i, plan i, costi), ∃tj=(cpt j, plan j, costj), such that plan plan i (plan j) is an optimal 

plan at cpt i (cpt j) with cost costi (costj), cpt i  cpt   cpt j and costj∈[costi, costi*M+A], then 

plan j(cpt )∈[Opt (cpt ), Opt (cpt )*M+A]. 

Proof: 

• By Lemma 1 and cpt i  cpt   cpt j it follows that costi≤Opt (cpt )≤costj. (11) 

• By (11), Lemma 3, and costj∈[costi, costi*M+A] ⇒ costj∈[Opt (cpt ), Opt (cpt )*M+A]. ■ 

 

Definition of  (below) operator and  (above) operator [Reprint from page 135]: Given a list, T, of k 

triples (cpt i, p i, costi) ordered by costi, with i=0...k-1, where cpt i is a CostPoint and costi represents the 

cost of executing the optimal plan p i at cpt i and given cpt , another CostPoint we define the following two 

operations: 

• T cpt  is the list of triples (cpt i, p i, costi) from T, ordered by costi, such that cpt i  cpt . 

• T cpt  is the list of triples (cpt i, p i, costi) from T ordered by costi, such that cpt i  cpt . 

 

Note that, by definition, cpt b  cpt   cpt a, ∀cpt b:tb=(cpt b, p b, costb) ∈ T cpt , ∀cpt a:ta=(cpt a, p a, 

costba)∈T cpt . 
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Theorem 5.2: If ∃cpt b:tb=(cpt b, p b, costb), tb∈T  cpt , ∃cpt a:ta=(cpt a, p a, costa), ta∈T cpt , such that 

costa∈[costb, costb*M+A], then costfirst∈[costlast, costlast*M+A], where costfirst is the cost of the first triple 

in T cpt  and costlast is the cost of the last triple in T  cpt . 

Proof: 

• By the definitions of T  cpt  and T cpt , and Lemma 1: costb≤costlast≤Opt (cpt )≤costfirst≤costa. (12) 

• By costa∈[costb, costb*M+A], (12) and Lemma 3, it follows that costa∈[costlast, costlast*M+A] (13) 

• Finally, by (12), (13), and Lemma 2, it follows that costfirst∈[costlast, costlast*M+A]. ■ 
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5.9. Queries  

This section contains the 5 queries used in the experiments of Section 5.5. The queries, originally from 

the TPC-H benchmark, were altered with additional selection predicates to allow the exploration of a 2-D 

parameter space. The queries in this format were first used by Reddy and Haritsa [76] and were shared to 

us by Haritsa. Query 8 was subsequently altered with additional selection predicates to allow the 

exploration of 3-D and 4-D parameter spaces as well. 

The additional selection predicates are of the form “column ≤ $Vx$”, with x taking a value between 0 

and 3. In the experiments, the values for the $Vx$ parameters were randomly generated within the 

domain of column. For each column subject to these additional selection predicates, the values in the 

relations were changed to force a uniform distribution. 
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5.9.1. Query 7 

select 
 supp_nation, 
 cust_nation, 
 l_year, 
 sum(volume) as revenue 
from 
 ( 
  select 
   n1.n_name as supp_nation, 
   n2.n_name as cust_nation, 
   YEAR (l_shipdate) as l_year, 
   l_extendedprice * (1 - l_discount) as volume 
  from 
   supplier, 
   lineitem, 
   orders, 
   customer, 
   nation n1, 
   nation n2 
  where 
   s_suppkey = l_suppkey 
   and o_orderkey = l_orderkey 
   and c_custkey = o_custkey 
   and s_nationkey = n1.n_nationkey 
   and c_nationkey = n2.n_nationkey 
   and ( 
    (n1.n_name = 'FRANCE' and n2.n_name = 'GERMANY') 
    or (n1.n_name = 'GERMANY' and n2.n_name = 'FRANCE') 
   ) 
   and l_shipdate between '1995-01-01' and '1996-12-31' 
   and orders.o_totalprice <= $V0$ 
   and customer.c_acctbal <= $V1$ 
 ) as shipping 
group by 
 supp_nation, 
 cust_nation, 
 l_year 
order by 
 supp_nation, 
 cust_nation, 
 l_year; 
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5.9.2. Query 8 

select 
 o_year, 
 sum(case 
  when nation = 'BRAZIL' then volume 
  else 0 
 end) / sum(volume) as mkt_share 
from 
 ( 
  select 
   YEAR(o_orderdate) as o_year, 
   l_extendedprice * (1 - l_discount) as volume, 
   n2.n_name as nation 
  from 
   part, 
   supplier, 
   lineitem2, 
   orders, 
   customer, 
   nation n1, 
   nation n2, 
   region 
  where 
   p_partkey = l_partkey 
   and s_suppkey = l_suppkey 
   and l_orderkey = o_orderkey 
   and o_custkey = c_custkey 
   and c_nationkey = n1.n_nationkey 
   and n1.n_regionkey = r_regionkey 
   and r_name = 'AMERICA' 
   and s_nationkey = n2.n_nationkey 
   and o_orderdate between '1995-01-01' and '1996-12-31' 
   and p_type = 'ECONOMY ANODIZED STEEL' 
   and lineitem2.l_extendedprice <= $V0$ 
   and supplier.s_acctbal <= $V1$ 
   and orders.o_totalprice <= $V2$ // Used only in 3-D and 4-D spaces 
   and customer.c_acctbal <= $V3$ // Used only in 4-D spaces 
 ) as all_nations 
group by o_year 
order by o_year; 
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5.9.3. Query 9 

select 
 n_name, 
 o_year, 
 sum(amount) as sum_profit 
from 
 ( 
  select 
   n_name, 
   YEAR(o_orderdate) as o_year, 
   l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount 
  from 
   part, 
   supplier, 
   lineitem, 
   partsupp, 
   orders, 
   nation 
  where 
   s_suppkey = l_suppkey 
   and ps_suppkey = l_suppkey 
   and ps_partkey = l_partkey 
   and p_partkey = l_partkey 
   and o_orderkey = l_orderkey 
   and s_nationkey = n_nationkey 
   and p_name like '%green%' 
   and supplier.s_acctbal <= $V0$ 
   and partsupp.ps_supplycost <= $V1$ 
 ) as profit 
group by 
 n_name, 
 o_year 
order by 
 n_name, 
 o_year desc; 
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5.9.4. Query 18 

select 
 c_name, 
 c_custkey, 
 o_orderkey, 
 o_orderdate, 
 o_totalprice, 
 sum(l_quantity) 
from 
 customer, 
 orders, 
 lineitem2 
where 
 o_orderkey in ( 
  select 
   l_orderkey 
  from 
   lineitem2 
  where 
   lineitem2.l_extendedprice <= $V0$ 
  group by 
   l_orderkey 
  having 
   sum(l_quantity) > 300 
 ) 
 and c_custkey = o_custkey 
 and o_orderkey = l_orderkey 
 and customer.c_acctbal <= $V1$ 
group by 
 c_name, 
 c_custkey, 
 o_orderkey, 
 o_orderdate, 
 o_totalprice 
order by 
 o_totalprice desc, 
 o_orderdate 
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5.9.5. Query 21 

select 
 s_name, 
 count(*) as numwait 
from 
 supplier, 
 lineitem2, 
 orders, 
 nation 
where 
 s_suppkey = lineitem2.l_suppkey 
 and o_orderkey = lineitem2.l_orderkey 
 and o_orderstatus = 'F'  
 and exists ( 
  select 
   * 
  from 
   lineitem2 l2 
  where 
   l2.l_orderkey = lineitem2.l_orderkey 
   and l2.l_suppkey <> lineitem2.l_suppkey 
 ) 
 and not exists ( 
  select 
   * 
  from 
   lineitem2 l3 
  where 
   l3.l_orderkey = lineitem2.l_orderkey 
   and l3.l_suppkey <> lineitem2.l_suppkey 
   and l3.l_receiptdate > l3.l_commitdate 
 ) 
 and s_nationkey = n_nationkey 
 and supplier.s_acctbal <= $V0$ 
 and lineitem2.l_extendedprice <= $V1$ 
 and n_name = 'SAUDI ARABIA' 
group by 
 s_name 
order by 
 numwait desc, 
 s_name; 
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CHAPTER 6 

CONCLUSIONS 
Most commercial DBMSs use a sequential plan-first execute-next query processing strategy: the 

optimizer enumerates and costs plans and passes the plan with the lowest estimated cost to the executor; 

then the executor processes the plan to completion. The effectiveness of this non-adaptive approach relies 

heavily on the quality of the plans produced by the optimizer. The quality of those plans depends on the 

information available to the optimizer: if the statistics used to cost plans are missing or incorrect, the 

optimizer is likely to select a sub-optimal plan. Several hardware and software trends are making this hard 

problem harder. For example, the optimization space is increasing exponentially because there are more 

operators to considerer, larger datasets to manage, and more complex queries to optimize. Thus, the 

optimizer is increasingly more likely of selecting a sub-optimal plan. 

6.1. Contributions 

Given the trends above, instead of focusing on providing more information to the optimizer, we proposed 

a series of query processing techniques that correct optimizer mistakes or execute robust plans (plans with 

good performance that are insensitive to optimizer mistakes). 

Content-Based Routing, described in �, is a strategy that assigns different execution plans for 

subsets of data with different statistical properties. The different subsets of data and their respective plans 

are adaptively determined at run-time with no intervention from the optimizer. Our most important 

contribution was to show that content-based learning and routing can be simultaneously inexpensive and 

adaptive while still achieving significant performance improvements. 
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Rio, described in Chapter 3, is a second-generation AQP system that improves on previous AQP 

proposals in several ways. Previous AQP systems, although able to correct some optimizer mistakes, still 

suffered from the optimizer mistakes in an indirect way. By using a traditional optimizer, those systems 

were more likely to start execution with a sub-optimal plan. Although the sub-optimal plan could 

frequently be detected and replaced by an optimal plan, the process could be inefficient. The sub-optimal 

plan was not quickly detected, and when it was, query processing work could have to be thrown away and 

repeated. In addition, previous AQP approaches would sometimes only find an optimal plan after multiple 

re-optimization steps, each with its own potential inefficiencies. With Rio, we extensively re-engineered 

query optimization and query execution to make the system as insensitive as possible to optimizer 

mistakes. The optimization module was changed to give priority to robust plans, i.e., plans insensitive to 

incorrect estimates. This was partially done by assigning levels of uncertainty to estimated statistics based 

on the way they are estimated. This, in turn, revealed which plans were robust and which plans were 

risky. In addition, new switch operators were inserted in the plan tree to minimize the work lost if a 

change of plan was needed. Finally, query execution was changed to allow faster detection of sub-optimal 

plans and faster convergence to the optimal plan. 

SHARP, described in Chapter 4, is an AQP strategy fundamentally different from Rio. Rio required 

very substantial changes to the query optimization and query execution modules including small 

modifications in all operators. Rio also allowed for multiple inter-leavings of optimization and execution. 

By contrast, the proposed new SHARP operator encapsulates almost all AQP changes needed; the 

remaining query processing engine is largely unaffected. SHARP also explores a new trade-off: instead of 

executing arbitrarily query plans, and being able to preempt execution and re-invoke optimization, 

SHARP adopts a two-step adaptive approach. First, run-time late-binding decisions determine the driving 

relation. Second, tuple routing continuously potentially changes the join order–probing sequence of tuples 

from the build sources–within the orders available after the driving relation was fixed. This two-step 

adaptive process yields two benefits: i) it requires less memory than previous adaptive operators and ii) 
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simplifies the design of second-stage processing. In addition, the second-stage was designed to be 

insensitive to the join order determined by the optimizer, thus, insensitive to optimizer mistakes, i.e., the 

second-stage executed efficient plans regardless of what the optimizer specifies. On the other hand, 

SHARP is not a general AQP solution. SHARP is a multi-join, relational operator that joins three or more 

relations of a star-join. Nevertheless, SHARP shows that it is possible to implement adaptive query 

processing strategies in a DBMS with minimal changes to the system but with great positive impact on 

performance. 

Progressive Parametric Query Optimization, described in Chapter 5, is an AQP strategy designed 

to deal with the lack of information about values in parameterized queries at optimization time. The trivial 

solutions are to ignore the problem (Optimize-Once) or to defer optimization until the values are known 

(Optimize-Always). Optimize-Once returns a plan which may be arbitrarily sub-optimal. Optimize-

Always unnecessarily consumes too many resources in optimization calls. A more elaborated approach, 

Parametric Query Optimization, may also produce too many optimization calls. PQO may also be not 

applicable because its requirements (plan convexity, plan uniqueness, and plan homogeneity) do not hold 

in real systems. Our proposal, PPQO, improves the performance of processing parameterized queries by 

combining the benefits of competing strategies: most of the times, PPQO selects plans that are optimal or 

near-optimal, while avoiding optimization calls in up to 99% of the queries, and being indifferent to plan 

convexity, plan uniqueness, and plan homogeneity. 

6.2. Final Words 

We do not claim that any one of the techniques presented in this thesis completely solves the current 

problems faced by query optimizers. On the contrary, we think that the complexity of the optimization 

problem together with the unavailability of information to cost the alternatives will require many different 

complementary solutions, some of which are adaptive query processing strategies, some not. We think 

that obtaining information not stored in the catalog and providing it just-in-time to the optimizer [2, 6, 73, 
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80], learning from past queries and mistakes [83], and using techniques from data stream systems are 

other interesting avenues to address the issues discussed in this thesis. In future work we plan to integrate 

some of those other approaches with the AQP techniques proposed here. 
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