

ADAPTIVE QUERY PROCESSING:

DEALING WITH INCOMPLETE AND

UNCERTAIN STATISTICS

by

Pedro G. Bizarro

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN – MADISON

2006

i

For Ana, with love

ii

ABSTRACT
The standard Database Management Systems (DBMS) query processing model picks a single non-

adaptive plan and executes it to completion. The chosen plan aims to minimize running time by carefully

optimizing the use of secondary storage, memory, and CPU. DBMS optimizers estimate plan costs by

using statistics–information describing the datasets, the queries, and the system. When statistics needed to

cost plans are not available in the database catalog, the optimizer estimates them by using heuristics and

default values. These estimates may contain errors and these errors grow exponentially with the number

of estimated statistics derived from other estimated statistics. This may lead to selecting query plans that

are sub-optimal by several orders of magnitude. Having more information in the catalog (e.g., histograms)

reduces the problem but does not scale with the number of relations and attributes in the database. In

addition, several hardware and software trends are making this hard problem harder. For example, the

optimization space is increasing exponentially because there are more operators to considerer, larger

datasets to manage, and more complex queries to optimize. Thus, optimizers are increasingly more likely

to select sub-optimal plans.

In the general case, DBMS optimizers may have insufficient information to choose a single, good,

non-adaptive query plan. Instead of focusing on providing more information to the optimizer, we propose

several Adaptive Query Processing (AQP) techniques as alternatives or extensions to the non-adaptive

architecture employed by today’s commercial database systems. Our proposals are targeted to: i) correct

or avoid query processing problems due to the use of incorrect and partial information at optimization

time and ii) collect information not available at optimization time and dynamically determine and assign

different plans for different subsets of the data. The work presented here complements, extends, or

supersedes previous AQP proposals.

iii

ACKNOWLEDGMENTS
I must thank, first and foremost, the guidance and friendship of David DeWitt, my advisor. David was the

perfect advisor for me. While giving me almost free reign to do what I pleased, David presciently and

patiently offered precious suggestions whenever I wondered off track too much. And while stoically

striving for excellent, uncompromising research, David always found time to go well beyond his advisor

duties, from helping me set up the coffee club to help my wife find a job.

I thank also the good humor, guidance, suggestions, and examples of Jeffrey Naughton and Raghu

Ramakrishnan, the other professors from the Wisconsin Database Group. I am also extremely grateful to

Jennifer Widom for helpful feedback and discussions and for being such an amazing role-model.

Shivnath Babu, with whom I collaborated during a fun and intense 8-month, 3-paper period, is a very

special person and was paramount in my growth as a database researcher. Shivnath was a pleasure to

work with, always vibrant, always full of ideas, adaptively discarding the less promising ones, yet

perfectionist to thoroughly follow the good ones to completion. Frequently, when I am faced between a

short-cut solution and a more thorough, more complete, yet arduous task, I think, what would Shivnath

do? And then I just attack the complete task.

I also thank Sam Madden and Amol Deshpande for providing the Lab dataset, and Guy Lohman and

Volker Markl for providing the DMV dataset and workload generator. Thank you also to Sailesh

Krishnamurthy, Amol Deshpande, Joe Hellerstein, and the rest of the TelegraphCQ team for providing

TelegraphCQ and answering all my many questions.

Paulo Zagalo and Rita Bacelar, from Fulbright in Portugal, are perhaps the reason why I am here

today. Not only they interviewed and selected me for a Fulbright Fellowship which opened the doors to a

graduate position at UW–Madison, they also gave me invaluable moral support through the years. For

some reason, they seemed to believe in my abilities more than what I fairly deserved.

iv

I also thank my future colleagues at the University of Coimbra, in Portugal, Henrique Madeira and

Paulo Marques. They have been extraordinary friends, they have helped me immensely maintain, nurture,

and extend my ties with Coimbra, and they have already started helping me transition from student to

faculty.

My work would also not be possible without the brotherly support and careful reviews of the closely

tied Database Group at Wisconsin, especially Ahmed Ayad, Jennifer Beckmann, Vuk Ercegovac, Alan

Halverson, Ameet Kini, Kristen Lefevre, and Eric Robinson.

I thank also my good friends in and around the CS department, Alexey&Wendy, Ameet&Sommya,

Christina&Richard, Ian&Irene, Jennifer&Brad, Phillip&Corina, Vuk&Madgalena, Sérgio&Heather,

Tânia&Zé Santana, Zé&Julia, Alan&Coffee, Eric&Talking, Giordano&Tiramisu, Hao&Dinners,

Hogi&Civ, Jaime&Ice-cream, and Rui&Beer. I now know that all those distractions you provided were

just a clever ploy to keep my sanity. It worked!

To my family, I own more than what I can express here. My grand-parents, Vovina and Vô Danilo,

have been a great example of energy and hard-work. My parents have been nothing short of fantastic.

From my childhood years, they have been patiently nurturing the scientist in me, looking up with me

things in multiple encyclopedias, feeding my curiosity, strengthening my method, providing guidance,

inspiration, and motivation. They even gave me my first computer and taught me to program before I was

10! And Erika, my little sister, by being the popular girl in school while at the same time winning the

Portuguese Math Olympics, taught me that you can eat the cake and have the cherry too. Nicely done!

I thank also my delightful, cheerful, beautiful, vibrant baby boy, Diogo, for helping me put things into

perspective. My time is better managed if I squeeze bedtime stories and zoo trips between conference

deadlines. And those dreadful paper reviews are less scary when, after all is said and done, I can go home

to you, be silly and make you smile. And to think there is another baby on the way!

v

Finally, I want to thank my wife, Ana. Before I met you I did not know that people like you existed.

You give so much. So much support, so much laughter, so much love, so much life. Not only my Ph.D.

would not be possible without you by my side, my life would be meaningless. Or said another way:

No frio da noite/na solidão da tempestade/na escuridão da viagem/Eu sou o navio.

Cruzo o oceano resoluto, mas já não sozinho

O trovão, a chuva e a água não me assustam. Porque

no frio da tempestade/na solidão da viagem/na escuridão da noite/tu és o caminho.

Sempre que preciso, estás lá.

Sempre. Ou seria,

no frio da viagem/ na solidão da noite/ na escuridão da tempestade/ um navio a afundar.

This work was supported in part by a Fulbright Scholarship, by the National Science Foundation under research
grant IIS-0086002, by the Fundação para a Ciência e a Tecnologia (Portugal) under research grant
SFRH/BD/4984/2001, and by the University of Coimbra.

vi

Contents
Abstract ii
Acknowledgments iii

Chapter 1
Introduction 1
1.1. Query Optimization Problems 3
1.2. Trends Exacerbating Query Processing Problems 6
1.3. Contributions and Thesis Organization 7

Chapter 2
Content-Based Routing 10
2.1. Introduction 10

2.1.1. Eddies and Source-Based Routing 11
2.1.2. Motivations for Content-Based Routing 11
2.1.3. Contributions and Outline 14

2.2. Related Work 15
2.3. Classifier Attributes 16
2.4. Learning Routes Automatically 19

2.4.1. The Optimization Step of Content-Learns 20
2.4.2. The Routing Step of Content-Learns 23
2.4.3. Overheads and Benefits of CBR 24
2.4.4. Pruning Operators and Attributes 24
2.4.5. CBR for Non-Filter Operators 25

2.5. Adaptivity 26
2.6. Experimental Evaluation 27
2.7. Conclusions 39

Chapter 3
Proactive Re-Optimization 40
3.1. Introduction 40
3.2. Related Work 42
3.3. Problems With Reactive Re-Optimization 43

3.3.1. Limitations of Single-Point Estimates 45
3.3.2. Limited Information For Re-Optimization 46
3.3.3. Losing Partial Work in a Pipeline 47

3.4. Proactive Re-Optimization 47
3.4.1. Representing Uncertainty in Statistics 49
3.4.2. Using Bounding Boxes During Optimization 50
3.4.3. Accurate Run-Time Statistics Collection 52

3.5. Proactive Re-Optimization With Rio 53
3.5.1. Building Rio 53
3.5.2. Computing Bounding Boxes 54
3.5.3. Optimizing With Bounding Boxes 55
3.5.4. Extensions to the Query Execution Engine 61

3.6. Experimental Evaluation 66
3.7. Conclusions 77

vii

Chapter 4
Adaptive and Robust Query Processing with SHARP 80
4.1. Introduction 80

4.1.1. Contributions and Outline 82
4.2. Eddies and MJoins 82

4.2.1. Terminology 83
4.2.2. The Eddy 83
4.2.3. The MJoin 84

4.3. SHARP 85
4.3.1. In-Memory Processing 86
4.3.2. Adaptive Tuple Routing Strategies Used 88
4.3.3. Late Binding Decisions 90
4.3.4. Second-Stage Processing 93
4.3.5. Summary of SHARP 98

4.4. Experimental Evaluation 99
4.4.1. Datasets 100
4.4.2. Evaluating Multi-Join Improvements 101
4.4.3. Redistributing Memory between Joins 103
4.4.4. Comparing Routing Policies 105
4.4.5. Evaluating the Second-Stage 107
4.4.6. Evaluating Late Binding Decisions 110
4.4.7. Evaluating Second-Stage Insensitivity 113

4.5. Related Work 119
4.6. Conclusions 120

Chapter 5
Progressive Parametric Query Optimization 122
5.1. Introduction 122

5.1.1. Parametric Query Optimization 123
5.1.2. Contributions 123

5.2. Progressive Parametric Query Optimization 124
5.2.1. The PQO Problem 125
5.2.2. The Parametric Plan Interface 125
5.2.3. Requirements and Goals 127
5.2.4. The Parameter Transformation Function φ 128

5.3. The Bounded PPQO Implementation 131
5.3.1. Preliminaries and Definitions 131
5.3.2. Implementation of addPlan 132
5.3.3. Quality Guarantees of getPlan 132
5.3.4. Implementation of getPlan 134

5.4. The Ellipse PPQO Implementation 137
5.4.1. Implementation of addPlan 138
5.4.2. Implementation of getPlan 138

5.5. Experimental Evaluation 140
5.5.1. Dataset, Metrics, and Setup 140
5.5.2. Variation on HitRate and OptRate 141
5.5.3. Number of Plans, Number of Points, Space, and Time 145
5.5.4. MaxSO and AvgSO 147

viii

5.5.5. Vary Bounded’s M and Vary Ellipse’s ∆ 149
5.5.6. Vary Query Order 151
5.5.7. Vary Number of Dimensions 154

5.6. Related Work 158
5.7. Conclusions 159
5.8. Proofs of Theorem 5.1 and Theorem 5.2 160
5.9. Queries 163

5.9.1. Query 7 164
5.9.2. Query 8 165
5.9.3. Query 9 166
5.9.4. Query 18 167
5.9.5. Query 21 168

Chapter 6
Conclusions 169
6.1. Contributions 169
6.2. Final Words 171

Bibliography 173

ix

List of Tables
Table 1 – Content specific selectivities 17
Table 2 – Defaults used in experiments and graphs 29
Table 3 – Selectivities for class/operator pairs 31
Table 4 – Summary of dataset used in the experiments 66
Table 5 – Plans used at points 1, 2, 3, and 4 of Figure 30 73
Table 6 – Routing policies implemented, p >n>r, K∈ 90
Table 7 – Summary of late binding decisions 91
Table 8 – Description of TPC-H queries used 140
Table 9 – Effects of different query orders 151
Table 10 – Variation of number of dimensions 154

x

List of Figures
Figure 1 – Query processing overview 1
Figure 2 – Three different plans joining relations R, S, and T 2
Figure 3 – (a) A continuous query; (b) Eddies; (c) Eddies with CBR 13
Figure 4 – Run-time data structures 21
Figure 5 – Improvement with varying skew (2 joins) 31
Figure 6 – Improvement with varying skew (6 joins) 31
Figure 7 – Breakdown of routing calls 32
Figure 8 – Improvement with random selectivities 33
Figure 9 – Improvement with varying aggregate selectivity (6 joins) 34
Figure 10 – Change in selectivity, best classifiers, and gain ratio 36
Figure 11 – Improvement with varying operator cost 37
Figure 12 – Per tuple overhead 38
Figure 13 – Two plans for the σ(R) S query 44
Figure 14 – Cost of plans P13a and P13b as |σ(R)| varies 46
Figure 15 – Thrashing with reactive re-optimization 48
Figure 16 – Proactive re-optimization 49
Figure 17 – Bounding box around estimates of |σ(R)| and |S| 50
Figure 18 – Robust and switchable plans 52
Figure 19 – Computing bounding boxes for an (E, U) pair 55
Figure 20 – Computing plan costs 57
Figure 21 – Finding a robust plan in |σ(R)|’s bounding box 59
Figure 22 – Possible members of a switchable plan 60
Figure 23 – Plan P23 61
Figure 24 – Implementation of switchable plan from Figure 22 62
Figure 25 – Bounding box (a); and which plan to choose (b) 63
Figure 26 – Random samples in the operator output 64
Figure 27 – σ(A) C, 150MB per hash join 68
Figure 28 – σ(A) C, 50MB per hash join 71
Figure 29 – Plans for A C O used in experiments 72
Figure 30 – σ1(A) C σ2(O), 50MB per hash join 72
Figure 31 – Errors due to correlated predicates 75
Figure 32 – Increasing query complexity 76
Figure 33 – SHARP, Eddy, and MJoin processing R S T 84
Figure 34 – SHARPs processing a star-join and a linear-join 86
Figure 35 - Tuple s from S probes Op 1 and Op 2 in iterator model 89
Figure 36 – Late binding decision Using-INL 92
Figure 37 – Late binding decision Using Bloom Filters 93
Figure 38 – Second stage processing 96
Figure 39 – Second-stage pseudo code 98
Figure 40 – Right-deep tree of DHJs 98
Figure 41 – a) SHARP; b) RDH plan; c) LDH plan 102
Figure 42 – Avoiding intermediate results 102
Figure 43 – Avoiding getNext calls 103
Figure 44 – Redistributing memory 104
Figure 45 – Low profiling overhead, low probing cost 106
Figure 46 – Low profiling overhead, high probing cost 107
Figure 47 – Evaluating second-stage, 2 joins 109

xi

Figure 48 – Evaluating second-stage, 4 joins 109
Figure 49 – Plans used to evaluate late binding decisions 111
Figure 50 – Late binding evaluation: 4 joins; memory=25% size of builds 111
Figure 51 – Late binding evaluation: 4 joins; memory=25% size of builds 112
Figure 52 – Late binding decisions: 2 joins; memory=100% size of builds 112
Figure 53 – Queries and predicate selectivities used in the TPC-H schema 115
Figure 54 – Execution of Query 1 115
Figure 55 – Execution of Query 2 118
Figure 56 – Execution of Query 3 118
Figure 57 – Using Parametric Plans 126
Figure 58 – Implementation of Optimize-Always 126
Figure 59 – Implementation of Optimize-Once 127
Figure 60 – Age distribution in table FRESHMEN 129
Figure 61 – Value-based and selectivity-based parameter space 130
Figure 62 – Bounded’s addPlan 132
Figure 63 – Triples stored in Bounded 134
Figure 64 – Bounded’s getPlan 136
Figure 65 – Examples of ∆-acceptable plans 138
Figure 66 – Ellipse’s addPlan 139
Figure 67 – Ellipse’s getPlan 139
Figure 68 – Variation of HitRate, OptRate for 10,000 QP; Query 7 142
Figure 69 – Variation of HitRate, OptRate for 10,000 QP; Query 8 143
Figure 70 – Variation of HitRate, OptRate for 10,000 QP; Query 9 143
Figure 71 – Variation of HitRate, OptRate for 10,000 QP; Query 18 144
Figure 72 – Variation of HitRate, OptRate for 10,000 QP; Query 21 144
Figure 73 – Number of plans after 10,000 queries processed 145
Figure 74 – Number of points after 10,000 queries processed 146
Figure 75 – Space consumed after 10,000 queries 146
Figure 76 – Optimization and ParametricPlan time to process 10,000 queries 147
Figure 77 – MaxSO 147
Figure 78 – AvgSO 148
Figure 79 – Typical costs of optimal plans 148
Figure 80 – HitRate for Bounded; Query 21 149
Figure 81 – OptRate for Bounded; Query 21 150
Figure 82 – HitRate for Ellipse; Query 21 150
Figure 83 – OptRate for Ellipse; Query 21 151
Figure 84 – HitRate for Bounded, 6 random query orders; Query 21 152
Figure 85 – OptRate for Bounded, 6 random query orders; Query 21 152
Figure 86 – HitRate for Ellipse, 6 random query orders; Query 21 153
Figure 87 – OptRate for Ellipse, 6 random query orders; Query 21 153
Figure 88 – HitRate for Bounded with number of dimensions, p; Query 8 155
Figure 89 – OptRate for Bounded with number of dimensions, p; Query 8 155
Figure 90 – HitRate for Ellipse with number of dimensions, p; Query 8 156
Figure 91 – OptRate for Ellipse with number of dimensions, p; Query 8 156
Figure 92 – Number of plans with varying number of dimensions; Query 8 157
Figure 93 – Number of points with varying number of dimensions; Query 8 157

1

CHAPTER 1

INTRODUCTION
Users and application programs typically use the language SQL to access information in a relation

database system (DBMS). As a declarative language, SQL allows the user to specify what information

from the database is needed without having to specify how to retrieve it. It is the responsibility of the

DBMS to translate each SQL query into an efficient execution plan.

As shown in Figure 1, SQL queries are first translated into a DBMS internal representation of the

query called a logical plan through a module called a parser .

Figure 1 – Query processing overview

Logical plans specify what to do and not how to do it. There are many different alternatives to

execute the query specified by a logical plan. Each of those alternatives, called a physical plan , has an

execution cost. Query optimization , performed by the optimizer , is the name given to the task of selecting,

for each logical plan, the corresponding physical plan with the lowest cost. Finally, query execution,

performed by the executor, takes the chosen optimal physical plan, executes it to completion, and returns

the output to the user. The entire process of parsing, query optimization, and query execution is called

query processing.

2

To select an execution plan, the optimizer considers, or enumerates, many physical plans (henceforth

simply called plans). A plan is a tree of operators. Leaf operators retrieve records from a single relation

and pass those records to their parent operator. Almost always, intermediate operators retrieve and join

records from two children operators and pass the joined records to their parent operator. (The set of

records output by an operator is called an intermediate relation; relations are called base relations to

distinguish them from intermediate relations.) Each operator represents one algorithm. Algorithms that

retrieve records from a single base relation–e.g., file-scan (FS) and index-scan (IS)–are called access

methods. Algorithms that join records between relations–e.g., nested-loops join (NLJ) and sort-merge join

(SMJ)–are called join methods. Each enumerated plan is different from the rest in one or more operators

or in the shape of the tree (i.e., in the way the operators are connected). Figure 2 shows three plans for

executing the same query: joining relations R, S, and T. Plan 2 is different from Plan 1 in the operators

marked gray. Plan 3 has the same operators of Plan 1, but the inputs to the top operator are reversed.

Figure 2 – Three different plans joining relations R, S, and T

The cost of a plan is the sum of the costs of the operators that compose it. The task of the optimizer is

to enumerate alternative physical plans, estimate their cost, and prune all plans except the one with

minimal cost. The exact cost of each operator, and therefore of the entire plan, is very hard to compute.

Indeed, the cost of each operator may depend on:

3

• The state of the system running the DBMS (e.g., the amount of memory available to hold pages of

base and intermediate relations)

• The parameters of the SQL query

• The sizes of base relations and intermediate relations

• The data distributions of values in the relations

To correctly cost and prune plans, the optimizer needs to obtain all the information mentioned above.

Each piece of information used during costing is called a statistic. Some statistics can be obtained from

the DBMS. For example, the DBMS might know much memory is available at optimization time. Other

statistics can be obtained from the query itself. Still, others can be obtained from the database catalog.

The database catalog (or simply, catalog) is a repository of meta-information in the DBMS, describing,

among others, sizes of base relations and (approximations of) data distributions.

However, the catalog is far from complete: most DBMS data distributions are not represented there.

Other times, queries are not fully specified. That is, there are queries, referred to as parametric queries ,

with placeholders for parameters that are known at execution time but not at optimization time. In

addition, the state of the system at execution time may be different from the state of the system at

execution time. In any of these situations, the optimizer needs to cost plans without having access to all

the statistics needed to accurately estimate their cost. Whenever this happens, the optimizer uses a number

of heuristics to estimate the unknown statistics which are then used to estimate the cost of operators, and

the cost of plans.

1.1. Query Optimization Problems

Sometimes, the inputs to the optimizer may be incorrect or partially missing. When that happens,

correctly estimating the cost of all operators in all enumerated plans is virtually impossible and the

4

optimizer may select a plan that is sub-optimal. Below we describe scenarios that can lead to sub-optimal

plan choices.

1.1.1. Statistics not in the Catalog, Heuristics Incorrect

Based on the query, the optimizer determines which statistics to retrieve from the catalog: sizes of base

relations, sizes of records, distributions of values, etc. The optimizer then estimates the cost of operators

and plans using those statistics. However, frequently, statistics needed to compute costs of operators are

not stored in the catalog. When this happens, the optimizer estimates the missing statistics by using a

combination of heuristics. For example, if a distribution of values is unknown, it is typically assumed to

be uniform. Likewise, if the relationship between two distributions is unknown, they are typically

assumed to be independent. However, frequently the assumptions do not hold and the resulting estimates

may be incorrect. Throughout the query optimization process, estimated statistics may be used to produce

other estimated statistics. For example, to estimate the size of the join of relation R with S, the optimizer

will likely estimate the sizes of R and S separately. If the sizes of R and S were incorrectly estimated, the

estimate of the size of the join of R with S will also likely be incorrect. It has been shown that, not only

this propagation of errors happens, in fact, the propagated error grows exponentially with the number of

statistics estimated from other estimated statistics [51]. As the errors in estimated statistics grow, the

optimizer is more likely to select a sub-optimal plan.

1.1.2. Parametric Queries

Parametric queries are queries with one or more input parameters that are unknown at optimization time.

Different input parameter values may yield different results and may require different optimal plans. Not

knowing what values to expect, the optimizer guesses those values and proceeds with optimization.

5

Again, due to unknown statistics, in this case the input parameters to the parametric query, the optimizer

may produce sub-optimal plans.

1.1.3. Detailed Statistical Information not Considered

Another prevalent assumption used during query processing is that there is a single efficient plan for a

given query based on current statistical properties of the data. However, different subsets of the data can

sometimes have very different statistical properties. In such scenarios it can be more efficient to process

different subsets of the data using different plans. Even if catalogs contained statistics at the level of detail

necessary, current optimizers are not designed to consider this scenario and may use sub-optimal plans.

1.1.4. Changing Statistics

Finally, traditional query processing has been extended to consider potentially infinite, continuous queries

over streams of data. Throughout the life of such long running queries, the conditions of the Data Stream

Management System (DSMS) and the characteristics of the data can change, possibly changing the

optimality of running plans. Dealing with the changing environment typical of DSMSs has been the focus

of other work [5, 12, 20, 21, 27, 39, 67] and will not be addressed in depth in this thesis. However, in both

DBMS and DSMS, the problems and the architectured solutions have major points in common: incorrect,

missing, or changing information lead to the execution of sub-optimal plans, sub-optimality is detected at

run-time, and a new optimal plan is generated to replace the sub-optimal plan being executed [10].

Because of these common points, some of the solutions developed in this thesis are also applicable to

DSMSs [see Chapter 2, or reference 15].

6

1.2. Trends Exacerbating Query Processing Problems

The traditional DBMS architecture described above has been widely successful and it has been used

virtually by all databases, ever since its introduction, almost three decades ago [79]. However, while the

basic DBMS architecture has remained the same, there have been spectacular improvements in hardware

and software: the average improvement in price-performance since 1985 is 68%/year (beating Moore’s

Law at 58%/year) [42]. For example, the best hardware and software combination of 1985 could sort 0.05

GB/$, while the best combination in 2005 could sort 1660 GB/$, a 33200-fold increase in 20 years [75].

With so much increased processing capacity, DBMSs are able to handle larger and larger databases.

For example, in 1983, the pioneer Wisconsin Benchmark [14] had 3 relations totaling less than 5 MB

while in 2006, the TPC-H [85] site reports systems handling up to 10,000 GB, a two-million-fold increase

in dataset size over 20 years.

There have been also many new operators; in 1979 optimizers only had to consider a handful of

operators when building plans [79], while in the latest SQL Server DBMS, the optimizer has close to 100

operators to consider [65]. Query size has also increased substantially in the last two decades. Initial

systems aimed at joining two or three relations efficiently [14, 79]. Nowadays it is common for real-life

DBMS to process queries joining 20 relations.

In summary, datasets have been growing exponentially with time, DBMSs have become very

complex systems with dozens of operators, and it is common for queries to access dozens of tables. These

trends present significant optimization challenges. The optimization space increases exponentially with

the number of relations joined and with the number of operators to consider. The number of statistics

needed to correctly cost all possible plans grows exponentially with the number of relations and number

of attributes in the relations. Thus, larger and more complex datasets are likely to have more information

missing in the catalog. All this makes the job of the optimizer increasingly harder: every optimization call

may have to consider and cost thousands of plans, each with tens of operators. In addition, due to better

7

software and hardware, optimizer mistakes are becoming, not only more common, but also more costly.

That is, the percentage difference between an optimal plan and a sub-optimal plan is likely to increase

with hardware and software improvements.

Assuming the described trends will continue, we believe query processing will have to be re-

architectured in order to be able to deal with the challenges described in Section 1.1. The next section

describes the contributions that this thesis makes towards addressing these problems.

1.3. Contributions and Thesis Organization

This thesis proposes several Adaptive Query Processing (AQP) approaches as alternatives or extensions

to the non-adaptive architecture employed by today’s commercial database systems. Our proposals are

targeted to: i) correct or avoid query processing problems due to the use of incorrect and partial

information at optimization time and ii) collect information not available at optimization time and

dynamically determine and assign different plans for different subsets of the data.

We note that adaptive query processing proposals over DBMSs are not new [5, 26, 28, 40, 46, 55, 56,

58, 61, 63, 83]. The work presented here represents a second-generation of adaptive query processing

techniques that complements, extends, or supersedes some of those previous proposals. Our main

contributions were developed in four different projects:

• Content-Based Routing (CBR), described in Chapter 2. Query optimizers in current database

systems are designed to pick a single efficient plan for a given query based on current statistical

properties of the data. However, different subsets of the data can sometimes have very different

statistical properties. In such scenarios it can be more efficient to process different subsets of the input

datasets using different plans. We propose a new query processing technique called content-based

routing that eliminates the single-plan restriction in current systems. We present low-overhead,

adaptive algorithms that partition input data based on statistical properties relevant to query execution

8

strategies, and efficiently route individual tuples through customized plans based on their partition.

We have implemented CBR as an extension to the Eddies [5] query processor in the TelegraphCQ

system [21], and we present an extensive experimental evaluation showing the significant

performance benefits of CBR.

• Proactive Re-Optimization (Rio), described in Chapter 3. First generation AQP systems used a

traditional optimizer to pick a plan, and then reacted to estimation errors and resulting suboptimalities

that were detected in the plan during execution. The effectiveness of this approach is limited because

traditional optimizers choose plans unaware of issues affecting re-optimization. We address this

problem using proactive re-optimization, a new approach that incorporates three techniques: i) the

uncertainty in estimates of statistics is computed in the form of bounding boxes around these

estimates, ii) these bounding boxes are used to pick plans that are robust to deviations of actual values

from their estimates, and iii) accurate measurements of statistics are collected quickly and efficiently

during query execution. We present an extensive evaluation of these techniques using a prototype

proactive re-optimizer named Rio, implemented in open-source DBMS Predator [81]. In our

experiments Rio outperforms current re-optimizers by up to a factor of three.

• Streaming, Highly Adaptive Run-time Planner (SHARP), described in Chapter 4. SHARP is a

new multi-join, adaptive, relational operator that joins three or more relations of a star-join. SHARP

reduces the possible impact of optimizer mistakes by determining which plan to execute

independently of optimization estimates. During normal query processing, SHARP collects statistics,

and by using a combination of late-binding plan decisions and tuple routing strategies, it is able to

change join order and table access methods. However, unlike previous tuple routing operators used

for in-memory stream processing, SHARP was designed to process local relations with sizes much

larger than available memory. We have implemented SHARP in the open-source DBMS Predator,

9

and we present an extensive experimental evaluation showing the significant performance benefits

that the SHARP operator can provide.

• Progressive Parametric Query Optimization (PPQO), described in Chapter 5. Many commercial

applications rely on pre-compiled parameterized procedures to interact with a database.

Unfortunately, executing a procedure with a set of parameters different from those used at

compilation may be arbitrarily sub-optimal. Parametric query optimization (PQO) attempts to solve

this problem by exhaustively determining the optimal plans in each point of the parameter space at

compile time. However, PQO is likely not cost-effective if the query is executed infrequently or if it

is executed with values only within a subset of the parameter space. We propose instead to

progressively explore the parameter space and build a parametric plan during several executions of

the same query. We introduce algorithms that, as parametric plans are populated, are able to

frequently bypass the optimizer but still execute optimal or near-optimal plans. We present an

extensive performance evaluation of PPQO using a prototype implementation and SQL Server 2005.

10

CHAPTER 2

CONTENT-BASED ROUTING
Content-Based Routing (CBR) is a new technique that overcomes the single-plan restriction in current

systems. CBR uses low-overhead adaptive algorithms that partition input data and efficiently route tuples

through customized plans based on their partition.

2.1. Introduction

The conventional approach to query optimization is to pick a single efficient plan for a query, based on

statistical properties of the data along with other factors such as system conditions. In many application

domains, different partitions of the data accessed by a query may have very different statistical properties.

For example, statistical properties of the observations collected by different sensors in a sensor network

environment may be very different [33]. In such cases it can be more efficient to process the different

partitions using different plans. In this chapter we propose a new general-purpose query processing

technique called Content-Based Routing (CBR) that eliminates the single-plan restriction in current

systems. CBR automatically identifies tuple classes —partitions of the input data that differ in relevant

statistical properties—and processes the query using multiple plans, each of which is customized for an

individual tuple class. CBR is low-overhead and it is adaptive, revisiting its decisions as changes in data

characteristics are detected.

Adaptive approaches to query optimization have received a great deal of attention recently, with a

focus on handling data properties and system conditions that may change while a query is running [5, 12,

20, 21, 27, 39, 67]. Our problem is different: We do not focus on adapting a single plan as data

characteristics change, but rather on detecting classes of data characteristics that can be used to route

11

different data to different plans. Note that even Eddies [5], which can potentially adapt at the tuple

granularity, still uses a single plan for (nearly) all tuples at any point of time.

2.1.1. Eddies and Source-Based Routing

Our CBR algorithms are implemented as an extension to Eddies [5]. However, our approach applies to

any query processing environment where the data movement can be modeled as streams, e.g., stream

systems, regular database systems using iterators [41], and "pull" systems like acquisitional query

processors [62]. The Eddy is an operator that routes tuples through a pool of operators until they are

processed by all operators or are dropped along the way [5]. The Eddy continuously observes the

performance of the operators by collecting statistics at run-time (e.g., selectivity and cost) and routes

tuples to the most efficient operator1. Since these statistics are potentially changing, the process is

automatically adaptive, possibly sending different tuples through different routes.

Without CBR, an Eddy makes routing decisions based on the selectivity of each operator over all

tuples the operator has processed recently. Tuples are not differentiated based on content, so all tuples

from the same stream source are routed identically. We denote this type of routing as source-based

routing (SBR).

2.1.2. Motivations for Content-Based Routing

When CBR is added to Eddies, correlations between tuple content and operator selectivity are detected,

and they are exploited during routing to eliminate tuples sooner, reduce latency, and improve overall

system throughput relative to SBR. Next we motivate CBR using two examples.

12

Example 2.1. Figure 3(a) is an intrusion detection query for an enterprise network [13, 82]. The lookup

table T may contain addresses of subnetworks in the enterprise that are exposed to the public Internet. The

byte sequences represent patterns common to a specific type of network attack [13]. Figure 3(b) shows an

Eddy for this query with three filter operators–O1, O2, and O3–corresponding to the three conditions, over

an incoming stream S of network packets. Operator O1 performs a prefix-based join on the destination

address attribute of incoming S tuples with T. Operators O2 and O3 perform the 100-byte and 256-byte

sequence matches respectively.

Let ci denote the current average processing cost per tuple for operator Oi, and let σi, 0 ≤ σi ≤ 1, denote

the current expected selectivity of Oi.
2 Suppose the following conditions hold for the example: c3 > c1 > c2

and σ3 > σ1 > σ2. Given these statistics, the Eddy's routing will converge to the ordering O2, O1, O3, i.e.,

most tuples will follow this route as shown in Figure 3(b).

Now suppose the monitored attack is underway on a subnetwork whose prefix is not in T. (The

subnetwork may be secured separately by a firewall.) In this case, σ2 and σ3 will be very high, and σ1 will

be very low for packets (tuples) coming from the attacker(s). So, O1, O2, O3 will be the most efficient

ordering for processing these “attack packets”. For other packets, O2, O1, O3 will remain the best ordering

as before. Since an attack happens typically from some group of compromised hosts, CBR can distinguish

between the attack and non-attack packets based on the source address, and use the appropriate ordering

(Figure 3(c)). Without CBR, the Eddy will continue using the O2, O1, O3 ordering, limiting performance. ■

1 In reality, the Eddy routes most, but not all, tuples through the route expected to be most efficient (in a process
called exploitation) and simultaneously routes some few tuples through other routes to discover if any of those other
routes has become the most efficient (exploration).

2 Cost is the time spent by the operator processing the tuple. Selectivity refers to the fraction of input tuples passed
by the operator.

13

Figure 3 – (a) A continuous query; (b) Eddies; (c) Eddies with CBR

Query: “Track packets with
destination address matching a
prefix in table T, and containing
the 100-byte and 256-byte
sequences “0xa...8” and “0x7...b”
respectively as subsequences”

SELECT * FROM packets
WHERE matches(destination, T)
AND contains(data, “0xa...8”)
AND contains(data, “0x7...b”);

a)

O1
O2
O3

b)

Stream of tuples

O1 O2

O3

almost all
tuples
follow

this route

c)

Stream of tuples

O1 O2

O3

add
r

addr

attack
tuples
follow

this route

non-attack
tuples
follow

this route

SQL version using UDFs:

14

Example 2.2. Consider the following query over a distributed sensor network in a large warehouse

building:

SELECT * FROM sensors
WHERE light < 1000 lux3 AND temperature > 20ºC;

To answer this query, data must be acquired from sensors. However acquiring readings from sensors

is a power-consuming operation. Since sensors are power-constrained, one of the main goals of

acquisitional systems is to minimize power consumed by data acquisitions [33]. Note however, that

sensors that are placed close to windows receive more natural light and likely report higher temperatures

than sensors located in interior rooms. Therefore, for those sensors close to windows, the probability that

the predicate on light will fail may be higher than that for the temperature predicate. On the other hand,

for sensors that are placed in interior locations, the probability that the predicate on light will fail may be

lower than that for the temperature predicate. Therefore, instead of using a single fixed order for

evaluating the two predicates across all sensors, we may want to use CBR: use different operator

evaluation orders depending on the sensor location. For each sensor location, CBR chooses an operator

evaluation order that evaluates the most selective operator first. On average, CBR will reduce the number

of predicates evaluated per sensor and the number of data acquisitions required, resulting in significant

power consumption savings in this setting. ■

2.1.3. Contributions and Outline

The major contributions of this chapter are:

• In Section 2.3 we define classifier attributes, an important concept in CBR.

3 A value of 1 Lux corresponds to moonlight, 400 Lux to a bright office, and 100,000 Lux to full sunlight.

15

• In Section 2.4 we present algorithms to automatically and efficiently learn classifier attributes, to

partition the underlying data into tuple classes, and to route tuples from these classes optimally

through the operators in an Eddy.

• In Section 2.5 we discuss the adaptive nature of our algorithms to handle changes in input data

properties and system conditions while the query is running.

• Finally, in Section 2.6 we present an extensive experimental evaluation of CBR using a prototype

implementation in TelegraphCQ. Our results show good performance improvements over not using

CBR.

2.2. Related Work

Work related to CBR can be grouped into four categories: exploiting correlations among attributes during

query processing, adaptive query processing, identifying correlations in large datasets, and computing

complex statistical information over data streams.

The work most closely related to CBR is identifying conditional plans in an acquisitional query

processing system [31, 33]. Like CBR, a conditional plan partitions the input data and processes each

partition with a different plan. The approach taken in [33] is to learn a single good conditional plan based

on an initial training sample of the data, and then to use this plan unchanged throughout query execution.

That initial training is done offline, requires a large amount of collected training data, and learns the

conditional plans using complex decision tree building algorithms. On the other hand, CBR uses light-

weight machine learning techniques over the streaming tuples that enable a continuously adaptive

approach to query processing. Thus, CBR does not require previous knowledge of the data and is not

dependent on previous learned models of the world.

While many adaptive query processing systems have been built to date, most of them use a single

plan for almost all tuples at any point of time [5, 9, 11, 53, 58, 63]. Some of these systems, including

Eddies, on which we have implemented CBR, process almost all of the input tuples using the current best

16

plan, and the remaining tuples are processed using other plans to track the performance of these plans (to

identify plans to change to) or to collect run-time statistics [5, 9]. Ives et al describe a technique that

combines hash join and merge join operators to take advantage of mostly-ordered inputs [56]. Tuples

following the expected order are routed to the merge join; remaining tuples are routed to the hash join. A

final phase joins tuples across the two operators to produce the complete join result. This technique,

complementary to ours, can be seen as providing adaptivity within a single join operator while CBR

provides adaptivity in a query plan by allowing different join orders.

There has been some recent work on identifying correlations in large datasets. None of this work has

been used to identify different plans for processing different partitions of the data for a query. CORDS

identifies sets of attributes that are correlated [50]. Deshpande et al use the lack of correlation

(independence) among attributes to build compact multi-dimensional histograms [30]. Getoor et al use

probabilistic models like Bayesian networks to capture the statistical relationship among attributes so as

to compute cardinalities accurately for intermediate results in query plans [36].

There has been work on computing complex statistical information over data streams, for example,

decision trees [34], correlated aggregates [37], and histograms [43]. None of this work includes

computing correlations between tuple content and selectivities of operators, identifying tuple classes, or

finding different plans for different subsets of data.

2.3. Classifier Attributes

Our goal is to identify tuple classes where each class has a different optimal operator order for processing.

CBR considers tuples classes that can be distinguished from one another based on tuple content, namely,

the attributes in the tuples. In this context, different tuple classes may have different optimal operator

orders if the selectivity of one or more operators is correlated with the content of one or more input

attributes. Attributes used to distinguish tuple classes are called classifier attributes. Informally, an

attribute A is called a classifier attribute for an operator O if the content of A is correlated with the

17

selectivity of O. As illustrated by Example 2.3, CBR is based on identifying and exploiting such classifier

attributes.

Example 2.3. Consider an input stream S processed by three operators O1, O2, and O3. Let A be an

attribute of tuples in S which takes one of three values a, b, or c with equal probability. Table 1 shows the

respective selectivities of O1–O3 for the tuple classes with A=a, A=b, and A=c, and the overall selectivity

of each operator on S tuples. Assuming O1–O3 have the same execution costs, if only overall selectivities

are considered, then the best ordering for S tuples is O1, O2, O3. However, note that the selectivity of O2 is

correlated with the value of A: the selectivity of O2 for A=a and A=b is much lower than O2's overall

selectivity, and it is much higher for A=c. Therefore, for tuples with A=a or A=b, the ordering O2, O1, O3

will outperform O1, O2, O3, while O1, O3, O2 will outperform O1, O2, O3 for tuples with A=c. ■

Table 1 – Content specific selectivities
Value of A σ1 σ2 σ3

A=a 32% 10% 55%
A=b 31% 20% 65%
A=c 27% 90% 60%

Overall 30% 40% 60%

The degree of correlation between two distributions may be specified in a number of ways [66]. We

use a specification from Information Theory which is based on the concept of gain ratio [66], described

next.

Let R be a random sample of tuples processed by an operator O. (We assume all operators are filters;

an extension to non-filter operator is discussed in Section 2.4.5.) Let σ be the overall selectivity of O for

tuples in R. Each tuple in R belongs to one of two classes: tuples that O passes and tuples that O drops.

The entropy [66] of R, which is an information-theoretic metric used to capture the information content of

R, is defined as:

18

 ∑
=

−=
c

i
ii ppREntropy

1
2log)((1)

where c is the number of classes in R and p i is the fraction of R belonging to class i. In our case c=2,

corresponding to the tuples passed and dropped by O, so p 1=σ and p 2=1 – σ respectively. Therefore:

)1(log)1(log)(22 σσσσ −−−−=REntropy (2)

Let A be an attribute of tuples in R. Let v1, v2, …,vd be the distinct values of A in R. The information

gain of A with respect to R, which represents the increase in information about R gained by knowledge of

A, is defined as [66]:

 ∑
=

−=
d

i
i

i REntropy
R

R
REntropyARnGainInformatio

1

)()(),((3)

Here, Ri is the subset of R with A=vi and |R| (|Ri|) is the number of tuples in R (Ri). Gain ratio is a

normalized representation of information gain [66]:

 ∑
=

−=
d

i

ii

R

R

R

R
AmationSplitInfor

1
2log*)((4)

)(

),(
),(

AmationSplitInfor

ARnGainInformatio
ARGainRatio = (5)

Gain ratio is used widely in decision-tree learning algorithms (e.g., ID3 [66]) to determine the

attribute that best classifies a given data set. Since classifier attributes serve a similar purpose in our case,

our formal definition of a classifier attribute is based on gain ratio.

Definition 3.1 (Classifier Attribute) An attribute A is a classifier attribute for an operator O if for any

large random sample R of tuples processed by O, we have GainRatio(R, A) > γ, for some threshold γ. ■

Example 2.4. We revisit Example 2.1. Let Table 1 now represent the selectivities computed from random

samples R1, R2, and R3 of tuples processed by operators O1, O2, and O3 respectively. Since A takes one of

values a, b, or c with equal probability, the samples will contain tuples with A=a, A=b, and A=c in

19

roughly equal proportion. We can use Equations (2) – (5) to compute the gain ratio of attribute A with

respect to R1, R2, and R3: GainRatio(R1, A) = 0.33, GainRatio(R2, A) = 0.63, and GainRatio(R3, A) = 0.37.

Notice that GainRatio(R2, A) dominates the others because of the strong correlation between the

selectivity of O2 and the content of A. ■

Our definition of classifier attributes extends to classifier attribute sets where the selectivity of an

operator is correlated with a set of attributes instead of with any single attribute in that set. That is, tuple

classes in the input may be determined by a set of attributes instead of a single attribute. We do not

consider classifier attribute sets in this work; instead we focus on single-attribute classifiers. Note,

however, that CBR considers multiple single-attribute classifiers when making routing decisions. While

some of our techniques extend directly to classifier attribute sets, we defer a detailed exploration of this

issue to future work.

2.4. Learning Routes Automatically

We are now ready to consider the problem of learning good content-based routes automatically for the

CBR framework introduced in Section 2.3. We will consider a single input stream S with tuples having

attributes C1, C2, …, Ck that are processed by operators O1, O2, …, On, and describe our Content-Learns

algorithm to learn good content-based routes automatically in this setting. For now we will consider all

operators O1, O2, …, On, and for each operator, we consider all attributes C1, C2, …, Ck as potential

classifier attributes for CBR. In Section 2.4.4 we will present heuristics to prune the space of attributes

and operators that we consider for CBR. Content-Learns consists of two continuous, concurrent steps:

1. Optimization: In this step, for each operator Ol ∈ O1, …, On, if one or more attributes in C1, …, Ck

are classifier attributes for Ol, then we keep track of the best classifier attribute for Ol. Informally, we

identify the attribute in C1, …, Ck based on whose content we can make the best routing decisions

with respect to Ol. The operator-attribute combinations identified during optimization are used for

20

CBR by the routing step as described in Section 2.4.2. Details of the optimization step are described in

Section 2.4.1.

2. Routing: In this step we perform CBR using the current operator-attribute combinations identified by

the optimization step. If the selectivity of operator Ol is not correlated with the contents of any

attribute, then we do not use any Ol-attribute combination but instead make routing decisions

regarding Ol using the selectivity of Ol alone. Our routing algorithm for CBR is described in Section

2.4.2.

2.4.1. The Optimization Step of Content-Learns

The goal of optimization is, for each operator Ol ∈ O1, …, On, to identify the best classifier attribute for

Ol in C1, …, Ck. We cycle through the operators in a round-robin fashion, so each operator is considered

periodically. When we consider operator Ol, termed profiling Ol, we identify the best classifier attribute

for Ol. To identify the classifier attributes for Ol, we have to measure the gain ratio of C1, …, Ck based on

a random sample of tuples processed by Ol; recall Section 2.3. To collect this random sample R when Ol

is profiled, the Eddy routes a fraction of input tuples to Ol before they are routed to any other operator,

and notes whether Ol dropped each such tuple or not. (Note that we profile operators using tuples straight

from the input stream. However, in some scenarios it may make sense to profile tuples after they have

been filtered by some operators. We can extend our profiling to track such conditional selectivities as in

[9] which we intend to do as future work.)

Our profiling technique requires the specification of two parameters: a probability P for sampling an

input tuple so that it will be routed first to Ol, and a sample size to fix |R|. Once R has been collected, we

can compute GainRatio(R, Cj) for each Cj ∈ C1,…,Ck, to determine the classifier attributes for Ol. If there

are two or more such attributes, then the attribute with maximum gain ratio is the best classifier attribute

for Ol. Details of our implementation for profiling O are outlined next.

21

Let Dj denote the domain of potential classifier attribute Cj. For each Cj we choose a partitioning

function fj that partitions Dj into d partitions. If Cj is a discrete-valued attribute, we choose a hash function

that maps any v ∈ Dj to one of d buckets. If Cj is a continuous-valued attribute, we maintain running

estimates of max(Dj) and min(Dj) and use a range-partitioning function to map any v ∈ Dl into one of d

partitions. Without loss of generality, let v1,v2,…,vd denote the d partitions of each domain. (Note that,

e.g., partition v1 of domain D1 is not necessarily the same as partition v1 of domain D2.)

Content-Learns maintains the following run-time data structures, as shown in Figure 4.

2 - 1 1 2CA[]=

S[]=
50% 25% 75%

0% 80% 20%

operators: 1 , ... , n

partitions:

1 , … , d

-

-

operator 3
being profiled

5

attributes:

1 , … , k

In[]=

5

4

6

7

3

partitions:

1 , … , d

3

Out[]=

4

3

4

7

0

attributes:

1 , … , k

classifier
attributes

detailed
selectivities

tuples in,
tuples out

Figure 4 – Run-time data structures

1. Classifier Attribute Matrix, CA[]. CBR keeps an array that, for each operator Ol, stores the attribute

index of the best classifier attribute, i.e., the attribute with highest gain ratio for Ol. If Ol has no

classifier attributes, CBR assigns CA[l] = -1. CBR recomputes CA[l] after R random sample tuples

22

are used to profile operator Ol. In Figure 4, the classifier attribute for operator 3 (marked in gray) is

attribute 1.

2. Tuples In, In[], and Tuples Out, Out [], Matrices: These matrices track which tuples in which

partitions of all attributes pass (increments both In[] and Out[] entries) or fail (increments only In[]

entries) the operator being profiled. For each one of the R random sample tuples, k entries are updated

in each one of these matrices. The entries to be updated are (j, i), with j =1,…,k, and vi=fj(t.Cj).

3. Detailed Selectivities Matrix, S[]. Each column in this matrix stores the running selectivities for an

Ol–Cj operator–classifier-attribute pair. Entries in the matrix are updated at two different times:

(i) Run-time: Each time a tuple passes or fails an operator, one entry in this matrix is updated.4 For a

tuple t being processed by Ol, the column to update in the matrix is l, and the row is vi=fj(t.Cj),

with j being the index of the classifier attribute for Ol, i.e., j =CA[l].

(ii) Initialization: After profiling operator Ol has been completed and its classifier attribute Cj found,

CBR updates Ol’s column: S[l,i]←Out[j,i]/In[j,i], with i=1,..,d. If In[j,i]=0, then S[l,i]←W[l],

where W[l] is the overall selectivity of operator Ol as described next.

4. Overall Operator Selectivities, W[]. This matrix (not shown in Figure 4) is non-CBR specific

information and it is kept both by CBR and by the non-CBR implementation in TelegraphCQ. W[l]

tracks the recent overall selectivity of operator Ol over all tuples processed by Ol.

Once we have collected the random sample R of tuples processed by operator Ol while profiling Ol,

we can compute GainRatio(R,Cj) (Equation (5)) for all Cj ∈ C1,…,Ck using matrices In and Out. From

4 The formula used to update selectivity after a tuple is known to pass or fail an operator is: selectivity = selectivity *
α + pass * (1- α), where selectivity is a percentage between 0 and 100, pass is 100 if the tuple passes the operator or
0 if it is dropped, and α = 0.95.

23

Equation (2), Entropy (R) depends only on the overall selectivity of Ol over R, which is the number of

output tuples over all tuples profiled: () R]i,j[Out
d

1i∑ =
 for any j.

Similarly, Entropy (Ri) in Equation (3) for InformationGain(R,Cj) depends only on In and Out.

Finally, |Ri| in Equations (3) and (4) for InformationGain(R,Cj) and SplitInformation (Cj) is equal to

In[j,i].

So far we have seen how the classifier attributes for Ol can be determined by profiling Ol. If there are

one or more such attributes, then the attribute with maximum gain ratio, denoted Cmax, is the best

classifier attribute for Ol. Note that after computing gain ratio values for C1,…,Ck while profiling Ol, we

may realize that Ol has no classifier attributes. In either case, we move on to profile the next operator in

our round-robin schedule.

2.4.2. The Routing Step of Content-Learns

In this section we describe how we extended the original Eddy routing algorithm to incorporate the

operator-attribute combinations identified in the optimization step for CBR. This algorithm routes tuples

to operators according to a probability that is inversely proportional to the operators' selectivities (stored

in matrix W in our implementation). We call this algorithm Source-Based Routing (SBR).5

When an Eddy using Content-Learns has to route a tuple t to one of operators O1,…,On, the Eddy

routes t to the operator with minimum value σ, where σ is defined as follows for an operator Ol:

• If Ol is tagged with classifier attribute Cj, then σ is the expected selectivity of Ol for tuples t' with

fj(t'.Cj)=fj(t.Cj), which is equal to S[l,i] where fj(t.Cj)=vi and j=CA[l]. (We have used the same

notation as in Section 2.4.1.)

5 We call this algorithm Source-Based Routing because without looking at the content, an Eddy treats all tuples
coming from the same source the same way.

24

• If Ol is not tagged with a classifier attribute, then σ is W[l], the expected overall selectivity of Ol,

which is the same value as used by the SBR algorithm.

Intuitively, for operators that have a classifier attribute, CBR uses the content-specific selectivity of

the operator while making routing decisions. The content-specific selectivity is available from the

selectivity matrix for the operator. For operators that do not have a classifier attribute, CBR uses the

overall selectivity of the operator across all tuples as done by SBR.

2.4.3. Overheads and Benefits of CBR

There are two forms of overhead associated with CBR: the routing overhead of evaluating content-based

conditions while making routing decisions, and the learning overhead of learning and maintaining good

routes automatically. The routing overhead was designed to be very low, as it is incurred each time a tuple

is routed by the Eddy. The learning overhead is amortized across a large number of tuples as this

overhead is incurred once after |R| sample tuples are observed. Section 2.6.8 presents experiments where

the overheads of CBR can be observed to be very low.

The benefit of CBR comes from finding routes that drop tuples sooner. As such, the benefit of CBR is

proportional to the percentage of time that a query spends evaluating operators. In Section 2.6.7 we

explore the performance of CBR while varying operator costs.

2.4.4. Pruning Operators and Attributes

So far we considered all attributes and all operators as potential candidates for CBR. We now describe

some heuristics to prune this space. These heuristics likely reduce the learning overhead of CBR

significantly without any noticeable effect on the quality of content-based routes.

CBR applies when optimal operator orderings differ across input tuple classes. If an operator is very

cheap or very selective relative to the other operators, or both, then its position will mostly remain

25

unchanged across the orderings. This intuition translates into an effective pruning heuristic where we do

not consider very inexpensive or very selective operators for CBR. Similarly, we can ignore operators that

are very expensive or not very selective with respect to the other operators because their position is likely

to remain unchanged across those orderings as well.

Similar to pruning operators, there are some effective heuristics to prune the attributes considered for

CBR. For example, we can ignore monotonically increasing (or decreasing) attributes such as timestamps

or sequential identifiers which typically are generated synthetically. Discrete-valued attributes with large

domains, e.g., a comments string attribute, can also be ignored. (It is advisable to ignore long attributes as

classifier attributes for CBR to keep routing overhead low.) While it is not hard to detect such attributes

automatically, the required information often is available from the schema definitions.

2.4.5. CBR for Non-Filter Operators

We have focused so far on filter operators that either pass or drop an input tuple. This class does not

capture, for example, non-foreign-key join operators, limiting the scope of our techniques. However, our

techniques apply to non-filter operators with one simple modification. We have used the filter property of

an operator only to compute entropy in Equation (2) which contributed to the gain ratio value used to

identify classifier attributes. The two-class notion of passed and dropped tuples is meaningless for non-

filter operators whose “selectivity”–the expected number of tuples produced per input tuple–can be any

non-negative real number. Our real purpose here is to quantify the skew in content-specific operator

selectivities with respect to the overall selectivity. Gain ratio is one proven technique to quantify this

skew. There are other techniques, e.g., variance, which apply to non-filter operators. Therefore, our

techniques for CBR apply to non-filter operators provided the gain-ratio-based test for classifier attributes

is replaced by an appropriate test that applies to non-filter operators.

26

2.5. Adaptivity

Since the Eddies architecture has been designed to support adaptive processing, a relevant question to ask

is how our extensions to support CBR in Eddies affect adaptivity. Adaptivity refers to the ability of the

system to find an efficient plan quickly for the new data and system characteristics when these change.

The changes in the data stream characteristics that can affect routing decisions are changes in operator

selectivities and changes in correlations between attributes and operators’ selectivities.

CBR increases both the learning overhead and the routing overhead of Eddies. Fundamentally,

reducing run-time overhead is at odds with improving adaptivity [21]. The approach we have adopted is

to keep run-time overhead as low as possible while being as adaptive as the SBR routing policy in

TelegraphCQ.

To be as adaptive as SBR, CBR keeps the operator selectivity matrix W up to date. Note that W is

common across both policies. In exchange, CBR settles for slower adaptivity with respect to changes in

classifier attributes by profiling only one operator at a time. This design decision may fail to detect a new

correlation if the classifier attribute for an operator changes between two of its profiling phases. However,

in spite of this decision, CBR is designed to never be less adaptive than SBR. Example 2.5 illustrates

why.

Example 2.5: CBR as adaptive as SBR. Consider that CBR finds Cj to be the classifier attribute for Ol.

Then, when routing tuple t, CBR assumes the selectivity of Ol to be S[l,i], with vi=fj(t.Cj). However, it

may be the case that the correlation between Cj and Ol no longer holds since Ol was last profiled due to

one of two reasons:

• No attribute is correlated with Ol. If this is the case, then the selectivity of Ol is given by W[l] and not

S[l,i]. However, if Cj is not actually correlated to Ol, then all entries S[l,i], with i=1,…,d will quickly

converge to W[l] (because CBR updates entries in S[] as frequently as those in W[]).

27

• Another attribute is correlated with Ol. If this is the case, then we have an argument for more

aggressive content-based routing statistics tracking (e.g., profiling multiple operators simultaneously

as done in [8]), not less. In any case, given that Cj is not correlated with Ol, all entries S[l,i], with

i=1,…, d will still quickly converge to W[l]. ■

The assumption behind the current CBR design is that operators’ selectivities change more frequently

than the correlations between operators and tuple content. As such, selectivity is tracked continuously

(quick to detect changes) while profiling is performed only for a sample of the tuples (slower to detect

changes). For example, in the real-life dataset, we observed changes in selectivity from 1% to 96% in one

operator while the best classifier attribute for that operator stayed the same (Section 2.6.6).

2.6. Experimental Evaluation

We now describe an experimental evaluation of our CBR techniques using a prototype implementation in

TelegraphCQ [21]. We evaluate the CBR prototype using both synthetic and real life datasets. The

synthetic dataset is used to evaluate CBR by varying parameters hard to control in a real-life dataset:

skew, selectivity, and aggregate selectivity. The real-life dataset is used to evaluate CBR’s adaptivity and

performance under varying operator costs and overhead.

2.6.1. Datasets

The prototype implementation of CBR was evaluated with the synthetic and real-life datasets described

below:

28

• Stream-Star: We created a synthetic benchmark, Stream-Star, based on a star schema. Instead of a

central fact table, we used a data stream S.6 Our experiments use N-way join queries of the following

form which join incoming S tuples with N dimension tables d1, d2, …, dN:

 SELECT *
 FROM stream S, d1, d2, …, dN
 WHERE s.fkd1 = d1.pk // Operator Op1
 AND s.fkd2 = d2.pk // Operator Op2
 …
 AND s.fkdN = dN.pk; // Operator OpN

Each stream consisted of 100,000 tuples. Depending on the query, between two and eight dimension

tables containing 10,000 tuples each are used. Stream S contains tuples with a single classifier

attribute, attrC, which is correlated with the selectivities of all operators. (We note that in the real-life

dataset described next, different operators can have different correlated attributes and these

correlations can change, appear, or disappear with time. CBR worked equally well in both settings.).

Our stream generator is able to produce tuples with any kind of non-independence between the

classifier attribute attrC and the selectivity of the join operators. For example, it can generate a stream

with the characteristics shown in Table 1 (on page 17).

• Lab: The Lab dataset is a trace of readings from 54 sensors in the Intel Research, Berkeley Lab. The

readings were taken between end of February and beginning of April of 2004. The schema consists of

one single stream, sensors. Tuples in the stream have attributes light, humidity, temperature , voltage,

sensorID, and timestamp information (year, month, day, hour, minute, and second) [33]. We cleansed

this dataset by removing tuples with missing values or impossible values (e.g., negative humidity)

that sometimes happen when the sensor batteries run low. There are 2.2 million records in the

6 A star schema was chosen for two reasons: (i) queries over streams normally refer to one single stream source that
joins with zero or more local tables; and (ii) data stream applications have streams that represent facts, e.g., traffic
information, which then join with dimensions, e.g., speed sensors and cars.

29

cleansed dataset. For this dataset the readings are sent to TelegraphCQ in generation order, as they

would if the tuples were being collected from the sensors in real-time.

2.6.2. Algorithms, Metrics, and Default Values

Section 2.4.2 described most of the details of our implementation of CBR in TelegraphCQ, Content-

Learns (Learns in the figures), and the non-content-based SBR algorithm in TelegraphCQ. To illustrate

the differences between the learning overhead and the routing overhead of CBR, in the Stream-Star

experiments we include a routing algorithm called Content-Knows (Knows in the figures) which does not

need to learn classifier attributes automatically. Instead, Content-Knows is a theoretical bound that

simulates a routing policy that is “told” which attribute is the best classifier for each operator and what is

the best routing order for each class.

In addition to the running time, we also use the number of routing calls as a performance metric. The

number of routing calls shows a clear picture of the quality of the routing algorithm: a bad routing

algorithm will miss opportunities to route a tuple to the most selective operator, e.g., a tuple may be

routed several times before being dropped. In addition, the improvement in routing calls due to using

Content-Learns instead of SBR acts as a ceiling in the improvement we can expect in total running time.

Unless otherwise stated, the default values used in the experiments are the ones listed in Table 2 and

the results are averages over five runs.

Table 2 – Defaults used in experiments and graphs
Parameter Defaults Comment

P 6% Tuple sampling probability

|R| 150 tuples Sample size to compute GainRatio

d 24 Number of buckets in hash partitions

Confidence 95% Confidence intervals in graphs

30

2.6.3. Varying Skew

In this section we use the Stream-Star dataset to show how CBR performs in the presence of skew among

the content-specific selectivities of operators. We set the stream to have as many tuple classes as joins.

(Each tuple class is identified by a unique value of attribute attrC.) Skew was created by setting the

selectivity of one operator to A, and setting the selectivity of the all other N-1 operators to B, as shown in

Table 3.

A was varied from 5% to 95% with B varying accordingly such that the overall aggregate selectivity

remained constant at 5%. (Section 2.6.4 reports experiments where selectivities are chosen randomly and

Section 2.6.5 reports experiments where the aggregate selectivity is varied.) There were 8 other attributes

in tuples in the stream not correlated with the selectivities of the operators. Thus, Content-Learns must

learn that, among all these attributes, attrC is the best classifier attribute for all operators. The N-way join

query was run for two, four, six, and eight join operators. Due to space constraints, we only show results

for two and six joins in Figure 5 and Figure 6.

Note that when A<B (negative skew), a good routing policy should exploit the selectivity skew by

routing tuples first to the lower selectivity operator corresponding to A. When A>B, a good routing

algorithm will avoid the operator with selectivity A and route tuples through all the other operators first.

Overall, the higher the skew between A and B, especially when A<B, the greater the extent by which

Content-Learns outperforms SBR. At most, Content-Learns outperforms SBR by performing 67.8%

fewer routing calls (with eight operators and the largest skew). Across all experiments, when A<B,

Content-Learns required on average 26.9% fewer routing calls and when A>B, Content-Learns required

10.2% fewer routing calls. That is, it is more useful to know which operator is different by being more

selective than it is to know which operator is different for being less selective. This happens because more

selective operators will appear earlier in operator orderings affecting more tuples and having greater

performance impact than less selective operators that appear later in the operator order.

31

Table 3 – Selectivities for class/operator pairs
 Op1 Op2 … OpN

Class 1 A B … B

Class 2 B A … B

… … … … …

Class N B B … A

-5%

0%

5%

10%

15%

20%

25%

30%

35%

-1
00

%

-8
0%

-6
0%

-4
0%

-2
0% 0% 20

%

40
%

60
%

80
%

10
0%

Skew = A - B

Routing Calls (Knows)
Routing calls (Learns)
Execution time (Learns)

% Improvement over SBR

Figure 5 – Improvement with varying skew (2 joins)

0%

10%

20%

30%

40%

50%

60%

70%

-1
00

%

-8
0%

-6
0%

-4
0%

-2
0% 0% 20

%

40
%

Skew = A - B

Routing Calls (Knows)
Routing calls (Learns)
Execution time (Learns)

% Improvement over SBR

Figure 6 – Improvement with varying skew (6 joins)

32

2.6.4. Varying Selectivities

In Section 2.6.3, the choice of selectivities made routing tuples to operators difficult for SBR because all

operators appeared to be equally selective. Each operator had selectivity A for one class of tuples and B

for all other classes. Thus, in all cases, to SBR, all operators appeared to have a selectivity of (A + B *

(N-1))/N, for the N-way join query.

We continue to use the Stream-Star dataset in the following experiments. Each query was run against

50 different streams. Attribute attrC was correlated with the selectivities of the operators. However, this

time we assigned random selectivities to each operator. As before, we included additional attributes

(constants, sequences, and foreign keys) whose content was not correlated with any of the selectivities of

the operators. Figure 7 shows that Content-Learns is very effective at learning the right classifier; out of

the 16 million routing calls, Content-Learns used the wrong classifier only 6.4% of the time.

Breakdown of routing calls:

77.3% 85.2%83.0%

6.3%
6.5%6.5%

3.5% 4.8% 6.0%
5.7% 2.3%10.6%

0%

20%

40%

60%

80%

100%

4 joins 6 joins 8 joins

Using wrong classifier
Not using a classifier
Profiling
Using right classifier

Figure 7 – Breakdown of routing calls

33

21.2%

29.4%

35.1%

19.7%18.8%

12.8%

0%

5%

10%

15%

20%

25%

30%

35%

40%

4 joins 6 joins 8 joins

Routing calls
Execution time

% Improvement over SBR

Figure 8 – Improvement with random selectivities

Figure 8 shows the improvement of Content-Learns over SBR both in terms of routing calls and total

execution time. Note that the larger the number of operators involved, the more opportunities are

available for improvement.

2.6.5. Varying Aggregate Selectivity

In Section 2.6.3 the overall aggregate selectivity was kept at 5%. In Section 2.6.4 the operator selectivities

were randomly selected without any guarantee on the aggregate selectivity. On average, the aggregate

selectivity was 8% across all streams. This section explores the space of aggregate selectivities from 5%

to 35%. For this experiment, we ran a 6-way join query over Stream-Star with the operators having

random selectivities under the restriction that the overall aggregate selectivity was kept at some pre-

determined value. The aggregate selectivity is varied in Figure 9. Each point in the plot represents the

average improvement of CBR over SBR for 50 streams of 100,000 tuples each.

34

37.0%

31.2%

25.4%

20.0%

13.0%

22.0%
18.5%

25.1%

0%

5%

10%

15%

20%

25%

30%

35%

40%

5% 15% 25% 35%

Aggregate selectivity

Routing calls
Execution time

% Improvement over SBR

Figure 9 – Improvement with varying aggregate selectivity (6 joins)

2.6.6. Adaptivity Experiments

In this and subsequent sections, we will use the real-life Lab dataset. In the Lab dataset the best classifier

attributes for operators change as time progresses. Query Q1 is used to illustrate how CBR adapts in the

presence of variations of selectivity and variations of correlation.

 SELECT * FROM sensors WHERE light>500 (Q1)

For example, the amount of light varies with the time of day in the obvious way: during the day there

is more light than during the night. However, the predicate that evaluates “light>500” may actually be

correlated with sensorID and not with, say, hours. This happens because some sensors are placed in

illuminated areas like windows or in offices, while others are placed in hallways with less human activity

and light. Furthermore, if the operator that checks if light>500 evaluated to true for, say, sensor 7, at

12h34pm, then it is very likely that it will evaluate to true for the same sensor 1 minute later. During the

night, when it is dark and when people have left the building, the operator that tests for light will almost

always have zero selectivity. When that is the case, no attribute can be found to be correlated with the

35

operator; that is, if the selectivity of an operator is 0% (or 100%), then all attributes have zero information

gain ratio.

Figure 10 shows the result of running query Q1 for three days and nights of data. The top part of the

figure shows the selectivity of the predicate; note that during the day the selectivity does not reach 100%,

thus, some sensors are in darker areas than others. In the middle of the figure, we show what attribute is

most correlated with the selectivity of the operator for each moment in time. sensorID is almost always

the best classifier attribute. Sometimes, especially during transitions night-day or day-night, the attribute

hours is the best classifier attribute. In three other moments, one of the other attributes was found to be

the best classifier. In all other periods not covered by any of the black lines from “sensorID”, “hours”, and

“All others”, CBR could not find any attribute correlated with the selectivity of the operator (because its

selectivity was 0%). Finally, the lower part of the Figure 10 shows how the information gain of attribute

sensorID varies with time. Although Figure 10 is indicative that data characteristics in the stream change

dramatically and that CBR is able to adapt to them, queries with only one operator (like query Q1) do not

require good routing policies.

To evaluate the adaptivity of CBR on the Lab dataset, we ran queries similar to query Q2 below:

 SELECT * FROM sensors (Q2)
 WHERE light BETWEEN lowL AND highL
 AND temperature BETWEEN lowT AND highT
 AND humidity BETWEEN lowH AND highH
 AND voltage BETWEEN lowV AND highV;

For each attribute, the parameter lowX was randomly chosen from among the lowest 25% values in

the attribute’s domain and the parameter highX was randomly chosen from the highest 25% values in the

domain.

For 50 different random Q2 queries, we obtained on average an improvement of 8% in routing calls,

5% in total execution time, 7% in time spent evaluating operators, and 18% in routing calls needed until a

tuple is dropped. The results are positive but modest. Two reasons explain why CBR does not provide

greater improvements:

36

(i) There are overheads in TelegraphCQ unrelated to routing or operator execution [29], for instance, the

IO required to get the stream tuples from the network and the overhead of queuing those tuples before

they get to the Eddy. These overheads limit the benefit we can obtain from a better routing policy. In

Section 2.6.7 we explore operators with higher execution costs and show that as operator costs

increase, CBR’s performance improves.

(ii) CBR can only obtain improvements when the selectivities of the operators are not close to 0% or

100%. As seen in Figure 10 there are large intervals in the dataset where the selectivities of operators

stay very close to 0% or very close to 100%. The selectivity graphs for the other operators (not

shown) have similar intervals very close to 0% or to 100%. For Q2, this happened 57.2% of the time,

CBR yields improvements only on the other 42.8% of the time.

Figure 10 – Change in selectivity, best classifiers, and gain ratio

37

2.6.7. Varying Operator Cost

In this section we vary the time it takes an operator to process a tuple and report the corresponding CBR’s

performance improvements. There are two motivations for exploring the space of higher operator costs:

(i) there are applications where operator costs can be very high (for example, [33] reports operator costs,

expressed in terms of power consumption, with cost differences of two orders of magnitude between

operators) and (ii) the implementation of TelegraphCQ we used has overheads [29] that overshadow

operator costs. By increasing the operator costs, we decrease the weight of these overheads in the overall

execution time.

Figure 11 shows the improvement in performance from using Content-Learns in queries like Q2. The

improvement in the number of routing calls remains constant throughout and is shown only for reference.

The improvement in execution time improves as the operator cost increases. The increase in operator cost

was obtained by running CPU intensive computations every time a tuple had to be processed by an

operator.

0%

5%

10%

15%

20%

25%

0 100 200 300 400 500
Operator cost (microsecs)

Routing calls
Execution time

% Improvement over SBR

Figure 11 – Improvement with varying operator cost

2.6.8. Run-Time Overhead Of CBR

As mentioned in Section 2.4.3, CBR has two overheads: routing overhead and learning overhead. We

instrumented the code to determine the time spent by each of these overheads. The routing overhead was

38

measured as the time taken by the function that performs routing decisions (the algorithm of Section

2.4.2). The learning overhead was measured as the time taken for updating the data structures described in

Section 2.4.1 together with the time spent computing the best classifier attributes for each profiled

operator. We also instrumented the SBR version to report its routing and updating overheads (although

SBR does not determine classifier attributes, it spends time updating statistics as well). Figure 12 reports,

per routed tuple7, these overheads, in microseconds, for both SBR and CBR policies for the experiments

of Section 2.6.4 (Stream-Star dataset). For both policies, the total overhead (routing together with

learning and updating statistics) was around 4-5% of the total execution time.

0

1

2

3

4

5

6

7

8

SBR CBR SBR CBR SBR CBR

Learning/Updating per tuple

Routing per tuple

Microseconds

4 joins 6 joins 8 joins

Figure 12 – Per tuple overhead

7 Per tuple overhead is computed as total overhead divided by the number of routing calls. Note that the number of
routing calls is equal to the number of times the Eddy has to route tuples.

39

In addition, we also measured the worst case scenario for CBR: when the routing policy is irrelevant,

as is the case for queries with one operator only. If there is just one operator, no benefit can be gained

from different routing policies. Thus, differences in total execution time must be from overhead and not

from better decisions. For this experiment we run query Q1 from Section 2.6.6 over the Lab dataset

(without using the operator delays mentioned in the previous section) for both CBR and SBR. The

average over 10 runs of query Q1 shows that, when no benefit is possible, CBR is about 0.8% worse than

SBR in total execution time.

2.7. Conclusions

In this chapter we proposed a new concept: assigning different query execution plans for subsets of data

with different statistical properties. As such, we developed a new query processing technique called

content-based routing that eliminates the single-plan restriction in current systems. We showed how the

adaptive architecture of a data stream management system, TelegraphCQ, can be extended with content-

based routing to enable the system to exploit correlations between tuple content and operator selectivities.

Our most important contribution was to show that content-based learning and routing can be

simultaneously inexpensive and adaptive while still achieving significant performance improvements. We

presented the Content-Learns algorithm which learns good content-based routes automatically, and we

showed that the overhead of maintaining the extra statistics and computing classifier attributes is

negligible when compared to a non-CBR algorithm.

Our prototype implementation indicates that CBR can improve execution time by up to 35% when

compared with routing based on operator statistics alone. For all queries with more than one operator,

CBR yielded better results than SBR, both in the number of routing calls as well as in absolute running

time. In addition, the performance comparison between Content-Learns and Content-Knows showed that

Content-Learns learns classifier attributes correctly in real time.

40

CHAPTER 3

PROACTIVE RE-OPTIMIZATION
While addressing some of possible mistakes done by traditional optimizers, first generation AQP systems

still use a traditional optimizer to pick a plan. The effectiveness of this approach is limited because

traditional optimizers choose plans unaware of issues affecting re-optimization. For example, previous

AQP approaches are more likely to start execution with a sub-optimal plan. In addition, detection of sub-

optimality can be inefficient, re-optimization can lead to lost and repeated work, and convergence to

optimal plan can be slow. We address this problem using proactive re-optimization, a new approach that

is less likely to start with a risky plan, it is more likely to detect sub-optimalities faster and is more likely

to converge to the optimal plan in less steps.

3.1. Introduction

As described in Chapter 1, most query DBMS use a sequential, non-adaptive approach to query

processing–the optimizer enumerates plans, computes the cost of each plan, and picks the plan with

lowest cost which is then executed [79]. This approach relies heavily on the accuracy of estimated

statistics of intermediate subexpressions to choose good plans. It is a well-known problem that errors in

estimation propagate exponentially in the presence of skewed and correlated data distributions [24, 51].

Such errors, and the consequent suboptimal plan choices, were not a critical problem when datasets were

smaller, queries had only a few joins and simple predicates, and hardware resources were limited. In the

last two decades, datasets, query complexity, and the hardware resources to manage DBMS have grown

dramatically. Query optimizers have not kept pace with the ability of database systems to execute

complex queries over very large data sets.

41

Several techniques have been proposed to improve traditional query optimization. These techniques

include better statistics [70], new algorithms for optimization [25, 49, 52], and adaptive architectures for

execution [5]. A very promising technique in this direction is re-optimization , where the optimization and

the execution stages of processing a query are interleaved, possibly multiple times, over the running time

of the query [56, 58, 63, 87]. Markl et al show that re-optimization can improve the performance of

complex queries by an order of magnitude [63].

Current re-optimizers take a reactive approach to re-optimization: they first use a traditional optimizer

to generate a plan, and then track statistics and respond to estimation errors and resulting suboptimalities

detected in the plan during execution. Reactive re-optimization is limited by its use of an optimizer that

does not incorporate issues affecting re-optimization, and suffers from at least three shortcomings:

• The optimizer may pick plans whose performance depends heavily on uncertain statistics, making re-

optimization very likely.

• The partial work done in a pipelined plan is lost when re-optimization is triggered and the plan is

changed.

• The ability to collect statistics quickly and accurately during query execution is limited.

Consequently, when re-optimization is triggered, the optimizer may make new mistakes, leading

potentially to thrashing.

In this chapter we propose proactive re-optimization to address these shortcomings. We have

implemented a prototype proactive re-optimizer called Rio that incorporates three new techniques:

• Bounding boxes are computed around estimates of statistics to represent the uncertainty in these

estimates.

• The bounding boxes are used during optimization to generate robust and switchable plans that

minimize the need for re-optimization and the loss of pipelined work.

42

• Random-sample processing is merged with regular query execution to collect statistics quickly,

accurately, and efficiently at run-time.

Our experimental results demonstrate that proactive re-optimization can provide up to three times

improvement over a strictly reactive re-optimizer. The rest of this chapter is organized as follows. Section

3.2 discusses related work. Section 3.3 uses a series of examples to illustrate the problems with reactive

re-optimization, and Section 3.4 shows how proactive re-optimization addresses these problems. Section

3.5 describes the Rio implementation and Section 3.6 presents an experimental evaluation.

3.2. Related Work

In previous work, we classify adaptive query processing systems into three families: plan-based, routing-

based, and continuous-query-based [10]. In this chapter we focus on plan-based systems, the more closely

related to Rio being ReOpt [58] and POP [63]. Other related projects include Ginga [69], Tukwila [53],

query scrambling [87], and corrective query processing [56]. ReOpt and POP use a traditional optimizer

to pick plans based on single-point estimates of statistics. These reactive re-optimizers augment the

chosen plan with checks that are verified at run-time. The query is re-optimized if a check is violated.

The use of intervals instead of single-point estimates for statistics has been considered by least-

expected-cost optimization (LEC) [25], error-aware optimization (EAO) [89], and parametric

optimization [49, 52]. LEC treats estimated statistics as random variables to compute the expected cost of

each plan. Unlike LEC, Rio does not assume knowledge about the underlying distribution of statistics.

Instead, Rio computes the uncertainty in these estimates based on how they were derived. Like Rio, EAO

considers intervals of estimates and proposes heuristics to identify robust plans. However, the techniques

in EAO assume a single uncertain statistic (memory size) and a single join. Furthermore, LEC and EAO

do not consider re-optimization or the collection of statistics during query execution. Therefore, these

techniques use execution plans that were picked before the uncertainty in statistics is resolved. Parametric

43

optimization identifies several execution plans during optimization, each of which is optimal for some

range of values of run-time parameters. Parametric optimization, along with the choose-plan operator

[40], enables the optimizer to defer the choice of plan to run-time. Switchable plans and switch operators

in Rio are similar. However, unlike choose-plan operators, switch operators may occur within pipelines.

Furthermore, parametric optimization does not consider uncertainty in estimates, collection of statistics

during execution, robust plans, or re-optimization.

Rio combines the processing of random samples of tuples with regular query processing to obtain

quick and accurate estimates of statistics during execution. This approach differs from previous uses of

random samples, e.g., providing continuously-refined answers in an online manner [47], computing

approximate query results [1, 22], or building base relation statistics from samples [24]. Robust

cardinality estimation (RCE) uses random samples for cardinality estimation, to deal with uncertainty,

and to explore performance-predictability tradeoffs [6]. However, RCE does not consider re-optimization.

Furthermore, RCE does not consider techniques such as merging random-sample processing with regular

query execution, or propagating random samples through joins.

3.3. Problems With Reactive Re-Optimization

In this section we present a series of examples to highlight the problems with current approaches to query

re-optimization. One known problem with traditional optimizers, e.g. [79], is that they rely frequently on

outdated statistics or invalid assumptions such as independence among attributes. Consequently, they may

choose suboptimal query plans that degrade performance by orders of magnitude [24, 63]. Example 3.1

illustrates this problem.

Example 3.1. Consider the query “select * from R, S where R.a=S.a and R.b>K1 and R.c>K2”. Assume

the database buffer-cache size is 200MB, |R|=500MB, |S|=160MB, and |σ(R)|=300MB, where σ(R)

represents the result of the “R.b>K1 and R.c>K2” selection on R. However, because of skew and

44

correlations in the data distributions of R.b and R.c, the optimizer underestimates |σ(R)| to be 150MB.

With this incorrect estimate, the optimizer would pick plan P13a for this query (Figure 13). P13a is a hash

join with σ(R) as the build input and S as the probe. (We use the convention that the left input of a hash

join is the build and the right input is the probe.) However, since |σ(R)| is actually 300MB, Plan P13a’s

hash join requires two passes over R and S. Plan P13a is suboptimal because plan P13b, which builds on

S, finishes in one pass over R and S. ■

Figure 13 – Two plans for the σ(R) S query

Re-optimization can avoid problems similar to the one in Example 3.1. Current systems that use re-

optimization first use a traditional optimizer to pick the best plan, and then add check operators to the

chosen plan. The check operators detect sub-optimality during execution, and trigger re-optimization if

required. For example, the check-placement algorithm used by POP computes a validity range for each

plan [63]. Let P be a left-deep plan. The root operator of P is a binary join operator with subtree D and

base relation R as inputs. Let |D| denote the result size of D. POP defines the validity range of P as the

range of values of |D| for which P has the lowest cost among all plans P’, where P’ is logically equivalent

to P, P’ is rooted at an operator with the same inputs D and R, and P’ gives the same interesting orders as

P.

During execution, each check operator collects statistics on its inputs. If these statistics satisfy the

validity ranges for the plan picked by the optimizer, then execution proceeds as usual. Otherwise, re-

optimization is invoked to choose the best plan based on the statistics collected. The reuse of intermediate

HashJoin

σ(R) S

Plan P13a

HashJoin

S σ(R)

Plan P13b

45

results that were materialized completely in a previous execution step is considered during re-

optimization. Example 3.2 illustrates the overall technique.

Example 3.2. Consider the scenario shown in Example 3.1 and Figure 13. A re-optimizer like POP will

choose the same plan (P13a) as a traditional optimizer. Additionally, POP will compute validity ranges

for the chosen plan. For example, a validity range for P13a is 100KB≤|σ(R)|≤160MB. If |σ(R)|<100KB,

then it is preferable to use an index nested-loops join with tuples in σ(R) probing a covering index on S. If

|σ(R)|>160MB, then plan P13b is optimal. In this example, the check |σ(R)|≤160MB will fail during

execution, invoking re-optimization. ■

3.3.1. Limitations of Single-Point Estimates

Although re-optimization preempts the execution of the suboptimal plan P13a in Example 3.1 when

|σ(R)|>160MB, it incurs the overhead of calling the optimizer more than once and the cost of repeating

work. For example, the (partial) scan of R in plan P13a (of Figure 13) until re-optimization is lost and

must be repeated in P13b. The optimizer may be better off picking plan P13b from the start because P13b

is a robust plan with respect to the uncertainty in |σ(R)|; see Figure 14.

When |σ(R)|≤Memory, both plans finish in one pass and involve the same amount of IO. However,

when |σ(R)|>Memory, only P13b finishes in one pass.

Current re-optimizers do not account for robustness of plans since they consider single-point

estimates for all statistics needed to cost plans. (To arrive at these single-point estimates, optimizers are

often forced to make assumptions like uniformity and independence [79].) Non-robust plans may lead to

extra optimizer invocations and wasted work, as we will show in Section 3.3.3.

46

Figure 14 – Cost of plans P13a and P13b as |σ(R)| varies

3.3.2. Limited Information For Re-Optimization

Current re-optimizers make limited effort to collect statistics quickly and accurately during execution. For

instance, the validity check in Example 3.2 will fail when |σ(R)|=160MB, and re-optimization will be

invoked. However, the optimizer does not know |σ(R)| accurately at this point–it only knows that

|σ(R)|≥160MB–which may cause it to chose a suboptimal plan again. Example 3.3 illustrates an extreme

instance of the thrashing that can result.

Example 3.3. Consider the query “select * from R, S, T where R.a=S.a and S.b=T.b and R.c>K1 and

R.d=K2”. Assume that the sizes of the tables are known accurately to be |R|=200MB, |S|=50MB, and

|T|=60MB. Further assume that |σ(R)|=80MB, but that the optimizer underestimates it significantly as

40KB.8 Based on these statistics, the optimizer chooses plan P15a shown in Figure 15.

A reactive re-optimizer may compute validity ranges for plan P15a as shown by the gray boxes in this

plan. For example, the validity range for the index nested-loops join between σ(R) and S in P15a is

Size of σ(R) (in MB)

Cost of plans

P13a

P13a

P13b

P13b

|σ(R)|=Memory

|σ(R)|=|S|
200 160 150

Estimated |σ(R)|

47

|σ(R)|≤100KB. This validity-range check will fail at run-time, triggering re-optimization. Plan P15b will

be picked next with a validity range as shown in Figure 15. This check will fail and re-optimization will

be triggered again, and so on until the optimal plan P15d is chosen finally. ■

3.3.3. Losing Partial Work in a Pipeline

In addition to the multiple re-optimization steps as illustrated in Example 3, current re-optimizers also

lose the partial work done by a pipeline in execution when re-optimization is triggered. For example, plan

P15c in Figure 15 has a pipeline PPL2 (enclosed with dotted lines) that scans R, probes S in HashJoin1,

and builds joining tuples into HashJoin2. The validity-range check before HashJoin2 will fail before

pipeline PPL2 finishes, and the partial work done by this pipeline will be lost. On the other hand, work

done by completed pipelines, like PPL1–scanning and building S–can be reused. However, in this

example, the build of S in plan P15c cannot be reused in plan P15d because the hash tables are built on

different join attributes.

3.4. Proactive Re-Optimization

In this chapter we propose proactive re-optimization , a new paradigm for query re-optimization. Proactive

re-optimization addresses the problems with current reactive approaches that were illustrated in Section

3.3. A proactive re-optimizer incorporates three new techniques:

• Computing bounding boxes–intervals around estimates–as a representation of the uncertainty in

estimates of statistics.

• Using bounding boxes during optimization to generate robust plans and switchable plans that avoid

re-optimization and loss of pipelined work.

8 A recent paper from IBM reports cardinality estimation errors on real datasets that exceed six orders of magnitude
[63].

48

• Using randomization to collect statistics quickly, accurately, and efficiently as part of query

execution.

Figure 15 – Thrashing with reactive re-optimization

IndexNL1

σ(R) S

Plan P15a

IndexNL2

T

|σ(R)|≤100KB

HashJoin1

HashJoin2

T

…

HashJoin1

S T

σ(R) HashJoin1

S σ(R)

T

Re-optimized when
σ(R)>100KB

σ(R) S

100KB<|σ(R)|≤50MB

Plan P15b

HashJoin2

|σ(R)|≤60MB

HashJoin2

…

Re-optimized when
σ(R)>50MB

Re-optimized when
σ(R)>60MB

Pipeline PPL2

Pipeline PPL1

Plan P15d Plan P15c

49

Figure 16 – Proactive re-optimization

Figure 16 shows the architecture of a proactive re-optimizer. In Section 3.5 we introduce Rio, our

specific implementation of a proactive re-optimizer.

3.4.1. Representing Uncertainty in Statistics

Current re-optimizers compute a single-point estimate for any statistic needed to cost plans. One way to

account for possible errors in estimates is to consider intervals, or bounding boxes, around the estimates.

If the optimizer is very certain of the quality of an estimate, then its bounding box should be narrow. If

the optimizer is uncertain of the estimate’s quality, then the bounding box should be wider. There are

different ways of computing bounding boxes, e.g., using strict upper and lower bounds [23] or by

characterizing uncertainty in estimates using discrete buckets that depend on the way the estimate was

derived [58]. Our implementation uses the latter approach as described in Section 3.5.2.

Example 3.4. Consider the scenario from Example 3.1. The costs of plans P13a and P13b depend mainly

on |σ(R)| and |S|. Suppose a recent estimate of |S|=160MB is available in the catalog. However, in the

absence of a multidimensional histogram on R, |σ(R)| must be estimated from the estimated selectivities

 Query

Catalog

1. Compute
bounding boxes

for estimates

2. Use bounding
boxes to pick robust
or switchable plans

3. Execute query;
Collect accurate

statistics estimates

No, re-optimize

Yes, use robust
or switchable

plan
Estimate within

the bounding
box?

Execution

Optimization

Run-time estimates

50

of R.b>K1 and R.c>K2 and an assumption of independence between these predicates. This estimate of

|σ(R)|=150MB is thus very uncertain. In this case, Figure 17 shows an example bounding box around the

single-point estimate (|σ(R)|=150MB, |S|=160MB). ■

Figure 17 – Bounding box around estimates of |σ(R)| and |S|

3.4.2. Using Bounding Boxes During Optimization

Since current re-optimizers consider single-point estimates only, their plan choices may lead to extra re-

optimization steps and to the loss of partial pipelined work if actual statistics differ from their estimates.

Bounding boxes can be used during optimization to address this problem. While there is always one plan

that is optimal for a single-point estimate, one of the following four cases can occur with a bounding box

B:

(C.i) Single optimal plan . A single plan is optimal at all points within B.

(C.ii) Single robust plan . There is a single plan whose cost is very close to optimal at all points within B.

(C.iii) A switchable plan . Intuitively, a switchable plan in B is a set S of plans with the following properties:

a) At each point pt in B, there is a plan p in S whose cost at pt is close to that of the optimal plan at pt ;

b) The decision of which plan in S to use can be deferred until accurate estimates of uncertain

statistics are available at query execution time; and c) If the actual statistics lie within B, an

|S| (in MB)

Estimated Potential Max

Potential Min

Potential Max

160

192

144
|σ(R)|

(in MB)

Potential Min

150 75 300

Estimated

Bounding box

51

appropriate plan from S can be picked and run without losing any significant fraction of the execution

work done so far.

(C.iv) None of the above. Different plans are optimal at different points in B, but no switchable plan is

available.

A proactive re-optimizer identifies which of the above four cases B falls into. Note that a single

optimal plan is also robust, and a robust plan is a singleton switchable plan. Example 3.5 illustrates how a

proactive re-optimizer can exploit robust plans and switchable plans. Details of how to enumerate and

choose robust and switchable plans are given in Section 3.5.

Example 3.5. Consider the scenario from Example 3.1. Figure 18 is the same as Figure 14 except that it

considers the bounding box B=[75MB, 300MB] for |σ(R)|. As seen, plan P13a is optimal for the estimated

|σ(R)|=150MB, but not in the entire bounding box. While plan P13b is not optimal for the estimated

|σ(R)|, P13b is robust because its cost is very close to optimal at all points in B. Therefore, picking plan

P13b would be a safe option. However, as we will see in Section 3.5, P13a and P13b (which are hybrid

hash joins with build and probe reversed) are switchable. It is preferable to pick the switchable plan

P={P13a, P13b} instead of the robust P13b because P is guaranteed to run the optimal plan as long as

|σ(R)| lies within B. ■

52

Figure 18 – Robust and switchable plans

3.4.3. Accurate Run-Time Statistics Collection

As seen in Example 3.3, the lack of accurate run-time statistics collection can lead to thrashing during re-

optimization. In general, accurate run-time estimates are needed to pick the right plan from a switchable

set, to detect when to trigger re-optimization, and to pick a better plan in the next optimization step.

For efficiency, we hide the cost of collecting accurate statistics by combining statistics collection with

regular query execution. Furthermore, for early detection of the need to re-optimize, the run-time

estimates must be computed both quickly and accurately. We achieve these goals by using a new

technique of merging the processing of random samples of tuples along with regular query execution.

Example 3.6 illustrates this approach. Implementation details are given in Section 3.5.4.

Example 3.6. Consider Example 3.3. Assume that the optimizer had picked the suboptimal Plan P15a

which contains a pair of index nested-loops joins with σ(R) as the outer input. Suppose tuples in R are

physically laid out in random order on disk. Then, once 5% of the R tuples have been scanned and

processed, a fairly accurate estimate of the selectivity of σ is available. Thus, |σ(R)| can be estimated

reliably. This estimate enables a proactive re-optimizer to detect quickly that P15d is the optimal plan,

thereby avoiding the thrashing problem in reactive re-optimizers. ■

Size of σ(R)
(in MB)

Cost of plans

P13a

P13a

P13b
P13b

150
Estimated

300 75
Potential Min Potential Max

Bounding box for |σ(R)|

53

3.5. Proactive Re-Optimization With Rio

Section 3.4 presented an overview of proactive re-optimization without providing specifics about the

implementation. We now describe our prototype proactive re-optimizer Rio.

3.5.1. Building Rio

Rio was built using the Predator DBMS [81] by extending it as follows:

• Equi-height and end-biased histograms were added [70].

• Predator has a traditional cost-based dynamic-programming optimizer [79] which we refer to as

TRAD. We added:

 A Validity-Ranges Optimizer (VRO), our implementation of the algorithms used by POP [63].

 Rio, our proactive re-optimizer.

 Uncertainty buckets and rules from [58] to generate and propagate uncertainty buckets during

query optimization.

• The following operators were added:

 A hybrid hash join operator [59] that processes tuples from two input subtrees. At most one of the

subtrees is a deep subtree and at least one is a subtree with one base relation. Either subtree can

be the build input of the hash join. Thus, this operator enables us to consider arbitrary linear plan

shapes, e.g., right-deep join trees like plan P22c in Figure 22. Recall our convention that the left

input to the hash join is the build and the right input is the probe.

 A switch operator to implement switchable plans.

 Operators to read random samples from base relations and to generate random samples of joins as

part of query execution.

 Buffer operators to buffer tuples and delay processing in a pipeline until the statistics necessary to

choose among the set of plans in a switch operator have been collected.

54

 Operators to scan previously materialized expressions for reuse after re-optimization.

Materialized expressions that may be reused include completed builds of hash joins and the sorted

temporary files created by a sort operator.

 The original validity-ranges algorithm [63] uses checks on buffers to trigger re-optimization when

the buffers overflow or underflow. In our VRO implementation, validity ranges are checked by

buffer operators placed appropriately in the plan which buffer and count incoming tuples. The

buffer operators trigger re-optimization if any validity range is violated.

• Execution engine:

 The ability to stop query execution midway, re-optimize, and restart execution.

 An in-memory catalog to track statistics collected at run-time as well as expressions materialized

as part of query execution. The optimizer consults this catalog during re-optimization.

 An inter-operator communication mechanism based on punctuations [86] that, e.g., allows an

operator C to signal to its parent operator that C has generated a 1% random sample of its output.

3.5.2. Computing Bounding Boxes

Recall that a proactive re-optimizer uses bounding boxes instead of single-point estimates for statistics

needed to cost plans. Currently, Rio restricts the computation of bounding boxes to size and selectivity

estimates. For each such estimate E, a bounding box B is computed using a two-step process:

• An uncertainty bucket U is assigned to the estimate E

• The bounding box is computed from the (E, U) pair

To compute U, we adopted a technique from [58] that uses a set of rules to compute uncertainty. In

the original approach [58], the value of U belongs to a three-valued domain {small, medium, large} that

characterizes the uncertainty in the estimate E. The value of U is computed based on the way E is derived.

For example, if an accurate value of E is available in the catalog, then U takes the value small that denotes

55

low uncertainty. In Rio, we augmented the domain of U to an integer domain with values from 0 (no

uncertainty) to 6 (very high uncertainty).

A bounding box B of an estimated value E is an interval [lo, hi] that contains E. The uncertainty value

U is used to compute the values lo and hi as shown in Figure 19. Example 3.7 illustrates the computation

of uncertainty buckets and bounding boxes for our running example.

Example 3.7. Consider the scenario from Example 3.1. The optimizer needs to cost plans P13a and P13b

which depend on |σ(R)| and |S|. Recall that σ represents R.b>K1 and R.c>K2. The single-point estimates

for |S| and |σ(R)| are ES=160MB and ER=150MB respectively. Assume that ES was obtained from the

catalog. Therefore, our rules adapted from [58] for derivation of uncertainty set US=1 (low uncertainty in

ES). From Figure 19, the bounding box for ES is BS=[144, 192]. On the other hand, assume that the

estimate ER was computed from the estimated selectivities of R.b>K1 and R.c>K2 based on the

assumption that these predicates are independent (no multidimensional histogram was available). Thus,

the uncertainty in ER is high. Accordingly, our rules for derivation of uncertainty set UR=5. From Figure

19, the bounding box for ER is BR=[75, 300]. ■

ComputeBoundingBox(Inputs: estimate E, uncertainty U
 Outputs: lo, hi) {
 ∆+ = 0.2; // increment step
 ∆- = 0.1; // decrement step
 hi = E * (1 + ∆+ * U);
 lo = E * (1 - ∆- * U);
}

Figure 19 – Computing bounding boxes for an (E, U) pair

3.5.3. Optimizing With Bounding Boxes

The TRAD optimizer enumerates and groups plans based on their join subset (JS) and interesting orders

(IO) [79]. For each distinct (JS, IO) pair enumerated, TRAD prunes away all plans except the plan with

the lowest cost, denoted BestPlan. The cost of each plan is computed based on estimated statistics.

56

VRO takes the same steps as TRAD initially, so VRO will find the same optimal plan (BestPlan) for

each (JS, IO) pair. However, VRO then adds validity ranges on the inputs to the join operators in

BestPlan [63]. Consider a join operator O with inputs RD and RB, where RD is the deep subtree input and

RB is the base relation input. The validity range of O is the range of values of |RD| where operator O has

the lowest cost among all join operators with the same inputs RD and RB, and giving the same set of

interesting orders as O. The validity range of O is computed by varying |RD| up (and down) until the cost

of O is higher than that of some other join operator with the same inputs RD and RB and giving the same

set of interesting orders as O. The Newton-Raphson method can be applied to the join cost-functions to

compute validity ranges more efficiently than linear search; see [63].

Unlike TRAD and VRO, Rio computes bounding boxes for all input sizes used to cost plans. Then it

tries to compute a switchable plan (which may also be a single robust plan or a single optimal plan) for

each distinct (JS, IO) pair based on the bounding boxes on the inputs to the plan. If Rio fails to find a

switchable plan for a (JS, IO) pair, then it picks the optimal plan for (JS, IO) based on the single-point

estimates of input sizes (BestPlan), and adds validity ranges like VRO.

Rio computes switchable plans in two steps. First, it finds three seed plans for each (JS, IO) pair.

Then, it creates the switchable plan from the seed plans as described next.

3.5.3.1. Generating the Seed Plans

In traditional enumeration, plan cost is computed using single-point estimates of statistics. In Rio, the

enumeration considers three different costs for each plan, CLow, CEst, and CHigh. Cost CEst is computed

using the single-point estimate of statistics exactly like in traditional enumeration. Cost CLow (CHigh) is

computed at the lower left corner (upper right corner) of a bounding box as illustrated in Figure 20.

Rio augments the (JS, IO) pair used during traditional enumeration with an extra cost bucket CB that

takes values Low, Estimated, or High. Like the interesting order concept, the cost bucket defines which

plans and costs are comparable during cost-based pruning, e.g., a plan P for (JS, IO, CB=Low) is pruned

57

if and only if there exists a plan P' for (JS, IO, CB=Low) with a lower cost CLow than P. For each distinct

(JS, IO) pair, Rio enumerates and prunes plans for the three triples (JS, IO, CB=Low), (JS, IO,

CB=Estimated), and (JS, IO, CB=High). The plans that remain after pruning are the three plans

corresponding to the minimum CLow, CEst, and CHigh for (JS, IO).

Figure 20 – Computing plan costs

Note that the best plan for (JS, IO, CB=Estimated) is the same plan as computed by TRAD for (JS,

IO). Also, the addition of the extra cost bucket guarantees that the optimal plan for the estimated statistics

will not prune away plans that are optimal at the upper right or lower left corners of the bounding boxes

for input sizes. For each (JS, IO) pair, we end up with three seed plans from which a switchable plan will

be created:

• BestPlanLow, the plan with minimum cost CLow

• BestPlanEst, the plan with minimum cost CEst

• BestPlanHigh, the plan with minimum cost CHigh

3.5.3.2. Generating the Switchable Plan

Given the seeds BestPlanLow, BestPlanEst, and BestPlanHigh, one of four cases arises:

Join J

Plan P

Base relation RB

|RD| |RB|

|RB|

estB

Bounding box for input sizes for join J

|RD|

CLow = cost of P at (loD, loB)

CEst = cost of P at (estD, estB)

CHigh = cost of P at (hiD, hiB)

loB

hiB

hiD estD loD

… …

Deep subtree
RD

58

(C.i) The seeds are all the same plan.

(C.ii) The seeds are not all the same plan, but one of them is a robust plan.

(C.iii) The seeds are not all the same plan, and none of them is robust, but a switchable plan can be created

from the seeds.

(C.iv) We cannot find a single optimal plan, a single robust plan, or a switchable plan from the seeds.

In Case (C.i), the single optimal plan is the switchable plan. (Recall that an optimal plan is also robust

and a robust plan is a singleton switchable plan.) In Case (C.ii), the optimizer checks if any of the seeds is

a robust plan. A necessary test to determine whether BestPlanLow is robust is to check whether (i) cost

CEst of BestPlanLow is close to (e.g., within 20% of) CEst of BestPlanEst, and (ii) cost CHigh of

BestPlanLow is close to CHigh of BestPlanHigh. Intuitively, we are testing whether BestPlanLow has

performance close to optimal at the estimated point and at the upper corner of the bounding box as well.

While this test is not sufficient to guarantee robustness–because we do not check all points in the

bounding box–Rio currently labels a plan as robust if it passes this plan-robustness test. If one of the

seeds passes this test, then Rio uses that seed as a singleton switchable plan.

Example 3.8. Consider the scenario from Example 3.1. As seen in Figure 21,

BestPlanLow=BestPlanEst=P13a and BestPlanHigh=P13b. The cost of P13a is not within 20% of the cost

of P13b at the upper corner of the bounding box (|σ(R)|=300MB). Thus, P13a is not a robust plan within

the bounding box. On the other hand, P13b is within 20% of the cost of P13a both at the estimated point

(|σ(R)|=150MB) and at the lower corner of the bounding box (|σ(R)|=75MB). Therefore, P13b passes the

plan-robustness test. ■

59

Figure 21 – Finding a robust plan in |σ(R)|’s bounding box

If none of the seeds is a single optimal plan or a single robust plan (Case (C.iii)), then the optimizer

tries to find a switchable plan. A switchable plan for a (JS, IO) pair is a set of plans S where:

(i) All plans in S have a different join operator as the root operator. (Hybrid hash joins with the build and

probe reversed are treated as different operators.)

(ii) All plans in S have the same subplan for the deep subtree input to the root operator.

(iii) All plans in S have the same base table, but not necessarily the same access path, as the other input to

the root operator.

Figure 22 contains an example of a switchable plan with three member plans for (JS={R,S,T},

IO=∅). Any two members of a switchable plan are said to be switchable with each other. In Section 3.5.4

we illustrate how the switchable plan chooses one of its members at execution time.

|σ(R)|
(in MB)

Cost of plans

P13a

P13a

P13b
P13b

150
Estimated

300 75
Potential Min Potential Max

BestPlanLow=P13a
is the best plan here

BestPlanEst=P13a
is the best plan here

BestPlanHigh=P13b
is the best plan here

Bounding box for |σ(R)|

60

Figure 22 – Possible members of a switchable plan

If the seed plans for a (JS, IO) pair have the same subplan for the deep subtree, then the seeds

themselves constitute a switchable plan. If these subplans are different, then Rio picks one of the seed

plans, say BestPlanLow, and enumerates the set SW_Low of all plans that are switchable with

BestPlanLow based on Conditions (i)—(iii) of switchable plans above. Then, among the plans in

SW_Low, Rio finds the plan, planMinEst , with minimum cost at the estimated statistics point, and the

plan, planMinHigh , with minimum cost at the upper right corner of the bounding box. If CEst of

planMinEst is close to (e.g., within 20%) CEst of BestPlanEst, and CHigh of planMinHigh is close to CHigh

of BestPlanHigh, then {BestPlanLow, planMinEst , planMinHigh } is a switchable plan. If not, Rio tries

the same procedure with the two other seed plans.

Example 3.9. Suppose BestPlanLow=plan P22a, BestPlanEst =plan P22b (from Figure 22), and

BestPlanHigh=plan P23 (from Figure 23) for R S T with no interesting orders. The subplan for the

deep subtree of the outer join is different between P22a and P23, so they are not switchable. Thus, Rio

enumerates SW_Low, which contains plan P22c. If CHigh of plan P22c is close to that of P23, then {P22a,

P22b, P22c} is a switchable plan. ■

Plan P22a

HashJoin1

HashJoin2

HashJoin1

IndexNL HashJoin3

Different root
operator

Reversed build and
probe

Plan P22b Plan P22c

HashJoin1

Scan S Scan R

Scan T Scan T Index Seek
on T

Scan S Scan R Scan S Scan R

61

If these techniques fail to find a switchable plan (Case (C.iv)), then Rio picks BestPlanEst–the

optimal plan for the single-point estimates–and adds validity ranges, just like VRO.

Figure 23 – Plan P23

3.5.4. Extensions to the Query Execution Engine

A switchable plan S defers the choice of which member plan to use for a join until the uncertain input

sizes can be estimated accurately at run-time. S ensures that no (partial) work done by the pipeline

containing the join is lost whenever the actual input sizes lie within the corresponding bounding box. Our

implementation of switchable plans uses the following operators and communication framework:

• A switch operator that corresponds to the chosen switchable plan. This operator decides which

member plan to use based on run-time estimates of input sizes, and instantiates the appropriate join

operator and base relation access path.

• A buffer operator that buffers tuples until it can compute an input-size estimate needed by the switch

operator.

• Randomization-aware operators that prefix their output with a random sample of their complete

output.

HashJoin4

HashJoin5

Plan P23

Scan R

Scan T Scan S

62

• An inter-operator communication mechanism based on punctuations [86] that allows operators to

send size estimates and to demarcate random samples in their output stream.

3.5.4.1. Implementing Switchable Plans

For a switchable plan chosen by Rio during optimization, the execution-plan generator creates a switch

operator and a buffer operator. Figure 24 shows these two operators generated for the switchable plan in

Figure 22. Note that the buffer operator is placed above the common subplan for R S (marked in gray

in both figures). The switch operator is placed above the buffer operator.

Figure 24 – Implementation of switchable plan from Figure 22

During query execution, the buffer operator buffers tuples from the deep subplan until it gets an end-

of-sample punctuation eos(f). (Generation of such punctuations is described in Section 3.5.4.2.)

Punctuation eos(f) signals that the set of tuples buffered so far is an f % random sample of the output of

the deep subplan. Based on the number of buffered tuples n, 100n/f is a fairly accurate estimate of the

final output cardinality of R S. The switch operator uses this cardinality estimate to compute the total

input size of R S, and instantiates the appropriate member plan.

Rio currently uses only the size of the deep subtree input RD to the join to choose the best member

plan. In terms of Figure 20 (repeated below in Figure 25a), this limitation means that for a switchable plan

P={Plo, Pest, Phi}, where plans Plo, Pest, and Phi were chosen for (loD, loB), (estD, estB), and (hiD, hiB)

HashJoin1

Switchable
(sub) plan

T

Scan R Scan S

IndexNL, Index Seek on T
Buffer

Op

Switch Op

? HashJoin2, Scan T (P22b)
HashJoin3, Scan T (P22c)

63

respectively (Figure 25a), Rio has to choose among Plo, Pest, and Phi based solely on the estimate of |RD|.

Plo is picked if [[2)est(lo,lo |R| DDDD +∈ , Pest is picked if [[2)hi(est2)est(lo |R| DDDDD ++∈ , , and Phi is picked if

[]DDDD hi2)hi(est |R| ,+∈ . If |RD|<loD or |RD|>hiD, then the switch operator triggers re-optimization after

adding the collected estimate of |RD| to the catalog (Figure 25b).

Figure 25 – Bounding box (a); and which plan to choose (b)

3.5.4.2. Random-Sample Processing During Execution

To generate eos(f) punctuations required by buffer operators, we altered the regular processing of some of

Predator’s operators so that, with minimal overhead, they can prefix their output with a random sample of

their entire output. Each such operator O first outputs an f % random sample of its entire output. (f is a

user-defined parameter.) Next, O generates an end-of-sample punctuation eos(f) to signal the end of the

sample. Finally, O sends its remaining output tuples. As shown in Figure 26, tuples output as part of the

random sample are not generated again.

Plo Phi

|RB|

estB

|RD|

loB

hiB

hiD estD loD

Plo

Pest

Phi

(loD+estD)/2 (estD+ hiD)/2

Pest

|RD|

a) Bounding box for switchable plan P={Plo, Pest, Phi}

b) Deciding between re-optimization, Plo, Pest, and Phi based on |RD|

loD hiD

0

Re-optimization

64

Figure 26 – Random samples in the operator output

Reordering the output of an operator O is not an option if any of the operators above O in the plan

depend on the order of O's output. Thus, random sample generation seems inapplicable to operators such

as sorts and ordered scans from B-trees. However, there are ways around this problem. For example, the

buffer operator above O can regenerate the order using a merge of the initial sample with the later output.

Furthermore, blocking operators9 like sorts provide simpler ways of estimating input sizes without

requiring random samples or buffering.

Next we describe how eos(f) punctuations are generated by table scans and certain join operators.

Note that our techniques never transform a non-blocking operator into a blocking operator.

3.5.4.3. Randomization in Table-Scan Operators

We developed two techniques to enable a scan operator over a table T to first return a random sample of

tuples from T:

(i) If tuples in T are laid out in random order on disk, a sequential scan will produce the tuples in the

desired order. Whether T has a random layout pattern or not can be a physical property of the table,

enforced when the table is created and updated. Additionally, such a layout pattern can be detected

9 A blocking operator reads all of its input before producing any output.

a b c d e

h a e

Normal output order without randomization

Output order with randomization

f g h i j

b c d f g i j

Followed by the rest
of the output

A random sample of the
output

Emits punctuation eos(30%)

65

using the Kiefer-Kolmogorov-Smirnov test when runstats is invoked to collect statistics on T; see [18].

This additional statistic can be maintained in the catalog.

(ii) An f % random sample of T, denoted T_sample , can be maintained explicitly as a separate table, e.g.,

using the techniques from [38]. Each tuple in T contains an extra bit to denote whether the tuple is also

present in T_sample or not. At run-time the table scan first returns tuples from T_sample , followed by

an eos(f). Then it scans T, returning all tuples not contained in T_sample . Note that having tuples

duplicated in T_sample and T allows indexes over T to be built and used without any changes. The

storage overhead is minimal.

3.5.4.4. Randomization in Join Operators

Adding randomization to the nested-loops join operators–tuple, block, and index–was straightforward.

These operators simply pass on the eos(f) punctuations from their outer input, and ignore eos(f) from their

inner input. A join sample produced in this fashion is a true random sample of the join if the outer table’s

join column is a foreign key referencing the inner table [1].

To produce a random sample first from a hybrid hash join, we made the following modifications to

the standard algorithm:

(i) First, tuples from the probe input are read into memory until an eos(f) punctuation is received. These

tuples represent an f % sample of the complete probe input. The join operator inserts these tuples into an

in-memory hash table.

(ii) Next, the build input is read and partitioned completely. In addition, as these tuples are being processed,

they are immediately joined with the in-memory sample of the probe input. Joining tuples are sent in the

join output. At the end of this phase, an eos(f) punctuation (using the value of f received from the probe)

is generated, and the in-memory sample is discarded. The tuples output so far correspond to taking an

f % sample from the probe and joining it with the complete build. This sample is guaranteed to be a true

join random sample if the probe input’s join column is a foreign key referencing the build input [1].

66

(iii) The scan of the probe input, which was paused after the eos(f) in Step (i), is resumed. The tuples are

partitioned and joined with the memory-resident build partitions.

(iv) The on-disk partitions are joined to complete the join.

3.6. Experimental Evaluation

In this section we describe an extensive experimental evaluation of the Rio prototype. We compare Rio

with the traditional optimizer (termed TRAD in Section 3.5.1) and with the Validity-Ranges re-optimizer

(termed VRO in Section 3.5.1) under a variety of conditions. In our experiments we used a synthetic data

generator provided by IBM. The generated dataset has four tables whose properties are shown in Table 4.

Table 4 – Summary of dataset used in the experiments
Table Size, # of Tuples Sample Correlated Attributes

Accidents (A) 420 MB, 4.2 M
accident_with & damage,
seat_belt_on & driver_status

Cars (C) 120 MB, 1.7 M make & model & color
Owner (O) 228 MB, 1.5 M city & state & country

Demographics (D) 60 MB, 1.5 M age & salary & assets

All experiments were done on a 1.7 GHz Pentium machine with 2 MB L2 cache, 512 MB memory,

and a single 5400 rpm disk. The buffer cache size is 128 MB. Each hybrid hash join operator is allocated

a fixed amount of memory which we vary in some of the experiments; the default value is 50 MB. Buffer

operators in Rio and VRO are allocated the same amount of memory as a hybrid hash join. The buffers

spill to disk when they fill up. B-tree indexes were available on all primary-key attributes. Equi-height

and end-biased histograms were available on all integer attributes. The bounding box computation in Rio

happens as described in Figure 19 with ∆+=0.6 and ∆–=0.1. The cost threshold for robustness tests is 20%

(Section 3.5.3.2). The random-sample percentage for size estimation is 1% (Section 3.5.4.2).

67

3.6.1. Two-Way Join Queries

Our first experiment studies the performance of TRAD, VRO, and Rio with respect to the error in

estimates. We use a query joining Accidents (A) with Cars (C) on the car_id attribute. (All joins we

consider are foreign key to primary key joins.) There is a selection predicate on A, denoted σ(A), of the

form A.accident_year>[year], where [year] is a parameter whose value is varied in this experiment. We

removed the equi-height histogram on attribute A.accident_year from the catalog to force the optimizer to

use the default selectivity estimate of 0.1. Thus, the optimizer always estimates |σ(A)|=42MB. By varying

the value of [year], we vary the error between the estimate of |σ(A)| and its actual size.

3.6.1.1. Using Robust Plans

The memory limit for a hybrid hash join was set to 150MB in this experiment. When |σ(A)| is less than

the size of C (120MB), the optimal plan is a hybrid hash join with σ(A) as the build, denoted plan PAC.

When |σ(A)|>120MB, the optimal plan is a hybrid hash join with C as the build, denoted plan PCA.

(120MB corresponds to around 180% in Figure 27.) Although B-tree indexes are available on the join

attributes, index-nested-loop joins never outperform hybrid hash joins in our setting.

Figure 27 shows query completion times, including both optimization and execution times, for

TRAD, VRO, and Rio as we vary the error in the estimate of |σ(A)|. The error plotted on the x-axis is

computed as |σ(A)|Actual / |σ(A)|Estimate - 1. A positive error indicates an underestimate and a negative

indicates an overestimate. Figure 27 also shows the performance of the optimal plan which we determined

manually in each case.

Since the optimizer's estimate of |σ(A)| is 42MB, TRAD always picks plan PAC which is optimal at

|σ(A)|=42MB. As |σ(A)| is increased (and the estimation error increases), the cost of plan PAC increases

linearly at a small rate until |σ(A)|=150MB. (|σ(A)|=150MB corresponds to an error around 2.5 in Figure

27.) When |σ(A)|>150MB, the hybrid hash join in plan PAC starts spilling to disk. Because of this extra

68

IO, the cost of plan PAC increases at a steep rate when |σ(A)|>150MB, as shown by the plot for TRAD in

Figure 27.

VRO always starts with the same plan as TRAD, i.e., plan PAC. However, VRO adds a validity range

to the join and verifies this range before starting the join execution. The upper bound of the validity range

for the hybrid hash join in plan PAC is 120MB: if |σ(A)|>120MB, then plan PCA performs better.

Therefore, as long as |σ(A)|≤120MB, the validity range is not violated and the performance of VRO

matches the performance of the optimal plot in Figure 27. When |σ(A)|>120MB, the validity range is

violated and VRO is forced to re-optimize. Plan PCA is picked on re-optimization. VRO cannot reuse the

work done by the pipeline in execution in plan PAC when re-optimization was invoked, namely the scan of

A and evaluation of σ(A) up to that point. This loss of work results in the region in Figure 27 where VRO

performs worse than TRAD. However, as the error increases, the re-optimization pays off quickly

because when |σ(A)|>150MB, the join in plan PAC spills to disk while PCA scans A and C only once.

0
20

40
60
80

100
120
140

-100% 0% 100% 200% 300% 400% 500% 600% 700% 800% 900%

% Error on |σ(A)| estimate

TRAD
VRO
Rio
Optimal

Q
ue

ry
 c

om
pl

et
io

n
ti

m
e

(s
ec

s)

Figure 27 – σ(A) C, 150MB per hash join

Rio first computes bounding boxes for |σ(A)| and |C|. Since there are no selection predicates on C, the

estimate of |C| available from the catalog is accurate. To illustrate robust plans, in this experiment alone

69

we set ∆+ and ∆– in Figure 19 to very high values so that the bounding box on |σ(A)| is [0MB, 420MB].

Rio identifies that Plan PCA is a robust plan within this bounding box. (Rio identifies Plan PCA to be a

robust plan even if the bounding box is smaller.) Because the bounding box [0MB, 420MB] covers the

entire range considered in the experiment, Rio runs Plan PCA at all points in Figure 27. Although Plan PCA

is not optimal at all points in the bounding box, note that Rio’s performance is close to the optimal plot at

all points in Figure 27, showing the robustness of Plan PCA. Since |C| is less than the memory available to

the hash join, PCA always finishes in one scan of A and C.

For our default settings of ∆+ and ∆–, the bounding box on |σ(A)| is [16.8MB, 193.2MB]. In this case

Rio used a combination of solutions (re-optimization, switchable plans, and robust plans) to provide near-

optimal performance. This graph is omitted because Section 3.6.1.2 shows Rio’s performance in a similar

situation.

3.6.1.2. Using Switchable Plans

Our next experiment, reported in Figure 28, considers the same query as in the previous section, but now

hash joins are allocated only 50MB of memory for in-memory hash partitions. In this experiment, the

behavior of Optimal, TRAD, and VRO regarding the choices of plans and re-optimization points are the

same as in the previous section. However, Rio behaves differently. Rio computes the bounding box on

|σ(A)| to be [16.8MB, 193.2MB]. The large width of the box corresponds to the high uncertainty in |σ(A)|

since this estimate used a default value of selectivity. The bounding box on |C| has zero width since an

accurate estimate of |C| is available from the catalog. Rio finds that plan PAC is optimal at

(|σ(A)|,|C|)=(16.8MB, 120MB), which is the lower corner of the bounding box, and also at the estimated

point (|σ(A)|,|C|) = (42MB, 120MB). However, for (|σ(A)|,|C|) = (193.2MB, 120MB), which is the upper

corner of the bounding box, plan PCA is optimal. Furthermore, neither PAC nor PCA is robust in this case.

However, Rio identifies that plans PAC and PCA are switchable plans (see Section 3.5.3). Therefore, for

this query, Rio starts with a plan containing a switch operator with the two hybrid hash joins

70

corresponding to PAC and PCA as member plans. Rio estimates |σ(A)| during execution. Based on this

estimate, Rio chooses one of the two joins or it re-optimizes.

The accident_year attribute in A is not correlated with the layout of A on disk, so a sequential scan of

A produces tuples in random order to estimate the selectivity of σ(A) (recall Section 3.5.4.2). Rio gets a

very accurate estimate of |σ(A)| from the default setting of 1% sampling. For example, when |σ(A)|=6MB

in Figure 28, which corresponds to an error of -85% and lies outside the bounding box, Rio invokes re-

optimization. Since the optimizer now has accurate estimates of |σ(A)| and |C|, it correctly picks plan PAC

which is optimal at this point. Note that Rio’s performance is very close to that of the optimal plan for

|σ(A)| = 6MB, which shows that the overhead incurred by Rio to sample 1% of A, obtain a run-time

estimate of |σ(A)|, and to re-optimize the query is very small.

When |σ(A)| lies within the bounding box computed by Rio, re-optimization is avoided. In this case,

the switch operator picks plan PAC or plan PCA appropriately, avoiding loss of work. For example, the

switch operator picks Plan PAC when |σ(A)|=32MB, which corresponds to an error of -26% in Figure 28.

Plan PCA is picked when |σ(A)|=160MB, which corresponds to an error of 284% in Figure 28. When

|σ(A)|>193.2MB, which lies outside the bounding box, Rio will re-optimize with a fairly accurate value of

|σ(A)| estimated via sampling. In this case, the optimal Plan PCA gets picked. Therefore, Rio’s

performance is always close to that of the optimal plan for this query.

71

0
50

100
150
200
250
300
350
400

-100% 0% 100% 200% 300% 400% 500% 600% 700% 800% 900%

% Error on |σ(A)| estimate

TRAD
VRO
Rio
Optimal

Q
ue

ry
 c

om
pl

et
io

n
ti

m
e

(s
ec

s)

Figure 28 – σ(A) C, 50MB per hash join

3.6.2. Three-Way Join Queries

We now repeat the experiments in Section 3.6.1 with a query joining A, C, and O. There are selection

predicates on A.accident_year (σ1) and O.cars (σ2). We removed the equi-height histogram on

A.accident_year so that the optimizer uses a default estimate, and we vary the estimation error as in

Section 3.6.1. The results are shown in Figure 30. The cardinality of σ2(O) is estimated accurately from

an equi-height histogram.

The optimal plan for this query for low values of |σ1(A)| is plan P29a shown in Figure 29. For higher

values of A, plan P29b becomes optimal. Plan P29a is also the optimal plan for the single-point estimates

of input sizes, hence TRAD always picks plan P29a. Therefore, in the left part of Figure 30, TRAD

performs as well as the optimal plan, but its performance deviates more and more from the optimal as the

error increases.

72

Figure 29 – Plans for A C O used in experiments

0

200

400

600

800

1000

1200

1400

-100% 0% 100% 200% 300% 400% 500% 600% 700% 800% 900%

% Error on |σ(A)| estimate

Q
ue

ry
 c

om
pl

et
io

n
tim

e
(s

ec
s) TRAD

VRO
Rio
Optimal

Figure 30 – σ1(A) C σ2(O), 50MB per hash join

Rio starts with plan P29c shown in Figure 29. This plan has two switch operators corresponding to

the two joins. (Buffer operators are not shown in Figure 29.) The two member plans in the first switch

Plan P29a

HHJ

σ2(O) HHJ

C σ1(A)

HHJ

σ1(A) HHJ

σ2(O) C

Switch

σ2(O) Switch

C σ1(A)

Plan P29b Plan P29c

Plan P29d

HHJ

σ2(O) HHJ

σ1(A) C

HHJ

O HHJ

σ1(A) σ2(C)

Plan P29e Plan P29f

HHJ

σ1(A) HHJ

C σ2(O)

Point 2

Point 3

Point 4

Point 1

73

operator are (i) hybrid hash join with σ1(A) as build and C as probe, and (ii) hybrid hash join with C as

build and σ1(A) as probe. The switch operator will choose between these plans based on a run-time

estimate of |σ1(A)| computed from a 1% sample of A. The two member plans in the second switch

operator are (i) hybrid hash join with σ1(A) C as build and σ2(O) as probe, and (ii) hybrid hash join

with σ2(O) as build and σ1(A) C as probe. The choice between these two plans will be made based on

an estimate of |σ1(A) C| from a 1% sample of σ1(A) C obtained by sampling the join (recall Section

3.5.4.4). The bounding box on |σ1(A)| is the same as that in Section 3.6.1. The bounding boxes on |C| and

|σ2(O)| effectively have zero width since these estimates are known to be accurate. When |σ1(A)|=6MB

(Point 1 in Figure 30 and in Table 5), which corresponds to an error of -85% and lies outside the

bounding box, Rio invokes re-optimization and picks the optimal plan P29a. Similarly, when

|σ1(A)|=160MB (Point 3 in Figure 30 and in Table 5), which corresponds to an error of 284% and is

within the bounding box, both switch operators will pick the base relation input as the build, and execute

plan P29d in Figure 29. Thereby, when |σ1(A)|=160MB, Rio avoids re-optimization and the loss of

pipelined work which results in the difference of around 72 seconds between Rio and VRO in this case.

Table 5 – Plans used at points 1, 2, 3, and 4 of Figure 30
Point |σ1(A)| TRAD VRO Rio Optimal

1 6 MB P29a
Inside validity range, runs
plan P29a

Outside bounding box, re-
optimize, picks plan P29a

P29a

2 80 MB P29a
Inside validity range, runs
plan P29a

Inside bounding box, switch
operator picks plan P29a

P29a

3 160 MB P29a
Outside validity range, re-
optimize, picks plan P29d

Inside bounding box, switch
operator picks plan P29d

P29b

4 310 MB P29a
Outside validity range: re-
optimize, picks plan P29d

Outside bounding box, re-
optimize, picks plan P29b

P29b

The performance of Rio is always close to that of the optimal plan in Figure 30 except for an

intermediate range of estimation errors. In this region, Rio picks plan P29d which turns out to be

suboptimal compared to plan P29b. This region is a transition region where plan P29d stops being optimal

74

with respect to plan P29b. Because of an overestimate of the join selectivity of C σ2(O), Rio continues

to pick plan P29d as the optimal plan beyond the actual transition point. However, as the error in |σ1(A)|

increases, Rio converges to the optimal plan again around an error of 400% in Figure 30.

VRO starts with the same plan P29a as TRAD, but with validity ranges added. When

|σ1(A)|≤120MB, none of the validity ranges are violated. (|σ1(A)|=120MB corresponds to around 180%

in Figure 30.) When |σ1(A)|>120MB, the validity range on σ1(A) C is violated and VRO is forced to re-

optimize. Note that at this point, VRO does not have an estimate of the actual size of |σ1(A)|. Based on

the amount of A it has seen so far, VRO always picks plan P29d on re-optimization and adds validity

ranges. In addition to the overhead of re-optimization and the loss of pipelined work, the choice of plan

P29d illustrates another problem with VRO. VRO gets stuck in a suboptimal plan as the validity ranges in

plan P29d will never fail because of an underestimate of |σ1(A)|: there is no better plan to join C and

σ1(A) for large |σ1(A)| than the hybrid hash join with σ1(A) as the probe, even though there is a better

plan for the entire query. Although Rio could also fail to detect a sub-optimal plan, it is the fact the VRO

uses incorrect estimated statistics during the second optimization call that leads it to execute a sub-

optimal plan. Since Rio collects accurate statistics at run-time it is less likely to execute sub-optimal plans

after re-optimization calls.

A similar situation arises for the second join since σ1(A) is part of the probe input here as well.

Hence, as illustrated by the results in Figure 30, VRO performs badly as the estimation error in |σ1(A)|

increases. This experiment illustrates one of the pitfalls of reactive re-optimization where the execution

plan is decided before the issues affecting re-optimization are considered.

3.6.3. Correlation-Based Mistakes

So far the estimation errors we considered were due to selection predicates on an attribute on which there

was no histogram. A more common case of estimation errors is the presence of correlated attributes,

which we consider in this section. We use a three-way join query on A, C, and O with selection predicates

75

σ1(A) and σ2(O). Figure 31 shows the performance of three queries Q1, Q2, and Q3 which have different

sets of correlated predicates on A, causing the optimizer to underestimate |σ1(A)| in each case.

(Correlations usually lead to underestimates [63].) For example, Query Q2 contains predicates

A.accident_with="car", A.driver_status="injured", and A.seat_belt_on="on". |C| and |σ2(O)| are always

estimated accurately. Figure 31 indicates that the estimation errors caused by correlated attributes result in

performance trends for TRAD, VRO, and Rio similar to those shown in Sections 6.1 and 6.2. The reasons

for these trends are also similar to those observed in Sections 6.1 and 6.2. The optimal plan for each query

is plan P29e in Figure 29 which Rio picks either because it is a robust plan (Q1) or because Rio discovers

the estimation error and the actual estimate quickly because of randomization (Q2 and Q3).

0

50

100

150

200

250

Q1 Q2 Q3

TRAD
VRO
Rio

Q
ue

ry
 c

om
pl

et
io

n
tim

e
(s

ec
s)

Figure 31 – Errors due to correlated predicates

3.6.4. Thrashing

So far we considered queries where the size of a single input is estimated incorrectly. In this section we

consider the performance of VRO and Rio when the size of more than one input is estimated incorrectly.

We use a three-way join query on A, C, and O with selection predicates σ1(A) and σ2(C). |σ1(A)| is

underestimated significantly because σ is on an attribute with no histograms, while |σ2(C)| is

underestimated slightly because the histogram on the corresponding attribute was built from a small

76

sample of C. For this query, VRO thrashes and takes 690.38 seconds compared to 327.57 seconds for Rio.

VRO starts with the optimal plan for the estimated statistics which is similar to plan P29a in Figure 16.

Because |σ2(C)| is underestimated, VRO computes an incorrect validity range for |σ1(A)|. This validity

range is violated at run-time, and re-optimization picks plan P29f. Since VRO does not have correct

estimates of |σ1(A)| or |σ2(C)| at this point, it computes incorrect validity ranges which fail again. This

thrashing results in the factor two slowdown of VRO compared to Rio. Rio invokes re-optimization once

for this query when its run-time estimate of |σ1(A)| falls outside the bounding box. Because Rio estimates

|σ1(A)| accurately at run-time using sampling, and also uses bounding boxes to allow for error in the

estimate of |σ2(C)|, it finds the optimal plan in the first re-optimization step.

3.6.5. Increasing Query Complexity

In this section we compare the relative performance of TRAD, VRO, and Rio as we increase the number

of joins in the query. The results are shown in Figure 32.

0

100

200

300

400

500

600

700

4 5 6 7 8

Number of tables Joined

TRAD
VRO
VRO-R
Rio

Q
ue

ry
 c

om
pl

et
io

n
tim

e
(s

ec
s)

Figure 32 – Increasing query complexity

77

The dataset provided to us had four tables only (the actual dataset has around 30 tables [63]). For this

experiment, we vertically partitioned each table into two and padded each partition with string fields to

make it the same size as the original table. Each query had correlated predicates on half of the joined

tables. Figure 32 shows the same trends observed in previous sections. The fraction of time spent by Rio

and VRO in optimization steps was less than 1.7% in all cases in Figure 32. Roughly, the cost of each

optimization phase in Rio is three times the cost of the single optimization phase in TRAD.

Figure 32 also shows the relative performance of VRO-R, which is the validity-ranges optimizer

enhanced with our random-sample processing techniques from Section 3.5.4.2. While randomization

improved the overall performance of VRO by reducing the time required to trigger re-optimization, the

amount of wasted work, and the number of re-optimization steps, Rio still outperforms VRO-R by a

significant amount.

3.7. Conclusions

Rio is a second-generation AQP system that improves on previous AQP proposals in several ways.

Previous AQP systems, although able to correct some optimizer mistakes, still suffered from the

optimizer mistakes in an indirect way. By using a traditional optimizer, those systems were more likely to

start execution with a sub-optimal plan. The sub-optimal plan could frequently be detected and replaced

by an optimal plan. However, the process could be inefficient if the sub-optimal plan was not quickly

detected, or, if it was, query processing work had to be thrown away and repeated. In addition, previous

AQP approaches would sometimes only find an optimal plan after multiple re-optimization steps, each

with its own potential inefficiencies. With Rio, we extensively re-engineered query optimization and

query execution to make the system as insensitive as possible to optimizer mistakes. The optimization

module was changed to give priority to robust plans, i.e., plans insensitive to incorrect estimates. This was

partially done with a series of heuristics that assign levels of uncertainty to estimated statistics based on

the way they were estimated. Given the uncertainties, the optimizer computes bounding boxes around the

78

estimates, i.e., intervals of estimated low and estimated high values for the statistics. The bounding boxes

of statistics are combined during optimization to produce estimated low and estimated high costs for plans

instead of using a single value as in traditional query processing. This, in turn, reveals which plans are

robust and which plans are risky.

New switch operators were proposed to avoid re-optimization and minimize lost work by deferring

the decision of which plan to run until run-time. Switch operators require switchable plans to be found at

optimization time. At a high level, a switchable plan is a set of plans that share a common execution

prefix, i.e., all plans in the set must start executing the same operator(s) over the same relation(s) and in

the same order to be switchable. The common part of the switchable plan set is partially executed first.

Then, the switch operator receives statistical information about the data seen in that common execution

prefix and chooses the best plan in the switchable plan set to finish execution. While it is unknown how

frequently switchable plans can be found for complex optimization spaces, our experiments showed that

switchable plans can be used to avoid lost work due to common optimizer mistakes.

Finally, query execution was changed to generate and propagate tuple random samples up the query

execution tree. The tuple random samples were used to generate run-time estimates for the switch

operator, allow faster detection of sub-optimal plans, and faster convergence to the optimal plan.

However, our modifications of join operators are guaranteed to produce a true random sample of the join

only in certain situations. In addition, although we suggested some ways to propagate tuple random

samples across operators that take advantage of ordered tuple streams, this issue was not addressed in this

work. Nevertheless, tuple random samples were generated and propagated at marginal costs during query

execution for a variety of operators including some join operators.

These three components of proactive re-optimization, robust plans, switchable plans, and efficient

run-time statistics estimation through propagation of tuple random samples, were implemented in the

open source database Predator in a prototype called Rio. Rio was compared with previous reactive re-

optimization approaches and with traditional non-adaptive approaches. Rio proved to be less likely to

79

start with a risky plan, faster to detect sub-optimalities, converged to the optimal plan in fewer steps, and

showed total execution times up to three times faster than the reactive re-optimization approach.

80

CHAPTER 4

ADAPTIVE AND ROBUST QUERY PROCESSING WITH

SHARP
This chapter describes SHARP, a new multi-join, adaptive, relational operator that joins three or more

relations of a star-join. SHARP reduces the possible impact of optimizer mistakes by determining which

plan to execute independently of optimization estimates. During normal query processing, SHARP

collects statistics, and by using a combination of late-binding plan decisions and tuple routing strategies,

it is able to change join order and table access methods. Unlike previous tuple routing operators used for

in-memory stream processing, SHARP was designed to process local relations with sizes much larger

than available memory.

4.1. Introduction

As described in Chapter 1, database optimizers cost and choose query plans as if they have precise

information about data distributions. However, that is rarely the case. When statistics are not available in

the catalog, the optimizer estimates them by assuming that some data distributions are uniform or

independent, by using a combination of other (possibly estimated) statistics, or even by using default

values [79]. These estimates may contain errors that grow exponentially with the number of estimated

statistics derived from other estimated statistics [51] and the chosen plans may be sub-optimal by several

orders of magnitude [63]. Having more information in the catalog (e.g., histograms [70]) reduces the

problem, but the information needed to correctly cost all possible query plans is likely to increase

exponentially as datasets sizes grow, as queries become larger, and as query languages become more

complex. If that is the case, then database optimizers may have insufficient information to choose good,

81

non-adaptive query plans for all queries. Instead, decisions about which query plan to run may have to be

made at run-time–using adaptive operators and/or late binding decisions–after some of the data is

observed.

One AQP approach is proactive re-optimization, examplified by the Rio prototyped described in the

previous chapter. However, in spite of all its benefits, Rio required substantial changes to the query

optimization and query execution modules including small modifications in all operators to generate or

propagate tuple random samples. Rio is able to take corrective actions and yet avoid losing work but only

in the presence of switchable plans–sets of plans that share a common execution prefix. However, it is not

clear if switchable plans can be found for complex queries prone to optimizer mistakes. In addition,

switchable plans cannot correct sub-optimal join orders, a common optimizer mistake.

By contrast, in this chapter we propose SHARP10, an AQP strategy fundamentally different from Rio.

The proposed SHARP operator is able to correct optimizer mistakes leading to the execution of sub-

optimal operators and sub-optimal join orders. In addition, SHARP encapsulates almost all AQP changes

needed; the remaining query processing engine is largely unaffected.

However, instead of executing arbitrarily query plans, SHARP is an adaptive, relational operator for

processing star-joins with three or more relations. In addition, instead of being able to preempt execution

and re-invoke optimization at any moment, SHARP adopts a two-step adaptive approach. First, run-time

late-binding decisions determine the driving relation–the first relation to be read and the “outer side” of

subsequent joins. Second, tuple routing continuously potentially changes the join order within the orders

available after the driving relation was fixed.

Note that, although tuple routing has been previously used mainly for in-memory data processing,

SHARP does not keep all the joins completely in memory. This allows SHARP to have both a smaller

10 Streaming, Highly Adaptive Run-time Planner

82

memory footprint than other adaptive operators [32, 90], and to have an efficient second pass to process

relations much larger than available memory.

4.1.1. Contributions and Outline

The main contributions of this chapter are the following:

• In Section 4.3.1, we introduce SHARP, a new, multi-join, adaptive, operator to process star-joins.

• We show that tuple routing policies used in data stream systems can be used in traditional databases

processing relations larger than memory. We also provide the first apples-to-apples comparison of

three tuple routing policies [5, 8, 29] in the same system. These policies are described in Section

4.3.2.

• We propose a series of late-binding decisions that can opportunistically change the query plan at run-

time to improve performance. These decisions, described in Section 4.3.3, are taken after SHARP has

seen some tuples, but before deciding on the final execution plan.

• We propose a new multi-join second-stage processing algorithm in Section 4.3.4. This algorithm

shows good improvements over alternative techniques and its performance is insensitive to optimizer

mistakes.

• As described in Section 4.4, we implement and evaluate a prototype implementation of SHARP in

Predator [81]. The results show good performance improvements over plans not using SHARP.

4.2. Eddies and MJoins

The operators most related to SHARP are the Eddy [5] and the MJoin [90], both multi-join adaptive

operators using tuple routing. They are described here to provide context for the SHARP contributions in

the next Section. Other related work appears in Section 4.5.

83

4.2.1. Terminology

For an operator Op joining two or more relations, we say relation B is a build relation when tuples from

that relation are inserted into some lookup structure (e.g., hash tables). We say relation D drives Op , or is

a driving (or probing) relation for Op , if each input tuple t1 coming from D probes the build lookup

structures of Op and potentially produces output tuples, or schedules t1 for second-stage processing,

before any other tuple t2 from D is processed11. A relation may be simultaneously a build and driving

relation. In the figures, driving relations are marked with arrowed lines and build relations are marked

with dotted lines.

4.2.2. The Eddy

As described in Section 2.1.1, the Eddy [5] is an operator that routes tuples through a pool of operators

until they are processed by all operators or are dropped along the way. The Eddy continuously observes

the performance of the other operators and routes tuples to the most efficient operator available. The Eddy

adapts its routing decisions as the performance of the other operators change, possibly sending different

tuples through different routes throughout the life of a query. (However, at any single moment, most

tuples follow the same route.) The ability to efficiently change routes (i.e., query plans) relies on

operators with moments of symmetry [5], moments after which joins can be reordered. The symmetric

hash join (SHJ) [91], typically used with Eddies, is an operator with frequent moments of symmetry. Each

SHJ consists of two in-memory hash tables12, one for each relation being joined; tuples from one relation

build into its hash table and probe the other. An Eddy with SHJs can then execute several plans,

depending on the tuple source and routing policy. For example, the Eddy in Figure 33b executes

11 For example, in a nested-loops join operator the left input is the driving source, and in a hybrid hash join operator
the right input is the driving source.

12 Each one of the two hash-tables that composes a SHJ is called a SteM in the Eddies nomenclature [74].

84

R aS bT by sending R tuples to first probe hash table S.a and then probe T.b, T tuples first probe S.b

and then R.a, and S tuples have two options: either they first probe T.b and then R.a, or first they probe

R.a and then T.b (hash tables are represented as grey rectangles in Figure 33). This design, albeit

providing very adaptive plans, introduces a considerable overhead [29]: it requires maintaining two hash

tables per join and requires that all joins be completely and simultaneously in memory (e.g., the Eddy of

Figure 33b needs to maintain the four hash tables, R.a, S.a, S.b, and T.b in memory). Although the Eddy

has the potential to join any number of relations in any order, its memory limitations restrict the Eddy for

in-memory processing of data streams (possibly infinite, window-bounded, remote tuple sources that

deliver tuples at unpredictable and bursty rates).

Figure 33 – SHARP, Eddy, and MJoin processing R S T

4.2.3. The MJoin

The MJoin [90] is a completely symmetric multi-way data stream join operator, with one hash table per

data stream. As with the Eddy using SHJs, tuples from a particular source build on that source’s hash

table and probe the others. The MJoin uses fewer hash tables than the Eddy because it assumes that a data

stream uses the same joining attribute for the all joins (see Figure 33c). This assumption also allows more

join orders in the MJoin than in the Eddy. For example, the MJoin of Figure 33b can process any of the

S

 Eddy

R aS

R.a S.a

S bT

S.b T.b

R.a

 R T

Output Output

 R.a S.a

R S T

T.a

Output

T.b

a) SHARP c) MJoin b) Eddy

SHARP

85

six join orders (RST, RTS, SRT, STR, TRS, and TSR), being restricted only by the incoming tuple

source.

The important contributions of MJoins are i) producing tuples sooner than a tree of binary non-

blocking join operators (e.g., SHJs), ii) extending the streaming behavior of SHJs to allow memory

overflow, and iii) providing a rate-based cost model of the data stream join problem it addresses.

In contrast, we address the problem of joining local relations. Our goal is to execute plans that are

insensitive to optimizer mistakes and our evaluation metric is time to completion. Other differences

between the MJoin and SHARP are: the MJoin does not redistribute memory dynamically between joins,

requires more memory then SHARP, does not evaluate routing policies, and, for the second-pass, assumes

that all relations join on the same attribute.

4.3. SHARP

SHARP is an operator that keeps the inexpensive [29], tuple-routing, run-time adaptivity of the Eddy

without incurring the overhead of SHJs [29] and without the requirement that all joins fit completely in

memory. The trade-off is that, while Eddies and MJoins can process arbitrary plans, SHARP processes

only star-joins and segments of linear-joins as shown in Figure 34. In spite of that, SHARP still has the

potential to adaptively decide at run-time which join order to use. In addition to reducing memory usage,

not using SHJs also allowed the development of a new technique to process joins between relations much

larger than memory.

86

Figure 34 – SHARPs processing a star-join and a linear-join

SHARP’s functionality is described as follows. Section 4.3.1 describes the in-memory behavior of

SHARP and minor multi-join improvements. Section 4.3.2 describes three tuple routing techniques

implemented in SHARP. Section 4.3.3 introduces late-binding decisions that allow SHARP to change the

query plan before tuple routing starts. Then, Section 4.3.4 describes how SHARP processes relations

larger than memory. Finally, Section 4.3.5 summarizes SHARP and compares it with Eddies and MJoins.

4.3.1. In-Memory Processing

When a SHARP joins n relations, one relation is the single driving relation and all other n-1 relations are

build relations. SHARP starts by reading tuples from the build relations and creates an in-memory hash

table for each one13. (Processing of build relations bigger than available memory is described in Section

4.3.4) Then, SHARP reads tuples from the driving relation, probes the in-memory build hash tables and

outputs join results. Figure 33 (in page 84) shows a SHARP joining R aS bT, where R and T are the

13 An alternative to create an in-memory hash table for each build relation is to use, previously built indexes on the
build relations. Depending on the number of driving tables and/or the selectivities of the joins, this alternative
could be more effective then creating the in-memory hash tables.

A

Star-Join

E C

B

D

D C B A E

SHARP

A

Linear-Join

B C

D B C

D E

E A

SHARP

SHARP

Queries:

Plans:

87

build relations and S is the driving relation. Tuples from the driving relation–henceforth called driving

tuples –probe the build hash tables in an order specified by an adaptive tuple routing policy, as described

in Section 4.3.2.

Note that since driving tuples probe the build hash tables one by one, at any single moment, SHARP

executes a linear-join plan; i.e., bushy-tree plans are never executed.

4.3.1.1. Adaptive Redistribution of Memory.

In SHARP, each build hash table is given a memory budget. If the total build size is larger than the

budgeted amount, then the hash table must write hash partitions to disk for second-stage processing.

However, before writing them to disk, SHARP first loads the remaining build tables into memory until

they either consume their entire memory budget or load completely. If any budget is underutilized,

SHARP reassigns the available memory to the yet to finish build hash tables. In contrast, the process of

redistributing memory across joins is non-trivial for tree-shaped execution plans of binary operators. The

process is more difficult because operators lower in the tree cannot obtain excess memory from operators

higher in the tree as they have not begun execution.

Note that many memory redistribution policies are possible. For simplicity, SHARP assigns all

unused build memory to the first hash table build that did not fit its budget. If that build completes

without using all the newly assigned extra memory, SHARP further reassigns it to the next yet to finish

build and so on.

4.3.1.2. Multi-Join Optimizations.

SHARP takes advantage of its multi-join nature to obtain two performance benefits. First, SHARP avoids

creating some intermediate results: when a tuple s from driving relation S, probes build relation R and

finds a matching tuple r, the resulting rs tuple is not generated. Instead, SHARP (like the Eddy’s

implementation in TelegraphCQ [21]) merely keeps a pointer to r and proceeds to probe the other build

88

relation T using tuple s. Then, an rst intermediate tuple is generated only if a matching tuple t of T is

found. If the probe on T fails, no intermediate tuple is ever generated.

Another benefit is the reduction of getNext calls. Consider a traditional plan, using a binary tree of

hash joins. Assume tuple s from S probes operator Op 1 (the in-memory build hash table for R) and gets a

first matching tuple r1. The resulting intermediate join tuple sr1 is returned to Op 2 before any more calls

are made to Op 1. Even if the sr1 probe on Op 2 fails, the iterator model will try and get a new tuple from

Op 1, r2. The new intermediate tuple sr2 will also probe Op 2 and fail because it is using the same s

component that failed the previous probe on Op 2; see Figure 35. In constrast, when using a SHARP, if a

driving tuple probes a build hash table and returns no matches, then any outstanding open probes on other

build hash tables are closed and spurious getNext calls are avoided.

These two factors explain why SHARP shows a small performance advantage over trees of binary

operators, even in scenarios where its adaptive mechanisms provide no benefit.

4.3.2. Adaptive Tuple Routing Strategies Used

In SHARP, we implemented three routing policies adapted from three previous proposals [5, 29, 8]. The

first routing policy, which we call Continuous or simply Cont, is a modification on the original routing

policy in the first Eddies paper [5]: a probabilistic routing mechanism based on lottery scheduling is used

to determine where to route tuples next and routing decisions happen each time an operator finishes

processing one tuple. The variation is that in Cont, we make a routing plan once per each driving tuple,

instead of once per probe. In addition, instead of lottery scheduling, we route every r-th tuple to a random

route. This makes the exploration mechanism independent of the currently estimated best route. For all

other tuples Cont uses the estimated best routing order. Also, as in the Eddies implementation in

TelegraphCQ [21], the selectivity of operators (the join selectivity of build hash tables in our case) is

continuously updated after each probe and dropped tuples do not affect the selectivity of operators they do

not probe.

89

Figure 35 - Tuple s from S probes Op 1 and Op 2 in iterator model

Continuous-Batch, or simply ContB, the second tuple routing policy implemented, is taken from

Deshpande [29]: instead of computing a routing order once per driving tuple, routing orders are computed

once per batches of tuples. Policies Cont and ContB minimize the overhead of gathering statistics–tuples

are not used to explore operators after being dropped–but they provide no optimality guarantees on the

chosen routes: they may take too long to discover new optimal routes or may never discover them.

An alternative is A-greedy, a routing policy that uses a small percentage of tuples, called profile

tuples , to keep a profile window : a moving window of pass/fail bits for each operator [8]. Because the

90

profile window contains information even from otherwise dropped tuples, A-greedy can estimate the

selectivities of operators even for routes that it never executes. This information is then used to provide

strong guarantees on the optimality of routes that A-greedy selects [8]. However, A-greedy has a higher

state update overhead then Cont or ContB and that is why it collects information just after every profile

tuple, instead of after every tuple. A-greedy, developed for data stream scenarios where data and system

characteristics are expected to change very quickly, computes a new routing order after every profile

tuple. Since SHARP is processing local relations instead of data streams, and to lower the overhead of

computing routes and to produce the first routing order faster, our implementation of A-greedy, called

Profile, uses the first n out of every p tuples as profile tuples. Thus, Profile, the third tuple routing policy

implemented in SHARP, computes a new routing order after every n+K*p tuples, with K≥0, and uses that

routing order for the next p driving tuples. Table 6 summarizes the routing policies implemented.

Table 6 – Routing policies implemented, p>n>r, K∈∈∈∈
Routing
Policy

New Route Update State Exploration Optimality
Guarantees

Cont
After every

tuple
Every tuple

Random route every r
tuples

None

ContB
After n*K

tuples
Every tuple

Random route every r
tuples

None

Profile
After n+K*p

tuples
n out of every p

tuples

n out of every p tuples
probe all builds, even if

dropped

Greedy 4-
approximation
algorithm [8]

4.3.3. Late Binding Decisions

In this Section we describe a series of late binding decisions–decisions made at run-time after some tuples

are observed–that change the structure of the query plan executed by SHARP.

The late binding decisions can be made after SHARP loads any build relation, Bi, into hash table ti,

with i=1..n, where n is number of builds. While it creates ti, SHARP also constructs a histogram hi on

attribute Bi.d, the attribute of Bi that joins with the driving relation. If ti fits in memory, then SHARP uses

the histogram created, consults the catalog and estimates how many driving tuples, di, would join with Bi.

91

At this point, SHARP can change the query plan in three different ways, summarized in Table 7 and

described next, or it can continue the query processing as described in Section 4.3.1. We note that

although the late binding decisions can happen after any build table is loaded, in this first prototype, they

will happen only once per query: i.e., if SHARP makes late binding decisions after the first build is

loaded, then it will not make more late binding decisions after any other build is loaded.

Table 7 – Summary of late binding decisions
Decision Type of D Read D Access D Buffer D?

Uinl Base After Bn Index No (stream)
Uibf Base After Bi Index Yes
Ufbf Base, intermediate After Bi Unchanged Yes

4.3.3.1. Using an Indexed Nested-Loop (Uinl).

If the driving relation D is a base relation with an index, idxi, on the attribute(s) D.ai of D that join with

Bi.d, then, depending on di, on the costs of random and sequential reads, and on properties of index idxi, it

may be better to use an indexed nested-loop to access the driving tuples–with hash table ti and index idxi

as the outer and inner components of the loop–than to use a file scan on D. At this point (Figure 36a),

SHARP makes a cost-based decision14. If the file scan is the better access for D, then SHARP does not

change the query plan (Figure 36b). Otherwise, driving tuples will be obtained using the indexed nested-

loop (Figure 36c),. Note that this change effectively makes Bi the driving relation. In addition, if the

indexed nested-loop access is used, then the late binding decision “Using INL and Bloom-Filters”, below,

is considered before any other build relation is processed.

14 The cost-based decision is similar to the access path selection that happens at optimization. However, during
optimization the statistics needed to cost the indexed-nested loop plan may be missing. On the other hand, SHARP
computes part of the statistics it needs from observed tuples and is thus less likely to produce incorrect estimates.

92

B1 B2 Bn...

In-Memory
hash tables

Build relations
on disk

t1 t2 tn...

σ1

h1

B1 B2 Bn...

t1 t2 tn...

D

FS

σ1 σ2

d1?
with d1=|D B1|

B1 B2 Bn...

t1 t2 tn...

D
idx1

σ1 σ2

a)

b) c)

D

Figure 36 – Late binding decision Using-INL

4.3.3.2. Using INL and Bloom-Filters (Uibf).

Given di and the average size of a driving tuple, SHARP computes the total expected size of those di

tuples, Ti. If Ti is less than the budget given to any build hash table, then SHARP reads all the di driving

tuples into memory before proceeding to read other builds (Figure 37,). For each driving tuple it loads

into memory, SHARP reads attribute aj that joins with build relation Bj and updates a bloom filter bfj, for

j=1..n, j≠i (Figure 37,). Each bloom filter, bfj, is a bitmap of length k [16]. When driving tuples are

read, attribute aj is hashed to a value between 0 and k-1, and the corresponding bit in bfj is set. Later,

when the other build relations are read, for each tuple, SHARP hashes its join attribute, Bj.d, with the hash

function used for bfj. If the bit corresponding to that value in bfj is 0, then the tuple is dropped, otherwise

the tuple is processed normally (Figure 37,). Filtering Bi with its corresponding bloom-filter bfi should

decrease ti considerably. Finally, driving tuples in di continue their path and probe the already filtered in-

memory hash tables ti.

93

Figure 37 – Late binding decision Using Bloom Filters

4.3.3.3. Using Driving Relation Pre-Filtering and Bloom Filters (Ufbf).

As described in Section 4.3.4, SHARP’s if any build relation requires a second pass then the driving

relation requires a second pass also. As such, filtering the build relations with bloom-filters may improve

performance significantly because it could save both the builds and the driving relations from spilling to

disk. Thus, even if SHARP decides not to use an indexed nested-loop to retrieve the driving tuples, it will

still check, after building any ti, if the Ti (the size of all tuples of D estimated to match ti) fits the budget

given to build hash tables. If it does, then, as in the case Uibf above, SHARP reads driving tuples into

memory ahead of time. Each driving tuple read probes ti and if it finds no match, it is dropped. Otherwise,

it is kept in an in-memory buffer and it is used to update bloom-filters on the other build relations. Then,

build relations are loaded into memory while being filtered by the bloom-filters. Finally, driving tuples

are read from the in-memory buffer, and used to probe the builds.

4.3.4. Second-Stage Processing

Even after redistributing memory across joins (Section 4.3.1) and filtering tables using the late binding

decisions (Section 4.3.3) it is still possible that one or more relations do not fit in memory. Those portions

will have to be temporarily written to disk and processed at a later stage, typically referred to as second-

stage. This Section describes SHARP’s second-stage processing algorithms.

94

4.3.4.1. Split Tables into Partitions and Portions.

When SHARP reads build relation Bi, it creates an in-memory hash table ti with p partitions. If there is no

more memory space for Bi tuples, one in-memory partition of ti is selected, its current records are moved

to a temporary file on disk, the partition is marked as frozen, and SHARP continues loading records from

Bi. Future records that hash to frozen partitions are held in very small memory buffers and flushed to disk

when the buffers fill up. Then, for each ti, the partitions are assigned to sets of consecutive partitions

called portions , such that the size of each portion does not exceed available memory. Figure 38a shows

the state of a SHARP after it has completed the build stage. In the example, build hash table t1 has four

portions. Portion 0 is in memory, and the remaining three portions contain the frozen partitions.

After the builds are partitioned, SHARP reads the driving table and partitions it along all n join

attributes with the build relations. This multi-dimensional split of D is shown in Figure 38b for the case of

two build relations. Note that the split of D is done in terms of portions of the ti, instead of partitions of ti.

To split D, incoming driving tuples are routed to some ti for probing (according to SHARP’s routing

policy as described in Section 4.3.2). When SHARP probes ti with driving tuple dt, using join attribute

dt.ai, it gets one of three results: “match”, “fail”, or ti(dt.ai), the number of the in-disk partition of ti that

dt.ai hashes to. We note that a “match” also includes the set of pointers to the dt matching tuples in ti and

implicitly implies that portion ti(dt.ai) is in memory (i.e., ti(dt.ai)=0).

If any ti probe returns “fail”, tuple dt is dropped; otherwise the tuple is routed to another hash table. If

dt is not dropped, there are three cases to consider, corresponding to the dotted, white, and gray portions

of D in Figure 38b:

If all ti probes return “match” (dt belongs to the dotted portion of D), then the resulting one or more

join tuples are output by SHARP and not written for second-stage processing.

If all ti(dt.ai)>0 (dt belongs to a white portion of D), then it is not known if tuple dt joins or not with

any of the builds. Tuple dt is then written to a temporary file for second-stage processing.

95

If at least one, but not all tables, ti returned “match” (ti(dt.ai)=0) then driving tuples dt belongs to a

grey portion of D. In this situation, dt tuples can be processed in two ways: Save Intermediate Tuples

(SIT) or Save Driving Tuples (SDT). In option SIT, SHARP writes to temporary files the intermediate join

between dt and its matching tuples (from the hash tables that returned “match”). In option SDT SHARP

writes just dt to temporarily files and discards any matching tuples, which are then obtained again during

the second-stage processing of dt.

When option SIT is used some D portions (marked gray in Figure 38b) will contain wider,

intermediate join tuples, but the probing work will not be lost. When option SDT is used, all D portions

contain just driving tuples, but the probing work will be lost and will have to be repeated later by

reloading portions of build tables from disk. Depending on the relative sizes of driving tuples and their

matching records, and on the selectivity of the joins, either option can be better. Furthermore, the choice

between SIT and SDT made for driving tuples for which ti(dt.ai)=0 can be different of the choices

between SIT and SDT for tuples for which tj(dt.aj)=0, j≠i. For example, in Figure 38b, choice SIT can be

used for D portions marked 4, 6 and 8, and option SDT can be used for D portions 11 and 20. To simplify

the second-stage algorithm, the prototype implementation of SHARP always uses option SDT.

96

Figure 38 – Second stage processing

4.3.4.2. Second-stage Joins.

After the multi-dimensional split of D is complete, SHARP begins the second-stage of the join. First

SHARP orders the build hash tables based on the ascending number of portions and, if there is a tie, based

on their descending total size. This order is represented by O(i), such that O(i) represents the i-th build hash

table in the order. In the example of Figure 38, O(1)=t2 and O(2)=t1 because t2 has just three portions while

t1 has four portions. Assume also that |O(i)| represents the number of portions in hash table O(i) and that

O(i).load(k) loads portion k, with k<|O(i)| of hash table O(i) into memory, deleting from memory the current

Memory

Disk

t1 t2

a) End of build stage

t2

t1

D

b) Multi-dimensional split of D

0

1

2

0

1

2

3

1

2,10,... 3,…

4

5,… 7,…

6 8

13 15 17 9 11

18 22 24 26 20

Portions

Partitions

97

in-memory portion of O(i) and that function Dportion(i1, i2, …, in) returns the portion of D that

corresponds to the i1-th portion of O(1), to the i2-th portion of O(2), …, and to the in-th portion of O(n). In the

example of Figure 38, Dportion(1,2) corresponds to the portion of D marked with a circle.

Then, as shown in the pseudo-code of Figure 39, SHARP executes a series of loops, loading portions

of O(1) to O(n) into memory, getting tuples from the corresponding D portion, probing the in-memory

portions of O(1) to O(n) and outputting matches. This algorithm loads the on-disk portions of D one time

and loads the in-disk portions of O(i) a number of times equal to ∏j=1..i-1|O(j)|. The numbers in Figure 38b

represent the order in which portions of the example of Figure 38a are loaded.

In contrast, a right deep tree of binary Dynamic Hash Joins (DHJ) [68], reads each input relation just

once, but may have to save to and read from disk (during the second-stage processing) the intermediate

results multiple times. For example, if no Bi, i=1,2,3 fits completely in memory, the execution plan

corresponding to the right-deep tree of Figure 40 will need to do a second-pass for each of the joins,

saving to and reading from disk part of the intermediate results corresponding to D B1, D B1 B2, and

D B1 B2 B3. To minimize the size of those intermediate results, an accurate optimizer estimates the

join selectivities between D and Bi, and other things being equal, sets D’s join order to be from the most

to the least selective Bi. However, join selectivities are hard to estimate correctly and an optimizer may

choose an incorrect join order which negatively affects performance.

On the other hand, the performance of SHARP depends only very slightly on the join order defined

by the optimizer. If the builds fit in memory, the join order is determined by an adaptive tuple routing

policy at run-time. If the builds do not fit in memory, the cost of SHARP’s second-stage depends mainly

on the order O(i), but this order is determined only after all build tuples are observed; no estimates are

needed. However, the performance of SHARP’s second-stage suffers from the “curse of dimensionality”:

if several build relations are much larger than memory, then the repeated readings of the inner most build,

O(n), (which is read ∏i=1..n-1|O(i)| times) may dominate the total cost of the join. In Section 4.4 we explore

98

how the available memory affects the performance of SHARP. It is also shown that even with an amount

of available memory equal to just 10% the size of the largest build table, SHARP’s second-stage can still

outperform other methods.

for (i1=0; i1<|O(1)|, O(1).load(i1); i1++)
 for (i2=0; i2<|O(2)|, O(2).load(i2); i2++)
 …
 for (in=0; in<|O(n)|, O(n).load(in); in++)
 for all tuples dt in Dportion(i1, i2, …, in)
 dt probes in-memory portions of O(i), …, O(n);
 output matches between dt and O(i), …, O(n);
 end for;
 end for;
 …
 end for;
end for;

Figure 39 – Second-stage pseudo code

Figure 40 – Right-deep tree of DHJs

4.3.5. Summary of SHARP

SHARP does not use symmetry plans (like the MJoin) or symmetric operators (like the Eddy).and instead

of allowing all relations to be used as builds or probes, the optimizer chooses one single driving relation.

Since only build relations have hash tables, this design reduces the memory footprint of a SHARP to

D B1

DHJ B2

DHJ B3

DHJ

99

essentially half of what an Eddy and its SHJs would consume. The routing policy is then responsible for

determining the order with which driving tuples probe the build sources.

By having a single driving relation, routing policies in SHARP have fewer routes to choose from than

in Eddies (because routing decisions affect only tuples coming from driving relations). However, because

SHARP is a pull-based operator–in charge of obtaining new tuples from its sources–we were able to

design a series of late binding decisions that, in some cases, are able to promote any of the builds to be the

driving relation before the tuple routing stage starts.

In short, an Eddy is able to change execution from any route to any other route at any stage of

execution, while a SHARP first determines which source is the driving relation and then continuously

adapts the sequence in which the driving tuples probe the build sources. With this two-step adaptive

process, SHARP still has the potential to adaptively decide at run-time which one of all15 possible join

orders to use but with a much smaller memory footprint.

4.4. Experimental Evaluation

We now describe an experimental evaluation of the query processing techniques described for SHARP

using a prototype implementation in Predator [81]. All results were obtained using a dedicated machine

with 512 MB of main memory and a buffer pool of 2000 16-Kbyte pages (hash table builds are kept

outside the buffer pool). Results are averages of three cold runs.

We note that the first experimental results (Section 4.4.2) do not evaluate any adaptivity feature of

SHARP and exhibit only marginal improvements of a SHARP over competing plans. The purpose of that

section, though, is twofold. First, we want to show that, not only is the adaptivity overhead of SHARP

very low, but also, even in scenarios where the adaptivity yields no benefit, SHARP still provides a

15 Ignoring join orders using Cartesian products.

100

marginal performance advantage due to its multi-join nature. Second, the adaptivity benefits of SHARP

compound these initial multi-join improvements.

4.4.1. Datasets

The SHARP prototype was evaluated using two datasets, Star and TPCH, described below. Star, a

synthetic dataset we created, allowed us to more easily explore different selectivities, join selectivities and

table sizes. TPCH is used to evaluate SHARP’s adaptivity and robustness in a widely known benchmark:

• Star: We created a synthetic benchmark, Star, based on a star schema, with a central fact table F, and

four dimension tables, A, B, C, and D. F has 1,000,000 152-byte records and A, B, C, and D have

100,000 40-byte records. Our experiments use 2-way, 3-way, and 4-way join queries of the following

form:

 SELECT *
 FROM F, A, B, …, D
 WHERE F.fkdA = A.pk
 AND F.fkdB = B.pk
 …
 AND F.fkdD = D.pk
 AND σ1(A)
 AND σ2(B)
 …
 AND σ4(C);

Where σi, i=1,..,4 represent selection predicates with selectivities between 0% and 100%.

• TPC-H: TPC-H is the decision support benchmark from the Transaction Processing Performance

Council [85]. We used tables lineitem (L), orders (O), part (P), customer (C), and supplier (S), with

scale size 1. We included an extra column in L (a foreign-key to C) to allow star-schema queries

using one central fact table (L) and up to four dimension tables (O, P, C, and S). Our queries join

either all tables, or all except O (the largest dimension), or all except S (the smallest dimension), and

we use varying selection predicates on the dimension tables.

101

4.4.2. Evaluating Multi-Join Improvements

As described in Section 4.3.1, SHARP has two benefits over plans composed of a tree of binary

operators: it can avoid unnecessary intermediate tuple generation and unnecessary getNext calls. We note

that these benefits are not due to any adaptive feature of SHARP. Instead, they are a positive side effect of

the multi-join nature of SHARP.

In the results shown in Figure 42, table F from schema Star, was joined with two, three, and four

dimension tables. All the dimension tables fit in memory, and all join selectivities16 are 100%. We

compare three execution plans: SHARP, SHARP-IR, and RDH. SHARP-IR is a variation of SHARP that

generates intermediate join tuples after each successful probe. RDH is a plan composed of a right-deep

tree of dynamic hash joins (DHJ) [68], with F as the rightmost table17 as shown in Figure 41. Both

SHARP and SHARP-IR have their run-time statistics collection and adaptive routing policies turned off

to ensure that the probing sequence is the same in all plans, and to ensure that we are measuring just the

multi-join benefits. (The performance of routing policies in measured in Section 4.4.4.) All three plans

use the same hash table implementation code. The benefit of avoiding intermediate results varies between

5% and 15%.

16 We use the term join selectivity of a build table as the average number of returned records per probing record.
17 The right-deep tree plan creates hash tables on the same relations and executes the same number of build and probe

operations as SHARP.

102

Figure 41 – a) SHARP; b) RDH plan; c) LDH plan

0

10

20

30

3 4 5
Number of tables joined

RDH
SHARP-IR

SHARP

Secs.

Figure 42 – Avoiding intermediate results

c) LDH Plan

F A

DHJ

a) SHARP Plan

D C B A F

SHARP

B

DHJ C

DHJ D

DHJ

b) RDH Plan

F A

DHJ B

DHJ C

DHJ D

DHJ

103

0

10

20

30

3 4 5
Number of tables joined

RDH
SHARP-IR
SHARP

Secs.

Figure 43 – Avoiding getNext calls

In a second experiment, we set the selectivity of the last join to 0% (e.g., for the case of three joins,

100% of F tuples join with the first and second dimension, and 0% join with the third dimension). These

contrived plans maximize the number of spurious getNext calls made by the RDH plan and give an upper

bound on the benefit obtained by avoiding those calls. Figure 43 shows the results for SHARP, SHARP-

IR and RDH: SHARP is between 10% and 23% faster than RDH and SHARP-IR is around 5% faster than

RDH.

The results show that, even without taking advantage of adaptivity, a tuple routing operator can

slightly outperform plans composed of a tree of binary operators.

4.4.3. Redistributing Memory between Joins

For each query, our system gives a pre-specified memory budget for each hash table used to implement

hash joins. Traditionally, if building the hash table requires more memory space than the memory budget,

some partitions would have to be written to disk and a second-pass on those partitions would be required.

In addition, if the hash table requires less memory than the allocated budget, then the unused memory–

save some exceptions [28]–is not given to other operators. On the other hand, as described in Section

104

4.3.1, SHARP loads all its builds into memory before reading the driving relation and is therefore able to

redistribute memory between different hash tables.

To evaluate the impact of memory redistribution, table F was joined with selections σ1 and σ2 on

tables A and B. The selections are such that the size of σ2(B), |σ2(B)|, is four times the size of σ1(A),

|σ1(A)|, and (|σ1(A)|+|σ2(B)|)/2 is the memory budget for each one of the two hash tables. Thus, σ1(A)

underutilizes its budget while σ2(B) overutilizes it, but on average both fit in memory.

Four different plans were tested, for the four combinations of using SHARP and a RDH and of using

two join orders, joining F with A first and then with B, or joining F with B first and then with A. Then, as

shown in Figure 44, the size of the combined memory budget was varied from |σ1(A)|+|σ2(B)|

(corresponds to 100%) to 2*|σ2(B)| (160%).

0

10

20

30

40

100% 120% 140% 160%

Percentage of builds that fit in memory

RDH-BA
RDH-AB
SHARP-BA
SHARP-AB

Secs.

Figure 44 – Redistributing memory

SHARP is able to take advantage of memory redistribution and avoid a second-stage for all amounts

of memory tested. On the other hand, because the RDH executes a tree of independent operators, it does

not redistribute memory amongst the operators. Thus, the RDH plan only avoids a second-pass in both

operators when the budget per hash table is at least as large as the largest hash table. This happens only

105

for a combined memory budget of 2*|σ2(B)|, or 160% the size of the |σ1(A)|+|σ2(B)|. If more than

2*|σ2(B)| of memory is available, the performance of all four plans remains unaffected. If less than

|σ1(A)|+|σ2(B)| of memory is available, SHARP also needs a second-stage. Experiments showing the

performance of the SHARP second-stage appear in Section 4.4.5.

4.4.4. Comparing Routing Policies

To compare the routing policies described in Section 4.3.2, table F was joined with two, three, and four

dimension tables. In each query, the join selectivities were 100% for all joins except for one that was

25%. To highlight the impact of a good routing policy that quickly discovers sub-optimal plans, the

initial default join order defined by the optimizer was sub-optimal, executing each of the 100% selectivity

joins before the 25% selectivity join.

The experiments explored two variables, the profiling overhead, and the (hash table) probing cost. A

higher profiling overhead means that the routing policies spend more time exploring alternative routes,

computing new optimal routes, and updating state. The profiling overhead was varied by setting the

parameters of Table 6 (in Section 4.3.2) to the following values:

• High Profiling Overhead: r=10, n=1000, p =10000

• Low Profiling Overhead: r=50, n=200, p =10000

Parameter r, which specifies how frequently the tuple routing policies Cont and ContB explore

alternative routes, was set such that r=p/n to ensure fairness in the comparison (the tuple routing policy

Profile explores other routes for every n out of p tuples). The probing cost was varied by artificially

delaying the probe operation, such that, on average, high probing cost takes about four times longer than

low probing cost.

Figure 45 and Figure 46 show the results for the low profiling overhead cases for the three routing

policies implemented, plus a trivial policy, Static, with no profiling overhead, which simply routes tuples

106

according to the join order defined by the optimizer. The higher profiling overhead cases are not shown

because they are very similar to these. As expected, a higher probing cost (Figure 46) affects all policies

negatively, but affects the Static policy more than the others because the adaptive policies, detect and

avoid the sub-optimal plan while Static continues executing the sub-optimal plan where it performs extra

probing operations

The Profile policy was always the best of the three adaptive policies, except when both the profiling

overhead and probing costs were high (graph not shown). However, even in this case, it was between 25%

and 33% better than the Static policy. On average, we found that, Profile outperformed Static by 24%,

ContB outperformed Static by 22%, and Cont outperformed Static by 16%.

0

6

12

18

2 joins 3 joins 4 joins

Static
Cont
ContB
Profile

Secs.

Figure 45 – Low profiling overhead, low probing cost

107

0

10

20

30

40

2 joins 3 joins 4 joins

Static
Cont
ContB
Profile

Secs.

Figure 46 – Low profiling overhead, high probing cost

4.4.5. Evaluating the Second-Stage

To evaluate the performance of the second-stage processing of SHARP, we joined tables F, A, and B in

one query and tables F, A, B, C, and D in another query. (Further experiments in the next two sections

also evaluate the second-stage.) Note that SHARP only joins relations along existent join predicates.

Thus, since all join predicates join F with one different build (F A, F B, F C, and F D), SHARP will

never perform cross-products (e.g., it will not do A B) and therefore, it will never execute bushy plans

either (e.g., (F A) (B C)).

We do not compare SHARP against bushy plans because, although they are optimal for some queries

and datasets, they were never optimal for the queries we tested. SHARP was compared with plans RDH

and LDH (see Figure 41 in page 102) which, like SHARP, are linear-join plans.

The amount of memory was varied such that between 10% and 100% of tables A and B in the first

query, and A, B, C, and D in the second would fit in memory. We note that both SHARP and RDH are

non-blocking, and therefore, their execution pipeline uses the in-memory parts of all the build hash tables

simultaneously (see Figure 41b showing RDH’s execution pipeline in gray). In contrast, the execution

pipeline of the LDH plan, at any moment only manipulates two hash tables (see Figure 41c). Thus, to

108

ensure the amount of total memory per plan was the same, hash tables in the LDH plan were allowed

twice the memory of hash tables in SHARP and the RDH plans. The results are shown in Figure 47 and

Figure 48.

Except when the amount of memory is very limited, SHARP outperforms the other two plans. If

several build relations are much larger than memory, then the innermost build will be read many times

and the performance of SHARP degrades quickly. On the other hand, as shown in Section 4.4.7, if just

one or two builds are much larger than memory, and the remaining builds either fit in memory or are not

much larger than memory, then the performance of SHARP degrades much more slowly.

To address the exponential degradation problem, the SHARP could convert itself to a RDH plan: after

all the builds are read and partitioned, SHARP can easily determine if its performance will degrade

quickly or not. At this point, the conversion to a RDH plan is essentially free; all dimension tables are

already partitioned with the right hash functions, and no work is lost. We leave this late binding decision

as future work.

109

0

50

100

150

0% 20% 40% 60% 80% 100%
Percentage of builds that fit in memory

LDH
RDH
SHARP

Secs.

Figure 47 – Evaluating second-stage, 2 joins

0

250

500

0% 20% 40% 60% 80% 100%
Percentage of builds that fit in memory

LDH
RDH
SHARP

Secs.

Figure 48 – Evaluating second-stage, 4 joins

110

4.4.6. Evaluating Late Binding Decisions

To evaluate the effectiveness of the late binding decisions proposed in Section 4.3.3, table F was joined

with dimension tables A and B in one query and with dimension tables A, B, C, and D in another. Both

queries were run with unlimited memory and with memory limited to 25% the size of the dimension

tables. A selection predicate σ was applied to table A and the selectivity of σ was varied from 0.01% to

100%. The execution plan for four joins is shown in Figure 49. Three other plans were also considered,

RDH, LDH, and INL. Plans RDH and LDH are similar to the plans b) and c) of Figure 41, but with

predicate σ applied on table A. Plan INL is a tree of binary indexed-nested loop joins; i.e., with the same

shape as plan LDH, but with the DHJ operators replaced by indexed-nested loop operators.

The three late binding decisions under consideration are Using an Indexed Nested-Loop (Uinl) to

obtain the driving tuples, Using Indexed-Nested Loops and Bloom-Filters (Uibf), and Using Driving

Relation Pre-Filtering and Bloom Filters (Ufbf). Ufbf was implemented as follows: instead of consulting

the catalog to estimate the number of driving tuples matching an in-memory build table–as described in

Section 4.3.3–our prototype implementation executes Ufbf every time a build relation had less than 2000

tuples. To simulate the cost of a SHARP using late binding decisions Uinl and Uibf, the plan of Figure

49b was forced and for each point in the graphs, the best time for the plans of Figure 49a and Figure 49b

was chosen as being SHARP.

Figure 50 measures the impact of the late binding decisions for the 4-join query with memory

restricted to 25% the size of the builds, by comparing SHARP with SHARP-NLB, a version of SHARP

where no late binding decisions are allowed. Figure 51 then compares SHARP with plans RDH, LDH and

INL for the same query. Figure 52 shows the results for the 2-join query with memory equal to 100% the

size of the builds (note that for this query, SHARP and RDH do not need a second-stage but LDH does).

These figures show that SHARP is the best plan for a wide range of values of σ, showing the best results

in all points of the graphs, except possibly in the range σ∈[0%, 0.5%] where the INL plan was sometimes

better, or in the range σ∈[2%, 20%] where RDH was sometimes better.

111

Figure 49 – Plans used to evaluate late binding decisions

0

20

40

60

80

0.0% 0.1% 1.0% 10.0% 100.0%

Selectivity of σ(A)

SHARP-NLB
SHARP

Secs.

Figure 50 – Late binding evaluation: 4 joins; memory=25% size of builds

a) SHARP

D C B σ(A) F

SHARP

b) Simulating SHARP with Uinl

F

INL

D C B

SHARP

σ(A)

σ(A)

112

0

40

80

120

160

0.0% 0.1% 1.0% 10.0% 100.0%
Selectivity of σ(A)

INL
LDH
RDH
SHARP

Secs.

Figure 51 – Late binding evaluation: 4 joins; memory=25% size of builds

0

10

20

30

40

50

0.0% 0.1% 1.0% 10.0% 100.0%

Selectivity of σ(A)

INL
LDH
RDH
SHARP

Secs.

Figure 52 – Late binding decisions: 2 joins; memory=100% size of builds

113

In the range σ∈[0.01%, 0.1%], the size of σ(A) is so small that it is worthwhile to use late-binding

decision Uibf. That is, after reading A tuples into memory, and after filtering them with σ, it is best to use

them to lookup the driving tuples with an index then it is to read the driving tuples using a table scan on

F. In addition, because the number of driving tuples matching those A tuples is also very small, it is

worthwhile to read those few driving tuples into memory and create bloom filters on the builds yet to load

instead of proceeding with the unfiltered load of build tables.

In the range of σ from 0.1% to 2%, the number of σ(A) tuples was not low enough to use them to

obtain driving tuples using an index, but it was still low enough to make late-binding decision Ufbf

worthwhile. In that range, it is best to read A tuples into memory, filter them with σ, read and filter F

tuples with the σ(A) tuples and create the bloom filters on the yet-to-load build tables than it is to proceed

with the unfiltered load of build tables.

Overall, Figure 50, Figure 51, and Figure 52 show that it is possible to construct robust query plans,

that is, plans whose comparative performance is insensitive to optimizer estimates. In the example,

regardless of the estimate the optimizer might have had about selection σ, executing SHARP would be a

good decision: its performance is either optimal or close to optimal in all points in the graphs.

4.4.7. Evaluating Second-Stage Insensitivity

In order to further evaluate the performance of second-stage processing and robustness of SHARP in the

presence of potentially incorrect join orders, SHARP was tested for queries 1, 2, and 3, and the selection

predicates shown in Figure 53. Then the optimizer was altered to generate plans with a specific join order.

Figure 54 shows the results of executing Query 1 using two join orders, LPCS (the best join order for

RDH), and LCPS (the second best join order for RDH), and with 45MB and 15MB of available memory,

for both SHARP and the RDH plan. (The LDH variant was always worse than RDH in this query.)

For the same optimizer-specified join order, SHARP completes the query between 2.5 and 7.5 times

faster than an equivalent RDH. The bulk of SHARP’s performance benefit comes from memory

114

redistribution and from the new second-stage processing technique. When there are 45MB of memory

available, RDH allocates 15MB for each one of the three DHJ operators. This turns out to be a bad

strategy: given the selectivities shown in Figure 53, for Query 1, the DHJs that process the join with S, C,

and P would need 2.2MB, 9.2MB, and 33.2MB respectively to avoid writing records to disk. Thus,

assigning 15MB to each DHJ operator implies that for one operator, the RDH plan will have to do a

second-stage. On the other hand, SHARP–which redistributes memory across joins–is able to complete

the joins in just one pass over the relations when 45MB are available. In this scenario, SHARP is between

2.5 and 4.6 times faster than the RDH plan.

When memory is limited to 15MB both the RDH and SHARP plans require a second-stage for

relations C and P (and also for whichever intermediate relations are joining with C and P). Although both

plans take significantly more time than in the previous scenario, the restricted memory affects RDH more

than it affects SHARP. In fact, using the new second-stage processing technique, SHARP is now between

3.6 and 7.5 times faster than RDH.

115

Figure 53 – Queries and predicate selectivities used in the TPC-H schema

Join orders:

0

100

200

300

400

500

600

RDH SHARP

Available Mem = 45MB

LCPS

LPCS

Secs.

Join orders:

0

200

400

600

800

1000

1200

1400

RDH SHARP

Available Mem = 15MB

LCPS

LPCS

Secs.

Figure 54 – Execution of Query 1

Query 1

 SELECT *
 FROM L, S, C, P
 WHERE l_suppkey=s_suppkey
 AND l_custkey=c_custkey
 AND l_partkey=p_partkey
 AND σ1(p_partkey) ← 75%
 AND σ2(c_custkey) ← 25%
 AND σ3(s_suppkey); ← 100%

Query 2

 SELECT *
 FROM L, C, P, O
 WHERE l_partkey=p_partkey
 AND l_custkey=c_custkey
 AND l_orderkey=o_orderkey
 AND σ4(o_orderkey) ← 25%
 AND σ5(p_partkey) ← 25%
 AND σ6(c_custkey); ← 75%

Query 3

 SELECT *
 FROM L, S, C, P, O
 WHERE l_suppkey=s_suppkey
 AND l_custkey=c_custkey
 AND l_partkey=p_partkey
 AND l_orderkey=o_orderkey
 AND σ7(o_orderkey) ← 25%
 AND σ8(p_partkey) ← 50%
 AND σ9(c_custkey) ← 25%
 AND σ10(s_suppkey); ← 100%

116

In addition, not only is SHARP superior to the RDH plan, its performance is also essentially

independent of the join order specified by the optimizer. In fact, the order specified by the optimizer

affects the SHARP plan in just two ways:

• For the very first few driving tuples, before the first tuple route is computed, SHARP uses the join

order specified by the optimizer as the default route. However, as soon as the routing policy produces

its first route, the initial join order is forgotten.

• When redistributing unused memory to hash tables, SHARP favors giving memory to hash tables

belonging to joins that appear earlier in the optimizer specified join order. This is the reason join

order LPCS yields better results than LCPS in the right side of Figure 54.

The RDH plan requires 232MB to avoid second-stage processing in Query 2 and SHARP, taking

advantage of memory redistribution, requires only 116MB to avoid second-stage processing for the same

query. Query 2 was run with 150MB, 75MB and 30MB of total available memory. The results for

different join orders for Query 2 with 30MB of memory appear in Figure 55. For Query 3 the RDH plan

requires 309MB to avoid second-stage processing and SHARP requires 110MB. Query 3 was run with

both 100MB and 40MB of total available memory. The results for different join orders for Query 3 with

100MB of memory appear in Figure 56. In both cases, second-stage dominates the total execution time of

the query.

As shown in Figures 55 and 56, the cost executing the RDH plan depends on the join order specified

by the optimizer. Thus, optimizer mistakes may greatly influence the total cost of the RDH plan.

However, the second-stage of SHARP has two desirable properties: i) the cost of writing partitions to disk

and the amount that is written is independent of the join order specified by the optimizer; and ii) the

number of times each partition is read and the order when each partition is read is adaptively determined

based on the observed sizes of builds, again, decisions independent of the optimizer.

117

For the queries tested, the plan with the worst join order using RDH can take twice as long as the plan

with the best join order using RDH for the same query. In addition, across all experiments, RDH took, on

average, twice as long as SHARP to complete execution.

Note that the results from this section further validate the results of Section 4.4.5: the best join orders

for the RDH plan take between 1 to 3 times longer than the best results for SHARP. However, in the

presence of optimizer mistakes leading to sub-optimal join orders, using RDH can take up to 7.5 times

longer than using the same join orders for SHARP.

Finally, we created a variation of the TPC-H schema, which we call TPC-H-Thin, to explore how the

width of the tuples affects SHARP’s relative performance. Each table in TPC-H-Thin is a projection of

the corresponding table in TPC-H: table L contains only five integer columns, and tables O, P, C, and S

contain only two integer columns. Queries 1, 2, and 3 were run again, but this time with much less

available memory, such that not all build tables fit in memory. The results are similar to the ones shown

in Figures 54, 55, and 56; SHARP is essentially insensitive to the join order specified by the optimizer

while the RDH can be up to 3 times longer with one join order than another for the same query.

Furthermore, for the queries we tested in TPC-H-Thin, RDH took, on average, 2.2 times longer than

SHARP to complete execution.

118

Join orders:

0

400

800

1200

RDH SHARP

Available Mem = 30MB

CPO
PCO
POC

Secs.

Figure 55 – Execution of Query 2

Join orders:

0

250

500

750

RDH SHARP

Available Mem = 100MB

COPS
CPOS
OCPS
SCOP

Secs.

Figure 56 – Execution of Query 3

119

4.5. Related Work

In addition to the Eddies, MJoin and SHJ operators described in Section 4.2, the work related to SHARP

can be grouped in five broad categories: adaptive operators, tuple routing strategies, techniques for

processing joins larger than memory, techniques to change the query plan at run-time, and techniques that

reduce the need for corrective behavior.

Other adaptive operators: The XJoin [88] is a binary adaptive operator that takes advantage of the

non-blocking behavior of SHJ to process push-based remote relations. Although it can process relations

bigger than memory, the XJoin schedules the join between out-of-memory relations to mask delays and

bursty transfer rates of those sources. In contrast, SHARP uses adaptivity to execute robust plans over

pull-based local relations. The operators most related to SHARP’s late-binding decisions are the choose-

plan operator [26, 40] and the switchable plan operator [11], but neither provides the continuous fine-

grained adaptivity of SHARP.

Tuple routing strategies: In SHARP, we implemented three routing policies adapted from three

proposals by Avnur [5], Babu [8], and Deshpande [29]. CBR is a tuple routing policy that takes advantage

of correlation and skew to make better routing decisions [15]. The implementation of CBR in SHARP is

left as future work.

Techniques for processing joins larger than memory: The Dynamic Hash Join [68] is the standard

blocking binary hash join algorithm that adaptively freezes partitions to disk as needed and that we

extended to join multiple relations simultaneously. Previous proposals extend the SHJ to process relations

bigger than memory [54, 88]. However, these techniques were designed for binary joins over remote

sources while SHARP processes multiple joins over local relations.

Changing query plan at run-time: In addition to the late-binding operators discussed before, there

are proposals that use query re-optimization to correct possible optimizer mistakes [11, 54, 56, 58, 63].

These strategies are orthogonal to SHARP, i.e., a SHARP can be used as an adaptive operator in plans

generated by those systems. Other proposals keep the same query plan, but reschedule operators to cope

120

with unpredictable delivery rates from remote data sources [17, 54, 56, 87, 88, 90] or to improve

estimates for online queries [44¸45, 57]. In contrast, SHARP reschedules operators to better distribute

memory between in-memory hash tables and possibly avoid a second pass. (A method to redistribute

memory in traditional query plans is described in [28].) Finally, some data stream systems periodically

determine and change to new query plans [8, 32], and these strategies can be incorporated in SHARP as

routing policies (e.g., we implemented [8] in SHARP).

Techniques that reduce the need for run-time corrective adaptivity: Other approaches tackle the

problem of insufficient information available to the optimizer by somehow modeling the uncertainty

about estimates used at optimization [6, 11, 40, 52, 89]. Optimizers following this approach are more

likely to choose robust plans and therefore less likely to need corrective adaptation at run-time. Due to the

complexity of the search space, we believe that a combination of some of these techniques, together with

adaptive operators like SHARP will prove to be the best approach.

More related work can be found in surveys and other publications with extended discussion of related

work [7, 10, 46, 55, 54, 56, 63].

4.6. Conclusions

The observation that tuple routing is not expensive, but symmetric hash joins are [29] led us to design

SHARP, a multi-join tuple routing operator without symmetric hash joins (SHJs). To avoid SHJs, we

explored a new trade-off: instead of executing arbitrarily query plans, and being able to change from any

join order to any other join order at any point during execution, SHARP adopts a two-step adaptive

approach. First, SHARP determines which source is the driving relation using late-binding decisions, and

second, it continuously potentially changes the probing sequence of the build sources using tuple routing.

This two-step adaptive process yields two benefits: it requires less memory than previous adaptive

operators and simplifies the design of second-stage processing.

121

In addition, the performance of the second-stage processing strategy is largely unaffected by

estimates made during optimization. The second-stage was shown to be more effective than both left-deep

and right-deep trees for a variety of scenarios. Most of the benefit of the proposed second-stage comes

from avoiding writing intermediate results multiple times to disk. However, this new second-stage

processing technique suffers from the “curse of dimensionality”, and thus beyond certain parameters

(very little memory, very large build tables, or a high number of joins), we expect its performance to

degrade exponentially. Nevertheless, the problem is easily solved: after all build tables are read, if the

sizes of memory and tables are such that the SHARP’s (second-stage) performance is worse than a right-

deep tree of hash joins, then the SHARP can simply execute the same plan a right-deep tree of hash joins

would.

In addition, our initial results suggest that, unless the operator processing cost is very high, the A-

Greedy [8] tuple routing policy is likely to be the best.

122

CHAPTER 5

PROGRESSIVE PARAMETRIC QUERY OPTIMIZATION
Many commercial applications rely on pre-compiled parameterized procedures to interact with a database.

Unfortunately, executing a procedure with a set of parameters different from those used at compilation

may be arbitrarily sub-optimal. Parametric query optimization (PQO) attempts to solve this problem by

exhaustively determining the optimal plans in each point of the parameter space at compile time.

However, PQO is likely not cost-effective if the query is executed infrequently or if it is executed with

values only within a subset of the parameter space. In this chapter we propose instead to progressively

explore the parameter space and build a parametric plan during several executions of the same query. We

introduce algorithms that, as parametric plans are populated, are able to frequently bypass the optimizer

but still execute optimal or near-optimal plans.

5.1. Introduction

There are two trivial alternatives to deal with the optimization and execution of parameterized queries.

One approach, termed Optimize-Always, is to call the optimizer and generate a new execution plan every

time the query is invoked. Another trivial approach, termed Optimize-Once, is to optimize the query just

once with some set of parameter values and reuse the resulting physical plan for any other set of

parameters. Both approaches have disadvantages. Optimize-Always requires an optimization call for each

execution. The optimization call may be a significant part of the total execution time especially for simple

queries. In addition, Optimize-Always may limit the number of concurrent queries in the system, as the

optimization process itself may consume too much memory and may limit throughput. On the other hand,

Optimize-Once returns a single plan that is used for all points in the parameter space. The problem is that

123

the chosen plan may be arbitrarily sub-optimal in all points of the parameter space other then the point for

which the query was optimized for.

5.1.1. Parametric Query Optimization

An alternative to Optimize-Always and Optimize-Once is Parametric Query Optimization (PQO). At

optimization time, PQO determines a set of plans such that, for each point in the parameter space, there is

at least one plan in the set that it is optimal. The regions of optimality of each plan are also computed.

PQO proposals often assume that the cost formulas of physical plans are linear or piece-wise linear with

respect to the cost parameters or that the regions of optimality are connected and convex. However, in

reality, the cost functions of physical plans are not necessarily linear or piece-wise linear and the regions

of optimality are not necessarily connected nor convex. In addition, PQO has a much higher cost than

optimizing a query a single time (e.g., PQO may require multiple invocations of the optimizer with

different parameters [48, 49]). Thus, from the database perspective, when a parametric query execution

request arrives, it is not clear if PQO should be used or not: it may not be cost-effective to solve the PQO

problem if the procedure is not executed frequently or if it is executed with values only within a sub-space

of the entire parameter space.

5.1.2. Contributions

The main contributions of this chapter are:

• In Section 5.2 we propose Progressive Parametric Query Optimization (PPQO), a new technique to

improve the performance of processing parameterized queries. We also propose the Parametric Plan

Interface as a way to incorporate PPQO in a DBMS with minimal changes to query processing.

• In Section 5.3 we propose Bounded, an implementation of PPQO with proven guarantees of

optimality.

124

• In Section 5.4 we propose Ellipse, another implementation of PPQO with higher hit rates and better

scalability than Bounded.

• Finally, in Section 5.5 we present an extensive performance evaluation of PPQO using a prototype

implementation and Microsoft’s SQL Server 2005 DBMS.

5.2. Progressive Parametric Query Optimization

We propose a new technique called Progressive Parametric Query Optimization (PPQO) that addresses

the shortcomings of PQO listed in Section 5.1.1. In essence, we want to progressively solve or

approximate the solution to the PQO problem (formalized in Section 5.2.1) as successive query execution

calls, with potentially different input parameters, are submitted. Given a query and its parameter values,

an optimization call returns the optimal physical plan and the estimated cost of executing it. PPQO

intercepts the inputs and outputs to and from the optimizer and registers which plans are estimated to be

optimal for which points in the parameter space in a structure called Parametric Plan (PP), as described

in Section 5.2.2.

Eventually, as parametric plans are populated, PPQO may be able to bypass the optimization process.

Instead, when a query execution request arrives, PPQO uses its parametric plan to infer which plan to use

for a particular set of parameter values. If it is able to find a plan, then optimization is avoided. Otherwise,

an optimization call is made and its estimated optimal plan and cost is added to the query’s parametric

plan for future use. Due to the size of the parameter space, parametric plans cannot be implemented

simply as an exact lookup against a cache of plans as there would be too many cache misses. Also, due to

the non-linear and discontinuous nature of cost functions, parametric plans should not be implemented as

nearest neighbor lookup structures as there will be no guarantee that the optimal plan of the nearest

neighbor is optimal or close to optimal for the parameter point being considered.

125

5.2.1. The PQO Problem

A formal description of the PQO problem (adapted from other work [35, 48]) is presented below:

• A (parametric) query Q is a text representation of a relational query with placeholders for m values

vpt =(v1, …, vm). Vector vpt is called a ValuePoint.

• Let plan p be some execution plan that evaluates query Q for vpt . The cost function of p , p (cpt), is a

function of n cost parameters, cpt =(s1, …, sn). Vector cpt is called a CostPoint and each si is a cost

parameter with an ordered domain.

• For every legal value of the parameters, there is some plan that is optimal. Given a parametric query

Q, the maximum parametric set of plans (MPSP) is the set of plans, each of which is optimal for

some point in the n-dimensional cost-based parameter space. MPSP = {p | p is optimal for some point

in the cost-based parameter space}.

• The region of optimality for plan p is denoted r(p), r(p) = {(t1, …, tn) | p is optimal at (c1=t1, …,

cn=tn)}.

• A parametric optimal set of plans (POSP) is a minimal subset of MPSP that includes at least one

optimal plan for each point in the parameter space.

• The parametric query optimization (PQO) problem is to find a POSP and the region of optimality for

each plan in POSP.

5.2.2. The Parametric Plan Interface

The Parametric Plan (PP) interface has two operations, addPlan and getPlan described below. PP is used

during query processing as shown in Figure 57.

• addPlan(Q, cpt , p , cost) – registers that plan p , with estimated cost cost, is optimal for query Q at

CostPoint cpt .

• getPlan(Q, cpt) – returns the plan that should be used for query Q and CostPoint cpt or returns null.

126

processQuery (inputs: Query Q, ValuePoint vpt
 inputs/outputs: PP pp) {
 CostPoint cpt ←φ(Q, vpt); // Convert ValuePoint to CostPoint
 Plan p ←pp.getPlan(Q, cpt); // what plan to use?
 if (p == NULL) {
 Cost cost; // cost is output parameter in call below
 p ←optimize(Q, vpt , cost); // calls optimizer
 pp .addPlan(Q, cpt , p , cost); // stores info in PP
 };
 execute(p);
};

Figure 57 – Using Parametric Plans

Function φ consults the database catalog and query Q, and transforms ValuePoint vpt into CostPoint

cpt . Function φ is optimizer specific. Section 5.2.4 justifies why φ is needed.

Besides PPQO, strategies Optimize-Always and Optimize-Once can also be coded with simple

implementations of the PP interface. For Optimize-Always, addPlan is an empty method and getPlan

simply returns null, forcing an optimization for every query, as shown in Figure 58. For Optimize-Once,

as shown in Figure 59, addPlan saves the plan it is given as input the first time it is called and getPlan

returns that plan in all calls.

01: class Optimize-Always implements PP // Implements PP interface
02: begin-class
03: addPlan(inputs: Query Q, CostPoint cpt , Plan p , Cost cost) {};
04: getPlan(inputs: Query Q, CostPoint cpt ; outputs: Plan p) {
05: return null;
06: };
07: end-class;

Figure 58 – Implementation of Optimize-Always

127

01: class Optimize-Once implements PP // Implements PP interface
02: begin-class
03: Plan p;
04: Optimize-Once() {p==null;} // constructor
05: addPlan(inputs: Query Q, CostPoint cpt , Plan p , Cost cost) {
06: if (!this.p) {this.p=p;} // saves first plan it gets
07: };
08: getPlan(inputs: Query Q, Cost-Point cpt ; outputs: Plan p) {
09: return this.p; // returns first plan
10: }
11: end-class;

Figure 59 – Implementation of Optimize-Once

5.2.3. Requirements and Goals

With PPQO we want to avoid as many optimization calls as possible and we are willing to execute sub-

optimal plans if they have costs close to the cost of the optimal plan. Thus, PP implementations must

obey the Inference Requirement below.

INFERENCE REQUERIMENT: After a number of addPlan calls, there must be cases where

PP.getPlan(Q, cpt) returns a (near-)optimal plan p for query Q and CostPoint cpt , even if PP.addPlan(Q,

cpt , p , cost) was never called.

Given a sequence of execution requests of the same query with potentially different input parameters,

PPQO has two conflicting goals:

• GOAL 1: Minimize the number of optimization calls; and

• GOAL 2: Execute plans with costs as close to the cost of the optimal plan as possible.

Note that a cache implementation of the PP interface–storing (Q, cpt) pairs as the lookup key and (p , cost)

as the inserted value–cannot fulfill the inference requirement because it would returns hits only for

previously inserted (Q, cpt) pairs. Instead, we propose two PPQO implementations, each giving priority

128

to one of the above goals: Bounded–described in Section 5.3–gives priority to Goal 2; Ellipse–described

in Section 5.4–gives priority to Goal 1.

5.2.4. The Parameter Transformation Function φ

This section justifies why φ is needed and how is it implemented. A value parameter refers to an input

parameter of a parametric SQL query to be executed. A cost parameter is an input parameter in formulas

used by the optimizer to estimate the cost of a query plan. Cost parameters are estimated during query

optimization from value parameters and from information in the database catalog. (Physical

characteristics that affect the cost of query plans but do not depend on the query parameters–e.g., the

average size of tuples in a table or the cost of a random I/O–are considered physical constants, not cost

parameters.)

An important type of cost parameter used during optimization is the estimated number of tuples in

(intermediate) relations processed by the query plan: most query plans have cost formulas that are

monotonic with the number of tuples processed by the query. On the other hand, there is no obvious

relationship between the value parameters and the cost of the query plans. Thus, it becomes much easier

to characterize the regions of optimality using a cost-based parameter space than using a value-based

parameter space. In Example 5.1, below, and in what follows, we use a cost-based parameter space whose

dimensions are (predicate or join) selectivities. (The estimated number of tuples of each relation

processed by a query is typically derived from selectivities of sub-expressions computed during query

optimization.)

Example 5.1: Relation FRESHMEN(NAME, AGE) describes 1st-year graduate students. The age distribution

of students is showed in Figure 60. Consider different queries of the form SELECT * FROM FRESHMEN

WHERE AGE=X OR AGE=Y. Assume that the optimal plan for queries that retrieve less than 5% of

FRESHMEN tuples is PIDX, a plan using an index on column AGE. For all other queries, the optimal plan is

129

PFS, a full-table scan on FRESHMEN. The parameters of this query can be represented as the absolute

values used for parameters X and Y or as the selectivities of predicate AGE=X and predicate

AGE=Y. Accordingly, the costs of physical PIDX and PFS can be represented in value-based parameter

spaces or in selectivity-based parameter spaces as seen in Figure 61. ■

In our implementation, function φ takes query Q and its SQL parameters–the ValuePoint vpt –and

returns cpt as a vector of selectivities. Computing the selectivities in cpt corresponds to selectivity

estimation, a sub-task of query optimization. Other components of query optimization–e.g., plan

enumeration, rule transformation, plan costing, and plan pruning–are not executed by function φ. (Note

that the arity of the value-based parameter space and of the selectivity-based parameter space are not

necessarily the same.) For range predicates and equality predicates, computing selectivity values from

actual values–the task of φ–can be done efficiently by lookups on cumulative histograms.

2% 3%

35%

16%

4%
1%

4%

10%

20%

4%
1%

0%

5%

10%

15%

20%

25%

30%

35%

40%

20 21 22 23 24 25 26 27 28 29 30

Age

% of students

Figure 60 – Age distribution in table FRESHMEN

130

20
22

24
26

28
30

20

23

26

29

Value-based parameter space

1%
2%

4%
4%

16%
35%

1%

3%

4%

20%

Selectivity-based parameter space

Figure 61 – Value-based and selectivity-based parameter space

PFS is optimal
PIDX is optimal

Selectivity
of age=X

Selectivity
of age=Y

Values
of X

Values
of Y

131

5.3. The Bounded PPQO Implementation

The first of the two proposed PPQO implementations, termed Bounded, is described in this section. This

implementation provides guarantees on the quality of the plans returned by getPlan(Q, cpt), thus focusing

on Goal 2 of PPQO (see Section 5.2.3). Either the returned plan p is null–meaning that an optimization

call cannot be avoided–or plan p has a cost guaranteed to be within a bound (specified by the user) of the

cost of the optimal plan.

5.3.1. Preliminaries and Definitions

• Relationship equal (≡≡≡≡): Given cpt 1=(c1,1, …, c1,n) and cpt 2=(c2,1, …, c2,n), cpt 1 ≡ cpt 2 iff c1,i=c2,i, ∀i.

• Relationships below () and above (): Given cpt 1=(c1,1, …, c1,n) and cpt 2=(c2,1, …, c2,n), cpt 1 cpt 2

(cpt 1 cpt 2) iff c1,i≤c2,i (c1,i≥c2,i), ∀i and ∃i, c1,i≠c2,i.

• Transitive property of and . From the definitions it follows that if cpt 1 cpt 2 (cpt 1 cpt 2) and

cpt 2 cpt 3 (cpt 2 cpt 3) then cpt 1 cpt 3 (cpt 1 cpt 3).

• Monotonic Assumption (MA): Given plan p and CostPoints cpt 1 and cpt 2, if cpt 1 cpt 2 then

p (cpt 1)≤p (cpt 2).
18

• Opt (cpt): It is the cost of an optimal plan at cpt .

18 All cost parameters we use are selectivities. Since higher selectivities imply more tuples to process, the monotonic
assumption follows the intuition that plans that process more tuples likely cost more than plans that process less
tuples. Although not true for all queries–e.g., queries using SQL clause NOT EXISTS may have non-monotonic
costs–plans with non-monotonic costs are less common than plans with costs monotonic with the number of
processed tuples.

132

Theorem 5.1: If ∃ti=(cpt i, plan i, costi), ∃tj=(cpt j, plan j, costj), such that plan plan i (plan j) is an optimal

plan at cpt i (cpt j) with cost costi (costj), cpt i cpt cpt j and costj∈[costi, costi*M+A], then

plan j(cpt)∈[Opt (cpt), Opt (cpt)*M+A].19

Proof: See Section 5.8

Theorem 5.1 states that the difference between the cost of plan j at cpt j and the cost of plan i at cpt i can

be used to bound the cost of plan j at cpt , as long as costs are monotonic and cpt i cpt cpt j.

5.3.2. Implementation of addPlan

Function addPlan(Q, cpt , p , cost)–shown in –associates with each parametric query Q a list, TQ, of triples

(cpt , p , cost) ordered by cost, where p is an optimal plan at CostPoint cpt with an estimated execution cost

of cost.

addPlan (inputs: Query Q, CostPoint cpt , Plan p , Cost cost) {
 List TQ←getList(Q); // Get the list of triples for this query
 if (TQ ==null) {
 TQ = new List(); // If there is no list, create one
 }
 TQ.insert(cpt , p , cost); // Inserts triple in cost order
 setList(Q, TQ) // adds or replaces list TQ into catalog
}

Figure 62 – Bounded’s addPlan

5.3.3. Quality Guarantees of getPlan

Bounded’s getPlan(Q, cpt) is guaranteed to either return null or to return a plan with an estimated cost as

close to the estimated optimal cost as desired. Specifically, for any constants M≥1 and A≥0, Bounded’s

getPlan guarantees that, after calling p =getPlan(Q, cpt) one of the following holds:

19 M is the multiplicative factor and A is the additive factor specified by the user.

133

• p is null or

• p (cpt)∈[Opt(cpt) , Opt(cpt) *M+A].

Definition of bounding pair and bounded plan: Given two triples t1=(cpt 1, p 1, cost1) and t2=(cpt 2, p 2,

cost2), where cpt 1 and cpt 2 are CostPoints, cost1 (cost2) is the positive cost of optimal plan p 1 (p 2) at cpt 1

(cpt 2), and any constants M≥1 and A≥0. If cpt 1 cpt cpt 2 and cost2∈[cost1, cost1*M+A] then we say that:

• (t1, t2) bound cpt .

• Plan p 2 is bounded at cpt .

Note that, by Theorem 5.1, if p 2 is bounded at cpt then p 2(cpt)∈[Opt (cpt), Opt (cpt)*M+A]. Given

M≥1, A≥0, query Q and CostPoint cpt , Bounded’s getPlan (see Section 5.3.4) searches for a (t1, t2) pair

that bounds cpt and returns p 2, a bounded plan at cpt , fulfilling point ii) above. If no (t1, t2) bounding pair

for cpt exists, getPlan returns null, fulfilling point i) above.

Example 5.2: For some query Q, assume that Bounded.addPlan was already called for the triples showed

in Figure 63 (i.e., TQ=(t1, t2, t3, t4, t5, t6, t7).

134

Figure 63 – Triples stored in Bounded

Given, cpt –showed as a black circle–in the cost-based parameter space, M=1.5, and A=0, what plan

will Bounded.getPlan(Q, cpt) return? There are six pairs (cpt i, cpt j) such that cpt i cpt cpt j: (cpt 1, cpt 5),

(cpt 1, cpt 6), (cpt 1, cpt 7), (cpt 3, cpt 5), (cpt 3, cpt 6), and (cpt 3, cpt 7). From those pairs, only two triples bound

cpt : pair (t3, t5), because c5∈[c3, c3*1.5+0]⇔8∈[6, 9], and pair (t3, t6), because c6∈[c3, c3*1.5+0]⇔9∈[6,

9]. Thus, both plan p 5 and plan p 6 are bounded at cpt and either of them can be returned by getPlan. ■

5.3.4. Implementation of getPlan

Consider TQ, the list containing k triples (cpt i, p i, costi) maintained by method addPlan. A naïve

implementation of getPlan enumerates all pairs of tuples (ti, tj), ti∈TQ, tj∈TQ, ti≠tj and tests if any pair

bounds cpt . If some pair (ti, tj) bounds cpt , then plan p j can be returned as the answer to getPlan.

To avoid the enumeration of all of pairs of triples that have to be checked, getPlan divides TQ into two

lists. Then, given the properties of the two lists (described below), it is possible to trivially select a single

triple, t1, from one list and a single triple, t2, from the other list such that only pair (t1, t2) needs to be

checked.

t1=(cpt1, p1, c1=3)

cpt

t2=(cpt2, p2, c2=5)

t4=(cpt4, p4, c4=7) t5=(cpt5, p5, c5=8)

t6=(cpt6, p6, c6=9)

t3=(cpt3, p3, c3=6)

t7=(cpt7, p7, c7=13)

135

Definition of (below) operator and (above) operator: Consider a list, TQ, containing k triples (cpt i,

p i, costi) ordered by costi, with i=0...k-1, where cpt i is a CostPoint and costi represents the cost of

executing the optimal plan p i at cpt i. Given cpt , another CostPoint, TQ cpt is the list of triples (cpt i, p i,

costi) from TQ, ordered by costi, such that cpt i cpt . Similarly, TQ cpt is the list of triples (cpt i, p i, costi)

from TQ ordered by costi, such that cpt i cpt . TQ cpt and TQ cpt are trivially constructed from a single pass

over TQ. Note that, by definition, cpt b cpt cpt a, ∀cpt b:tb=(cpt b, p b, costb) ∈ TQ cpt , ∀cpt a:ta=(cpt a, p a,

costba)∈TQ cpt .

Example 5.3: Let TQ=(t1, t2, t3, t4, t5, t6,), where the ti are the triples shown in Figure 63. Then TQ cpt =(t1,

t3) (the triples in the light gray area) and TQ cpt =(t5, t6, t7) (the triples in the dark gray area). ■

Theorem 5.2: If ∃cpt b:tb=(cpt b, p b, costb), tb∈T cpt , ∃cpt a:ta=(cpt a, p a, costa), ta∈T cpt , such that

costa∈[costb, costb*M+A], then costfirst∈[costlast, costlast*M+A], where costfirst is the cost of the first triple

in T cpt and costlast is the cost of the last triple in T cpt .

Proof: See Section 5.8

Theorem 5.2 states that when searching list T for a pair of triples that bound cpt , we only need to test

the pair composed by the last triple from T cpt and the first triple from T cpt .

As shown in Example 5.2 in Section 5.3.3, there is potentially more than one possible solution to

getPlan(Q, cpt). However, if there is a solution, by Theorem 5.2, we need only to check if

costfirst∈[costlast, costlast*M+A], where cfirst is the cost of the first triple in TQ cpt and clast is the cost of the

last triple in TQ cpt . If costfirst∈[costlast, costlast*M+A], then p first, the plan in the first triple of TQ cpt , is

returned.

136

Before addPlan is called the first time, any getPlan call returns null. As new triples are added, the hit

rate of getPlan is expected to increase. Intuitively, as more triples are added, the more likely it is that

getPlan returns a plan because it is more likely that any two triples fulfill the requirements of the Theorem

5.2. Note also that the lower the values of M and A, the less likely it is to find pairs of triples that fulfill

the requirements of Theorem 5.2, and thus, more added triples are needed to obtain higher hit rates.

getPlan (inputs: Query Q, CostPoint cpt ; outputs: Plan p) {
 List TQ ←getList(Q); // gets list of triples for Q
 if (TQ ==null) {
 return null;
 }
 Triple last=null; // last triple of TQ cpt
 for Triple t in TQ { // in cost order
 if (t.cpt ≡≡≡≡ cpt) {return t.p ;} // exact match?
 if (t.cpt cpt) {last = t;} // keep track of last triple of TQ cpt
 if (t.cpt cpt) { // first triple of TQ cpt

 if (last == null) {
 return null;
 }
 if (t.c∈[last.c, last.c*M+A]) {
 return t.p ;
 }
 }
 }
}

Figure 64 – Bounded’s getPlan

Note that getPlan, shown in Figure 64, makes at most a single pass over TQ; thus, it has O(|TQ|) time

complexity, where |TQ| is the number of elements in TQ.

137

5.4. The Ellipse PPQO Implementation

Bounded’s getPlan provides strong guarantees on the cost of plans returned. However, we expect low hit

rates of Bounded’s getPlan for small values of M and A or before Bounded’s TQ has been populated. In

this section we propose Ellipse, another PPQO implementation of the PP interface, designed to address

PPQO’s Goal 1: to have higher hit rates.

To have higher hit rates, Ellipse drops the guarantee of only returning plans with near-optimal costs.

Instead, Ellipse’s getPlan returns ∆-acceptable plans .

Definition of ∆∆∆∆-Acceptable Plans: For ∆∈[0, 1], if plan p is optimal at points cpt 1 and cpt 2 in the cost-

based parameter space, then plan p is ∆-acceptable at point cpt in the cost-based parameter space iff

distance(cpt 1, cpt 2)/(distance(cpt , cpt 1) + distance(cpt , cpt 2)) ≥ ∆, where the function distance returns the

Euclidian distance between two points in an n-dimensional space.

It follows from the definition of ∆-acceptable that if p is optimal at cpt 1 and cpt 2, then p is 1-

acceptable only on points between cpt 1 and cpt 2 and p is 0-acceptable at all points. Note that in a 2-

dimentional space, the area where p is ∆-acceptable is equivalent to the definition of an ellipse; if p is

optimal for cpt 1 and cpt 2, then p is ∆-acceptable at cpt if cpt is on or inside an ellipse of foci cpt 1 and cpt 2

such that the distance between the foci, distance(cpt 1, cpt 2), over the sum of the distances between cpt and

the foci, distance(cpt , cpt 1) + distance(cpt , cpt 2), is ∆. Figure 65 shows the areas where p is 0.5-

acceptable, 0.8-acceptable, and 1-acceptable if p is optimal at cpt 1 and cpt 2.

138

Figure 65 – Examples of ∆∆∆∆-acceptable plans

5.4.1. Implementation of addPlan

For each query Q and for each plan p that is optimal in some point of the parameter space, Ellipse’s

addPlan(Q, cpt , p , cost) function–shown in Figure 66–maintains a list of (cpt , cost) pairs where p is

optimal for Q.

5.4.2. Implementation of getPlan

The implementation of Ellipse.getPlan consists of, for each optimal plan plan , iterating over pairs of

points where plan is optimal for the given query, Q. For each pair of points (cpt 1, cpt 2), we test if plan is

∆-acceptable at the given point cpt . If it is, getPlan returns plan , otherwise getPlan continues trying other

points and other plans. If all pairs of points of all plans for Q are exhausted without an ∆-acceptable plan

being found, Ellipse.getPlan returns null. The algorithm is shown in Figure 67.

0.8-acceptable

cpt 1 cpt 2

1-acceptable

Plan p is optimal at these points

0.5-acceptable

139

addPlan(inputs: Query Q, CostPoint cpt , Plan p , Cost cost) {
 PointList L←getPointList(Q, p); // where is p optimal?
 if (L==null) { // if no points were p is optimal for Q…
 L = new PointList(); // … create new PointList
 PlanList P←getPlanList(Q); // optimal plans for Q
 if (P==null) {
 P=new PlanList(p);
 } else {
 P.insert(p); // add new optimal plan to list
 }
 setPlanList(Q, P); // adds or replaces list P in catalog
 }
 L.insert(cpt , cost); // Adds new information about p to L.
 setPointList(Q, p , L) // adds or replaces list L in catalog
}

Figure 66 – Ellipse’s addPlan

getPlan (inputs: Query Q, CostPoint cpt ; outputs: Plan p) {
 PlanList P ←getPlanList(Q); // gets optimal plans
 if (P ==null) {return null;} // tests for empty list
 for Plan plan in P {
 PointList L←getPointList(Q, plan); // gets list of points
 for PointPair (cpt 1, cpt 2) in L { // enumerates point pairs
 if (dist(cpt1 , cpt2) / (dist(cpt , cpt1) + dist(cpt , cpt2))≥∆) {
 return plan ; // found an ∆-acceptable plan
 }
 }
 }
 return null;
}

Figure 67 – Ellipse’s getPlan

140

5.5. Experimental Evaluation

In this section we describe an experimental evaluation of PPQO using Microsoft’s SQL Server 2005. The

client application implements the pseudo-code described in Sections 5.2, 5.3, and 5.4; SQL Server is used

only to obtain estimated optimal plans and estimated costs of plans and to implement function φ (lines 7

and 3 in Figure 57).

5.5.1. Dataset, Metrics, and Setup

The TPC-H benchmark [85] was used to evaluate the PPQO implementations. Table 8, below, shows

which tables are joined by each query. (The queries’ full SQL text, too large to show here, is shown in

section 5.9.) The tables are lineitem (L), orders (O), customer (C), supplier (S), part (P), partsupp (T),

nation (N), and region (R).

As in Reddy and Haritsa [76], and unless otherwise noted, we added two extra selections to the TPC-

H queries to more easily explore the parameter space. The two selections are of the form coli≤vali, i=1,2,

where, for each query, coli is one of the two columns shown in Table 8 and vali is a random value from

the domain of the column.

Table 8 – Description of TPC-H queries used
Query Tables Joined Column 1 Column 2

7 LOCSNN c_acctbal o_totalprice
8 LOCPSNNR s_acctbal l_extendedprice
9 LOTPSN s_acctbal l_extendedprice

18 LLOC c_acctbal l_extendedprice
21 LLLOSN s_acctbal l_extendedprice

For each query tested, we generated 10,000 random val1 and val2 values. (A (val1, val2) pair is a

ValuePoint.) To guarantee that random parameter values uniformly explore the parameter space, we

altered the values in the columns subject to the extra selections to enforce uniform distributions.

141

For each query and each ValuePoint vpt we make a PP.getPlan lookup call (see Figure 57 in page

126), where PP is an Optimize-Once, Optimize-Always, Bounded, or Ellipse object. If getPlan returns a

plan we call it a hit and check if the plan is optimal; if it is not optimal we check how its estimated cost

compares with the estimated optimal cost. These give rise to the following metrics:

• HitRate: The percentage of PP.getPlan(Q, cpt) calls that return a plan.

• OptRate: The percentage of such plans that are optimal.

• SO: How sub-optimal a returned plan is: p hit(cpt)/Opt (cpt), with p hit=PP.getPlan(Q, cpt). SO≥1.

• AvgSO: The average of all SO

• MaxSO: The maximum of all SO; reflects how risky a PP implementation can be.

• Number of points: Number of (cpt , plan , cost) triples stored in a ParametricPlan. Equal to the

number of misses.

• Number of plans: Number of distinct optimal plans observed.

• QP: Number of queries processed.

The experiments were run on a lightly loaded Pentium M at 1.73GHz with 1GB of RAM and using

TPC-H scale factor 1. Indexes and statistics were built on all columns subject to selections and on all

primary and foreign key columns. The optimizer cache was emptied before each optimization call. To

compute some of the metrics above, the cost of sub-optimal plans (returned by PPQO) also had to be

estimated. To estimate those costs, each sub-optimal plan was forcibly costed by SQL Server [64].

Unless stated otherwise, Bounded was run with M=1.1, A=0 and Ellipse was run with ∆=0.95.

5.5.2. Variation on HitRate and OptRate

The first experiment consisted of processing 10,000 queries using different random ValuePoints (i.e.,

10,000 different random sets of SQL parameter values) for each query and observing how HitRate and

142

OptRate varied for Bounded and Ellipse. This experiment was performed for five TPC-H queries and the

results are shown in Figures 68-72. Several trends can be observed:

• Ellipse always has a higher HitRate than Bounded.

• Except for Query 8 (more on this below), Bounded always has a higher OptRate than Ellipse.

• HitRate converges quickly, but OptRate converges slightly faster.

• HitRate monotonically increases as a function of QP because more queries processed imply a

monotonically increasing number of misses and each miss adds more information to the

ParametricPlan, therefore increasing the likelihood of future hits.

• OptRate naturally varies up and down, as the initial random (cpt , plan , cost) triples are added to the

ParametricPlan object, until it converges.

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000
Query 7

HitRate Bounded
HitRate Ellipse
OptRate Bounded
OptRate Ellipse

Queries Processed (QP)

Figure 68 – Variation of HitRate, OptRate for 10,000 QP; Query 7

143

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000
Query 8

HitRate Bounded
HitRate Ellipse
OptRate Bounded
OptRate Ellipse

Queries Processed (QP)

Figure 69 – Variation of HitRate, OptRate for 10,000 QP; Query 8

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

Query 9

HitRate Bounded
HitRate Ellipse
OptRate Bounded
OptRate Ellipse

Queries Processed (QP)

Figure 70 – Variation of HitRate, OptRate for 10,000 QP; Query 9

144

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000
Query 18

HitRate Bounded
HitRate Ellipse
OptRate Bounded
OptRate Ellipse

Queries Processed (QP)

Figure 71 – Variation of HitRate, OptRate for 10,000 QP; Query 18

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

Query 21

HitRate Bounded
HitRate Ellipse
OptRate Bounded
OptRate Ellipse

Queries Processed (QP)

Figure 72 – Variation of HitRate, OptRate for 10,000 QP; Query 21

145

5.5.3. Number of Plans, Number of Points, Space, and Time

Figures 73 and 74 show the total number of plans and total number of points stored in the ParametricPlan

objects at the end of the experiments of the previous section. Bounded has both a higher number of plans

and a higher number of points because it has a lower HitRate; for every miss there will be a new point

stored in the ParametricPlan object. Figure 75 shows that space consumed to store the plans and the

points within the ParametricPlan objects varied between ~600Kbytes to ~1300Kbytes. We used the

original uncompressed XML plan representations provided by SQL Server. Storing zip-compressed XML

plans instead would decrease the size of the plan representation by a factor of 10.

Figure 76 reports the time taken by the Bounded and Ellipse. Time (in seconds) includes time elapsed

during optimization (if there is a miss), during addPlan, and during getPlan, but not query execution time.

For comparison purposes, the time taken for Optimize-Once and Optimize-Always is also included. After

10,000 queries have been processed, Optimize-Always took between 5.2 and 13.6 times longer than

Bounded and between 10.7 and 18.5 times longer than Ellipse. Ellipse was always faster than Bounded

because it had fewer optimize and addPlan calls (due to higher HitRates) and faster getPlan calls (because

it has less information stored in its parametric plans).

Number of plans

0

10

20

30

40

50

60

70

80

Q7 Q8 Q9 Q18 Q21

Bounded
Ellipse

Figure 73 – Number of plans after 10,000 queries processed

146

Number of points

0

500

1000

1500

2000

2500

3000

3500

Q7 Q8 Q9 Q18 Q21

Bounded
Ellipse

Figure 74 – Number of points after 10,000 queries processed

KBytes

0

200

400

600

800

1000

1200

1400

Q7 Q9 Q21

Bounded
Ellipse

Figure 75 – Space consumed after 10,000 queries

147

Secs
(log scale)

0.1

1.0

10.0

100.0

1000.0

10000.0

Q7 Q9 Q21

OptAlways Bounded
Ellipse OptOnce

Figure 76 – Optimization and ParametricPlan time to process 10,000 queries

5.5.4. MaxSO and AvgSO

Figures 77 and 78 show, respectively, the MaxSO and AvgSO for Bounded, Ellipse, and Optimize-Once

(OptOnce in the graphs) for the same experiments as in the previous two sections.

MaxSO
(log scale)

1

10

100

1000

Q7 Q8 Q9 Q18 Q21

Bounded
Ellipse
OptOnce

Figure 77 – MaxSO

148

AvgSO

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

Q7 Q8 Q9 Q18 Q21

Bounded
Ellipse
OptOnce

Figure 78 – AvgSO

Another surprise was how well Optimize-Once did in the AvgSO metric. On average, across all

queries, Optimize-Once returned plans with costs ~140% the cost of optimal (the same average was

~101% for Bounded and ~106% for Ellipse). One possible explanation is the following. Optimize-Once

obtains the optimal plan for the first of the 10,000 random parameter values and reuses that plan for all

other values. If that first plan happens to be the plan with the minimal cost variation in the plan space,

then there is a significant chance that that plan will do well in many other points in the space. Consider

Figure 79, which shows a conceptual representation of the costs of four different plans, each optimal in

different regions of the parametric space.

Figure 79 – Typical costs of optimal plans

Cost

1-dim parameter space

p1 p2
p3

p4

149

Executing either plan p3 or plan p4 for all points of the parameter space would yield costs, on average,

not much higher than the cost of optimal. Coincidently, the likelihood that any given point lies in the

space where either p3 or p4 are optimal is very high, and thus, by random chance, Optimize-Once is likely

to use a plan that is not catastrophic. We will explore this issue further in Section 5.5.6.

5.5.5. Vary Bounded’s M and Vary Ellipse’s ∆

In this experiment the value M of Bounded was varied from 1.1 to 4, for query 21 (to avoid clutter, and

because its line is similar to the line of M=3, M=4 is not shown). The values of HitRate and OptRate are

shown in Figures 80 and 81. As expected, a lower value for M (tighter optimality bound) results in a

higher OptRate but a lower HitRate.

The same query 21 with the same random parameter values was run using Ellipse while varying ∆

from 0.85 to 0.99 (∆=0.85 not shown). As expected, a higher ∆ results in a lower HitRate but a higher

OptRate. These results appear in Figures 82 and 83.

M =1.1
M =1.5
M =3.0

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

Figure 80 – HitRate for Bounded; Query 21

150

M =1.1

M =1.5
M =3.0

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

Figure 81 – OptRate for Bounded; Query 21

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

∆=90
∆=95
∆=97
∆=99

Figure 82 – HitRate for Ellipse; Query 21

151

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

∆=99
∆=97

∆=95
∆=90

Figure 83 – OptRate for Ellipse; Query 21

5.5.6. Vary Query Order

This experiment assessed the impact of the order of the incoming queries on the performance of the

algorithms. The same 10,000 random values used for Query 21 were used again, but the order in which

those 10,000 queries were processed was chosen randomly. Six random orders were generated and

processed with Bounded (M=1.1, A=0), Ellipse (∆=0.9), and Optimize-Once. The results are shown in

Figures 84–87 and summarized in Table 9.

Table 9 – Effects of different query orders

Query order had essentially no effect on the final values of Bounded’s OptRate, Bounded’s HitRate,

and Ellipse’s HitRate but it had a medium impact on the final value of Ellipse’s OptRate.

On the other hand, for Optimize-Once, query order had a very significant impact on OptRate, with

values between 3% and 48%. An interesting observation is that the performance of Optimize-Once was

 OptRate HitRate
 Max Min Avg Max Min Avg

Bounded 89.0% 86.0% 87.8% 86.0% 85.0% 85.8%
Ellipse 71.0% 59.0% 65.7% 99.0% 99.0% 99.0%

OptOnce 48.0% 3.0% 35.2% - - -

152

exactly the same for four out of those six random orders. Further analysis showed that, although the very

first value of each of the six random orders were all different, for four of them, the corresponding optimal

plan was the same. This follows the observation (Section 5.5.4, Figure 79, and [76]) that some plans have

very large optimality areas.

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

Figure 84 – HitRate for Bounded, 6 random query orders; Query 21

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

Figure 85 – OptRate for Bounded, 6 random query orders; Query 21

153

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

Figure 86 – HitRate for Ellipse, 6 random query orders; Query 21

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

Figure 87 – OptRate for Ellipse, 6 random query orders; Query 21

154

5.5.7. Vary Number of Dimensions

In all the experiments so far, the parameter space was 2-dimensional. The next experiment varies the

number of dimensions, from 1 to 4. Query 8 is used (with extra parametric selections as needed) because

it was the one with the largest number of plans and thus, more likely to suffer from the “curse of

dimensionality”: an exponential growth of complexity with a linear increase in the number of dimensions.

The query was then run for 10,000 random values for Bounded (M=1.1, A=0) and Ellipse (∆=0.95). The

results, showed in Figures 88-91 are summarized in Table 10 below.

Table 10 – Variation of number of dimensions
 OptRate HitRate
 1-D 2-D 3-D 4-D 1-D 2-D 3-D 4-D

Bounded 77% 65% 65% 56% 100% 94% 88% 49%
Ellipse 99% 74% 62% 58% 100% 98% 96% 88%

The results clearly indicate that as the number of dimensions in the parameter space increases, the

lower the OptRate and HitRate. Some of the reasons that contribute to this effect are:

• Given a point cpt centered in the middle of the parameter space, the percentage of space cpt (or

 cpt) decreases exponentially with the number of dimensions (affects Bounded).

• The number of unique optimal plans increases exponentially (affects Ellipse).

Even though the number of plans and number of points increase exponentially for both Bounded and

Ellipse, they increase slower for Ellipse; see Figures 92 and 93.

155

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

1-D
2-D
3-D

4-D

Figure 88 – Vary number of dimensions; HitRate for Bounded; Query 8

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

1-D
2-D
3-D
4-D

Figure 89 – Vary number of dimensions; OptRate for Bounded; Query 8

156

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

1-D
2-D
3-D
4-D

Figure 90 – Vary number of dimensions; HitRate for Ellipse; Query 8

0%

25%

50%

75%

100%

0 2000 4000 6000 8000 10000

Queries Processed

1-D

2-D
3-D
4-D

Figure 91 – Vary number of dimensions; OptRate for Ellipse; Query 8

157

Number of plans

14

67

253

9

78

156

382

102

0

50

100

150

200

250

300

350

400

1 2 3 4
Number of Dimensions

Ellipse
Bounded

Figure 92 – Number of plans with varying number of dimensions; Query 8

Number of points

47
447

1240

46
604

1187

5128

242

0

1000

2000

3000

4000

5000

6000

1 2 3 4
Number of Dimensions

Ellipse
Bounded

Figure 93 – Number of points with varying number of dimensions; Query 8

158

5.6. Related Work

Parametric query optimization was first mentioned by Graefe [40] and Lohman [61]. This pioneering

early work also proposed dynamic query plans and a new meta-operator, the choose-plan [40]. Dynamic

query plans include more than one physical plan choice. The plan to use is determined at run-time by the

choose-plan operator after it costs the multiple alternatives given the now known parameter values. How

to enumerate dynamic query plans was proposed only later [26] with the concept of incomparability of

costs: in the presence of unbound parameters at optimization-time, plan costs are represented as intervals;

if intervals of alternative plans overlap, none is pruned. At run-time, when parameters are bound to

values, the choose-plan selects the right plan to use. This approach may enumerate a very large number of

plans, as shown by [77], and all those plans may have to be re-cost at run-time by the choose-plan

operator.

Ioannidis et al [52] coined the term Parametric Query Optimization and proposed using randomized

algorithms to optimize in parallel the parametric query for all possible values of unknown variables. This

approach is unfeasible for continuous parameters, gives no guarantees on finding the optimal plan for a

query, and places no bounds on the optimality of the plans produced.

Ganguly [35] uses a geometric approach to solve the PQO problem for one and two parameters under

the assumption that cost functions are linear and that regions of optimality of plans are convex. Ganguly

also solved PQO for restricted forms of non-linear, one-parameter, cost functions. Prasad [71] extended

the geometric approach to solve PQO for ternary linear cost functions and binary non-linear functions.

Hulgeri and Sudarshan [48] propose a solution to PQO that handles piecewise linear cost functions for an

arbitrarily number of parameters but requires substantial changes to the query optimizer. AniPQO [49] is

a recent technique that approximates the solution to PQO for non-linear functions and for an arbitrary

number of parameters. AniPQO approximates optimality regions to n-dimensional convex polytopes and

finds its solution to PQO by calling the optimizer multiple times and evaluating plan costs up to

159

thousands of times. Unlike AniPQO, PPQO never calls the optimizer or costs plans more often than what

a traditional non-PQO approach would.

5.7. Conclusions

Progressive Parametric Query Optimization (PPQO) improves the performance of processing

parameterized queries by combining the benefits of competing strategies. Like Optimize-Always and

PQO, most of the times, PPQO selects plans that are estimated to be optimal or near-optimal. Like

Optimize-Once, PPQO is able to avoid optimization calls in up to 99% of the queries. Like other PQO

proposals, PPQO discovers most optimal plans and approximated optimality areas. In addition, unlike

PQO, PPQO does not perform extra optimizer calls or extra plan-cost evaluation calls. At execution time,

PPQO can select which plan to execute by using only the input cost parameters; there is no need to re-cost

any plan. Finally, recent work [76] shows that assumptions commonly held by PQO (plan convexity, plan

uniqueness, and plan homogeneity) do not hold. These discoveries do not affect PPQO. The only

assumption taken by PPQO is the monotonicity of plan costs.

PPQO is also amenable to be implemented in a complex commercial database system as it requires

minimal changes to the optimization or execution processes.

PPQO was evaluated in a variety of settings, with queries joining up to eight tables, with multiple

sub-queries, up to four parameters, and in plan spaces with close to 400 different optimal plans. PPQO

yielded good results in all scenarios except for the Bounded algorithm in complex queries using a 4-D

parameter space. However, even in this challenging scenario, Ellipse was on average executing plans just

3% more costly than the optimal, while avoiding 87% of all optimization calls.

160

5.8. Proofs of Theorem 5.1 and Theorem 5.2

This section uses the three Lemmas below to prove Theorem 5.1 and Theorem 5.2. Lemma 1 states that if

the Monotonic Assumption holds for every plan considered, than the cost of the optimal plan at any point

(regardless of what the optimal plan is at any single point) also increases monotonically with the

parameters. This result is used later to bound the cost of some plan p in points where plan p was never

executed.

Lemma 1: If cpt 1 cpt 2, cost1=p 1(cpt 1)=Opt (cpt 1), and cost2=p 2(cpt 2)=Opt (cpt 2) then cost1 ≤ cost2. (1)

Proof:

There are only two cases: either p 2 is optimal at cpt 1 or p 2 is not optimal at cpt 1.

• If p 2 is optimal at cpt 1, then cost1=p 2(cpt 1). (2)

• If p 2 is not optimal at cpt 1, then cost1< p 2(cpt 1). (3)

• By (2) and (3), cost1≤ p 2(cpt 1). (4)

• The Monotonic Assumption and cpt 1 cpt 2 imply: p 2(cpt 1)≤ p 2(cpt 2)=cost2. (5)

• By (4), (5), cost1≤cost2. ■

Lemma 2 and Lemma 3 together state that if M≥1, costz∈[costx, costx*M+A] and costx≤costy≤costz, then

both costz∈[costy, costy*M+A] and costy∈[costx, costx*M+A].

Lemma 2: If costz∈[costx, costx*M+A] and costx≤costy≤costz, then costy∈[costx, costx*M+A]. (6)

Proof:

• costz∈[costx, costx*M+A] ∧ costx≤costy≤costz ⇒

⇒ costx≤costz≤costx*M+A ∧ costx≤costy≤costz ⇒ costx≤costy≤costx*M+A

⇒ costy∈[costx, costx*M+A] ■

161

Lemma 3: If M≥1, costz∈[costx, costx*M+A], and costx≤costy≤costz, then costz∈[costy, costy*M+A]. (7)

Proof:

• Since M≥1, it follows that costx≤costy⇒costx*M+A≤costy*M+A (8)

• By costz∈[costx, costx*M+A] and (8) it follows that costz≤costx*M+A ≤costy*M+A (9)

• By costx≤costy≤costz and (9) it follows that costy≤costz≤ costy*M+A (10)

• (10) is equivalent to costz∈[costy, costy*M+A]. ■

Theorem 5.1: If ∃ti=(cpt i, plan i, costi), ∃tj=(cpt j, plan j, costj), such that plan plan i (plan j) is an optimal

plan at cpt i (cpt j) with cost costi (costj), cpt i cpt cpt j and costj∈[costi, costi*M+A], then

plan j(cpt)∈[Opt (cpt), Opt (cpt)*M+A].

Proof:

• By Lemma 1 and cpt i cpt cpt j it follows that costi≤Opt (cpt)≤costj. (11)

• By (11), Lemma 3, and costj∈[costi, costi*M+A] ⇒ costj∈[Opt (cpt), Opt (cpt)*M+A]. ■

Definition of (below) operator and (above) operator [Reprint from page 135]: Given a list, T, of k

triples (cpt i, p i, costi) ordered by costi, with i=0...k-1, where cpt i is a CostPoint and costi represents the

cost of executing the optimal plan p i at cpt i and given cpt , another CostPoint we define the following two

operations:

• T cpt is the list of triples (cpt i, p i, costi) from T, ordered by costi, such that cpt i cpt .

• T cpt is the list of triples (cpt i, p i, costi) from T ordered by costi, such that cpt i cpt .

Note that, by definition, cpt b cpt cpt a, ∀cpt b:tb=(cpt b, p b, costb) ∈ T cpt , ∀cpt a:ta=(cpt a, p a,

costba)∈T cpt .

162

Theorem 5.2: If ∃cpt b:tb=(cpt b, p b, costb), tb∈T cpt , ∃cpt a:ta=(cpt a, p a, costa), ta∈T cpt , such that

costa∈[costb, costb*M+A], then costfirst∈[costlast, costlast*M+A], where costfirst is the cost of the first triple

in T cpt and costlast is the cost of the last triple in T cpt .

Proof:

• By the definitions of T cpt and T cpt , and Lemma 1: costb≤costlast≤Opt (cpt)≤costfirst≤costa. (12)

• By costa∈[costb, costb*M+A], (12) and Lemma 3, it follows that costa∈[costlast, costlast*M+A] (13)

• Finally, by (12), (13), and Lemma 2, it follows that costfirst∈[costlast, costlast*M+A]. ■

163

5.9. Queries

This section contains the 5 queries used in the experiments of Section 5.5. The queries, originally from

the TPC-H benchmark, were altered with additional selection predicates to allow the exploration of a 2-D

parameter space. The queries in this format were first used by Reddy and Haritsa [76] and were shared to

us by Haritsa. Query 8 was subsequently altered with additional selection predicates to allow the

exploration of 3-D and 4-D parameter spaces as well.

The additional selection predicates are of the form “column ≤ Vx”, with x taking a value between 0

and 3. In the experiments, the values for the Vx parameters were randomly generated within the

domain of column. For each column subject to these additional selection predicates, the values in the

relations were changed to force a uniform distribution.

164

5.9.1. Query 7

select
 supp_nation,
 cust_nation,
 l_year,
 sum(volume) as revenue
from
 (
 select
 n1.n_name as supp_nation,
 n2.n_name as cust_nation,
 YEAR (l_shipdate) as l_year,
 l_extendedprice * (1 - l_discount) as volume
 from
 supplier,
 lineitem,
 orders,
 customer,
 nation n1,
 nation n2
 where
 s_suppkey = l_suppkey
 and o_orderkey = l_orderkey
 and c_custkey = o_custkey
 and s_nationkey = n1.n_nationkey
 and c_nationkey = n2.n_nationkey
 and (
 (n1.n_name = 'FRANCE' and n2.n_name = 'GERMANY')
 or (n1.n_name = 'GERMANY' and n2.n_name = 'FRANCE')
)
 and l_shipdate between '1995-01-01' and '1996-12-31'
 and orders.o_totalprice <= $V0$
 and customer.c_acctbal <= $V1$
) as shipping
group by
 supp_nation,
 cust_nation,
 l_year
order by
 supp_nation,
 cust_nation,
 l_year;

165

5.9.2. Query 8

select
 o_year,
 sum(case
 when nation = 'BRAZIL' then volume
 else 0
 end) / sum(volume) as mkt_share
from
 (
 select
 YEAR(o_orderdate) as o_year,
 l_extendedprice * (1 - l_discount) as volume,
 n2.n_name as nation
 from
 part,
 supplier,
 lineitem2,
 orders,
 customer,
 nation n1,
 nation n2,
 region
 where
 p_partkey = l_partkey
 and s_suppkey = l_suppkey
 and l_orderkey = o_orderkey
 and o_custkey = c_custkey
 and c_nationkey = n1.n_nationkey
 and n1.n_regionkey = r_regionkey
 and r_name = 'AMERICA'
 and s_nationkey = n2.n_nationkey
 and o_orderdate between '1995-01-01' and '1996-12-31'
 and p_type = 'ECONOMY ANODIZED STEEL'
 and lineitem2.l_extendedprice <= $V0$
 and supplier.s_acctbal <= $V1$
 and orders.o_totalprice <= $V2$ // Used only in 3-D and 4-D spaces
 and customer.c_acctbal <= $V3$ // Used only in 4-D spaces
) as all_nations
group by o_year
order by o_year;

166

5.9.3. Query 9

select
 n_name,
 o_year,
 sum(amount) as sum_profit
from
 (
 select
 n_name,
 YEAR(o_orderdate) as o_year,
 l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount
 from
 part,
 supplier,
 lineitem,
 partsupp,
 orders,
 nation
 where
 s_suppkey = l_suppkey
 and ps_suppkey = l_suppkey
 and ps_partkey = l_partkey
 and p_partkey = l_partkey
 and o_orderkey = l_orderkey
 and s_nationkey = n_nationkey
 and p_name like '%green%'
 and supplier.s_acctbal <= $V0$
 and partsupp.ps_supplycost <= $V1$
) as profit
group by
 n_name,
 o_year
order by
 n_name,
 o_year desc;

167

5.9.4. Query 18

select
 c_name,
 c_custkey,
 o_orderkey,
 o_orderdate,
 o_totalprice,
 sum(l_quantity)
from
 customer,
 orders,
 lineitem2
where
 o_orderkey in (
 select
 l_orderkey
 from
 lineitem2
 where
 lineitem2.l_extendedprice <= $V0$
 group by
 l_orderkey
 having
 sum(l_quantity) > 300
)
 and c_custkey = o_custkey
 and o_orderkey = l_orderkey
 and customer.c_acctbal <= $V1$
group by
 c_name,
 c_custkey,
 o_orderkey,
 o_orderdate,
 o_totalprice
order by
 o_totalprice desc,
 o_orderdate

168

5.9.5. Query 21

select
 s_name,
 count(*) as numwait
from
 supplier,
 lineitem2,
 orders,
 nation
where
 s_suppkey = lineitem2.l_suppkey
 and o_orderkey = lineitem2.l_orderkey
 and o_orderstatus = 'F'
 and exists (
 select
 *
 from
 lineitem2 l2
 where
 l2.l_orderkey = lineitem2.l_orderkey
 and l2.l_suppkey <> lineitem2.l_suppkey
)
 and not exists (
 select
 *
 from
 lineitem2 l3
 where
 l3.l_orderkey = lineitem2.l_orderkey
 and l3.l_suppkey <> lineitem2.l_suppkey
 and l3.l_receiptdate > l3.l_commitdate
)
 and s_nationkey = n_nationkey
 and supplier.s_acctbal <= $V0$
 and lineitem2.l_extendedprice <= $V1$
 and n_name = 'SAUDI ARABIA'
group by
 s_name
order by
 numwait desc,
 s_name;

169

CHAPTER 6

CONCLUSIONS
Most commercial DBMSs use a sequential plan-first execute-next query processing strategy: the

optimizer enumerates and costs plans and passes the plan with the lowest estimated cost to the executor;

then the executor processes the plan to completion. The effectiveness of this non-adaptive approach relies

heavily on the quality of the plans produced by the optimizer. The quality of those plans depends on the

information available to the optimizer: if the statistics used to cost plans are missing or incorrect, the

optimizer is likely to select a sub-optimal plan. Several hardware and software trends are making this hard

problem harder. For example, the optimization space is increasing exponentially because there are more

operators to considerer, larger datasets to manage, and more complex queries to optimize. Thus, the

optimizer is increasingly more likely of selecting a sub-optimal plan.

6.1. Contributions

Given the trends above, instead of focusing on providing more information to the optimizer, we proposed

a series of query processing techniques that correct optimizer mistakes or execute robust plans (plans with

good performance that are insensitive to optimizer mistakes).

Content-Based Routing, described in �, is a strategy that assigns different execution plans for

subsets of data with different statistical properties. The different subsets of data and their respective plans

are adaptively determined at run-time with no intervention from the optimizer. Our most important

contribution was to show that content-based learning and routing can be simultaneously inexpensive and

adaptive while still achieving significant performance improvements.

170

Rio, described in Chapter 3, is a second-generation AQP system that improves on previous AQP

proposals in several ways. Previous AQP systems, although able to correct some optimizer mistakes, still

suffered from the optimizer mistakes in an indirect way. By using a traditional optimizer, those systems

were more likely to start execution with a sub-optimal plan. Although the sub-optimal plan could

frequently be detected and replaced by an optimal plan, the process could be inefficient. The sub-optimal

plan was not quickly detected, and when it was, query processing work could have to be thrown away and

repeated. In addition, previous AQP approaches would sometimes only find an optimal plan after multiple

re-optimization steps, each with its own potential inefficiencies. With Rio, we extensively re-engineered

query optimization and query execution to make the system as insensitive as possible to optimizer

mistakes. The optimization module was changed to give priority to robust plans, i.e., plans insensitive to

incorrect estimates. This was partially done by assigning levels of uncertainty to estimated statistics based

on the way they are estimated. This, in turn, revealed which plans were robust and which plans were

risky. In addition, new switch operators were inserted in the plan tree to minimize the work lost if a

change of plan was needed. Finally, query execution was changed to allow faster detection of sub-optimal

plans and faster convergence to the optimal plan.

SHARP, described in Chapter 4, is an AQP strategy fundamentally different from Rio. Rio required

very substantial changes to the query optimization and query execution modules including small

modifications in all operators. Rio also allowed for multiple inter-leavings of optimization and execution.

By contrast, the proposed new SHARP operator encapsulates almost all AQP changes needed; the

remaining query processing engine is largely unaffected. SHARP also explores a new trade-off: instead of

executing arbitrarily query plans, and being able to preempt execution and re-invoke optimization,

SHARP adopts a two-step adaptive approach. First, run-time late-binding decisions determine the driving

relation. Second, tuple routing continuously potentially changes the join order–probing sequence of tuples

from the build sources–within the orders available after the driving relation was fixed. This two-step

adaptive process yields two benefits: i) it requires less memory than previous adaptive operators and ii)

171

simplifies the design of second-stage processing. In addition, the second-stage was designed to be

insensitive to the join order determined by the optimizer, thus, insensitive to optimizer mistakes, i.e., the

second-stage executed efficient plans regardless of what the optimizer specifies. On the other hand,

SHARP is not a general AQP solution. SHARP is a multi-join, relational operator that joins three or more

relations of a star-join. Nevertheless, SHARP shows that it is possible to implement adaptive query

processing strategies in a DBMS with minimal changes to the system but with great positive impact on

performance.

Progressive Parametric Query Optimization, described in Chapter 5, is an AQP strategy designed

to deal with the lack of information about values in parameterized queries at optimization time. The trivial

solutions are to ignore the problem (Optimize-Once) or to defer optimization until the values are known

(Optimize-Always). Optimize-Once returns a plan which may be arbitrarily sub-optimal. Optimize-

Always unnecessarily consumes too many resources in optimization calls. A more elaborated approach,

Parametric Query Optimization, may also produce too many optimization calls. PQO may also be not

applicable because its requirements (plan convexity, plan uniqueness, and plan homogeneity) do not hold

in real systems. Our proposal, PPQO, improves the performance of processing parameterized queries by

combining the benefits of competing strategies: most of the times, PPQO selects plans that are optimal or

near-optimal, while avoiding optimization calls in up to 99% of the queries, and being indifferent to plan

convexity, plan uniqueness, and plan homogeneity.

6.2. Final Words

We do not claim that any one of the techniques presented in this thesis completely solves the current

problems faced by query optimizers. On the contrary, we think that the complexity of the optimization

problem together with the unavailability of information to cost the alternatives will require many different

complementary solutions, some of which are adaptive query processing strategies, some not. We think

that obtaining information not stored in the catalog and providing it just-in-time to the optimizer [2, 6, 73,

172

80], learning from past queries and mistakes [83], and using techniques from data stream systems are

other interesting avenues to address the issues discussed in this thesis. In future work we plan to integrate

some of those other approaches with the AQP techniques proposed here.

173

BIBLIOGRAPHY
[1] S. Acharya et al. Join Synopses for Approximate Query Answering. In Proc. of the ACM Intl. Conf.

on Management of Data (SIGMOD’1999), June 1999.

[2] M. J. Anderson, R. L. Cole, W. S. Davidson, W. D. Lee, P. B. Passe, G. R. Ricard, L. W. Youngren.
Index key range estimator. U. S. Patent 4,774,657, September 27, 1988.

[3] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa, U. Srivastava, D.
Thomas, R. Varma, J. Widom. STREAM: The Stanford Stream Data Manager. IEEE Data Eng.
Bull, 26(1): 19-26 (2003).

[4] R. Arpaci-Dusseau. Run-time adaptation in river. ACM Trans. on Computer Systems , 21(1):36–86,
2003.

[5] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing. In Proc. of the
ACM Intl. Conf. on Management of Data (SIGMOD’2000), May 2000.

[6] B. Babcock and S. Chaudhuri. Towards a Robust Query Optimizer: A Principled and Practical
Approach. In Proc. of the ACM Intl. Conf. on Management of Data (SIGMOD’2005), June 2005.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom. Models and Issues in Data Stream Systems.
PODS 2002: 1-16.

[8] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom. Adaptive ordering of pipelined
stream filters. In Proc. of the ACM Intl. Conf. on Management of Data (SIGMOD’2004), June 2004.

[9] S. Babu and J. Widom. StreaMon: An adaptive engine for stream query processing. In Proc. of the
ACM Intl. Conf. on Management of Data (SIGMOD’2004), June 2004. Demonstration proposal.

[10] S. Babu and P. Bizarro. Adaptive Query Processing in the Looking Glass. In Proc. of Second
Biennial Conf. on Innovative Data Systems Research (CIDR’2005), January 2005.

[11] S. Babu, P. Bizarro, and D. J. DeWitt. Proactive Re-optimization. In Proc. of the ACM Intl. Conf. on
Management of Data (SIGMOD’2005), June 2005.

[12] S. Babu. Adaptive Query Processing in Data Stream Management Systems. Ph.D. Thesis, Stanford
University, September 2005. Available at http://dbpubs.stanford.edu:8090/pub/2005-24. Accessed
July 2006.

[13] J. Beale. Snort 2.1 Intrusion Detection. Syngress Publishing, 2004.

[14] D. Bitton, D. J. DeWitt, and C. Turbyfil. Benchmarking Database Systems: A Systematic Approach.
In Proceedings of the 1983 Very Large Database Conference (VLDB’1983), October 1983.

[15] P. Bizarro, S. Babu, D. J. DeWitt, and J. Widom. Content-Based Routing: Different Plans for
Different Data. In Proc. of the Intl. Conf. on Very Large Data Bases (VLDB’2005), September 2005.

[16] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun. ACM 13(7):
422-426 (1970).

[17] L. Bouganim, F. Fabret, C. Mohan, P. Valduriez. A Dynamic Query Processing Architecture for
Data Integration Systems. IEEE Data Engineering Bulletin, 23(2): 42-48 (2000).

[18] H. Brönnimann et al. Efficient data reduction with EASE. In Proc. of the Ninth ACM Intl. Conf. on
Knowledge Discovery and Data Mining (SIGKDD’2003), August 2003.

174

[19] N. Bruno and S. Chaudhuri. Exploiting statistics on query expressions for optimization. In Proc. of
the ACM Intl. Conf. on Management of Data (SIGMOD’2002), June 2002.

[20] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N.
Tatbul, and S. Zdonik. Monitoring streams – a new class of data management applications. In Proc.
of the Intl. Conf. on Very Large Data Bases (VLDB’2002), August 2002

[21] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S.
Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In Proc. First Biennial Conf. on Innovative Data Systems
Research (CIDR’2003), January 2003.

[22] S. Chaudhuri, R. Motwani, and V. Narasayya. On Random Sampling over Joins. In Proc. of the
ACM Intl. Conf. on Management of Data (SIGMOD’1999), June 1999.

[23] S. Chaudhuri, V. Narasayya, and R. Ramamurthy. Estimating Progress of Long Running SQL
Queries. In Proc. of the ACM Intl. Conf. on Management of Data (SIGMOD’2004), June 2004.

[24] S. Christodoulakis. Implications of Certain Assumptions in Database Performance Evaluation. ACM
Trans. on Database Systems, 9(2): 163-186, 1984.

[25] F. Chu, J. Halpern, and P. Seshadri. Least expected cost query optimization: An exercise in utility. In
Proc. of the 1999 ACM Symp. on Principles of Database Systems (PODS ’1999), June 1999.

[26] R. L. Cole and G. Graefe. Optimization of dynamic query evaluation plans. In Proc. of the ACM Intl.
Conf. on Management of Data (SIGMOD’1994), June 1994.

[27] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: A stream database for
network applications. In Proc. of the ACM Intl. Conf. on Management of Data (SIGMOD’2003),
June 2003.

[28] B. Dageville and M. Zait. SQL memory management in Oracle9i. In Proc. of the Intl. Conf. on Very
Large Data Bases (VLDB’2002), August 2002.

[29] A. Deshpande. An initial study of overheads of eddies. SIGMOD Record 33(1): 44-49 (2004)

[30] A. Deshpande, M. N. Garofalakis, and R. Rastogi. Independence is Good: Dependency-Based
Histogram Synopses for High-Dimensional Data. In Proc. of the ACM Intl. Conf. on Management of
Data (SIGMOD’2001), May 2001.

[31] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-Driven Data
Acquisition in Sensor Networks. In Proc. of the Intl. Conf. on Very Large Data Bases (VLDB’2004),
September 2004.

[32] A. Deshpande and J. M. Hellerstein. Lifting the Burden of History from Adaptive Query Processing.
In Proc. of the Intl. Conf. on Very Large Data Bases (VLDB’2004), September 2004.

[33] A. Deshpande, C. Guestrin, S. Madden, W. Hong. Exploiting Correlated Attributes in Acquisitional
Query Processing. In Proc. of the Intl. Conf. on Data Engineering (ICDE ‘2005), April 2005.

[34] P. Domingos and G. Hulten. Mining high-speed data streams. In Proc. of the Sixth ACM Intl. Conf.
on Knowledge Discovery and Data Mining (SIGKDD’2000), August 2000.

[35] S. Ganguly. Design and Analysis of Parametric Query Optimization Algorithms. In Proc. of the Intl.
Conf. on Very Large Data Bases (VLDB’1998), August 1998.

[36] L. Getoor, B. Taskar, D. Koller. Selectivity Estimation using Probabilistic Models. In Proc. of the
ACM Intl. Conf. on Management of Data (SIGMOD’2001), May 2001.

175

[37] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates over continual data
streams. In Proc. of the ACM Intl. Conf. on Management of Data (SIGMOD’2001), May 2001.

[38] P. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approximate histograms.
ACM Trans. on Database Systems, 27(3): 261-298, 2002.

[39] L. Golab and T. Ozsu. Issues in data stream management. SIGMOD Record, 32(2):5–14, June 2003.

[40] G. Graefe and K. Ward. Dynamic Query Evaluation Plans. In Proc. of the ACM Intl. Conf. on
Management of Data (SIGMOD’1989), June 1989.

[41] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computer Surveys 25(2): 73-
170. 1993.

[42] J. Gray. A “Measure of Transaction Processing” 20 Years Later. Microsoft Research Technical
Report TR-2005-57 , April 2005. Available at http://research.microsoft.com/research/
pubs/view.aspx?msr_tr_id=MSR-TR-2005-57. Accessed on July 2006.

[43] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. In Proc. of the 33rd Annual ACM
Symp. on Theory of Computing , July 2001.

[44] P. Haas and J. M. Hellerstein. Ripple Joins for Online Aggregation. In Proc. of the ACM Intl. Conf.
on Management of Data (SIGMOD’1999), June 1999.

[45] J. M. Hellerstein, P. Haas and H. J. Wang. Online Aggregation. In Proc. of the ACM Intl. Conf. on
Management of Data (SIGMOD’1997), June 1997.

[46] J. M. Hellerstein, M. J. Franklin, et al. Adaptive query processing: Technology in evolution. IEEE
Data Engineering Bulletin, 23(2):7–18, June 2000.

[47] J. Hellerstein, R. Avnur, and V. Raman. Informix Under CONTROL: Online Query Processing.
Data Mining and Knowledge Discovery Journal, 4(4), October 2000.

[48] A. Hulgeri and S. Sudarshan. Parametric Query Optimization for Linear and Piecewise Linear Cost
Functions. In Proc. of the Intl. Conf. on Very Large Data Bases (VLDB’2002), August 2002.

[49] A. Hulgeri and S. Sudarshan. AniPQO: Almost Non-intrusive Parametric Query Optimization for
Nonlinear Cost Functions. In Proc. of the ACM Intl. Conf. on Management of Data
(SIGMOD’2003), June 2003.

[50] I. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. CORDS: Automatic discovery of
correlations and soft functional dependencies. In Proc. of the ACM Intl. Conf. on Management of
Data (SIGMOD’2004), June 2004.

[51] Y. Ioannidis and S. Christodoulakis. On the Propagation of Errors in the Size of Join Results. In
Proc. of the ACM Intl. Conf. on Management of Data (SIGMOD’1991), May 1991.

[52] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric Query Optimization. In Proc. of the
Intl. Conf. on Very Large Data Bases (VLDB’1992), August 1992.

[53] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld. An adaptive query execution system for
data integration. In Proc. of the ACM Intl. Conf. on Management of Data (SIGMOD’1999), June
1999.

[54] Z. Ives, A. Levy, et al. Adaptive query processing for internet applications. IEEE Data Engineering
Bulletin, 23(2):19–26, June 2000.

176

[55] Z. Ives. Efficient Query Processing for Data Integration. Ph.D. thesis, University of Washington–
Seattle, WA, USA, August 2002.

[56] Z. Ives, A. Halevy, D. Weld. Adapting to Source Properties in Processing Data Integration Queries.
In Proc. of the ACM Intl. Conf. on Management of Data (SIGMOD’2004), June 2004.

[57] C. Jermaine, A. Dobra, A. Pol, S. Joshi. Online Estimation For Subset-Based SQL Queries. In Proc.
of the Intl. Conf. on Very Large Data Bases (VLDB’2005), August 2005.

[58] N. Kabra and D. J. DeWitt. Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution
Plans. In Proc. of the ACM Intl. Conf. on Management of Data (SIGMOD’1998), June 1998.

[59] M. Kitsuregawa, M. Nakayama, and M. Takagi. The Effect of Bucket Size Tuning in the Dynamic
Hybrid GRACE Hash Join Method. In Proc. of the Intl. Conf. on Very Large Data Bases
(VLDB’1989), August 1989.

[60] R. Lawrence. Early Hash Join: A Configurable Algorithm for the Efficient and Early Production of
Join Results. In Proc. of the Intl. Conf. on Very Large Data Bases (VLDB’2005), September 2005.

[61] G. M. Lohman. Is Query Optimization a 'Solved' Problem? Workshop on Database Query
Optimization. Oregon Graduate Center Comp. Sci. Tech. Rep. 89-005 , May 1989.

[62] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong. The Design of an Acquisitional Query
Processor for Sensor Networks. In Proc. of the ACM Intl. Conf. on Management of Data
(SIGMOD’2003), June 2003.

[63] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, H. Pirahesh. Robust Query Processing through
Progressive Optimization. In Proc. of the ACM Intl. Conf. on Management of Data (SIGMOD’2004),
June 2004.

[64] Microsoft Corporation. Plan Forcing Scenario: Create a Plan Guide That Uses a USE PLAN Query
Hint. SQL Server 2005 Books Online. Available at http://msdn2.microsoft.com/en-
us/library/ms190454.aspx. Accessed July 2006.

[65] Microsoft Corporation. Logical and Physical Operators Reference. SQL Server 2005 Books Online.
Available at http://msdn2.microsoft.com/en-us/library/ms345824.aspx. Accessed July 2006.

[66] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[67] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston, J.
Rosenstein, and R. Varma. Query processing, approximation, and resource management in a data
stream management system. In Proc. of Second Biennial Conf. on Innovative Data Systems Research
(CIDR’2003), January 2003.

[68] M. Nakayama, M. Kitsuregawa, and M. Takagi. Hash-partitioned join method using dynamic
destaging strategy. In Proc. of the Intl. Conf. on Very Large Data Bases (VLDB’1998), September
1998.

[69] H. Paques, L. Liu, and C. Pu. Distributed Query Adaptation and Its Trade-offs. In Proc. of ACM
Symp. on Applied Computing , March 2003.

[70] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. Improved Histograms for Selectivity
Estimation of Range Predicates. In Proc. of the ACM Intl. Conf. on Management of Data
(SIGMOD’1996), June 1996.

[71] V. G. V. Prasad. Parametric Query Optimization: A Geometric Approach. Master Thesis. IIT,
Kampur, India, 1999.

177

[72] R. Ramakrishnan, and J. Gehrke. Database Management Systems, 3rd edition. McGraw-Hill
Science/Engineering/Math, August 14, 2002.

[73] R. Ramamurthy and D. J. DeWitt. Buffer-pool Aware Query Optimization. In Proc. of Second
Biennial Conf. on Innovative Data Systems Research (CIDR), January 2005.

[74] V. Raman, A. Deshpande, J. M. Hellerstein. Using State Modules for Adaptive Query Processing. In
Proc. of the 21st Intl. Conf. on Data Engineering (ICDE2003), April 2003.

[75] R. Ramey. 2005 Performance/Price Sort and PennySort. Available at http://research.micro-
soft.com/barc/SortBenchmark/2005_PostMansSort.pdf. Accessed July 2006.

[76] N. Reddy and J. R. Haritsa. Analyzing Plan Diagrams of Database Query Optimizers. In Proc. of the
Intl. Conf. on Very Large Data Bases (VLDB’2005), September 2005.

[77] S. V. U. Maheswara Rao. Parametric Query Optimization: A Non-Geometric Approach. Master
Thesis, IIT, Kampur, India, 1999.

[78] M. A. Shah. Flux: A Mechnism for Building Robust, Scalable Dataflows. Ph.D. Thesis, University
of California–Berkeley, CA, USA, 2004.

[79] P. Selinger, M. M. Astrahan, D.D. Chamberlin, R. A. Lorie, T. G. Price. Access Path Selection in a
Relational Database Management System. In Proc. of the ACM Intl. Conf. on Management of Data
(SIGMOD’1979), May 1979.

[80] K. D. Seppi, J. W. Barnes, and C. N. Morris. A Bayesian approach to database query optimization.
ORSA Journal on Computing , 5(4):410–419, 1993.

[81] P. Seshadri. Predator: A Resource for Database Research. SIGMOD Record, 27(1): 16-20, 1998.

[82] Snort: The Open Source Network Intrusion Detection System. http://www.snort.org.

[83] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO -DB2’s LEarning Optimizer. In Proc. of the
Intl. Conf. on Very Large Data Bases (VLDB’2001), September 2001.

[84] F. Tian, D. J. DeWitt. Tuple Routing Strategies for Distributed Eddies. In Proc. of the Intl. Conf. on
Very Large Data Bases (VLDB’2003), September 2003.

[85] Transaction Processing Performance Council. The TPC-H Benchmark. Available at
http://www.tpc.org/tpch/. Accessed March 2006.

[86] P. Tucker et al. Exploiting Punctuation Semantics in Continuous Data Streams. Transactions on
Knowledge and Data Engineering, 15(3): 555-568, 2003.

[87] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost Based Query Scrambling for Initial Delays. In Proc.
of the ACM Intl. Conf. on Management of Data (SIGMOD’1998), June 1998.

[88] T. Urhan and M. J. Franklin. XJoin: A Reactively-Scheduled Pipelined Join Operator. IEEE Data
Engineering Bulletin, 23(2): 27-33 (2000).

[89] S. Viglas. Novel Query Optimization and Evaluation Techniques, Ph.D. Thesis, Department of
Computer Sciences, University of Wisconsin-Madison, WI, USA, June 2003.

[90] S. Viglas, J. Naughton, and J. Burger. Maximizing the Output Rate of Multi-Way Join Queries over
Streaming Information Sources. In Proc. of the Intl. Conf. on Very Large Data Bases (VLDB’2003),
September 2003.

[91] A. N. Wilschut and P. M. G. Apers. Pipelining in Query Execution. In Proc. of the First Intl. Conf.
on Parallel and Distributed Information Systems (PDIS 1991), December 1991.

