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Abstract

This paper presents the process and results of experiments around the generation
of blends of a concept of "horse” and a concept of "bird”. The blending process is
based on the framework of Conceptual Blending (Fauconnier and Turner, 1998) and is
achieving some stability in its development. We present an overview of the generative
system, Divago, namely of its newest developments around the optimality constraints.
The results demonstrate the creative potential of such a system with regard to the gen-
eration of new concepts from the combination of pre-existing ones, although high-
lighting problems and further developments that must be taken.

1 Introduction

One big challenge to Al, more specifically to Computational Creativity, is that of the gen-
eration of new concepts. The problem starts from the very definitimomfept and its
representation, very interestings issue on their own. Assuming a concept representation
and semantics, we are then faced with the problem obtbeess. What kind of processes

can yield new and valid concepts?

In this paper, we apply a model that follows a framework, named Conceptual Blend-
ing (CB) (Fauconnier and Turner, 1998), as a creative process and present some results
of recent experiments. Although lacking in formalization and scientific proof in some
aspects, this framework suggests principles and processes to explain many creative cog-
nitive phenomena such as metaphor, analogy and conceptual combination. In its many
issues, Conceptual Blending is, at the least, a very elegant model of creativity, a motiva-
tion that lead us to bring it to a computational basis. In the system we are developing,
Divago, those principles and processes are applied iteratively urstdlde solution is

found. This solution should beldend, a new concept (or web of concepts) that shares
structure and knowledge from the inputs, yet having an emerging structure of its own (e.qg.
a "pegasus”, as a blend of "horse” and "bird").

We start this paper by a short review of similar systems, namely from the Conceptual
Combination area, after which we give an overview of the Conceptual Blending frame-
work. Divago is presented afterwards and, finally, we dedicate to present and analyse
the experiments we made with the "horse” and "bird” domains. This should be the main
motivation for this paper. The reader will also find a final discussion, in which we make a
reflection around the results, the presented model and its creative aspects.
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2 Stateof the Art

The first computational work on Conceptual Combination we find in literature is that of
Carl Andersen (Andersen, 1996), which presents a system for "joining of information
from two existing concepts to form a third, more complex concept”. He gives a set of
very interesting ideas, yet lacking argumentation and validation, thus leaving the idea of
oversimplification of the problem of conceptual combination. An example of combination
of "house” and "boat” is given, but the definition of these two initial concepts, from our
point of view, biases the results because of their overt simplicity. Another issue is the lack
of background knowledge, i.e., each concept is considered in isolation (a fact the author
himself acknowledges), so there are no ontological explanations or means of relating the
concepts in question other than from their structure, leaving to an external entity the task
of establishing a mapping between them.

Fintan Costello and Mark Keane (Costello and Keane, 2000) bring us a computational
model, C?3, for the interpretation of noun-noun compounds (e.g. "Cactus fish”, "pet
shark”), proposing one or more solutions for each concept pairing and validating them
against empirical tests on peopl&? searches for concept explanations that use differen-
tiating properties from each of the nouns (thagnosticity constraint), that are consistent

with background knowledge (thglausibility constraint) and that avoid redundancy or
vagueness ( thimformativeness constraint). In so doing, they approach different sorts of
noun-noun combinations, thus resulting in the polysemy we also find in humans. Noun-
noun compounds are clearly one example of the conceptual combination and creativity
we do regularly and this work is a well based proposal.

On the side of Conceptual Blending, Tony Veale and Diarmuid O’'Donogue (Veale and
O’Donogue, 2000) describe a proposal from a computational perspective, inspired on
Veale's Metaphor interpretation framewoi®apper. As we argue in (Pereira and Car-
doso, 2001), this proposal lacks some fundamental points of CB, namely the emergence
of a new domain, the blend, independently of the initial inputs. Furthermore, it takes into
account onlymetaphoric blends.

Our system, Divago, initially proposed in (Pereira, 1998), (formalized in (Pereira and
Cardoso, 2001, Pereira and Cardoso, 2003a; Pereira and Cardoso, 2003b)) makes use of
a computational version of Conceptual Blending as a process for creative transformation
of the search space. This motivation was discussed in (Pereira and Cardoso, 2002b), and
the first experiments with blending a "house” and a "boat” are shown in (Pereira and Car-
doso, 2002a). Divago has a knowledge based composed of domains, instances and rules
and blends them following eight optimality principles (described below). It makes use
of a generic domain to find mappings between concepts, generic frames and rules and
integrity constraints. It is expected to do concept combination as in (Andersen, 1996)
and make noun-noun compound interpretations as in (Costello and Keane, 2000). The
experiments shown in this paper focus the former. We expect to approach the latter in
next developments.

3 Conceptual Blending

Conceptual Blending (CB) was initially proposed by (Fauconnier and Turner, 1998) as
part of a major framework concerning cognition and language and had the role of explain-
ing the integration of knowledge coming from distinct sources onto a single, independent
and coherent unit, the Blend. A blend is concept or web of concepts whose existence and
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identity, although attached to the pieces of knowledge that participated in its generation
(the inputs), conquers gradual independence through time and use.

In the canonic model of Conceptual Blending, we have four differgpaces: two input
spaces, one generic space and the blend. Each space corresponds to what Fauconnier and
Turner call a "'mental space”, a cognitive structure that corresponds to a concept, a set
of concepts, a frame, a reasoningawer level entities like a perception. Mental spaces
may have internal connections (inner-space relations) between its constituent elements
and connections to other mental spaces (outer-space relations). The input spaces corre-
spond to two mental spaces (e.g. horse and bird) that will be integrated in the blend (e.g.
pegasus). The generic space contains knowledge that is not specific to any of the inputs
but may relate to both (e.g. biology taxonomies) or is common sense (e.g. Greek mythol-
ogy).

An essential step in the process of blending is the establishment of a (partial) mapping
between elements of the input spaces. This mapping may be achieved through different
processes (e.g. identity, structure alignment, slot-filler, analogy) and doesn't have to 1-
to-1. The paired elements are projected onto its existence in the blend as well as other
surrounding elements and relations. This selactive projection, i.e., some get projected

to the blend, some don't.

From the projections, some new relations emerge that relate elements either as direct re-
sult from the projection or from "running the blend”, which consists of cognitive work
performed within the blend, according to its own emergent logic. There is a get-of

erning principles, the Optimality Pressures, that should drive the process of generating a
"good blend”:

¢ Integration - The blend must constitute a tightly integrated scene that can be ma-
nipulated as a unit. More generally, every space in the blend structure should have
integration.

e Pattern Completion - Other things being equal, complete elements in the blend by
using existing integrated patterns as additional inputs. Other things being equal,
use a completing frame that has relations that can be the compressed versions of
the important outer-space vital relations between the inputs.

e Topology - For any input space and any element in that space projected into the
blend, it is optimal for the relations of the element in the blend to match the relations
of its counterpart.

e Maximization of Vital Relations - Other things being equal, maximize the vital re-
lations in the network. In particular, maximize the vital relations in the blended
space and reflect them in outer-space vital relations. There are 15 vital relations:
change, identity, time, space, cause-effect, part-whole, representation, role, anal-
ogy, disanalogy, property, similarity, category, intentionality and unigueness.

¢ Intensification of Vital Relations - Other things being equal, intensify vital relations.

¢ Web - Manipulating the blend as a unit must maintain the web of appropriate con-
nections to the input spaces easily and without additional surveillance or computa-
tion.

e Unpacking - The blend alone must enable the understander to unpack the blend to
reconstruct the inputs, the cross-space mapping, the generic space, and the network
of connections between all these spaces
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¢ Relevance - Other things being equal, an element in the blend should have rele-
vance, including relevance for establishing links to other spaces and for running the
blend. Conversely, an outer-space relation between the inputs that is important for
the purpose of the network should have a corresponding compression in the blend.

These constraints work @asmpeting pressures and their individual weight in the process
should vary according to the situation. It is expectable that, with the growth of value of
one, others decrease. As far as we know, there is no work yet towards an objective study
of the optimality pressures, measuring examples of blends or specifying these principles
in detail. This, we believe, disturbs considerably the appreciation and application of Con-
ceptual Blending in scientific research, making a particular motivation for this work being
that of testing and specifying a formal proposal for the optimality pressures.

4 OQOverview of the Model

The architecture of Divago has four central modules: The Knowledge Base, the Mapper,
the Factory and the Constraints module.

4.1 TheKnowledge Base

As in any other Al system, knowledge representation is the first fundamental issue to
decide. Here, we are worried about the representation of a "concept”, for it is the goal
of Divago to generate new "concepts”. Assuming a symbolic approach (as opposed to
sub-symbolic ones, like neural networks or genetic algorithms), we decided for a seman-
tic network based representation, in which a concept does not stand alone as an isolated
symbol being its definition and explanation dependent on the relationships it has with the
surrounding concepts. This is far from a novel perspective. It goes in consonance with
Murphy and Medin’s mini-theories (Murphy and Medin, 1985) or CYC (Lenat, 1995)
and WordNet (Miller, 1995) representations. Even more important, any of the previously
mentioned works ((Costello and Keane, 2000; Andersen, 1996; Veale, 1997) suggest this
view of concepts.

From a semiotics perspective, this representation of concepts seems very Saussurian,
where "everything depends on relations”(de Saussure, 1983). We try to escape from this
extreme position through the possibility of association of effective semantics to each con-
cept (e.g. the concept "window” may be realized as a set of instructions for "drawing a
square”) and to the association of the concepts to the instances (as in (Pereira and Car-
doso, 2002a)). Now, from a Percian point of view, imaginingrfeaning triangle (?),

we have the individuaymbol (e.g. "window") as standing for eoncept (e.g. the concept
network around "window”) and corresponding to@hject (e.g. a drawing of a window).

More specifically, we take our concept networks as bé€lagcept Maps. A Concept Map

is a graph in which nodes hagencepts and arcs haveelations. The choice of symbols

for each one of these is arbitrary, yet we are following a normalization principle stating
that relations must belong to the Generalized Upper Model hierarchy ((J. Bateman and
Fabris, 1995), a general ontology with two hierarchies (elements and relations). Concepts
should be nouns or adjectives, preferably in the singular form. More constraints could be
followed for the concept maps, a matter also to be developed in future work. In Divago,
there are also other elements (such as instances), but for the scope of this paper, there
reader needs only to understand the notiocootept map.

In figure 4.1, we show an example of a concept map of a bird. These maps are necessarily
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arbitrary in the sense that each person would draw her own "bird” concept map, a result
of the different conceptualization and points of view one can take individually. Yet, we
assume that as the conceptualization of a "bird” (or of the "bird” domain) and so, when
we interpret a new concept as being a "bird with a moustache”, we refer to that specific
"bird” concept map with an attached subgraph that represents a "moustache”.

isa(horse,equinae) pw(leg, horse) purpose(horse, food)
isa(equinae,mammal) purpose(leg, stand) sound(horse, neigh)
existence(horse, farm) pw(paw, leg) purpose(mouth, eat)
existence(horse, wilderness) purpose(horse, traction) purpose(ear, hear)
pw(snout, horse) eat(horse, grass) color(mane, dark)
pw(mane, horse) ability(horse, run) size(mane, long)

pw(tail, horse) carrier(horse, human) material(mane, hair)
quantity(paw, 4) quantity(leg, 4) purpose(horse, cargo)
pw(eye, snout) guantity(eye, 2) taxonomicq(horse, ruminant)
pw(ear, snout) guantity(ear, 2) ride(human, horse)
pw(mouth,snhout) purpose(eye, see) mofwacess(horse,walk)

Table 1: The concept map bérse

isa(bird, aves) existence(bird, house) isa(aves,oviparous)
lay(oviparous, egg) existence(bird,wilderness)  purpose(bird, pet)
purpose(bird, food) purpose(eye, see) smahan(bird, human)
pw(lung, bird) motionprocess(bird, fly) purpose(beak, chirp)
purpose(lung, breathe) quantity(eye, 2) guantity(wing, 2)
isa(owl, bird) isa(paradisbird, bird) quantity(claw, 2)
ability(bird, fly) pw(wing, bird) conditional(wing, fly)
pw(feathers, bird) pw(beak, bird) purpose(wing, fly)
purpose(beak, eat) purpose(claw, catch) sound(bird, chirp)
isa(parrot, bird) ability(parrot, speak) pw(straw, nest)
pw(eye, bird) pw(leg, bird) purpose(leg, stand)
pw(claw, leg) roleplaying(bird, freedom) quantity(leg, 2)

isa(nest, container)

Table 2: The concept map bird

Two other important knowledge structures to refer here arréinges and thantegrity
congtraints. The frames have the role of describing specific composite concepts, situations
or idiosyncracies. For example, we could specify that we are in face of a "new ability”
if some concepfX has, in the blend, the ability, which was not present id’s input
space. We can even say that this "new ability” should have a minimal explanation, i.e.,
there must be a subpdartof X whose purpose is to provide ability.

frame(newybility(dl)) : ability(X, A) A purpose(P, A) A pw(P, X)
projection(blend, d1, X, X)A
newgbility(X,A) <— projection(blend,d2, A, A)A
not rel(d1, ability(X, A))

Frames can represent very abstract reasonings (e.g. the blend should have the same struc-
ture of the input space 1 - the "aframe”) or very specific (e.g. the "transpe&ns”
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frame). The generic space we use in the experiments has the frames of table 4.1.

Frame name Conditions

aframe The blend contains identic structure from input 1

aprojection The blend contains the same concepts of input 1

bframe The blend contains identic structure from input 2

bprojection The blend contains the same concepts of input 2

pw_basedexplanation Set of part-whole relations associated to a concept

transportmeans Features expected in a generic transport means

purposefulsubpart Set of relations that justify the existence of a subpart
of a concept

new.ability A concept has an ability relation not existent in any of
the inputs

new.creature A concept s a living thing that did not exist (or wasn't
such) in any of the inputs

new feature A concept has a feature relation not existent in any of
the inputs

Table 3: Frames of the generic space

The integrity constraints serve to specify logical impossibilities. Two examples of
integrity constraints could be for specifying that something cannot be dead and alive at
the same time and for avoiding part-whole recursion, i.e. something cannot have a part-
whole relation (pw) with itself:

false « state(X,dead) A state(X, alive)

false + pw(X, X)

The violation of an integrity constraint does not imply the elimination of a blend, it
only brings a (configurable) penalty to its value, thus it must have strong arguments to
violate an integrity constraint and still be a "good blend”. For space restrictions, we don’t
show the generic domain concept map, yet the reader should only know it has a very long
list of "isa” relationships, establishing an ontological basis for the conceptsi$a(ged,
color), isa(human, primate), isa(physical object, object), etc.).

42 Mapper

The Mapper currently takes an optional role in the architecture. Its purpose is to generate
mappings between the concept maps of the input domains automatically. It uses an algo-
rithm of structure matching inspired in Tony Veale's Sapper framewdrkRasically, it

uses a spreading activation algorithm to look for the largest isomorphic pair of subgraphs
from the input domains. In this context, two graphs are considered isomorphic if they
have the same relational (arcs) structure, independently of the concepts (hodes). There is
potentially more than one structure matching between any pair of concept maps and this
complexity grows exponentially with the number of relations. This means the "perfect
choice” is not guaranteed every time we run the Mapper.

This module generated three different mappings for input spaces of "horse” and "bird”,
as shown in table 4.2.
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vegetabldfood <« vegetable
food <+ food
ear « wing horse <« bird
shout <« bird equidean «+» aves
eye <« lung animal <+ animal
mouth <« feathers humansetting <« house
2 & 2 wilderness <>  wilderness
hear < fly ruminant <  oviparous
run <« fly
1 cargo ¢« pet
neigh < chirp
snout <« lung
mane <« feathers
tail < beak
mouth <« beak leg + eye
shout <« bird paw < wing
eye <« lung 4 & 2
ear « feathers eye <+ leg
eat < eat ear « claw
hear « catch
2 grass <« grass
3
Table 4: The three mappings
4.3 Factory

The Factory is the module of Divago that spends the most of processing time. It makes a
search for blends that fit the optimality constraints in the space of "selective projections”.
This space of "selective projections” has a very high complexity. Taking a close look on
this issue, we notice that, for anput domain 1 withm concepts and amput domain

2 with n. concepts, we may have the maximummoefx n different mappings (if we use

the isomorphic mappings, as in the Mapper), with the larger mapping having the size
k = min(m,n)(we assume the functionin(z,y) to return the smaller number from
andy). This projection selection is made independently on each concept, which means
we havel = m + n different concepts for each blend, each one with its own projection.
So, in the "least complexity scenario”, the size of the mapping is 0, meaning we have
only two choices for each of thieconcepts (either it gets projected to the blend or it is
not projected), thus we ha& "selective projections”. If the size of the mappingks

(the maximum possible), we have four choicesXbrconcepts £ concepts in each of the
domains) because each concephapped tq) can be projected either ta y, a compo-

sition of both (we represent hyly) or nothing. Apart from thesk concepts, the rest

(I — 2k) has only two possibilities. This leads us to the conclusion that we have a range of
2! to 4%F x 2!=2F different "selective projections” to choose, which is a very large search
space. For example, far = n = 20 (a "small” size pair of networks), we have at least
240 different projections.

Given this complexity, we decided that the search procedure should be able to do parallel
search, without trying to follow a sequence of steps determined by the optimality pres-
sures (it would raise the question "Which order of constraints should we take?”). The best
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solution that we found was that of Genetic Algorithms: an evolution framework in which
we have a sequence jpdpulations of individuals, eachindividual with afitnessvalue that
represents itsurvival andreproduction possibilities. This well-known framework that
follows the paradigm oEvolutionary Computation has made much success in problems
with a search space with the configuration we described. The detailed formal and techni-
cal explanation of Genetic Algorithms (GA's) is far out of the scope of this paper, so we
redirect the interested reader ®).(On the other side, those not interested in the technical
details of our GA implementation may skip the next explanation and retain the general
idea that this is a parallel search that does not guarantee the optimal solution but is able
to search a vast area of the space and return, with correct parameters, relevant solutions.
In our GA, theindividualswe areevolving are blends, each one determined by a "selective
projection”. Theindividual is then an ordered sequence of projections ¢dres), each

one with an allowed value given by the projection function (from the range z|y and

(). The evaluation of a blend is made by the application of the optimality pressures and
we have populations of individuals (currently 100) that maturally selected according

to fitness value. The fitness value is obtained by a weighted sum of the individual values
of the optimality measures.

After the selection of the individuals, the step of generation of the following population

is made by using 4 operations: direct reproduction (the individual is copied to the next
population); crossover (two individuals exchange part of their genotypes); mutation (ran-
dom changes in the projections); random individual. The system stops when a predefined
number of iterations of this process has been done, when it is stalled around a maximum
for more than a predefined number of iterations or when an individual was found with a
minimum predefined value.

Through this process, Divago is able to search in a huge space of blends according to the
preferences of the user. The best solution is not guaranteed, but it is expectable that the
higher the number of iterations, the more likely it is to find a good blend.

4.4 Constraints

The Constraints module has the computational implementation of the optimality pres-
sures. The general procedure of this module is to make a preprocessing of each blend
(checking frame satisfaction and completion, integrity constraint violation, vital relation
projection, etc.) and then obtain a value for each of the eight measures. These values then
participate on a weighted sum, which yields the final result that is returned to the Factory.
The weight attributed to each optimality pressure is defined by the user. The optimality
pressures are formalized and described in (Pereira and Cardoso, 2003b), and so an entire
paper is needed to specify in detail our implementation of these, therefore we give an
informal explanation below. Beforehand, we would like to say that we make no claims

in respect to the cognitive realization of each measure, being these eight suggestions of
guantification concerning totally to the representation and scope of this model which, we
remind, moves towards a computational account of conceptual blending. This doesn'’t
mean that this proposal should not be verified or tested with regard to cognition and the
blending phenomena in general, it states that we didn’t make our measures based on cog-
nitive experiments, but only toyed to follow the philosophy behind the description that
F&T give in (?) projected to our formal model. In the system, each weight is normalized

to fall into the [0,1] interval.
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44.1 Integration

Frames have a natural integration role. The reasoning behind frames lays on the idea that
concepts within it should be tightly integrated according to a situation, structure, cause-
effect or any other relation that ties a set of concepts onto one, more abstract or broad,
composite concept. For example, the frame of "transport means” corresponds to a set of
concepts and relations that, when connected together, fit the abstract notion of "transport
means”. We see frames agormation molds and building a blend for a given situation
should depend much on the choice of these structures.

Assuming the sef’ of frames that are satisfied in a blend, we definefthme coverage

of a domain to be the set of relations from its concept map that belong to the set of
conditions of one or more frames M. The larger the frame coverage of the blend, the
more itis integrated. Yet, a blend that is covered by many frames should be less integrated
than a frame with the same coverage, but with less frames. In other words, if a single
frame covers all the relations of a blend, it should be valued with the maximal integration,
whereas if it has different frames being satisfied and covering different sets of relations, it
should be considered less integrated. The intuition behind this is that the unity around an
integrating concept (the frame) reflects the unity of the domain. The Integration measure
we propose varies according to this idea. It also takes integrity constraints into account
so that, when a frame violates such a constraint, it is subject to penalty. We think the
integration measure belong, along with the relevance and pattern completion measures,
to the fundamental bricks of the blending process. It leads the choice of the blend to
somethingecognizable as a whole, fitting patterns that help to determine and understand
what anew concept is.

4.4.2 Topology

The Topology optimality pressure bringertia to the blending process. It is the con-
straint that drives against change in the concepts because, in order to maintain the same
topological configuration as in the inputs, the blend should maintain exactly the same
neighborhood relationships between every concept, ending up being a projected copy of
the inputs. This pressure is normally one that is disrespected without big loss in the value
of the blend. This is due to thienagination context that normally involves blends, i.e.,
novel associations are more tolerable.

In our Topology measure, we follow the principle that, if a pair of conceptandy,

is associated in the blend by a relatiarthen the same relation must exist in the inputs
between the elements from whiehandy were projected. We say thafz, y) is topo-
logically correct. Thus, the value of Topology corresponds to the ratio of topologically
correct relations in the concept map of the blend.

4.4.3 Pattern Completion

The Pattern Completion pressure brings the influence of patterns being them present in
theinputs or come from thegeneric space. Sometimes a concept (or a set of concepts)
may seem incomplete but making sense when "matched against” a pattern. At present,
in the context of this work, a pattern is described by a frame, i.e. we don’t distinguish
these two concepts, and therefore pattern completion is basically frame completion. Here,
as in the definition of this principle, the completing knowledge becomes available from
"outside”, not as a result of projection. This means the act of completing a frame con-
sists on asserting the truth of the ungrounded premises, a process that happens only after
a sufficient number of premises is true. We call this élielence threshold. When the
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conclusion part of the frame is known as true, whereas its premises aren'’t so, we call this
completion by abduction.

As in the integration pressure, we have the problem of taking into account multiple frames.
This time, given that we are evaluating possible completion of subsets of relations, instead
of sets of relations that are actually verified in the domain, it is difficult to find such a lin-
ear rationale (e.g. would two patterns each with individual completisalue higher

than three having each slightly less th&?). As a result, the value of Pattern Completion

of a blend corresponds to the evidence threshold of the union of the frames.

444 Maximization of Vital Relations

For the maximization of vital relations, we estimate the impact of the inner-space and
outer-space vital relations to the blend. Therefore, we need three components: the inner-
space vital relations from the inputs that get projected to the blend; the outer-space vital
relations between the inputs that get projected to the blend either becoming an inner-space
vital relation or being compressed onto a single concept; the inner-space vital relations
appeared from the emergent structure. Maximization of Vital Relations is calculated as
a ratio of the actual number of vital relations in the blend w.r.t. the maximum possible
number of vital relations (that would appear in the blend if every concepts were projected).

4.45 Intensfication of Vital Relations

Intensification of Vital Relations is the principle that maximizes the concentration around
a specific vital relation. 1.e., while the Maximization of Vital Relations favors the creation
in the blend of vital relations in general, Intensification is based on focussing on a spe-
cific vital relation. Thus, we need a notion of "intensity” of a vital relation. For such, we
argue that a vital relation is considered more "intense” when there is more evidence of its
strength. This evidence should be dependent on the kind of vital relation we are dealing
with. For example, an "analogy” vital relation between two concepts is stronger when
there is also a systematical association between the neighborhood concepts (the system-
aticity principle).

The evaluation of this Intensification pressure takes the point of view that a blend that
applies only one vital relation, with intensity should have higher measure than a blend
with n vital relations, each with intensity/n (the sum would thus be). So we want to

favor "concentration” of vital relations.

In the experiments below, we only apply one vital relation (analogy) in the mapping, so
this measure could not yet be tested.

4.4.6 Unpacking

Unpacking is the ability to reconstruct the whole process starting from the blend. In our
view, such achievement underlies the ability to reconstruct the input spaces, specifically.
This ability, we think, depends on how much the reader "recognizes” subparts of the blend
as being from the inputs. This lead us to follow a simple heuristic: the unpackability of
a concept is the ratio of relations it has with neighbor concepts that match its original
existence in the input(s) space(s) w.r.t. the relations it has with every concepts. If there is
a big match (i.e. a big ratio), then the concept "reminds” its existence in other space.

The overall measure of Unpaking corresponds to the average of the individual values.
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447 Web

The Web principle concerns to being able to "run” the blend without cutting the connec-
tions to the inputs. In our opinion, this is not an independent principle, being co-related
to those of Topology and Unpacking because the former brings a straightforward way to
"maintain the web of appropriate connections to the input spaces easily and without ad-
ditional surveillance or computation” and the latter measures exactly the work needed to
reconstruct the inputs from the blend. It is not to say that Web is the same as Topology
or Unpacking, what we are arguing is that, on one side, Topology provides a pressure
to maintain the most fundamental connection to the input: the same structure; on the
other side, Unpacking evaluates the easiness of reestablishing the links to the inputs. The
weighted sum of these two values yield, we propose, an estimation of the strength of the
web of connections to the inputs.

Since it is not an independent variable, we don’t apply the Web constraint in the tests we
show here.

4.4.8 Reevance

The notion of "relevance” or "good reason” for a blend is tied to the pragmatics of the
situation. In other words, the context and goal of the blending generation. Once again,
frames take a fundamental role as being "context” specifiers, (i.e., the set of constraints
within a frame describe the context upon which the frame is fulfilled). Therefore, having

a set of goal frames, which could be selected from any of the existent domains or specified
externally, a blend gets the maximum Relevance value if it is able to satisfy all of them.

In this measure we must also take into account partial completion of the goal frames.
A blend that "almost” satisfies a goal frame should be valued in relation to a frame that
doesn’t (assuming both are equal in the other features). Regarding this, we consider a
factor for the partial completion of the goal frames following the same procedure as in
Pattern Completion.

Intuitively, this measure takes two parts: the satisfied goal frames and the unsatisfied goal
frames. The value of the latter depend on completion (e.g. if Completion=50%, these
count as "half” satisfied goal frames).

An aspect of the goal frames is that they allow the application of queries. For example,
if we want to find a concept that "flies”, we could build a goal frame with the relation
ability(x, fly). The blends that satisfy this frame would have high relevance.

5 Experiments

We made two different experiments: assessment of the individual effects of each measure
on the final results; qualitative evaluation and tuning of the model. After several prelim-
inary GA parameters tuning tests, we decided for 100 individuals as the population size,
5% of assexual reproduction (copy of an individual to the following population), 80%

of crossover (combination of pairs of individuals), 5% of mutation and 1% of random
generation (to allow random jumps in the search space). We have three different stop-
ping conditions: appearence of an individual with the maximum value (1); achieving
populations ¢ = 500); being stalled (no improvements in best value) for more than
populations = 20).
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5.1 Evaluating Optimality Pressures

This test aims to understand the real effect of each measure in the final results, bringing
up a way to predict and control the system. For the first part of these experiments, we iso-
lated each optimality pressure, by attributing zero weight to the remaining criteria. Since
one of the optimality pressures is not independent (Web) and another (Intensification of
V.R.) only applies one mapping (the analogy base), we did not test them, meaning that we
had six different criteria to take into account.

The input domains we applied were the domainkarse andbird (in tables 4.1 and 4.1),
meaning that the expected results range from the unchanged copy of one (or both) of the
concepts to a horse-bird (or bird-horse) which is a combination of selected features from
the input domains. The generic domain consists on a simple general ontology, a set of
frames and integrity constraints (see table 4.1). We applied the mappings presented in
figure 4.2. For each mapping, we tested the six optimality pressures. Each of these com-
prising 30 runs.

We present now a brief analysis of the effect of the mapping size on each of the measures,
according to four parameters: size of the returned solutions, number of local maxima,
value of the best returned solution and number of novel relations (relations between con-
cepts that didn’t exist in any of the inputs).

result size nr. maxima value new relations

Integration N N N N
P. Completion - - N N
Topology a - 1 -
Max. V.R. - Ve 1 -
Unpacking N - 1 N
Relevance - - - -

Table 5: Effect of mapping size on the Optimality Pressures

From the table 5.1, we see that, as the mapping size grows, so does the size of the best
results in Integration, Topology and Unpacking. We can also see it had no perceivable
effect on Relevance, understandable by the fact that this measure is calculated from a
set of specific goals that are not dependent of the mapping size. Integration (and Pattern
Completion) too depends on the knowledge base (the available frames). The same notes
are valid for the next analysis, in table 5.1, where we see the correlation of the calculated
value in each measure with the size of the blends as well as the amount of new relations.

size new relations

Integration N Va
P. Completion ~ N
Topology - ¢
Max. V.R. - ¢
Unpacking AW AW
Relevance - -

Table 6: Correlation Values Size and new relations

1A run is an entire evolutive cycle, from the initial population to the population in which the algorithm
stopped
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For a more detailed analysis, we would like to summarize some observations on the
independent effects of the measures:

¢ In Integration, frames behave aattractor points in the search space. Moreover,
the frames with a larger coverage tend to be preferred, although when too large
(like aprojection or aframe) they are dropped away. The evolution is directed to
a compromise of coverage and satisfiability. The complexity of the search space
landscape grows with mapping size. In fact, when we have a mapping of size 2, the
algorithm only finds two different solutions and the better rated (possibly a global
maximum) is achieved in 77% of the runs, but with a mapping of size 5, it returns
six different blends, being the best choice retrieved only 43% of the times. A good
compensation for this apparent loss of control is that the returned values are clearly
higher (0.68, for the best) than in the small mappings (0.22), meaning with big
mappings there are much more possibilities to find integrated blends.

e Pattern Completion drives the blend to partially complete (i.e., instantiate partially
its conditions) the highest possible number of frames, leading, in each case, to sev-
eral sets of relations that fit into those frames without satisfying them. Interestingly,
this means that Pattern Completion can serve as a heuristic guide to Integration be-
cause it brings gradually to the blend the concepts and relations that are needed to
complete the frame. In which respects to tharch landscape, it seems to be very
rich in local maxima. The most constant results came from mapping 2, with 13%
of the best result obtained and 20% of the second best. An interesting remark is
that the resulting local maxima always fall within a very strict range of values (of
maximum amplitude 0.11, in mapping 3).

¢ In all the experiments witfiopology, the final results were valued 100%, meaning
that this constraint is easily fully accomplished, independently of the mapping. An
interesting fact is that there is a multitude of solutions in $&srch landscape of
Topology, showed by the amount of different final results in each mapping. Intu-
itively, and observing the short duration of each run, this means that, wherever the
search starts, there is always a Topology optimal point in the neighborhood. From
observation of the relations contained in the final results, we see that this constraint
brings a tendency fadisintegration, i.e, small isolated graphs appear in the blend.
Each isolated graph is either a copy of a (normally unmapped) subgraph of one
input source or consists on complete structure matching (there are concepts from
both domains, but only the relations that exist in both are present)

e The influence oMaximization of Vital Relationsin the results is straightforward,
given that its highest valud) reflects the presence, in the blend, of all the vital
relations that exist in the inputs. As the evolution goes on in each run, the value
grows until reaching the maximum reasonably early. For each set of 30 runs, it
reached the valuea minimum of 93% of the times, and the remaining 7% achieved
at least a value of 0.95. As in Topology, the search space of Maximization of Vital
Relations is verysimple since there is a global maximum in the neighborhood of
(almost) every point.

e The results of th&npacking measure show that it has a notorious side effect on the
size of the blend, it drives it to very small sets (between 0 and 5) of relations. The
interpretation here is straightforward: the ratiauopackable concepts is highly pe-
nalized in bigger sets because of the projected relations that come as side effect of
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the projection of inpackable or not) concepts. These relatiorsfuse the unpack-

ing algorithm so that it leads the evolution to gradually select the smaller results.
The maxima points also correspond to the valubut it seems, from the experi-
ments, that there is a very limited set of such individuals, achieved in the majority
(at least 93% for each mapping) of the experiments.

e The first part of the test oRelevance focussed on making a single relation query.
In this case, we asked for "something that flies” (abilityfly)). The results were
straightforward in any mapping, accomplishing the maximum valjién(100%
of the runs, although the resulting concept maps did not reveal necessarily any
overallquality or unity. In other words, the evolution took only two steps: when
no individual has a relation "ability( fly)”, therefore with value 0; when a rela-
tion "ability(_fly)” is found, yielding a value 1, independently of the rest of the
concept map. The second part of the test on Relevance, by adding a &faire (
ity_explanation) to the query, revealed similar conclusions. There was no sufficient
knowledge in any of the input domains to satisfy this new frame completely, so
the algorithm searched for the maximum satisfaction and reached it 100% of times
in every mapping. So thiendscape seems to have one single global and no local
maxima, reflecting the integration of the two parts of the query. If there were sep-
arate frames, it is expectable the existence of local maxima. Intuitivelgetineh
landscapes of Integration and Relevance seem to be similar.

5.2 Qualitative evaluation

In this stage of the experiments, we try to understand the behavior of the system by gen-
erating and observing different blends, each one with a specific goal. The first goal is to
generate avell known blend of a horse and a bird: tipegasus. Then, we allow more
variations of this creature, by changing the mapping or the weights of the optimality pres-
sures. Finally, we try to generate different creatures that, from our point of view, reveal
interest.

5.2.1 ThePegasus

For our concerns, we define a pegasus as being a "flying horse with wings”, so leaving
out other features it may have (such as being white). These extra features could also
be considered but would need knowledge concerning to the several aspects of ancient
Greece, Greek mythology and some ontological associations (e.g. purity is white) and we
believe would turn the generation of the blend considerably more complex, yet interest-
ing. Formally, the pegasus we want to generate has the same concept map of the horse
domain augmented with 2 wings and the ability to fly (the relations "ability(horse, fly),
motion process(horse, fly), pw(wing, horse) and quantity(wing, 2)").

For validation purposes, we started by submitting a query with all the relations of the pe-
gasus, so as to check if they could be found in the search space, and obviously the results
reveal that only the mapping 3 respects such constraints. This means we are exclusively
using this mapping throughout this part of the test.

Knowing that the solution exists in the search space, our goal is to find the minimal nec-
essary requirements (the weights, the frames and the query) in order to retrieve it. From a
first set of runs, in which the system considers a big set of different frames and no query,
we quickly understood that it is not simple (or even possible) to build the pegasus solely
by handling the weights. This happens because there is no controlling device that allows
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a user or an evaluation function to drive the evolution to a particular place. The optimality
pressures provide control regarding to structural evaluation and general consistency and
may yield interesting results, but only by chance a pegasus, which drives us to the need
of queries.

A query may range from specific conditions we demand the blend to respect (e.g. the set
of conditions for flying, enumerated above) to highly abstract frames that reflect our pref-
erences in the blend construction (e.g. the fraprejection: elements from input space

1 should all be projected). Intuitively, the best options seem to comprise a combination of
the different levels of abstraction.

Since a query is only considered in the Relevance measure, its weight must be large if we
intend to give it priority. In fact, using only Relevance is sufficient to find the solution if
the query is specific enough, as we could test by using a queryapiitiection and the

flying conditions. Yet, it is not expectable to have very specific queries (in these cases,
the search wouldn’t be needed, in the first place) and we are more interested in less con-
strained search directives, namely from a creativity point of view. In the table 5.2.1, we
show the parameters we used. The weights presented correspond to Integrity (1), Pattern
Completion (PC), Topology (T), Maximization of Vital Relations (MVR), Unpacking (U)

and Relevance (R). The "fly conds.” are the relations the blend must have in order to be a
flying creature, and aframe, aprojection and mahility are frames as described before.

Weights Query
T MVR

R
1 fly conds. + aprojection

1 fly conds. + aframe

1 fly conds.+ aprojection + aframe
1 fly conds.+ aprojection + aframe
1 fly conds.+ aprojection + aframe
1 fly conds.+ aprojection + aframe
1 fly conds.+ aprojection + aframe
1 fly conds.+ aprojection + aframe
9 fly conds.+ aprojection + aframe
9 newbility+aframe+aprojection

B Y
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T
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Table 7: Parameters used in each experiment.

The first 8 experiments were dedicated to understand the effect of gradually adding
optimality pressures to the fitness function. In the first three (only Relevance is used), we
verified that, although it waeasy to have all the concepts and relations we expect for a
pegasus, often it was complemented by an apparently random selection of other relations.
This results from having no weight on Integration, which we added on the experiment 4,
yielding the most strict pegasus, the projection of the entire horse domain, and the selec-
tive projection of wings and the fly ability from the bird domain, in more than 90% of the
runs. In experiment 5, the influence of Pattern Completion lead the results to minimum
incompleteness (e.g. a pegasus with everything except a mane, wings or any other item),
which revealed that, by itself, it is not a significant or even positive contribution to the
present goal, a reason for dropping its participation in the following experiments. More-
over, it suggests a revision of the implementation of this measure.

Adding Topology (exp. 6)brought essentially two different kinds of results. In 60% of
the runs, it returned the "correct” pegasus with extra features like having 2 wings (which
was not constrained in the query), feathers or a beak, either of each apparently selected

http://wwmv. ai sb. org. uk



The horse-bird experiment

at random. These were also given the higher scores in the experiment. In other 37% of
the runs, the results were either "simple” horses or a compromise between a bird a horse
(e.g. two legs, a beak, two wings, ruminant, a mane, paws, etc.). A possible interpretation
is that, on one side, the framaprojection andaframe already imply strong topological
maintenance, and Topology itself brings knowledge that, although not considered in the
frames, strengthens this value. Yet, this does not avoid the existence of local maxima that
represent stable results, in terms of the weights considered. The following experiment,
the inclusion of Maximization of Vital Relations, confirmed the same conclusions, but
with more control on the kind of extra relations transferred to the blend. For example, the
blend may have 2 wings (from the relatiquantity), a beak and feathers (fropw), but it

is never an oviparous (frosaxonomicg). On the other hand, we can sense a gradual lack

of focus on the overall results (no two runs returned the exact same result) complicating
considerably our goal of controlling the system. There is a simple explanation for this:
Relevance, Integration, Topology and Maximization of V.R. all have the same weight and
some (like Maximization) are more easily satisfied, thus driving the evolution around their
maxima.

The eighth experiment brought a more stable set of results. Adding Unpacking to the
other pressures reassures the prominence of the "basic” pegasus, but, as happened with
the majority of sixth experiment results, augmented with features projected from the bird
domain. This time, some of these new features came isolated to the blend, i.e., not con-
nected to the rest of the blend (e.g. there are 2 claws that serve to catch, but they don’t
make part of anything).

An immediate conclusion we took from these first 8 experiments was that each pres-
sure should have a different weight, correspondent to the degree of influence it should
have in the result. In our case, we are seeking for a specific object (the pegasus), we
know what it is like, what it should not have and some features not covered by the query
conditions that we would like it to have. This lead us to a series of tests for obtaining
a satisfiable set of weights, used in the configurations 9 to 12. Given the huge dimen-
sion of the problem of finding these weights, they were obtained from a generate-and-test
process, driven by our intuition, so there is no detailed explanation for why exactly these
values and not others. Yet, a qualitative analysis can be made and we see a clear strength
given to Relevance and Integration. The former serves to "satisfy what we asked” and
the latter guarantees overall coherence (centered on the query frames) and consistency
(e.g. it prevents the solution from having 2 and 4 legs simultaneously). There is also a
more discreet presence of Topology, Maximization and Unpacking, to allow the transfer
of extra knowledge.

The experiment 9 revealed, possibly, the "best” pegasus we could expect. As we can
see in the two results presented in figure 5.2.1, it has all the horse features, the specified
"flying” requirements and some added knowledge that we consider valid, like having 2
wings, lungs or claws. Itis clear that these results were subjectively driven by us in the
choice of the weights, but the argument we try to bring is that it produces a new concept
that, not only respects the query, but also brings new knowledge that was selectively
projected.

In the final experiment (10), we decided to give a more vague specification, asking
only for anew_ability in the blend, as well as the generic franapsojection andaframe.

As a result, we found the exact pegasus in 23% of the times. This gives the first evi-
dence that the system can be used for generating concepts without a very constraining
and specific query and led us to the following experiments, in which we tried to assess its
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quantity(wing, 2) conditional(wing, fly) motioprocess(horse, fly)
ability(horse, fly) purpose(wing, fly) pw(wing, horse)
isa(horse,equinae) pw(leg, horse) purpose(horse, food)
isa(equinae,mammal) purpose(leg, stand) sound(horse, neigh)
existence(horse, farm) pw(paw, leg) purpose(mouth, eat)
existence(horse, wilderness) purpose(horse, traction) purpose(ear, hear)
pw(snout, horse) eat(horse, grass) color(mane, dark)
pw(mane, horse) ability(horse, run) size(mane, long)

pw(tail, horse) carrier(horse, human) material(mane, hair)
quantity(paw, 4) quantity(leg, 4) purpose(horse, cargo)
pw(eye, snout) quantity(eye, 2) taxonomicq(horse, ruminant)
pw(ear, snout) quantity(ear, 2) ride(human, horse)
pw(mouth,snout) purpose(eye, see) mofwocess(horse,walk)

Figure 1: Example 1

purpose(claw, catch) pw(claw, leg) purpose(lung, breathe)
pw(lung, horse) conditional(wing, fly) motioprocess(horse, fly)
ability(horse, fly) purpose(wing, fly) pw(wing, horse)
isa(horse,equinae) pw(leg, horse) purpose(horse, food)
isa(equinae,mammal) purpose(leg, stand) sound(horse, neigh)
existence(horse, farm) pw(paw, leg) purpose(mouth, eat)
existence(horse, wilderness) purpose(horse, traction) purpose(ear, hear)
pw(snout, horse) eat(horse, grass) color(mane, dark)
pw(mane, horse) ability(horse, run) size(mane, long)

pw(tail, horse) carrier(horse, human) material(mane, hair)
quantity(paw, 4) quantity(leg, 4) purpose(horse, cargo)
pw(eye, snout) guantity(eye, 2) taxonomicq(horse, ruminant)
pw(ear, snout) quantity(ear, 2) ride(human, horse)
pw(mouth,snout) purpose(eye, see) mofwocess(horse,walk)

Figure 2: Example 2
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generative possibilities.

5.2.2 Other creatures

After the pegasus experiments, we made additional tests, without having particular results
in mind. We didn’t make significant variations on the weights of the previous tests. For
two, we removed some weights from the configuration and reduced Integration in the lat-
est ones. In table 5.2.2, we show all the configurations (the omitted weights are 0, as in
the other experiments). We made variations on the query and checked the results, trying
not to bias for particular outcomes. Therefore, these tests aim to give an informal insight
on the generative potential of the system.

We found several "creatures” that we'd like to describe. To the first (experiment 11), we
call "dumborse”, a flying horse that uses its ears as wings Qikebo, the flying ele-
phant). This "creature” is possible to find in mappingeéré are mapped ontaings). It

is exactly a horse, but it has wings instead of ears, which serve to fly and to hear. With
Dumbo in mind, we tried to go further to a horse with ears that serve to fly and hear
(instead of wings in place of ears), and this was achieved by allowing only weights on
Integration and Relevance (experiment 12). A simple explanation is that, while it satisfies
entirely Relevance and, almost totally, Integration, it has less topology and less Unpack-
ing (ears don't ever relate to fly in the bird domain).

Another creature to report is the "flying snout” (which appeared in 23% of the runs of
configuration 13, see table 5.2.2), a snout that has all the features of the bird. This is
a "week” blend in the sense that an isolated concept (the "horse snhout”) gets projected
to the "bird” structure without any surrounding support such as its shape or its purpose.
The second creature is the transport bird, which has all the features of the bird, but also
carries humans, it serves for cargo and traction. It appeared occasionally during the previ-
ous experiments, but was triggered now by the frame "transpe#ns” in the query (in
configuration 20), meaning indeed we had it in mind. Yet, its appearance throughout the
tests (only when dealing with mapping 3, though) lead us to include it in this section. The
third creature is an oviparous horse, with two legs (instead of four), two wings and claws.
It appears in less than 10% of the results in the configuration 20, but it is the most valued.
In configurations 14, 15, 21 and 22, the results were essentially copies of the "bird”
concept map, whereas 19 and 21 yielded highly unstable partial projections of both the
"horse” and the "bird” concept maps simultaneously to the blend, since each of the 30
runs returned a different concept map. In the latter, we find it difficult to interpret any-
thing. A possible explanation for these unsuccessful configurations is that the frames used
are too much abstract, leaving no concrete goal to the system.

These ad-hoc experiments reveal that the system can produce novel concepts, yet it
also demonstrates clearly that we face a very large search space, demanding a serious
reflection about the tuning of the system.

It is the capacity to create novel and valid (with regard to the queries) creatures that tes-
tifies the potential of this model towards computational creativity. On one hand, it sure
allows the creation of new concepts, a vital feature of a creative process, but on the other
hand, the ultimate control always needs to be parameterized by a user (or another sys-
tem?). There seems to be a paradox here: one must orient the system towards novelty
and usefulness, but if doing so exhaustively, the emengeativity is seta priori by the
parameters. Yet, this apparent paradox seems to be present in discussions around cre-
ativity regarding issues like intentionality or evaluation. In fact, the boundaries between
what is and what is not a creative product are very controversial and fragile. In our case,
this boundary may lie in the level of abstractness given in the specification, which should
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Exp. Weights Query Mapping

# | T MVR U R

11 85 4 2.5 1 9 nevability+aframe+aprojection 1
12 85 0 0 0 9 nevability+aframe+aprojection 1
13 85 0 0 0 9 nevability+ bprojection + bframe 1
14 85 4 2.5 1 9 nevability + bprojection + bframe 1
15 85 4 25 1 9 bprojection + bframe 1
16 85 4 2.5 1 9 nevability + bprojection + bframe 3
17 85 4 25 1 9 bprojection+ aframe 1
18 85 4 25 1 9 bprojection+ aframe 3
19 85 4 25 1 9 aprojection+ bframe 3
20 4 4 25 1 10 transparheans+bframe+bprojection 3
21 4 4 25 1 10 transparheans+bframe+bprojection 1
22 4 4 25 1 10 transparheans+bframe+bprojection 5

Table 8:

comprise of the mandatory conditions (e.g. specific frames) and more abstract preferences
(e.g. abstract frames, likagframe).

6 Discussion

As we expected, the experiments raised several fundamental issues, some of which de-
manding a short reflection. Does the system agree totally with the Conceptual Blending
framework? Does this system implement any kind of Computational Creativity? What
can we expect from this model?

Since Fauconnier and Turner do not present a formal perspective on Conceptual Blending,
it is not straightforward to validate our work in this respect. Starting from the represen-
tation of a mental space, we decided for a static, generic notion, that of a domain. We
believe the representation we use (or an extension of it) could lead to mental spaces in
general, but we are not confident to claim as much. This reduction of the knowledge basis
of Conceptual Blending - the mental space - brirggriori, limitations to our model.

If successful, it should be able to produce the specific types of blends that result from
blending static knowledge, such as domains, as opposed to dynamic knowledge, such as
we have in discourse. In the latter case, we would need to extend our language to consider
modalities, tense, mood, perspectives, or any other subjective, pragmatic or circumstan-
tial components of discourse. Assuming a concept, like "horse”, can be validly defined
by a domain (that of "horses”, from a common sense perspective), as much as "bird”, our
model is expected to generate new concepts, from blending "horse” and "bird”. Above
all, this "horse-bird” must be understandable frajnthe chain of explanatory connec-

tions that appear in the new domab)the reference to the input domains, in the ends of

the explanatory connections. This agrees with the notioemefgent structure andweb

of connectionsthat are present in the fundamentals of Conceptual Blending.

In (Pereira and Cardoso, 2002b)and (Pereira and Cardoso, 2002a), we discussed the po-
tential of this framework from the point of view of Computational Creativity, namely in
transforming the search space by changing the meta-level description of a domain. We
showed that, having a level of instances (in the example, visual constructions of a "house”
and a "boat”), a theory for explaining the concepts involved in them, and assuming these
instances as the search space for the problem (in the example, "drawing a house” or a
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"boat”), it is possible to obtain new ideas via blending the theories. After generating a
blend (with the first version of this model, formally described in (Pereira and Cardoso,
2001)), the system reinterpreted each of the instances according to the new relations (e.g.
a house with a round window). There were no criteria for assessing the value of the blends
or even selective projection. The idea was to generate the whole new search space at the
instance level starting from different mappings. Currently, we focus on domain theories
and on the evaluation of the blends via optimality pressures, leading to further conclu-
sions about the creative aspects of this model. Creativity has, without controversy, two
important aspects: novelty and usefulness. The work described in (Pereira and Cardoso,
2002b) and (Pereira and Cardoso, 2002a) is centered on novelty, leaving the task of choos-
ing the "useful” results a responsibility of the search procedure. The combination of the
two could then be novel and useful. A step further, the model we present now brings two
components that may be precious for usefulness: the frames and the optimality pressures.
Frames provide low-level specifications or directives that should be valued in the blend,
whereas the 8 optimality pressures work as high-level directives that allow the system to
evaluate each blend according to several aspects. Thus, without having to exhaustively
specify the query, it is possible to generate a novel concept that conforms a set of con-
straints. From the assumption that the ability to create concepts is a factor of creativity,
we argue ours is a computational model of creativity.
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