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Abstract

The proliferation of new methodologies and frameworks for software development, as well

as the spreading use of open source repositories to publish software projects, highlighted

the need of a specific set of tools and metrics. These tools should be able to provide

information about how maintainable a system is and also about how it has evolved. One

characteristic that impedes software from achieving good levels of maintainability is the

increasing complexity of software. The reduction of software complexity can improve other

characteristics, in which testability or maintainability are included.

Empirical observations have shown that typically, the more complex the software is, the

bigger the test suite is. Thence, a relevant question, which originated the main research

topic of our work, has raised: “Is there a way to correlate the complexity of the test

cases utilized to test a software product with the complexity of the software under test?”.

Therefore, this work presents a new approach to infer software complexity with basis on

the characteristics of automatically generated test cases. From these characteristics, we

expect to create a test case profile for a software product, which will then be correlated

to the complexity, and as well as to other characteristics, of the software under test. We

will focus on object-oriented software, more specifically software implemented in the Java

programming language.

As an outcome of this research it is expected to provide developers and software

architects with means to support and validate their decisions, by helping on answering

several pertinent product life-cycle questions. For instance, questions such as the following

will be considered: is it time for refactoring or is the product almost untestable? Is the

latest software version ready for release? Are specific components, modules or COTS

affecting the quality of the software product?. Moreover, it is expected that this work will

provide a reliable way to observe the evolution of a software product during its life-cycle,

allowing us to observe differences between different versions of the same software product.

The test suite will be automatically generated through an emergent approach for cre-

ating test data named as Evolutionary Testing. Even though other methodologies could be

used to create the set of test cases, we have selected Evolutionary Testing because it makes

i



use of meta-heuristic techniques to guide the search, and allows obtaining optimal solu-

tions with a reasonable amount of computational effort. Finally, this work will be deployed

through a set of case studies, which represent real software projects, mostly open source

projects. These will be used to test, evaluate and validate the applicability of our research.

Keywords: Complexity, Evolutionary Testing, Object-Oriented Software, Software

Metrics
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Chapter 1

Introduction

In the past, the analysis of how a software product evolves and the assessment of its

maintainability had performed a small role in the overall product development and opera-

tion, when compared to the importance assigned to software construction. Nowadays, the

maintenance of software artefacts began to have relevance mostly due to the fact that the

Open Source paradigm made it possible to publish a software product allowing it to be

maintained by the community.

Lehman has defined a set of laws for software evolution. One of his laws is the “In-

creasing Complexity”, which is a natural consequence of software evolution. Lehman states

that “As a program is evolved its complexity increases unless work is done to maintain

or reduce it” [78]. Therefore, software maintenance performs a critical role because it is

responsible for ensuring that the software product is still useful and respects its require-

ments. Despite the fact that all software artefacts can be subject to maintenance, the

source code is usually the one that suffers the major changes. There are projects with

several releases in which the differences between each release is just the way the code is

structured, i.e., a refactoring was made from one release to another. In these situations,

the main goal is to reduce the software complexity.

Best practices on software development suggest that we should produce code that

is simpler, more readable and easier to maintain and modify [1]. Thus, reducing the

complexity of a software product is an objective that must taken into account whether

we are programming a component, selecting an external component or simply, performing

maintenance tasks. Complexity minimization is also critical to the process of verification

and testing of software constructions, and helps reducing the software development costs

[7].

Empirical observations have shown that typically, the more complex the software is, the

bigger the test suite is. From there, the main research question of this work has raised: “Is
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CHAPTER 1. INTRODUCTION

there a way to correlate the complexity of the test cases utilized to test a software product

with the complexity of the software under test?”. In order to answer this question, we must

perform the required studies to determine if it is possible to infer software complexity with

basis on the characteristics of a set of automatically generated test cases. Therefore, this

work will focus on inferring complexity of object-oriented software, mostly open source

systems, and we will study how software properties are correlated to the corresponding

set of test cases.

The evaluation of different software attributes can be achieved through Software Mea-

surement. The results obtained for each software metric are useful to improve development

and maintenance processes, increasing the quality of the software and supporting manage-

ment tasks. In literature, several studies have proposed software metrics with the purpose

of measure attributes of the software, in which complexity is included. In the early years,

most of the software metrics were based on software complexity. With the advent of

new types of paradigms for software development, new types of metrics appeared. The

Object-Oriented paradigm became prominent and nowadays is widely used by projects

with different characteristics. As a result, various suites of metrics specifically designed

for object-oriented systems have emerged over the years, for example, the CK Metrics

suite, developed by Chidamber and Kemerer [31] was the first one.

Likewise, software testing techniques have evolved, and the major goal of most of the

researchers in this field is to fully automate the testing processes. Several approaches,

which have been broadly accepted and have proved to be successful on the automation

of the testing processes, include the use of Evolutionary Algorithms. These techniques

are part of a specific type of testing approach called as Evolutionary Testing, which can

be classified as a sub-field of Search-Based Software Testing (SBST) techniques. SBST

techniques use meta-heuristic searches to achieve a good solution to the specific problem

under evaluation.

One difficulty related to OO test cases generation is the fact that the class under test

needs to be initialized and its fields must also be in the right state in order to achieve effec-

tive testing. This fact contributes to the specificity of this type of test cases. Evolutionary

Testing techniques are particularly suitable for performing unit testing on object-oriented

software, because these techniques are able to generate large amounts of test data, travers-

ing all the required states, as well as providing good solutions.

A number of studies have described ways to evaluate complexity and correlate it with

other software attributes, such as testability and maintainability. The focus of this work

is the study of the possible relationship between the complexity of an object-oriented

software product and the characteristics of the test cases created for it. The work of

this research includes all the necessary effort to determine the best metrics to evaluate
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CHAPTER 1. INTRODUCTION

the characteristics of the generated test data. From there, we will define the concept of

test case profile, which may include one or more characteristics, such as the number of

statements, number of method invocations or number of created instances. This concept

will then be correlated to the complexity of the software under test.

The test suite will be automatically generated through the use of Evolutionary Testing

techniques. Even though other methodologies could be used to create the set of test cases,

we have selected Evolutionary Testing because it makes use of meta-heuristic techniques

to guide the search, and allows obtaining optimal solutions with a reasonable amount of

computational effort.

Real software projects will be included in the set of case studies that evaluate and

validate the relationship between the test case profile and the complexity of the software.

The selected projects must be completely implemented in Java, they should be available

in open source repositories and in those repositories, several releases must be available.

Thus, it is possible to analyse the complexity evolution over the several releases and to

define a test case profile for each one. The Apache Tomcat software [2] is the first case

study.

The contributions of this work go beyond predicting software complexity, since it

is expected to contribute to the improvement of the design of software architectures.

The identification of the most complex and problematic software modules is one of those

contributions, because it provides information about the modules that require some type

of improvement. Finally, an automated, consistent and reliable tool is expected as a result

of this work. This tool must provide means for supporting management and architectural

decisions, as well as validating past decisions and supporting future decisions. Important

high-level decisions can be supported by answering several pertinent questions, such as: is

it time for refactoring or is the product almost untestable? Is the latest software version

ready for release? Are specific components, modules or COTS affecting the quality of the

software product?.

The remaining chapters of this thesis proposal are organized as follows: Chapter 2

presents the state of art highlighting the key areas to better understand the research

objectives of this work. Chapter 3 describes the objectives of this work, as well as the

development approach that will be taken to achieve them. The current work is described in

Chapter 4. In Chapter 5, the work plan and the implications of this research are presented.

Finally, Chapter 6 ends this document by presenting the conclusions and future work.

Thesis Proposal - 2012 3
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Chapter 2

State of the Art

In this chapter, the main concepts necessary to better understand the scope of this thesis

proposal are going to be addressed. The state of the art investigates literature related

to three main areas of Software Engineering, namely: Software Maintenance, Software

Testing and Software Metrics; and evaluates the extent of the relationships between these

areas. This study is required because in our work we will analyse information from software

test cases in order to establish whether that information can be used as a means to infer the

complexity of the software, and thence, how our work can support architectural decisions

during the product’s life-cycle.

2.1 Introduction

The IEEE Computer Society [64] defines Software Engineering as:

(1) The application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of

engineering to software.

(2) The study of approaches as in (1).

In order to characterize the contents of the software engineering discipline, the Guide

to the Software Engineering Body of Knowledge [1] has defined eleven Knowledge Areas.

In this work, we will focus on concepts mostly from two of those areas, namely:

• Software Testing – consists of the dynamic verification of the behaviour of a

program on a finite set of test cases, suitably selected from the usually infinite

executions domain, against the expected behaviour.

• Software Maintenance – The maintenance phase of the life cycle commences

upon delivery, but maintenance activities occur much earlier. The reasons for these
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activities include anomalies that are uncovered, changes on operating environments,

or new user requirements.

All those areas are closely related to the Software Construction Knowledge Area, which

refers to the detailed creation of software through a combination of coding, verification,

unit testing, integration testing, and debugging. One of the major goals in this knowledge

area is to minimize complexity in every aspect of software construction process. We

can achieve less complex code by emphasizing the creation of code that is simpler and

more readable. During construction, many of its activities and resulting artefacts can be

measured, including code developed, code complexity, code inspection statistics, fault-find

rates, effort and scheduling.

We can split the coding creation process into two stages, the coding itself and the

integration of separated components, which can be in-house components or Commercial

off-the-shelf products (COTS). COTS refer to software products available for purchase

and use without the need to conduct development activities [64]. Either way, assessing

the complexity, quality and testability of a component before it is integrated is of major

importance. Measurement is useful to improve the overall process, for instance to ensure

quality or to support management tasks [8, 29]. Later in this document, in Section 2.5,

an overview of software metrics will be presented.

Complexity minimization is also critical to the process of verification and testing of

software constructions. Software construction is strongly linked to Software Testing due to

the fact that during construction, software engineers perform intensive unit and integration

testing. Software testing can also be used to ensure code quality. Section 2.3 presents an

overview on important concepts related to Software Testing.

Software Evolution and Maintenance are very important fields of study because they

provide the mechanisms which allow the software product to continue to be used. For

instance, maintenance must be performed in order to correct faults, improve the design or

implement enhancements.

In this work we analyse information from the software testing phase, more specifically,

the characteristics of the test cases generated for an object-oriented software. Based on

that information, we expect to be able to infer about the complexity of the software under

test. Because software complexity is a major factor that influences the quality of software,

with our work we expect to create a framework that by inferring about software complexity

can support the decision-making in relation to development and maintenance phases.

The following sections will provide the user with the basic concepts so that he/she

can understand the objectives of the work proposed in this document. Firstly, we will

highlight the importance of software maintenance and its relationship with concepts such

Thesis Proposal - 2012 6



CHAPTER 2. STATE OF THE ART

as software complexity. Secondly, we will discuss software testing concepts emphasizing

those related to Evolutionary Testing and its relationship with software attributes such

as complexity and testability. Finally, we will present an overview of software metrics,

including both traditional and object-oriented software metrics.

2.2 Software Evolution and Maintenance

According to Lehman [78], software systems must evolve or, otherwise they will became

progressively less useful. Typically, source code is the artefact considered as the natural

object of evolution and it should have the following characteristics: readability, maintain-

ability and modifiability, as well as it must be the least complex possible. Moreover, in

order to develop high-quality source code, other artefacts are required and they should

also co-evolve appropriately. Those artefacts include the requirements list, the test suite,

among others [90]. Several studies have been performed to study the evolution of these

artefacts. For instance, in [147], the authors studied the co-evolution between production

code and test code.

Software maintenance and adaptation are undervalued in software processes, compar-

atively to software development, leading to negative effects as software systems adapt to

changes. Those negative effects are due to software aging [97], which makes software sys-

tems unable to deal with changes and evolution, and hence, it makes them unnecessarily

more complex and unreliable. However, attitudes began to change, and the relevance of

the maintenance of software stand out, particularly due to two aspects: (i) the concerns

about the Year 2000 (Y2K) problem1 roll-over focused significant attention on the software

maintenance phase, and (ii) the Open Source paradigm has brought further attention to

the issue of maintaining software artefacts developed by others [1].

2.2.1 Software Maintenance

Software maintenance is defined in [64] as the totality of activities required to provide

cost-effective support to a software system. It is part of a software life-cycle, concerning

a set of activities, post-delivery activities, which start after a warranty period or post-

implementation support delivery, including, software modification, training, and operat-

ing or interfacing to a help-desk. However, maintenance activities start earlier and may

include planning for post-delivery operations, maintainability, supportability and logistics

determination. These are referred as pre-delivery activities.

In more detailed terms, the IEEE Standard for Software Maintenance (IEEE 1219

1The Y2K problem is about two-digit which treat ’00’ as 1900 rather than 2000.

Thesis Proposal - 2012 7
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Table 2.1: Types of maintenance (adapted from [64, 1]).

Type Purpose

Corrective
maintenance

The reactive modification of a software product performed
after delivery to correct discovered problems;

Adaptive
maintenance

Modification of a software product, performed after delivery,
to keep a software product usable in a changed or changing
environment.

Perfective
maintenance

Software maintenance performed to improve the perfor-
mance, maintainability, or other attributes of a computer
program.

Preventive
maintenance

The modification of a software product after delivery to de-
tect and correct latent faults in the software product before
they become operational faults; or designing a software sys-
tem that is easy to maintain.

[60]) defines Software Maintenance as the modification of a software product after delivery

to correct faults, to improve performance or other attributes, or to adapt the product to

a modified environment.

Briefly, software maintenance sustains throughout software operational life and is ap-

plicable to software developed under any software life cycle model. Maintenance is needed

to ensure that the software continues to satisfy user requirements. Therefore, modification

requests are logged and tracked, the impact of proposed changes is determined, code and

other software artefacts are modified, testing is conducted, and a new version of the soft-

ware product is released. Moreover, complementary tasks are performed such as training

and daily support.

According to [99], maintenance activities comprise four key characteristics:

• Maintaining control over the software’s day-to-day functions.

• Maintaining control over software modification, corrective and non-corrective.

• Perfecting existing functions.

• Preventing software performance from degrading to unacceptable levels.

There are several factors either technical or non-technical that can influence the main-

tainability of a system. Pfleeger [99] considers that factors, such as application type,

software novelty, software life-span, quality of software design, construction and testing,

among others, influence software maintenance costs. Depending on the type of activities

and the time when they occur, maintenance category varies. The Standard for Software

Engineering-Software Maintenance, ISO/IEC 14764 [64, 1] defines four categories, which

are listed in Table 2.1.

Thesis Proposal - 2012 8
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Techniques to perform in Software Maintenance

There are several accepted techniques used to perform software maintenance, including

re-engineering and reverse engineering [1]. Re-engineering is defined as the examination

and alteration of software to reconstitute it in a new form, and includes the subsequent

implementation of the new form. It is often undertaken to replace aging legacy software,

but does not intend to improve maintainability. Reverse engineering does not change the

software or produce a new form of software, instead it is the process of analysing software

to identify its components and their interrelationships, and to create representations of the

software in another form or at higher levels of abstraction. Refactoring is a well-known

form of reverse engineering which consists in a program transformation which reorganizes

a program without changing its behaviour and the aim is to improve the program structure

[49].

Technical and Management Challenges in Software Maintenance

To perform maintenance, software engineers must deal with technical and management

challenges that are unique. For instance, planning for a future release, while coding the

next release and sending out emergency patches for the current one, represents a major

challenge. Besides technical and management issues, software engineers have to deal with

issues related to cost estimation and measures [99]. We are particularly interested in

technical issues and measure issues.

Technical issues include the software engineer’s inability to understand where the

change or correction should be made, if he/she is not the developer. Also, maintainers

must have knowledge of the software’s structure and content in order to produce an impact

analysis describing the impact of changes in existing software. Another important aspect

is the cost required to re-test the software or component under maintenance which has

proven to be a significant issue both in terms of time and money. Sometimes it is difficult

to find the proper time to re-test, as well as to coordinate all the test activities which the

software/component is subject. Furthermore, if the software is critical (e.g. software used

by aeroplanes), it may be impossible to test it on-line because it can compromise the correct

delivery of services of the system. One last technical aspect of software maintenance, as

pointed out in [1], is maintainability.

Maintainability

Maintainability is defined in [64] as the “ease with which a software system or component

can be modified to change or add capabilities, correct faults or defects, improve perfor-

Thesis Proposal - 2012 9
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mance or other attributes, or adapt to a changed environment”. Other definitions such as

“the capability of the software product to be modified” and “speed and ease with which

a program can be corrected or changed” are also presented.

According to [63], maintainability sub-characteristics are:

• Analyzability – Characterizes the ability to identify the root cause of a failure

within the software.

• Changeability – Characterizes the amount of effort to change a system.

• Stability – Characterizes the sensitivity to change of a given system that is the

negative impact that may be caused by system changes.

• Testability – Characterizes the effort needed to verify (test) a system change.

In order to reduce maintenance costs and to improve maintainability, the above main-

tainability sub-characteristic must be specified, reviewed, and controlled during the soft-

ware development activities.

Maintainability Measurement

We can measure software maintenance by using either general or specific measures. The

Software Engineering Institute (SEI) has identified four general software measures that are

common to all endeavours, namely: size, effort, schedule and quality. Measures for each

maintainability’s sub-characteristic can also be used, allowing us to measure Analyzability

(measures of the maintainer’s effort or resources expended in trying to diagnose deficiencies

or causes of failure, or in identifying parts to be modified), Changeability (measures of

the maintainer’s effort associated with implementing a specified modification), Stability

(measures of the unexpected behaviour of software, including that encountered during

testing) and Testability (measures of the maintainer’s and users’ effort in trying to test

the modified software).

2.2.2 Software Release Management

One important technical issue related to software evolution and corresponding mainte-

nance is the release management. Software release management is the management

of the activities surrounding the release of one or more versions of software to one or more

customers, including identifying, packaging, and delivering the elements of a product [64].

According to the IEEE standards [64], a release can be defined as: a delivered version

of an application which may include all or part of an application. Other definitions such

as “a software version that is made formally available to a wider community”, “particular

version of a configuration item that is made available for a specific purpose” and “the

formal notification and distribution of an approved version” are also provided in [129].

Thesis Proposal - 2012 10
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Types of Releases

Given that product changes can occur on a continuing basis, one concern for release

management is determining when to issue a release. The severity of the problems addressed

by the release and measurements done to prior releases affect this decision [113]. Three

types of release where described in [91], namely:

• Development releases – aimed at developers interested in working on the project

or experienced users who need cutting edge technology.

• Major user releases – based on a stabilized development tree. These releases

deliver significant new features and functionality as well as bug fixes to end-users

and are generally well– tested.

• Minor releases – updates to existing user releases, for example to address security

issues or critical defects.

The Open Source Software paradigm

The Open Source paradigm had positive influence on release management practices, mostly

due to the fact that Free and Open Source Software (FOSS) is characterized by a highly

iterative development model in which new development releases are typically made avail-

able very frequently [91]. Most projects follow a feature-based strategy as their release

strategy. The premise of this strategy is to perform a new release when a specific set of

criteria has been fulfilled and certain goals attained. For instance, reducing software’s

complexity may be a goal for a particular software product.

Problems that commonly occur in release management of FOSS were identified in

[91]. One of those problems is related to interdependencies, mostly because the higher the

complexity of software, the higher the levels of interdependence between software. For

instance, when a piece of software uses libraries developed by others, a relation of depen-

dency is created and problems may occur if one of those components is not ready because

is either highly complex or unstable. Therefore, if we were able to reduce complexity of

software by reducing the complexity of its components (in-house components or COTS),

we will be able to produce better releases of that software product.

Studies that evaluate specific characteristics of Open Source projects have already

been done. For instance, in [45], software metrics that evaluate the modularity level of a

software project were proposed. These metrics were formulated with basis on information

related to the size, complexity, cohesion, and coupling of the software systems analysed.

In the next section we will present some basic concepts related to Software Testing and

how testing is related to other software’s properties and attributes including the complexity
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of software.

2.3 Software Testing

Nowadays, software systems are a key part in almost every area, from medicine to aeronau-

tics. The incorporation of software systems is such that testing those systems is becoming

increasingly difficult. Therefore, the study and development of techniques and tools to

better test those systems have become a very active field of research. Techniques include

different approaches such as model-based testing or evolutionary testing, which typically

differ how they select the test set, but ultimately all of them try to evaluate the product

quality by detecting its faults (the cause of a malfunction) and problems. Later in this

section, detailed information about those approaches will be provided. Firstly, we will

describe some fundamentals and Software Testing activities.

2.3.1 Software Testing Fundamentals and Levels

Software testing can be performed at different levels during the software construction, and

further during the software maintenance. The subject under test varies based on the level

that occurs. Regardless the methodology used for software development, the Software

Engineering Body of Knowledge [1] distinguishes three main test stages, namely, Unit

Testing, Integration Testing and System Testing. Unit testing verifies the functioning in

isolation of software pieces which are separately testable, such as individual sub-programs

or a set of tightly related units that compose a larger component. On the other hand,

Integration Testing verifies the interaction between software components. And finally, the

main goal of System Testing is to test the behaviour of a whole system.

Typically, unit testing occurs with access to the code being tested and with the support

of debugging tools, and might involve the programmers who wrote the code. Integration

testing is a continuous activity, at each stage of which software engineers must abstract

away lower-level perspectives and concentrate on the perspectives of the level they are

integrating. System testing usually encompasses testing tasks related to security, speed as

well as comparing the system to the non-functional system requirements (e.g., accuracy

or reliability). Also, external interfaces to other applications, utilities, hardware devices,

or the operating environment are also evaluated at this level.

Similarly there are also different purposes for testing, which can verify different prop-

erties, and those may also vary with the test target. The set of properties under test

include both functional properties, namely the correctness of the implementation of the

functional specifications, which is referred as conformance testing, correctness testing or
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functional testing; as well as non-functional properties such as performance, reliability,

usability, among others.

Many techniques for software testing have been developed; we will discuss some of

them next.

2.3.2 Testing techniques and Test Case Generation

Nowadays, there are many different testing techniques, in which the property under evalu-

ation and the object under test vary. Apart from the specific differences of each technique,

all have the same underlying leading principle, which is to be as systematic as possible in

identifying a representative set of program behaviours. In this section we present some

types of testing categories, following the classification presented in [1]. However, we will

focus on code-based techniques, describing these in more detail.

Testing techniques can be grouped in the following main categories:

• Techniques based on the software engineer’s intuition and experience –

this category includes techniques in which tests are derived relying on the engineer’s

skill, intuition and experience with similar programs (ad hoc testing) and techniques

that include dynamic processes to create test cases which are dynamically designed,

executed and modified.

• Specification-based techniques – this category include more formal techniques

that are typically based on software specifications. The specification may contain

details about software’s functionalities, performance, constraints and design.

• Code-based techniques – is the category of techniques that use code analysis tech-

niques to build control and data paths and then generate test cases by transversing

these paths.

• Fault-based techniques – these techniques have the specific aim of creating test

cases that will try to reveal probable or predefined faults.

These techniques are not mutually exclusive, they can be combined in order to improve

the software testing process. For instance, specification-based and code-based testing are

complementary because they use different sources of information and provide different

perspectives on software problems. The techniques presented above are general, meaning

that they apply to all types of software.

Code-based techniques

In code-based testing techniques, the control structure of a program is graphically rep-

resented using a flow-graph. A flow-graph is a directed graph in which nodes and arcs
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correspond to program elements. For instance, nodes may represent statements or unin-

terrupted sequences of statements, and arcs the transfer of control between nodes. This

class of techniques includes:

• Control-flow-based criteria– Control-flow-based coverage criteria aims to cover

all the statements or blocks of statements in a program, or specified combinations

of them.

• Data-flow-based criteria – In this technique, the control flow-graph provides in-

formation about how the program variables are defined, used and killed.

These techniques’ goal is to achieve some coverage criteria, for instance, achieve con-

dition/decision coverage. The strongest of the control-flow-based criteria is path coverage,

which aims to execute all entry-to-exit control-flow paths in the flow-graph. Since path

coverage is generally not feasible because of loops, other less stringent criteria tend to

be used in practice, such as statement coverage, branch coverage, and condition/decision

coverage. The adequacy of such tests is measured in percentages; for example, when all

branches have been executed at least once by the tests, 100 % branch coverage is said to

have been achieved.

There are several strategies that can help on evaluation of the program under test.

We can use program measures based on program size (e.g., lines of code) or on program

structure (e.g., complexity) to guide the testing process. Other structural metrics can

provide us information about the coupling between modules. The tests themselves can

be evaluated based on different aspects. Later in this document we will discuss software

metrics and their relationship with the test data. Next, we will describe some criterion

used to evaluate how good a test suite is.

Evaluation of the test suite

In order to achieve reliable test results, it is important to evaluate the tests performed

to the software under test. As with the testing techniques, the tests evaluation can be

grouped in different categories, namely [1]:

• Coverage/thoroughness measures – Coverage or thoroughness of the executed

tests can be evaluated by monitoring the elements covered, either they are elements

in the program or in the specifications, to dynamically measure the ratio between

covered elements and their total number. For example, it is possible to measure the

percentage of covered branches in the program flow-graph, or that of the functional

requirements exercised among those listed in the specifications document.

• Fault seeding – In those techniques in which faults are artificially introduced into

the program (before test) with the purpose of revealing them as well as real latent
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faults, one way to evaluate the effectiveness of testing is to establish a relationship

between the artificial faults revealed and the genuine ones.

• Mutation score – To evaluate the effectiveness of mutation testing we can measure

the ratio of killed mutants to the total number of generated mutants.

Test Case Generation

A core activity of the testing process is the test case generation, which is strongly related

to the level of testing and to the particular testing technique that is used. A test case is

defined in IEEE Standards [64] as “a set of test inputs, execution conditions, and expected

results developed for a particular objective, such as to exercise a particular program path

or to verify compliance with a specific requirement”.

The ideal scenario in a test environment includes testing all possible input and output

combinations in order to test every possible permutation of a program. However, creating

test cases for all these combinations is not possible because even a simple program can

have hundreds of possible combinations. If we consider a complex application, performing

a complete testing would require several time and resources increasing the cost of testing.

Automation is one proved solution that aims to reduce the time, resources and therefore

the costs associated to test case generation. An approach for testing that is highly focused

on test case/test data generation, and its automation, is Evolutionary Testing. In the next

section we will describe how can Evolutionary Algorithms can be used to support testing

activities.

2.4 Evolutionary Testing

In this work we are interested in the results of using Evolutionary Algorithms to perform

some Software Testing activities, which is referred as Evolutionary Testing. Evolutionary

Algorithms have been used to fully automate testing tasks, such as the derivation of test

data [89]. More reliable test data can be achieved, and in a faster way, by using meta-

heuristic searches, such as Evolutionary Algorithms. This is due to the fact that these

techniques guide the search by scoring different points in the search space according to

how good or suitable they are for solving the problem.

Evolutionary Testing is part of a broader category of techniques that use meta-heuristic

searches to achieve their purpose, the Search-Based Software Testing (SBST). These tech-

niques present very specific features, which we will briefly describe next.
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2.4.1 Search-Based Software Testing

Factors such as the necessity of achieving near optimal solutions or at least a specified

acceptance level make meta-heuristic search-based optimisation techniques as a natural

solution to solve problems in various fields of software engineering, which includes problems

related to software testing [53]. An advantage of meta-heuristic algorithms is that they

are widely applicable to problems that are infeasible for analytic approaches.

In 1976, the first work in this field was published by Miller and Spooner [92], wherein

they proposed a simple and innovator technique for generating test data consisting of

floating-point inputs. The first work applying Genetic Algorithms was published in 1992

[144]. Since then, more work have been developed applying meta-heuristic techniques

to test data generation, including algorithms such as Hill Climbing [93, 70], Simulated

Annealing [112] and Evolutionary Algorithms [123, 132, 133, 104, 111]. Hill Climbing

and Simulated Annealing are optimization algorithms that consider only one solution at a

time, and the search is then restricted only to the local neighbourhood of those locations.

As opposed to these solutions, which perform ’local’ searches, Evolutionary Algorithms

are ’global’ search approaches due to the fact that they sample many points in the search

space at once.

Characteristics of Search-Based Problems

In order to apply this type of techniques to software engineering scope, problems must be

reformulated as search problems taking into account [89, 35]:

• A representation of the problem is critical to shape the nature of the problem

allowing symbolic manipulation. Floating point numbers and binary code are the

frequent forms of representation.

• A fitness function is the characterisation of what is considered a good solution.

These compare and contrast solutions of the search with respect to overall search

goal, directing the search into more promising areas of the search space. An ordinal

scale of measurement for fitness values is enough to allow the selection of the best

of two candidate solutions.

• A set of manipulation operators, which are dependent on the search technique

used and will modify the representations. The mutation operator is considered as a

minimum requirement, because it allows us to change an individual representation

of a candidate solution to produce a different candidate solution.

A result of using search-based techniques is that the perception of the problem prob-

ably will change to see it as a search problem. For instance, testing can be seen as a

problem wherein, besides the testing tasks, we want to find test cases that satisfy some
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test-adequacy criterion, e.g., derive all test cases that ensure 100% of structural coverage.

Applicability of meta-heuristic techniques to software testing

Several testing techniques are based on some notion of coverage either of the code or

specification. Therefore, the coverage value can be measured and incorporated into a

fitness function [35]. As means of supporting software testing, meta-heuristic techniques

have been successfully applied to the following types of testing [88]:

• Structural testing – coverage of specific program structures, as part of a structural,

or white-box testing strategy [104, 62].

• Specification-based testing – specific program features are exercised, as described

by the software’s specification [135, 15].

• Fault-based testing – disproving properties about the operation of a piece of

software, for example, stimulation of error conditions.

• Non-functional testing – verifies non-functional properties such as the worst-case

execution time of a segment of code [138].

Structural testing has been the area of application that has attracted the most atten-

tion in the Search-Based Software Testing field [89]. Structural, or white-box, techniques

derive tests and determine the adequacy of a test set based on the internal structure of the

code under test. Typically, these techniques measure the coverage of certain constructs

of the source code that are executed during testing. Therefore, Structural Testing can be

used to test the source code, as well as to determine the proportion of reachable program

statements that were covered during testing – statement coverage; the proportion of

feasible program branches that are covered during testing – branch coverage; and the

proportion of the feasible paths that are covered during testing – path coverage. Usu-

ally, to develop fitness functions to measure coverage, the program under test needs to be

instrumented. Then, the program is executed with inputs suggested by the search and the

path taken through the program is compared with some structure of interest for which

coverage is sought.

In addition, literature shows that Search-Based Techniques (SBT) are suitable for

other types of testing, namely, temporal testing [102, 140, 137] , integration testing [17],

mutation testing [12, 65], regression testing [81, 146], stress testing [21], test case prior-

itization [130], interaction testing [39], state machine testing [42] and exception testing

[124].
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2.4.2 Evolutionary Algorithms

The family of Evolutionary Algorithms have been widely used to automate the generation

of test data that intends to meet a test adequacy criterion. These algorithms represent

a class of adaptive search techniques, which use simulated evolution as a search strategy

to evolve candidate solutions, using operators inspired by natural genetics and Darwin’s

theory of evolution, specifically the concept of the ’survival of the fittest’ in natural evo-

lution [51, 59]. The main idea of an Evolutionary Algorithm is that the fittest individuals

survive over the time and in future generations their offspring will be fitter. There are

four main categories of Evolutionary Algorithms: Evolution Strategies [13, 37], Evolution-

ary Programming [48], Genetic Algorithms and Genetic Programming. The use of these

algorithms for software testing is referred as Evolutionary Testing [88, 139, 54, 136, 89].

Iterations of an Evolutionary Algorithm

The following steps describe generally how an evolutionary algorithm iterates. Steps 2

to 7 are repeated until a test criterion is satisfied (e.g., a global optimum is reached) or

another stop-condition is fulfilled (e.g., time of execution).

1. Population initialization of possible solutions to the problem (usually is a random

process).

2. Evaluation of each individual by calculating its fitness via the fitness function.

3. Selection of pairs of individuals from the population for reproduction.

4. Recombination of selected individuals via a crossover operator (combination of each

individual parent’ good parts).

5. Mutation of the resulting offspring individuals.

6. Evaluation of the offspring individuals.

7. Population update through a strategy of re-insertion strategy.

In step 1, by starting with a randomly initial population we create a very diversified set

of individuals whose fitness values are spread in the search-space. During an iteration of

the evolutionary algorithm, the individuals are subject to modification operators, such as

crossover and mutation operators. As mentioned before, the crossover operation combines

the good parts from each parent individual to form better offspring individuals, which is a

process analogous to biological reproduction. On other hand, the mutation operator aims

to introduce new information into the gene pool of a population. New information is ran-

domly introduced and it is very important because prevents the process from stagnation.

Both selection and re-insertion strategies have determinant impact on the process because

the former is responsible for implementing the “survival of the fittest” concept, selecting

the fittest individuals; and the latter defines how the new offspring will be introduced in
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the population, usually the worst members of the current generation are replaced.

Figure 2.4.2 depicts the typical evolutionary algorithm cycle when applied to Evolu-

tionary Testing.

Figure 2.1: Evolutionary Testing Cycle [5].

Genetic Algorithms and Genetic Programming

A genetic algorithm (GA) [98, 51] is a model of machine learning which derives its be-

haviour from a metaphor of the processes of evolution in nature. These algorithms are

executed iteratively on a set of coded chromosomes, referred as population, wherein each

member of the population is a chromosome (or individual) and its represented by a string.

GAs use three basic genetic operators: selection, crossover and mutation. The primary op-

erator is the crossover. GAs use only the objective function information and probabilistic

transition rules for genetic operations.

Genetic Programming (GP) [71, 72, 9] is the extension of the genetic model of learning

into the space of programs, i.e., the objects that constitute the population are not fixed-

length character strings that encode possible solutions to the problem at hand, they are

programs that, when executed, are the candidate solutions to the problem. Genetic pro-

gramming expresses these programs as parse trees instead of lines of code. For instance,

the program a + b ∗ c would be represented as:
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In Genetic Programming, the individuals (programs) in the population are composed

of elements from the function set and the terminal set, which are fixed sets of symbols

selected to be appropriate to the solution of problems in the domain of interest. GP uses

the crossover operator, which is implemented by taking randomly selected sub-trees in the

individuals and exchanging them. These sub-trees are selected according to their fitness

values. Usually, Genetic Programming does not use any mutation operator.

Profile of a test program

Test case design is one of the most important activities of Software Testing, since the type,

scope, and quality of the test are determined by selecting feasible test cases [74]. Existing

test case design methods can be grouped in two major categories, black-box tests and

white-box tests. In both cases, complete automation is a very difficult goal. Evolutionary

testing has been a successful approach in test case design.

The purpose of using this type of testing to structure test case design is the generation

of a huge quantity of test data which otherwise it could become impracticable. This

amount of test data will allow the achievement of the best possible percentage of coverage,

depending on the type of coverage under consideration. This method for generating test

cases will provide us only with information regarding the input values, whilst the expecting

values must be defined by the tester or provided by an oracle. Therefore the input domain

of the object under test is the search-space that will be used in order to achieve the test

goal.

A test in Evolutionary Testing is typically divided into test aims, each one representing

a program structure that must be executed in order to achieve full coverage. For instance,

a simple condition testing (if statement with two conditions) each program condition

represents two test aims: evaluating the condition as true and as false. A test program

will be composed by several test cases which together will represent full coverage.

In the next section we will present an overview of Software Metrics that are used to

evaluate software’s properties and attributes including the complexity of software.

2.5 Software Metrics

In order to make software an engineerable product, people who are responsible for the

design, development and maintenance, should be able to express its characteristics in

objective and quantitative terms [67]. Therefore, the use of quantitative measures, also

referred as metrics, have been widely accepted as means of evaluating software characteris-

tics, in which a diversified set of aspects (e.g., performance, reliability, source code, among
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others) can be the target of the measurements [47, 122]. According to [64], a metric

can be defined as a quantitative measure of the degree to which a system, component, or

process possesses a given attribute.

Sommerville [114] defines a software metric as “ any type of measurement that

relates to a software system, process or related documentation”. For example, the number

of lines of code (LOC) in a program is a software metric that evaluates the software

product. Software metrics allow us to express empirical work in a formal way and they

may refer to the product itself or to the process that originates it.

Sommerville groups metrics into two major categories: the Control Metrics and the

Predict Metrics. The former is related to the software process (e.g., the average effort and

time required to repair reported defects) and the latter evaluates the software product

(e.g., complexity of a module). Kafura [67] also makes the distinction between process

and product metrics.

2.5.1 Software Attributes

In each metrics group, Fenton [47] distinguished between two types of attributes: internal

and external. Internal attributes are those that can be measured by examining the prod-

uct or process independently of its behaviour, whereas external attributes are measured

based only on how the product or process relates to its environment, i.e., the behaviour

is important rather than the product or process by itself. For example, considering a set

of software modules, its size (e.g., lines of code), its complexity (e.g., number of decision

points) and the dependencies among modules are examples of their internal attributes

and they can be measured without actually executing the code. However, there are other

attributes that only can be measured when the code is executed and hence they are consid-

ered external attributes. Examples of external attributes include: the number of failures

experienced by the end-user and the amount of time required to retrieve information from a

database. Table 2.2 presents some examples of internal and external attributes for process

and product metrics.

Internal attributes can help predicting several software characteristics. However, some-

times a large set of internal attributes are dismissed, and considered as unimportant,

because ultimately, the end-user is interested in a small set of attributes, such as func-

tionality, quality and utility. The metric values obtained, for products or processes, can

be used [47]: (i) to assess the quality, providing a way to quantify its attributes; (ii) to

support decision-making, either by the programmers (low-level decisions) or by the soft-

ware architects (high-level decisions); (iii) to predict characteristics of the software; and

ultimately, (iv) to control the software development process.
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Table 2.2: Examples of internal and external attributes (adapted from [47]).

Item Attributes

Product Internal External

Specifications
size, reuse, modularity, redun-
dancy, functionality, syntactic
correctness

comprehensibility, maintain-
ability

Designs
size, reuse, modularity, cou-
pling, cohesiveness, function-
ality

quality, complexity, maintain-
ability

Code

size, reuse, modularity, cou-
pling, functionality, algorith-
mic complexity, control-flow
structuredness

reliability, usability, maintain-
ability

Test data size, coverage level quality

Process Internal External

Constructing
specification

time, effort, number of re-
quirements changes

quality, cost, stability

Detailed design
time, effort, number of fault
specifications found

cost, cost-effectiveness

Testing
time, effort, number of coding
faults found

cost, cost-effectiveness, stabil-
ity

Our work intends to take advantage of test data information to predict properties of

the software under test with the purpose of understanding and improving it. As shown

in Table2.2, the test data of a software product has the size and the coverage level as its

internal attributes, and the quality as an external attribute. In our work, we will analyse

the generated test cases, which aim to achieve full structural coverage, as well as properties

related to the size, such as the number of statements that are included in each test case.

Our purpose is to infer the complexity of the software, and how it is related to other

properties such as maintainability, which are closely associated with the software quality.

Software product measurement encompasses the measurement of product size, prod-

uct structure and product quality [1]. The size of a software product is most often eval-

uated by measuring the length (e.g., lines of code) or functionality (e.g., function points

in a specification). In turn, structure measurement can be applied to both high and

low-level design and code artefacts in order to reflect software’s control-flow, data-flow,

nesting, control structures, modular structure and interaction. On the other hand, qual-

ity measurement is a multi-dimensional software’s attribute and therefore is more difficult

to assess because it considers qualitative aspects as opposed to previous, which consider

quantitative information.

Since the 70’s, software researchers have proposed several measures that had aimed to
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analyse the complexity, the understandability and the level of maintenance of a software

product. Several benefits of using software metrics, are described in the literature. One

of the most important benefit is related to the fact that they may provide information

to support quantitative managerial decision-making during the software life cycle [116].

Moreover, software metrics can also provide information that is useful during the product

life cycle.

The purpose of this work is to infer the complexity of an object-oriented system with

basis on the information extracted from its test cases. Although we intend to study and

analyse several software product attributes, our major research efforts are related to the

complexity of the software.

2.5.2 Software Complexity Measurement

Complexity measurements can be used to make decisions which can reduce the devel-

opment cost, increase reliability and improve the overall quality of the software. Those

vary from simple and comprehensible measurements, such as lines of code, to abstract

measurements that are able to assess aspects like hierarchical complexity.

According to IEEE glossary [64], Complexity can be defined as:

1. the degree to which a system’s design or code is difficult to understand because of

numerous components or relationships among components.

2. pertaining to any of a set of structure-based metrics that measure the attribute in

(1).

3. the degree to which a system or component has a design or implementation that is

difficult to understand and verify.

Complexity metrics can be used to make quality evaluations of software, to monitor

the development growth of software systems, and to estimate and predict several soft-

ware attributes. Consequences of complex software include high-development costs, high-

maintenance costs, and bad values associated to software attributes/properties. Monitor-

ing complexity of a software system, during design, development and maintenance, allows

us to make the appropriate changes which can reduce complexity and ensure the system

remains modifiable and modular [77].

The Software Engineering Body of Knowledge states that Complexity Analysis is one

of the possible Software Quality Management Techniques, which is particularly useful

for determining if the design or implementation is too complex to develop correctly, to

test or to maintain. Software complexity analysis can provide diverse information on

code structure, critical components, risk areas, testing deficiencies, and opportunities for

improvement. Based on this information we can improve the quality and reliability of a
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software system during all phases of the software life cycle [77]. The results of a complexity

analysis are also a valuable source of information for creating the suitable test cases for a

software program.

Next, we present an overview of complexity metrics. Although we do not present all

existing metrics, we consider that the chosen metrics are a representative list of the work

done in this field. Firstly, we introduce a set of metrics that we label as traditional software

metrics, which were the first metrics to be widely used. Then, a more application-specific

metrics will be presented, namely the object-oriented metrics. Due to object-oriented

software characteristics will also discuss metrics that evaluate aspects such as cohesion

and coupling.

2.5.3 Traditional Software Metrics

Despite many metrics were described and published during the last 40 years, only a few of

them are really applied on the work developed either by the industry or by the academics.

In this document, we will present an overview about the ones considered more relevant.

Traditional Software Metrics is the term that we use to refer to the initial software metrics

mostly used in the 70’s and 80’s before the appearance of the new software development

paradigms, including the object-oriented paradigm. Several of these metrics are currently

used, and some of them are the basis for calculation of other metrics. Traditional Software

Metrics are mostly complexity-based metrics, because either they refer to software’s source

code or to software’s design.

In [67] a set of general classes for product software metrics was proposed, defining:

• Structure metrics – based on an automated analysis of the system’s design struc-

ture.

• code metrics – based on implementation details;

• hybrid metrics – combining both structure and code metrics).

Structure Metrics use features that emerged during the design phase, components

and relationships between components in order to achieve a quantitative measure. On the

other hand, Code Metrics refer to measures that are defined in terms of features not visible

until much of the coding of the system has been completed. The definition itself raises

a drawback, because these metrics can only be used in a later phase of the development

process, and therefore it is highly probable that some resilience may be demonstrated in

order to change code when the system is already fully implemented. Finally, a Hybrid

Metric is a metric that determines a measure for a component by weighting the structure

measure for that component by a code measure. For instance, a measure that consists

information-flow weighted by lines of code is an hybrid metric.
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Next we will describe the Lines of Code metric and the McCabe’s Cyclomatic com-

plexity.

Lines of Code - LOC

One of the most used metric, which is also considered the most basic and simple, is the

Lines of Code2 measure. LOC metric has been used with different purposes, namely: as

a measure of size; as a means for assess the effort and the programming productivity; as

quality criteria and also as a parameter in cost estimation models. One common definition

for line of code is [77]: the line or lines between semicolons, where intrinsic semicolons are

assumed at both the beginning and the end of the source file, including all lines containing

program headers, declarations, executable and non-executable statements.

Other definitions include also comments and header information. Existing work have

shown that LOC is very useful and can be a predictor of software characteristics such as,

bug density, reliability and maintainability [109, 11, 143, 27].

LOC is easy to understand, fast to count and also independent of the programming

language. However, using only the LOC metric to evaluate software can be misleading

because programming languages are different. For instance, the characteristics/features

of the assembly language are different from a high-level language, such as Java. LOC is

widely used as a measure of complexity in spite of criticisms [4].

McCabe’s Cyclomatic Complexity - MCC

Other well-known and widely used is the MacCabe’s Cyclomatic complexity metric, pro-

posed in 1976 by Thomas McCabe [87], and it is the most famous metric for complexity

evaluation. The acceptance of McCabe’s metric is wide insomuch it has been used in sev-

eral large software projects [134]. MCC has theoretical mathematical foundation, because

it is derived from the graphs theory, using the definition of the cyclomatic number that cor-

responds to the number of linearly independent paths in a program. Control-flow graphs

describe the logic structure of software modules, illustrating graphically the decision paths

and logic structure. Thereby, this metric performs a control-flow graph analysis, counting

the number of possible decision points, and with basis on the number of possible paths,

determines how complex is the software. If the program contains neither loop structures

nor decision structures, then the metric has a value 1. On the other hand, for instance, if

there is one if-else structure the metric will have the value 2, due to the fact that there

are two possible paths for the program execution. A major advantage is that it aims to

2KLOC refers to thousands of lines of code and it is also widely used as a unit of measurement.
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Figure 2.2: Fragment of source code and corresponding control-flow graph.

be independent of the programming language and language format. MCC formulae is:

V (G) = e− n + 2p where V(G) - McCabe’s Cyclomatic Number

e - number of edges

n - number of nodes and

p - number of discrete connected components

.

Statements or expressions are represented by nodes, while the edges represent transfer

of control between them. Each possible execution path of a software module has a cor-

responding path from the entry to the exit node of the module’s control-flow graph. For

example, consider the fragment of code and corresponding control-flow graph in Figure

2.2. MCC for the control-graph is 3, because 8-7+2=3.

With McCabe’s complexity metric is possible to compare two programs with basis on a

single number, which is a indicator of each program module’s control-flow complexity. On

the basis of empirical research, McCabe stated that the higher the value of his metric for

a module, the higher the probability of it to be fault-prone or unmaintainable. However,

there are programs that have a large number of decision points, and nevertheless they are

easy to understand and maintain. Therefore, we should not assess a program complexity

based only in a cyclomatic number because it can be misleading [47]. When appropriate

we must consider metrics that evaluate other characteristics of software, such as, level of

coupling and cohesion. Further in this document we will discuss some of those metrics.

McCabe also pointed this metric as in indicator of testability (how easily code could be

tested) and can help determining the total number of test cases required to test a module,

providing us with a measure of the size of the test case space.

Several variations of Cyclomatic Complexity have been proposed. For instance, in
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1977, Myers proposed an extension to McCabe’s formulae, which distinguishes the com-

plexity of cases involving single conditions from those which have multiple conditions.

LOC and McCabe’s Cyclomatic Complexity focus on the code analysis to determine

the level of complexity, and can be classified as Program Complexity Metrics. Besides

these, other complexity metrics have appeared during the last years, falling in the System

Complexity Metrics category. These metrics are mainly applied to the system design or

specifications. In [95] a survey of system complexity metrics is presented, in which two

works were highlighted, the Henry and Kafura’s [58] metric and the Yin and Winchester’s

metrics [145]. However, these metrics are beyond the scope of our work and therefore they

are not described in this document.

The emergence of new paradigms and techniques for software development, such as

the Object-Oriented paradigm, has led to the definition of new software metrics, which

reflected the importance and usage of this new paradigms in order to create a software

product. The next section will focus on software code metrics for Object-Oriented systems.

2.5.4 Object-Oriented Metrics

One of the most prominent approach to software development is the Object-Oriented

(OO) paradigm, and due to its relevance, the development of specific software metrics

have become an important field of research. Despite of the importance of traditional

software metrics, they were target of criticism and it was claimed that they were not

suitable for the OO paradigm. Reasons vary from the lack of theoretical basis to the lack

of desirable measurement properties [128, 141, 131, 68]. Nevertheless, the main reason is

the fact that they do not consider OO notions such as classes, inheritance, encapsulation,

information hiding, and message passing [142, 31, 46].

Although OO software presents strong points, the increasing complexity due to the

existence of many objects and inter-relationships is a weak point. In the scope of the

procedure-oriented systems, coupling and cohesion were considered as primary attributes

that would led to a system with quality. In the OO paradigm these properties perform a

similar role, and they can be used to evaluate several software quality characteristics [43].

Therefore, for better understanding of object-oriented software metrics, we need to define

two software design concepts, which are particularly important for classes conceptualiza-

tion, namely, Cohesion and Coupling.

Cohesion and Coupling properties

The IEEE standard [64] defines Cohesion as: “(1) the manner and degree to which the

tasks performed by a single software module are related to one another or (2) in software
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design, a measure of the strength of association of the elements within a module”. In

the OO paradigm, class cohesion, also referred as functional cohesion, is defined as the

relatedness between members of a class. Classes that lack cohesion are poorly designed

and they will be difficult to understand, to test and to maintain [6]. Stein et al. pointed

that a lack of cohesion may be associated with high complexity [117]. Cohesion metrics are

structural metrics because they use structural information extracted from the source code,

and therefore, they can be useful to determine different characteristics of the software,

including characteristics of its test cases. For example, Tsui and Iriele have studied the

correlation between software code cohesion and the test case development complexity.

Their work considered two cohesion metrics and, they found that one of these metrics can

be an indicator of test complexity [125].

Also according to the IEEE standard [64], Coupling is “in software design, a mea-

sure of the interdependence among modules in a computer program”. Coupling between

two classes exists if one accesses or uses some elements of other class. According to the

literature, coupling metrics proved to be good predictors of software quality [6]. Low cou-

pling between classes is promoted as a good practice to facilitate comprehension, testing,

maintenance and evolution. In [69], Khalid et al. established a relationship between dif-

ferent object-oriented features, such as inheritance, coupling and encapsulation, and the

degree of complexity and testability of a system. They concluded that the level of cou-

pling between classes is directly proportional to complexity and consequently, the higher

the coupling is, the more difficult it will be for testing the software.

OO analysis and design methods promote a modular design by creating classes with

high cohesion and low coupling [100, 114, 43]. In [43], Eder et al. state that strong

coupling makes methods and classes harder to understand, change or correct because

they are highly correlated to other methods and classes. As regards the class cohesion,

it is better to have high cohesion because it means that the class represents a single,

semantically meaningful concept without containing methods which should be delegated

to other classes and without hidden classes.

Current research and experimental work recognise the interdependent nature of cou-

pling and cohesion, as well as the fact that these properties must be considered together

when analysing the structural complexity of the software [41]. Thus, coupling and cohe-

sion are considered as essential, and interrelated indicators of the underlying dimensions

of structural complexity. In literature, we can find several frameworks that try to evaluate

coupling and cohesion. For instance, Briand et al. have proposed two frameworks for

measurement of object-oriented systems, one focusing on the coupling property and the

other measuring the cohesion of a software system [19, 20]. In [6], the relationship between

the lack of cohesion of OO classes and their coupling was empirically explored.
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Other software attributes can be predicted through the use of complexity, cohesion

and coupling information [18], such as maintainability [40], reliability, reusability [52] or

even information about software vulnerabilities [33]. In the literature we can find several

metrics for evaluating cohesion and coupling for object-oriented software [101] [107], and

most of them are based on metrics from the CK metrics suite (which it will be described

next). CK metrics conceptualization describe the essence of the concepts of coupling (re-

latedness) and cohesion (togetherness) [41]. Next, we will describe some software metrics

for evaluation of OO software, namely: the CK metrics suite and MOOD set of metrics.

Besides coupling and cohesion, there are other characteristics of OO software that

impact the complexity of the software. For instance, in [69], the authors concluded that the

depth of inheritance and the mesh of encapsulation influence the overall complexity of the

software, in which both are directly proportional to complexity and inversely proportional

to the effort required to test software.

Chidamber and Kemerer’s metrics suite

Chidamber and Kemerer [30, 31] proposed the first suite of object-oriented metrics, CK

metrics, providing a theoretical basis and an empirical validation sustaining their met-

rics. To address the lack of theoretical foundations, Chidamber and Kemerer based their

metrics on: (i) the ontological principles of Bunge [25, 26]; (ii) the formalisms of a mea-

surement theory; (iii) a list containing criteria for evaluation of software metrics developed

by Weyuker [141]; and (iv) empirical data from software developers who worked on com-

mercial projects. One of the main goals of their work was to use measurements in order

to improve the process of software development. CK metrics suite includes six class-based

design metrics which measure the complexity in the classes design. Design artefacts such

as the source code can be used to gather these metrics. Historically, the CK Metrics are

the most referenced and they are included in the majority of commercial tools for metrics

collection [122]. In Section 2.5.4 we will present some of these tools, as well as open source

tools.

As a brief summary of the CK Metrics, we must refer that the metrics: Weighted

Methods Per Class metrics (WMC), Depth of Inheritance Tree (DIT) and the Number of

Children (NOC) are related to the identification of the classes, in which WMC is an aspect

of the complexity of the class and the DIT and NOC are directly related to the classes

hierarchy. Based on these metrics a software engineer can check whether the application

contains too many classes at the root level declaring many methods. Moreover, WMC is

also related with the semantics of classes, as well as the Response For a Class (RFC) and

the Lack of Cohesion in Methods (LCOM) metrics. Both WMC and RFC capture how
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objects of a class may behave when they get messages. On the other hand, the LCOM

metric provides a measure of the cohesiveness of a class because it is related to the level

of packaging of data and methods within a class. The RFC and the Coupling Between

Object Classes (CBO) metrics describe or capture the extent of communication between

classes by counting the inter-classes couples and methods that are external to a given class,

providing a way to assess whether the relationships between classes are justified. Table

2.5.4 provides a more detailed description of the CK metrics.

The CK metrics are available since the design phase, and therefore, the measurements

attained at this phase are likely to change in the implementation phase. During the

implementation, if the class hierarchy remains stable then the WMC, DIT and NOC will

also remain stable. If a class suffers modifications, then WMC and LCOM will reflect those

changes. Finally, the development of new class coupling and communication will impact

the values of the CBO and RFC metrics. The LCOM metric was quite criticised; however,

the following metrics still use the LCOM original concept. This work was extremely

important due to the fact that it stated a very solid theoretical basis for a metrics suite,

and nowadays, most metric extraction software or metric suites use those theories although

the formulas or viewpoints changed with time [127]. Some of these metrics were also

examined by Li and Henry [80] in order to find their usefulness to predict maintainability

of projects. Based on the CK metrics and on the Li and Henry’s work, a set of metrics

for evaluate the understandability and modifiability of a class inheritance hierarchy were

proposed in [108]. Briand and Wüst used CK metrics to predict the development costs

[17]. Also, other empirical studies on the CK metrics suite [31, 80, 118, 106, 119] have

been published.

Table 2.3: CK Metrics suite (adapted from [31]).

Metric Description

Weighted Meth-

ods Per Class

WMC considers the complexity of all methods in

a class. The formulae for WMC is: WMC =
n∑

i=1
ciwhere ci...cn is the complexity of the methods

Depth of Inheri-

tance Tree
DIT is the maximum number of inheritance to the root class.

Number of Chil-

dren

NOC is the number of immediate subclasses subordinated to a

class in the class hierarchy.

Coupling Be-

tween Object

Classes

CBO for a class is a count of the number of other classes to which

it is coupled.
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Response For a

Class

RFC is the total number of methods that can be invoked when a

class receives a request.

Lack of Cohesion

in Methods

LCOM is the measure of the interaction between the methods of

a class, with the class’ instance variables.

To sum up, the WMC metric is related to the “complexity of things” concept defined

in the Bunge’s principles, being defined as the sum of all complexities of methods in a

class, and the higher the WMC value, the more difficult it will be to maintain and modify

a class. DIT and NOC are both related to the notion of scope of properties defined by

Bunge. A high DIT reflects more complexity and less capacity for prediction, whereas a

high NOC is an indicator of high requirements for testing and also may reflect inheritance

misuse. The underlying CBO’s principle of Bunge is the notion that if two objects act

on each other, then they are coupled. The higher the coupling between two classes, the

harder it will be to reuse and testing those classes, and also they are more prone to defects

introduced by changes. Also, a high RFC value is an indicator of higher complexity and

testing time. At last, the LCOM uses the concept of similarity of methods and as opposed

to previous metrics, a high LCOM value is desirable.

Metrics for Object Oriented Design - MOOD

MOOD is a suite of six metrics created by Brito and Carapuça [22]. To the original set,

four new metrics were added forming a set referred as MOOD2. MOOD and MOOD2

metrics are listed in Table 2.4.

In [86], Mayer considered that the MOOD metrics either fail to meet the MOOD

team’s own criteria or are founded on an imprecise, and in certain cases inaccurate, view

of the OO paradigm. In addition, solutions and recommendations in order to solve those

inconsistencies and inaccuracies were proposed. Nevertheless, MOOD metrics and CK

metrics can be seen as complementary to each other because the former focus on system

level aspects whereas the latter metrics apply to class level.

The structural OO metrics defined both in the CK and MOOD metric suites can be

used to evaluate and predict the quality of software [56]. In addition to the aforementioned

metrics suites, others have been created in last years. For instance, Lorenz and Kidd [83]

have also created a set of OO design metrics, in which those were divided in four broad

categories: size, inheritance, internals and externals. Size-based metrics focus on counting

classes’ attributes and methods whereas inheritance-based are related to the way how

Thesis Proposal - 2012 31



CHAPTER 2. STATE OF THE ART

Table 2.4: MOOD and MOOD2 metrics (adapted from [22, 10]).

Metric Description MOOD(2).

Method Hiding
Factor (MHF)

Measures the number of visible methods of a
class in regard to other classes.

MOOD

Attribute Hiding
Factor (AHF)

Similar to the MHF metric, but in terms of
a class’ attributes.

MOOD

Method Inheritance
Factor (MIF)

Proportion of inherited methods to all meth-
ods in a class.

MOOD

Attribute Inheritance
Factor (AIF)

AIF is the same as MIF for attributes. MOOD

Polymorphism
Factor (PF)

Proportion of overridden methods to all over-
ridable methods.

MOOD

Coupling Factor (CF)
CF is the proportion of actual number of cou-
plings to all possible couplings.

MOOD

Operation Hiding Effec-
tiveness Factor (OHEF)

OHEF is related to MHF, and is the propor-
tion of classes that access to operations to all
classes that can access those operations.

MOOD2

Attribute Hiding Factor
Effectiveness (AHEF)

Similar to OHEF, but instead is related to
attributes.

MOOD2

Internal Inheritance
Factor (IIF)

Proportion of classes that inherit a class to
all classes that inherit any class.

MOOD2

Parametric Polymor-
phism Factor (PPF)

Proportion of the total number of generic
classes to all classes

MOOD2

methods are reused in the design hierarchy. On the other hand, internal metrics focus at

cohesion and code-oriented aspects and external metrics examine aspects such as coupling.

Examples of Software Metrics Tools

In this section, a sample of existing tools for software measurement is presented. We have

restricted our search to tools that analyse Java code. Table 2.5 presents both commercial

and non-commercial tools indicating examples of the underlying software metrics.

Table 2.5: Software Metrics Tools.

Name Metrics

Analyst4j [38]

This tool performs search, metrics, analyses quality, and report

generation for Java programs.
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Table 2.5: Software Metrics Tools.

Name Metrics

CCCC [82]

Is an open source command-line tool which analysis Java files and

generates reports on various metrics.

CKJM [115]

CKJM is also an open source command-line tool and its main goal

is to calculate the C&K object-oriented metrics by processing the

byte-code of compiled Java files.

Code Analyzer

[120]

Code Analyzer calculates metrics across multiple source trees as

one project. It also provides a tree view of the project with flexible

report capabilities.

Eclipse Metrics

Plug-in 1.3.6. by

Frank Saue [44]

It measures various metrics and detects cycles in package and type

dependencies. Metrics are applied different levels, namely, project,

class or method level. Measure various metrics with average and

standard deviation and detect cycles in package and type depen-

dencies and graph them.

Eclipse Metrics

Plugin by Lance

Walton [76]

It is an open source tool that calculates various metrics during

build cycles and warns the developer, via the Problems View, of

’range violations’ for each metric.

Imagix 4D [61]

The source metrics generated by this tool provide insight into

many aspects of the quantity, quality, complexity and design of

your software. From the level of individual functions up to direc-

tories and subsystems.

JDepend [36]

This tool traverses Java class file directories and generates design

quality metrics for each Java package, and allows the measurement

of the quality of a design in terms of its extensibility, reusability,

and maintainability to manage package dependencies effectively.

Understand for

Java [105]

This tool analysis Java source code by performing reverse engineer-

ing, code exploration and evaluation of several software metrics.

Table 2.5 presents a sample of tools for measurement of Java software systems, includ-

ing commercial and open-source tools, and although the metrics used are not described
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here, most of these tools make use of software metrics described in literature. For in-

stance, metrics belonging to the CK suite are implemented, either totally or partially, in

the presented tools. From the tools listed in the Table 2.5, Analyst4j, Imagix 4D and

Understand are commercial tools, whereas, tools such as Code Analyzer, JDepend and

both Eclipse plug-ins are open source and can be integrated into Eclipse IDE and thus,

they can be easily integrated into our work providing information about several properties

of the software under evaluation. CCCC and CKJM are also open source tools, however

they are command-line tools and therefore not as suitable for integrating on our work.

2.5.5 Software Measurement Based on Test Cases Information

Source code factors and testing criterion can influence the characteristics of a test suite,

being the number of required test cases the most well-known example. Ultimately, the

testing criterion can determine which source factors influence the number of test cases. For

instance, when we use McCabe’s Cyclomatic Complexity metric as a means of assessing

the testing effort, we know that we will have as many test cases as the number of existing

linearly independent paths. However, as mentioned previously, the OO paradigm has

specific characteristics requiring different approaches for measuring and testing it. For

instance, inheritance influences the number of test cases, because typically, for a class, we

want to test inherited methods as well as the methods which are defined in the class itself.

Polymorphism is another feature of OO paradigm that may influence the test suite size.

Another difficulty related to test cases for OO software is the fact that the class under

test needs to be initialized and its fields must also be in the right state in order to achieve

effective testing.

During our survey we did not find many works describing and analysing the relation-

ships between source code (software under test) and the test data. Despite that fact, we

were able to find some relevant work that will be discussed next, which mostly tries to

determine the effort required for testing or the software’s level of testability.

Evaluation of Functional and Object-Oriented Programming Project - EFOOP

Project

Harrison and Samaraweera [55] have investigated whether there is a correlation between

the number of test cases, which is a design metric, and the quality of programs, either

functional or object-oriented, and the amount of time required to produce them. Their

work was part of the Evaluation of Functional and Object-Oriented Programming Project,

in which a comparative analysis between functional and OO paradigms was done. The

following development metrics were collected during their research:
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• CEs – the number of compilation errors found during development and maintenance.

• KEs – the number of known errors found during testing.

• TKEs – the time to fix the known errors.

• MRs – the number of modifications requested during code reviews, testing and main-

tenance (excluding changes for fault clearance.

• TMRs – the time to implement modifications.

• SC - a subjective assessment of complexity provided by the system developer, based

on an ordinal integer scale.

• DT – the time taken to develop the programs.

• TT – the time taken to test the programs.

Design metrics were also collected during this research, including:

• NCSL – the number of non-comment, non-blank source lines (referred to as non-

comment source lines).

• N* – the number of distinct functions which are called by the program.

• L – the number of distinct library functions which are called by the program.

• D – the number of distinct domain-specific functions that are called by the program,

where D = N* - L.

• depth – the depth of the function hierarchy chart.

• dec – the number of function declarations.

• def – the number of function definitions.

The conclusions of this research point out that: (i) significant differences between the

number of test cases that are required for functional and OO paradigms were not found;

and (ii) the majority of the development and design metrics, which were analysed, are

strongly correlated with the number of test cases that are required. In addition, it was

suggested that the number of test cases may be a predictor of the following development

attributes:

• Design metrics (NCSL, N*, D, def, depth) – the correlation between these design

metrics can be used to predict the testing effort, i.e., the number of test cases re-

quired.

• Development metrics (MR) – the number of test cases can be an indicator of design

and code quality.

• Development time – the correlation between the development time and the number

of test cases suggest that we can predict the former based on the latter.

• Testing time – similarly, it is suggested that we can infer the testing time based on

number of test cases.
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Predicting classes’ testability

Bruntink and van Deursen’s research tried to investigate factors that can impact the

testability of object-orient systems [23], specifically the testability from the perspective

of unit testing of the classes of a Java system. Their research made use of the JUnit

framework [66] which allows us to write Java unit tests. JUnit provides us the means to

create a specific test class Ct for a specific class under test C. The main goal of Bruntink

and van Deursen was to use the pair < C,CT > to find source code metrics on C that were

good predictors of test-related metrics on CT , and therefore, to understand the factors that

make code hard to test. Their intention was to know: (i) if the values of the object-oriented

metrics for a class are associated with the required testing effort for that class; and (2)

if the values of the object-oriented metrics for a class are associated with the size of the

corresponding test suite.

Bruntik and van Deursen used metrics from the suite proposed by Binder [16]. The

source code metrics used in this work are listed in Appendix A. dLOCC (Lines of Code for

Class) and dNOTC (Number of Test Cases) are the test-related metrics and they indicate

the size of a test suite. The dLOCC is defined as the Lines of Code per Class (LOCC)

metric, whereas the dNOTC metric is calculated by counting the number of invocations

of assert methods of JUnit’s framework that occur in the code of a test class CT . Assert

methods allow us to compare the expected behaviour of the class under test to its current

behaviour. Thus, in this work a test case is defined as the comparison between the expected

and current behaviour.

The authors found a significant correlation between class-level metrics (most notably

FOUT, LOCC and RFC) and test-level metrics (dLOCC and dNOTC). They also con-

cluded that in each group of metrics, the metrics are related to each other. For instance,

the larger the test class (dLOCC) is, the more assert methods will exist (dNOTC); and the

higher the value of the LOCC metric, the higher the number of existing methods (NOM).

Software Testing and Reliability Early Warning - STREW

Another study that is based on test cases created through JUnit framework was proposed

by Nagappan in his doctoral dissertation [94]. His work proposed a suite of nine metrics

called Software Testing and Reliability Early Warning (STREW), in which those were

grouped in three categories, namely, test quantification metrics, complexity and OO met-

rics, and size-adjustment metrics. These metrics evaluate and correlate both properties of

the code under test, as well as the code generated by the JUnit framework. In Appendix

B, the STREW metrics are described in Table B.

The test quantification metrics are specifically intended to cross-check each other to
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account for coding/testing styles. For example, one developer may write few test cases,

each with multiple asserts checking various conditions, whereas another developer may

test the same conditions by writing many more test cases, each one with only one assert.

The complexity and OO metrics examine the relative ratio of test code to source code in

order to determine control-flow complexity and a subset of CK metrics.

They account a project size in terms of the number of Source Lines of Code (SLOC) to

build the STREW prediction equation using the Relative Size Adjustment Factor (RCAF)

metric.

The STREW metrics were used to build regression models to estimate the post-release

field quality using the metric Trouble Reports (TRs)/KLOC from object-oriented projects.

The use of the STREW metrics is predicated on the existence of an extensive suite of

automated unit test cases being created as development proceeds, for example, teams

that follow the Extreme Programming methodology write extensive automated test cases

during development.

Teams develop a history of the value of the STREW metrics from comparable projects

with acceptable levels of field quality. Then, the estimation of the relationship between

the STREW metric elements and the TRs/KLOC is done based on these historical metric

values. Thus, Nagappan’s work had leveraged automatic testing effort to estimate post-

release field quality and therefore to provide a developer with indications of changes and

additions to their automated unit test suite and code for added confidence that product

quality will be high.

Automated Test Case for Unit Testing - ATCUT

In [110], a set of design metrics, called as Automated Test Case for Unit Testing, was

designed in order to predict the effort required for unit testing. These metrics are used in

a Test Driven Development (TDD) approach. Shrivastava and Jain considered the met-

rics proposed by [31] and defined the following formulae as an index of testability for a

class. The goal of their work was to use the metrics to measure test case construction

factors/testability, i.e., their purpose was to investigate metrics from the perspective re-

lated to the design of unit test cases. Criticisms of this work include lack of empirical data

supporting authors’ theory.

x = k
(CBO∗RFC∗DIT∗NOC∗LOC∗WMC) where k is a constant of proportionality.

The value of k is related to characteristics of the software’s processes and team.
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Evaluation of Test Cases generated by Evolutionary Testing Techniques

The above-mentioned presented different approaches to correlate test data information

to software metrics however, none of them analyses the characteristics of test cases that

were generated by an evolutionary testing tool. However, Lammermann et al. [75] have

investigated the suitability of structure-based complexity measures for the assessment of

evolutionary testability. Evolutionary Testability evaluates the suitability of an object to

be subjected to evolutionary testing [74]. After analysing test objects of varying complexity

and removing some disturbance, they conclude that Cyclomatic Complexity was able to

generate better forecasts for the level of evolutionary testability than the other metrics.

Despite the situations were correct predictions were achieved, there were cases in which

none of the metrics was able to give good predictions, i.e., they failed. The reason for this

can be related to the measures inability of expressing some certain structure characteristics

of the software under test. Their results were compliant with Buhr’s findings [24] also

showing that using source code or structure-based software measures it was only possible

to make mediocre predictions as to evolutionary testability.

2.6 Summary

We started this chapter by analysing the importance of software evolution and mainte-

nance. Literature have shown that software systems must evolve in order to be considered

useful and to answer users’ necessities and requirements. The inability to evolve has nega-

tive effects which make software unnecessarily more complex and unreliable. Therefore, if

we can reduce the software complexity, we will then improve software maintainability, and

ultimately we will improve the overall software quality. A number of studies have tried

to evaluate complexity and correlate it with other software attributes. In this work, we

are interested in the relationship between the complexity of an object-oriented software

product and the characteristics of the test cases generated for it.

One difficulty related to OO test cases generation is the fact that the class under test

needs to be initialized and its fields must also be in the right state in order to achieve

effective testing. Evolutionary Testing techniques are suitable for solving this problem,

generating test programs with particular characteristics. These test programs are divided

into test aims, each one representing a program structure that must be executed in order to

achieve full coverage. One of our objectives is to analyse the source code of these programs

and with basis on its characteristics to infer about the software under test. Therefore,

we expect to apply software metrics on test programs and then be able to establish a

correlation to metrics that measure the complexity of the object-oriented software under

test, for instance some metrics from the CK metrics suite.
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From the studies analysed, few are based on information from test cases and for the

ones that are, their main purpose is to predict software testability. With respect to tests

generated by evolutionary testing techniques, we did not find studies that try to predict

the complexity of the software with basis on these type of test cases.

In this chapter we have also examined several software metrics including traditional

and object-oriented metrics. From these, some are suitable to analyse the test programs’

structure. Test programs are pieces of executable code that allows us to test our code by

executing all the required test cases. Therefore, these programs are a set of statements

which can also be evaluated through the use of software metrics. Thus, one objective is

to find the best metrics to evaluate these test programs.

McCabe’s Cyclomatic complexity metric is not suitable for analysis of test programs

generated by Evolutionary Testing, because the program structure does not include struc-

tures for decision (e.g., if-else) and repetition (e.g., for, while), and therefore the result for

the metric would be the same value. On the other hand, LOC can be used to evaluate

test programs because it is a simple metric and it is not dependent on the programming

language or on the software paradigm. One possible approach is to create our own vocab-

ulary that would define and describe all the characteristics that we want to evaluate, and

it may include: the type of data (primitive or not), the number of method invocations,

the number of object instantiations, among other aspects.

Next chapters will describe our objectives and the approach that we will follow in

order to achieve desired results.
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Chapter 3

Research Objectives and Approach

This chapter clarifies the research objectives of this work, with basis on the state of the

art presented in the previous chapter. Also, the thesis development approach is described,

with the main steps of the development process being identified.

3.1 Introduction

The specificity of the test cases generated by evolutionary testing techniques make the

most common software metrics inappropriate for evaluating the code of these test cases.

For instance, software metrics that evaluate the number of decision points cannot be used

due to the fact that this type of code does not include structures for decision (e.g., if-else

and switch) or repetition (e.g., while, for). From there, it is necessary to carry out studies

to identify the characteristics that can be analysed. One obvious characteristic of the test

cases, which has already been analysed in literature, is the number of lines of code.

Obviously, there are many studies examining the complexity of the object-oriented

software, however few are based on information from test cases and commonly their main

purpose is to predict the software testability. Moreover, in those studies, the test cases

are generated by techniques other than evolutionary testing techniques. For instance, the

analysis of the test cases generated by the JUnit framework is a common approach.

An attempt to describe a possible relationship between software complexity and evo-

lutionary testing was done by Lammermann et al. [75]. The purpose of their work was to

predict evolutionary testability by means of software metrics that would measure software

complexity. Although they were not able to establish good predictions, their work is a

first approach to correlate the complexity of the software to the test cases generated by

evolutionary testing techniques. In our work, we analyse the opposite perspective taking

the test cases as a starting point in order to predict the software complexity, as well as
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other properties, such as cohesion and coupling.

We consider that there is a gap in this field of research because to our knowledge, and

by the time of writing this document, we did not find other studies that try to predict

software complexity based on the characteristics of the test cases generated by evolutionary

testing approaches. Thus, our aim is to bridge this gap.

3.2 Objectives

During experiments carried out with an evolutionary testing tool, we have empirically

observed that more complex test cases are generated to more complex software under test.

Based on this finding, two main questions are considered relevant, namely:

(1) Is there a way to correlate the complexity of the test cases generated with the com-

plexity of the software under test?

(2) Is it possible to infer complexity metrics/properties for the software under test with

basis on the complexity or testability profile of the generated test cases?

In order to answer this two important research questions, we have identified the fol-

lowing set of objectives:

• Study of possible metrics to establish the profile of the test cases generated for a

specific software under test. For this purpose, we will consider aspects such as: the

number of statements, number of distinct classes instantiated, number of method

calls or types of data structures, among others.

• Correlate the percentage of structural coverage to complexity, i.e, there is a relevant

meaning if we do not succeed on achieving full structural coverage. This can reflect

software complexity because either there is unreachable code or because the software

is so complex that the testing tool is not able to transverse all paths in the code

structure.

• Study strategies to infer complexity metrics/properties with basis on the profile of

the test cases;

• Explore the extent to which the complexity information provided by test case profiles

can support architectural and product life-cycle decisions. With this work we hope

to support important architectural decisions, by helping answering pertinent product

life-cycle questions, such as:

– Is the product on the borderline of being untestable?

– Is it time for refactoring?
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– Is the latest software version ready for release?

– Are there any specific components or modules affecting the product’s complex-

ity and testability and, consequently, its quality?

– Should the integration of distinct COTS be considered, because those currently

used are affecting the product’s complexity and testability?

• Validate this work by applying it to real software projects from which there are

existing studies that we can correlate to our results.

• Create a framework or tool which can be used in any type of software project re-

gardless of its dimension or budget.

• Study how the set of parameters of an Evolutionary Algorithm influence test case

profiles, and consequently, the ability to infer properties of complexity.

• Study strategies for inferring attributes of software, other than complexity, based on

the profile of the test cases.

3.3 Thesis Development Approach

In this section we will present an overview of our thesis development approach that will

allow us to reach the objectives of this work. Our research work is comprised in four main

phases, namely: Phase 1 - Preparing the Evolutionary Testing tool, Phase 2 - Case Study

(Tomcat) - Test Data Generation, Phase 3 - Definition of Test Program Profile and Phase

4 - Complexity Estimation. These phases will be described in detail in the next sections.

Figure 3.3 depicts three of these phases.

In addition to these phases, we intend to perform the same steps regarding to com-

plexity analysis of other case studies (Phase 5), which are not yet defined. Also, we hope

to find correlations between test case profiles and other software metrics (Phase 6).

3.3.1 Phase 1 - Preparing the Evolutionary Testing tool

One of the goals of our work is to analyse how the test cases created by an Evolutionary

Testing tool are correlated to the complexity of the software under test. Hence, we needed

to select a tool that was able to generate test cases, for object-oriented software. Although

there are several tools for generating test cases for this software paradigm, e.g., random

[34] and use-case based [32] techniques, we chose an evolutionary testing tool because

this type of tools allows us to obtain an optimal solution with a reasonable amount of

computational effort.

We selected the eCrash Framework [104], which is an automated tool for test data

generation that achieves full structural coverage for public methods by applying Genetic
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Figure 3.1: Overview of the Thesis Development Approach.

Programming algorithms. The use of these type of evolutionary algorithms is one of the

reasons that led to the choice of eCrash, because these algorithms involve the evolution of

tree structures. Since test programs may be represented as Method Call Trees (MCTs),

GP provides suitable mechanisms for encoding Object-Oriented programs.

The first phase include all the tasks required to evaluate and to improve the evolution-

ary testing tool. For better understanding of this tool we will describe its architecture and

how test programs are generated. Future work may include the use of other frameworks

for evolutionary testing to compare the results attained in different Evolutionary Testing

approaches. We expect to achieve similar results for different Evolutionary Testing tools.

eCrash Architecture

eCrash major purpose was to create an automatic unit test generation tool that would

enable the automatic generation of unit tests from existing Java classes (byte code). In

eCrash, a user is required to select a set of Java classes and optionally to define a set of

configuration parameters in the tool. The tool then generates unit tests for those classes

according to the defined parameters. The generation is driven by genetic programming

algorithms and use Evolutionary Testing concepts developed by Ribeiro in his PhD thesis

[103].

As shown in Figure 3.3.1, a Java developer interacts with eCrash by setting up the

test case generation parameters, providing the classes and receiving the generated tests.

eCrash was developed as an Eclipse plug-in. The application’s behaviour can be di-
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Figure 3.2: eCrash’s Context Diagram (adapted from eCrash documentation).

vided into two separate moments in time which are the test case preparation and the test

case formulation (where the test cases are actually generated).

The first part is the test case preparation. Before the actual task of creating test

cases and evaluate their fitness (the coverage attained on the class), several tasks must be

performed to that class under test (CUT). First, the CUT must be instrumented to analyse

the test case coverage on a later stage. Secondly, all the details regarding the CUT must

be retrieved such as the methods, dependencies, objects that it requires to build state.

Finally, a file must be created which will be read by a third party component which will

apply the genetic programming concepts to the test case generation and evaluation.

The second moment is the actual test case generation. The third party component

ECJ will assume a very important role because it implements the majority of the genetic

programming concepts. Therefore, the whole test case formulation revolves around it.

Several candidate test cases are created and evaluated until the final test case suite is

generated. This test case suite will then be saved on a specific format that will respect

the chosen unit test framework.

An overall perspective is shown in Figure 3.3.1 including all static components involved

in the application. The architecture is composed by six components, which are described

in Table 3.1. The remaining represent third-party components.

eCrash includes third-party frameworks to provide part of the functionality, namely, a

component for byte code instrumentation (ASM [96]) and a genetic programming process-

ing component (ECJ [85]). ASM provides the framework to allow CFG extraction from
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Table 3.1: eCrash Components (adapted from eCrash documentation)

Component Responsibilities

GenerationManager

Delegates tasks details on other components.
Orchestrates the generation by invoking all components.
Receives all the configuration files and invoke the generation
algorithm.
”Feeds” the user interface with the generation progress data,
namely current coverage.
Returns the generation result to the user interface.

GeneticExtension

Incorporates the generation algorithm.
Extends the ECJ Framework.
Evaluates the fitness of an individual (test case candidate).
Executes the test case in memory.
Returns the test case candidate’s fitness.

CoverageAnalyzer

Instruments input java classes.
Extract CFG from the input java classes.
Measure branch coverage of the test case candidates over
the input java classes.

ATOA

Creates the test cluster - all objects needed to be used as
parameters for the class under test.
Creates the function set - which represents all methods off
class under test.
Creates the Extended Method Call Dependency Graph (EM-
CDG) for the class under test.
Generates the required files for ECJ (parameter file and
function file).

TestCaseTranslator
Translate the generated method call sequence to a Java class.
This is done with the help of a template file that defines the
structure of a JUnit test file.

UserInterface

Allows the user to select input java classes.
Allows the user to run the unit tests.
Provides the interface for triggering and managing the test
case generation.
Provides the interface for the user to personalize test case
generation by changing generation parameters.
Show generation statistics to the user.
Show the generated tests to the user.
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Figure 3.3: eCrash overall perspective (adapted from eCrash documentation).

classes to be analysed and code instrumentation for coverage measures. ECJ provides the

framework for the Evolutionary Algorithm, handles the genetic tree that represents each

test case and generates, evaluates and evolves test case candidates.

Other third-party libraries were also included, namely: Soot [73], Velocity [3], Zest

[121] and BeanShell [14]. Soot is responsible for the purity analysis functionalities in order

to reduce input search space for test case generation. Velocity allows the separation of the

contents of the generated files from the format by the creation of templates. During test

case generation, Zest provides a visual representation of the CFG indicating the current

coverage. Finally, BeanShell runs the test case candidates in memory without writing

them to disk.

Although eCrash give us full structural coverage for public methods, it needs some

improvements, including:

• Allowing the generation of unit tests for abstract classes and corresponding parent

class.

• Allowing the generation of unit tests for private methods.

• Improving the interface in order to include all the parameters required for executing

evolutionary testing algorithms.

3.3.2 Phase 2 - Case Study (Tomcat) - Test Data Generation

In order to validate our approach we intend to apply it to several case studies. As a first

case study we selected Apache Tomcat. This phase is related to the generation of the test

programs for several versions of Apache Tomcat and corresponding statistics. First, we
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will delineate our experiment in order to achieve results. Then, data will be generated

throughout several runs, which will then be analysed through the use of the appropriate

Statistical Analysis technique.

Apache Tomcat is an open source software implementation of the Java Servlet and

JavaServer Pages (JSP) technologies [2]. Tomcat was chosen because is a project entirely

developed in Java and during its life-cycle several releases were created. In addition,

Tomcat’s releases are well-documented allowing us to access the details of each one. The

analysis of different releases will provide a different perspective of the Tomcat’s evolution.

Studies of Tomcat’s complexity [126] and other properties have already been done

[84, 79, 50, 28]. Thus, we will be able to correlate the results obtained in these studies to

our results. In [126] the evolution of the Tomcat’s cyclomatic complexity was analysed.

Figure 3.3.2 depicts the results for three of the nine releases analysed. In all versions

most of methods fall in the category that defines the cyclomatic complexity equals to 1

(65% to 75%), meaning that they have a low value for McCabe’s metric. Although there

are no considerable differences between complexity values for the remaining categories of

complexity, we can see that the latest version have more complex methods than the others.

Figure 3.4: Tomcat: Evolution of Cyclomatic Complexity (adapted from [126]).

With our work we hope to achieve test case profiles that would allow us to infer about

software complexity. One valid hypothesis would be to correlate our test cases information

with the results obtained in [126].

3.3.3 Phase 3 - Definition of Test Program Profile

In Section 2.4.2, we have discussed specific characteristics of test cases that are generated

by evolutionary testing techniques. A test in Evolutionary Testing is typically divided

into test aims, each one representing a program structure that must be executed in order
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to achieve full coverage.

Consider the class MathOperations implementing a method float divide(float num1,

float num2). Listing 3.3.3 presents this method which has two paths based on the value

assigned to variable num2. If it is 0 then an exception is thrown, otherwise the math

operation is performed.

Listing 3.1: Method divide from class MathOperations.

1 public float divide(float num1, float num2) throws Exception{
2 if(num2 == 0)

3 throw new Exception(”Div 0”);

4 else

5 return num1/num2;

6 }

Figure 3.3.3 shows the statistics for the class MathOperations. eCrash generated a

total of 11 test programs for the method divide (Figure 3.3.3). Full structural coverage

was achieved, however not all programs generated were able to completely cover the code.

The following Listing 3.3.3 shows an example of a test program generated by eCrash which

is able to perform full structural coverage.

Listing 3.2: Program which tests the method divide.

1 @Test

2 public void dividefloatfloatTest3(){
3 codigo.MathOperations mathOperations0 = new codigo.MathOperations();

4 float float1 = 0.0f;

5 float float2 = 3.4028235E38f;

6 float float3 = mathOperations0.divide(float1, float2);

7 codigo.MathOperations mathOperations4 = new codigo.MathOperations();

8 float float5 = −0.5f;

9 float float6 = −0.5f;

10 float float7 = mathOperations4.divide(float5, float6);

11 float float8 = 0.0f;

12 float float9 = mathOperations0.divide(float7, float8);

13 }

A test profile may include one or more characteristics of the test program which is

under evaluation. Table 3.2 presents some characteristics of the test program represented

in the Listing 3.3.3. The set of characteristics include the number of statements, the

number of instances created from both the class under test and others which may be

required. The number of method invocations and the number of times that a variable is

assigned with NULL can also be considered. The number statements will be used as first
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Figure 3.5: eCrash Statistics for MathOperations.

approach to define the test case profile.

Table 3.2: Information extracted from a test program.

Description Value

Number of Statements 10

Number of created instances 2

Number of created excluding the CUT 0

Number of method invocations 3

Number of method invocations excluding
the MUT

0

Number of NULL attributions 0

Based on the information of the test programs generated, which represent its Test

Case Profile, we expect to define a Complexity profile of the software under test.

3.3.4 Phase 4 - Complexity Estimation

Complexity of a software system can be measured by using one of the techniques men-

tioned in the previous chapter. Although we do not have defined which techniques will be

used to correlate complexity to our test case profiles, we must always consider McCabe’s

Cyclomatic Complexity metric to be part of that set of metrics.

Supposing that we are analysing a test case profile that considers the number of

statements of each test program, we should find the simpler projects generating most of

the test cases with the lowest values for the number of statements, whereas the most

complex will have more test programs with higher values for the number of statements.

Figure 3.3.4 depicts a test case profile which has more test programs with lower values for
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the number of statements (area highlighted in green).

Figure 3.6: Example of a test case profile.

Our work proposes that projects with smaller complexity will have more test programs

concentrated in the area highlighted in green.

3.4 Summary

As a starting point of this research we have two questions that focus on the characteristics

of test cases, as well as on how they can reflect on the complexity of software. Based

on these questions, the research objectives were defined. Our research objectives include

the following work: study and definition of metrics for evaluating both test cases and

the complexity of the software under test; study of the possible correlations between test

cases and the complexity attribute, and also the possible correlations between evolutionary

algorithm parameters and software complexity; validation of our work through real case

studies; analysis of how the complexity information provided by test case profiles can

support high-level decisions.

Our thesis development approach is divided into several phases, which were defined

with basis on our research goals. Even though phases 2, 3 and 4 are the most important,

the first phase is determinant because it concerns the work needed to have a framework

that allows us to perform the remaining phases in an efficient and compliant manner. The

last two phases include the analysis of new case studies and the study of new attributes

that can be related to our concept of test case profile.

The eCrash framework proved to be a suitable evolutionary testing tool because it is

able to generate test cases that perform full structural coverage. Another factor of great

weight was the fact that the tool takes advantages of genetic programming techniques.
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In this chapter we have also clarified the concept of test case profile, which encom-

passes statistics from the test cases, such as the number of statements, number of in-

stances, among others. Despite a formal definition for the relationship between software

complexity and its test case profile still does not exist, we have already shown a graphical

representation of this relationship.
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Current Work and Preliminary

Results

Currently, our work is in Phase 1 - Preparing the Evolutionary Testing tool as described in

the previous chapter and in our work plan (Section 5.1). So far we have implemented some

of the improvements that are desirable, namely the mechanisms to extract and to export a

test case profile based on the set of test programs generated. Despite those improvements,

other which are highly important are currently under-way.

Figure 4 shows part of the plug-in that we created and then integrated into the eCrash

tool in order to extract data from the generated test programs. At this time, the new plug-

in provides direct measures on the characteristics of the test data, such as the number of

statements, the total number of created instances or the number of methods invoked in

each test program, and exports both to eXtensible Markup Language (XML) and Microsoft

Excel Spreadsheet file (XLS) format. Further, we can retrieve more data, and also, we

can introduce new measures that are calculated with basis on other measures.

Figure 4.1: Plug-in that extracts and exports data from the test cases.

Information about test programs can be generated at method level, class level, package

level or project level. The example, in Figure 4, depicts the direct measures for the test
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cases generated for only one method. For instance, we can see that from the 11 test

cases generated for this method, 5 have 13 statements, 3 have 16 statements, 2 have 11

statements and just 1 has 7 statements.

During the execution of some preliminary runs of the evolutionary testing tool, small

flaws have been identified. These are being corrected in order to achieve a testbed that

is appropriate for achieving our research objectives. Besides performing corrective opera-

tions, the implementation of other features is also being studied, including the integration

of techniques that would allow us to test private and inherited methods.
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Work Plan and Implications

In this chapter, we present our work plan and the implications associated to this research

proposal. We will start by showing and describing the Gantt diagram, which includes our

main tasks as well as our milestones and timelines. Then, we will present our dissemination

strategy, i.e, a list of journals and conferences, in which we intend to publish research

results of the work proposed. Finally, some of the implications related to this work will

be discussed.

5.1 Work plan

The Gantt diagram in Figure 5.1 depicts the work plan for this research. Since there is

some difficulty in predicting the duration of tasks, the Gantt diagram is subject to change.

The work plan is composed by six main phases plus writing documentation tasks. Writing

documentation (task 28) is an inherent task of the development of the work proposed in

this document, and encompasses writing the thesis, papers and other auxiliary documents,

such as reports or documentation for evolutionary testing tool. At the end of each phase

we hope to publish the results attained.
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The Phase 1 - Preparing the Evolutionary Testing tool encompasses the analyse of

the evolutionary testing tool in order to determine its defects and other aspects that may

need improvement. Also, the required improvements or adjustments will be implemented,

as well as the corresponding tests for validation. The last task is the publication of the

eCrash tool in an Open Source repository. Then, Phase 2 - Case Study (Tomcat) - Test

Data Generation is related to the generation of the test programs for our case study, and

the corresponding statistical analysis. As a first task of this phase, we will delineate the

design of our experiment. Based on the results from Phase 2, in Phase 3 - Definition

of Test Program Profile we will characterize a test program by formulating a set of test-

related metrics, which then will be evaluated. The purpose of the next phase, Phase 4 -

Complexity Estimation, is to correlate the Test Program profile, for each Tomcat release

defined in the previous phase, to the complexity values. Then, based on that correlation

we will formalize a complexity formulae. Comparisons to other studies about complexity

are also included in this phase. Phase 5 - Selection of Other Case Study involves the same

tasks as Phase 2, Phase 3 and Phase 4, but the tasks will be done in relation to another

case study. Finally, in Phase 6 - Estimation of Other Software Metrics we will investigate

whether other software metrics, such as cohesion and coupling, have influence on our test

program profiles.

5.2 Goals for Publications

Our work is particularly related to the field of Software Engineering (SE) because encom-

passes concepts from Software Maintenance and from Software Testing with the purpose

of improving the associated processes achieving a better quality for the software product.

Therefore, our main target are journals and conferences in Software Engineering.

In addition, because our work makes use of Evolutionary Testing techniques, we also

consider interesting to publish our work in journals and conferences related to Search-

Based Software Engineering or Evolutionary Computation (EC). Table 5.1 lists some of

our goals for publication.

Besides the conferences and journals presented above other can be selected during our

research.

5.3 Implications of Research

As a result of this research is expected to achieve a mechanism that allows the measurement

of the complexity of a software product based on the characteristics of its test cases. Such

mechanism will provide an automated evaluation of the software under test, because after
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Table 5.1: Goals for Publication.

Field Conference/Workshop/Symposium & Journal Acronym

SE

International Conference on Software Engineering ICSE
Workshops:
–IEEE/ACM International Workshop on Automation of Software
Test

AST

–International Workshop on Emerging Trends in Software Metrics WETSoM
–International Workshop on Realizing AI Synergies in Software
Engineering

RAISE

International Conference on Automated Software Engineering ASE
International Conference on Software Maintenance ICSM
Co-located events:
–Symposium on Search Based Software Engineering -
–IEEE International Working Conference on Source Code Analysis
and Manipulation

-

International Conference on Software Testing, Verification and
Validation

ICST

Workshops:
–Search-Based Software Testing SBST
–Refactoring and Testing Analysis REFTEST
IEEE Transactions on Software Engineering Journal TSE
Software Testing, Verification and Reliability Journal STVR
Advances in Engineering Software Journal (Elsevier B.V.) -

EC/AI
Genetic and Evolutionary Computation Conference GECCO
Automated Software Engineering Journal (Springer) -

test case generation, which is also an automated process, the information about complexity

will be instantaneously available.

There are several implications in this thesis proposal. The most obvious is the typical

advantage of having an automated tool to assist the software development process, which

can reduce development process’ costs and time, as well as the repetitive work that needs

to be done. The increase in the quality and efficiency of the development processes are

two advantages that result from this type of tools.

Although, the source code is the artefact for which we want to evaluate its complexity,

a major expectation is to contribute to improve the design of a software architecture.

For instance, our work will help on identifying the most complex software modules, and

consequently the most problematic, in a software architecture. Ultimately, we hope to aid

in improving high-level attributes of a software system, such as maintainability.

Projects with different sizes and complexities may use our work to evaluate the soft-

ware’s complexity without additional costs. The sooner we can determine if a software
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is increasing in its complexity, the sooner some preventive or corrective actions can be

made, avoiding expensive problems that would occur in a later phase of software’s devel-

opment. Our work will then provide consistent and reliable means of supporting man-

agement and/or architectural decisions. This work should also be able to support release

management tasks either by validating past decisions or by helping in future decisions,

such as, defining the most appropriate time for a new release of a software product.
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Chapter 6

Conclusions and Future Work

We have empirically observed that the more complex the software is, the more complex

the corresponding test cases are. Based on these observations we have established the

goals and the field of our research. Our research objectives include the following work:

the study and definition of metrics for evaluating both test cases and the complexity of

the software under test; the study of the possible correlations between test cases and the

complexity attribute; the analysis of how the complexity information provided by test

case profiles can support high-level decisions; the validation of our work through real case

studies; and the study of the relationship between the test case profile and other software

attributes.

Currently, there are several metrics and studies that establish and evaluate the degree

of complexity of an object-oriented system. However, few are based on information from

test cases and for the ones that are, their main purpose is mostly to predict software

testability instead of its complexity. With respect to tests generated by evolutionary

testing techniques, we did not find studies that try to predict the complexity of the software

with basis on these type of test cases. Therefore, we expect to determine the possible

correlations between evolutionary algorithm parameters and software complexity.

The eCrash tool was selected as the framework where test cases will be generated.

This tool proved to be a suitable testing tool to support our work because it is able

to generate test cases that achieve full structural coverage. Moreover, because it is an

evolutionary testing tool, it allows obtaining optimal solutions with a reasonable amount

of computational effort.

One of the most important expectations of this research is the creation of an automated

mechanism that will provide consistent means to support and validate either high-level or

low-level decisions that may be required in any stage during the life-cycle of a software

product. This mechanism can then be used to analyse the complexity of an object-oriented
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system and its evolution, by analysing several versions, regardless of the type and dimen-

sion of the project. Our work is going to be tested on real projects, mostly open source,

and we expect to validate our results with basis on data that is already available on the

literature. For instance, there are some studies about software complexity of our first case

study, Apache Tomcat.

Our thesis development approach is divided into several phases, which were defined

with basis on our research goals. Even though phases 2, 3 and 4 are the most important,

the first phase is determinant because it concerns the work that is required in order to have

a framework that allows us to perform the remaining phases in an efficient and compliant

manner. The last two phases include the analysis of new case studies and the study of

new attributes that can be related to our concept of test case profile.

Currently, we are in the first phase of our work plan, meaning that work is being done

with the purpose of attaining a framework that will fulfil our requirements. Future work

includes performing all the tasks that will allow the successful completion of each phase

of our thesis development approach.
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Appendix A

Bruntik and van Deursen’s metrics

Table A.1: Bruntik and van Deursen’s metrics (adapted from [23]).

Metric Description

Depth of Inheritance (DIT)
The set of classes from which c inherits directly
or indirectly. Each class have at most one parent
class.

Fan out (FOUT)

Counts the number of classes that c uses and
does not include the ones it is used by. It is
a one-way version of Chidamber and Kemerer’s
CBO metric [31].

Lack of Cohesion of Methods
(LCOM)

This definition of LCOM was proposed by
Henderson-Sellers [57] and defines that complete
lack of cohesion occurs if each field of a class c
is accessed exactly by one method of c. On the
other hand, perfect cohesion is attained if all the
fields of c are accessed by all methods of c.

Lines of Code per Class (LOCC)
Defined by the sum of each method’s LOC met-
ric.

Number of Children (NOC) The set of classes that inherit directly from c.

Number of Fields (NOF) The set of fields that a class c newly declares.

Number of Methods (NOM)
The set of methods that c newly declares, in-
cluding abstract and non-abstract methods.

Response for Class (RFC)
RFC of c is a count of the number of methods
of c and the number of methods of other classes
that are invoked by the methods c.

Weighted Methods per Class
Sum of the Cyclomatic Complexity metric of
each method.
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Appendix B

STREW metrics

Table B.1: STREW metrics (adapted from [94]).

Category Metric Description

Test quantification metrics

SM1 = NumberofAssertions
SLOC∗

Count the number of assertions in all test cases for all

source files.

SM2 = NumberofTestCases
SLOC∗

Count the number of assertions in all test cases for all

source files.

Count the number of test cases to test all source files.

SM3 = NumberofAssertions
NumberofTestCases

Count the number of assertions in all test cases for all

source files.

Count the number of test cases to test all source files.

SM4 =
TLOC+

SLOC∗
NumberofClassesTest

NumberofClassesSource

Count the number of classes for all source files.

Count the number of classes for all test files.
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Table B.1: STREW metrics (adapted from [94]).

Category Metric Description

Complexity and OO metrics

SM5 =
∑

CyclomaticComplexityTest∑
CyclomaticComplexitySource

Compute the sum of the cyclomatic complexity of all

the test files.

Compute the sum of the cyclomatic complexity of all

the source files.

SM6 =
∑

CBOTest∑
CBOSource

Compute the sum of the CBO of all the test files.

Compute the sum of the CBO of all the source files.

SM7 =
∑

DITTest∑
DITSource

Compute the sum of the DIT of each file for all the

test files.

Compute the sum of the DIT of each file for all the

source files.

SM8 =
∑

WMCTest∑
WMCSource

Sum the WMC in each file for all the test files.

Sum the WMC in each file for all the source files.

Size-adjustment metrics SM9 = SLOC∗
MinimumSLOC∗

Divide the SLOC* by the SLOC of the smallest project

used to build the STREW.
∗ Source Lines of Code (SLOC) is computed as non-blank, non-comment source lines of code.

+ Test Lines of Code (TLOC) is computed as non-blank, non-comment test lines of code.
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