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ABSTRACT

The inclusion of prediction mechanisms in Evolutionary Al-
gorithms (EAs) used to solve dynamic environments allows
forecasting the future and this way we can prepare the al-
gorithm to the changes. Prediction is a difficult task, but if
some recurrence is present in the environment, it is possi-
ble to apply statistical methods which use information from
the past to estimate the future. In this work we enhance
a previously proposed computational architecture, incorpo-
rating a new predictor based on nonlinear regression. The
system uses a memory-based EA to evolve the best solution
and a predictor module based on Markov chains to estimate
which possible environments will appear in the next change.
Another prediction module is responsible to estimate when
next change will happen. In this work important enhance-
ments are introduced in this module, replacing the linear
predictor by a nonlinear one. The performance of the EA
is compared using no prediction, using predictions supplied
by linear regression and by nonlinear regression. The results
show that this new module is very robust allowing to accu-
rately predicting when next change will occur in different
types of change periods.
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1. INTRODUCTION

Evolutionary Algorithms (EA) have been successfully used
to solve different types of optimization problems in static en-
vironments. When the environment changes along time, the
optimum we are looking for will, in general, be different.
Due to its characteristics the algorithm will have difficulties
to redirect the search in order to find the new optimum, or
near optimum, in acceptable time. That is why some modi-
fications were proposed to cope with that problem: the use
of memory to keep track of past good solution’s candidates,
techniques to maintain a high level of population’s diversity
or mechanisms relying on different populations, each one
tuned for a particular environment (see [17] for a review on
those alternatives). In certain cases, the dynamics of the
environment’s changes are not chaotic but follows instead a
certain repeating pattern and, in those cases, we may ex-
pect to be able to predict both the time and the trend of
the modification. If we succeed on that endeavor we may
avoid the sudden decrease in performance that typically re-
sults from the change in the environment improving thus
the algorithm’s adaptability. In this paper we extend some
ideas we develop recently and which are based on two pre-
dictors: one, based on regression, to estimate when the next
change will take place and, the other one, supported by a
Markov chain model, to predict how the environment will
be different. The main goal of this paper will be to evaluate
experimentally a predictor based on nonlinear regression
and to compare its performance with one supported by a lin-
ear regression mechanism. They will be combined with the
predictor involving a Markov Chain and will be tested in
connection with different types of dynamic environments.
The remaining text is organized as follows: section 2 de-
scribes related work concerning prediction and anticipation
used by EAs in the context of dynamic environments. In
section 3 we explain the overall architecture of an EA that
utilizes the two prediction modules. The nonlinear regres-
sion predictor is explained in section 4. In section 5 we
present the experimental setup used to test the investigated
ideas. Experimental results are summarized in section 6.
We conclude with some remarks and ideas for future work.
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Recently, several studies concerning anticipation in chang-
ing environments using EAs have been proposed. The main
goal of these approaches is to estimate future situations and



so decide the algorithm’s behavior in the present. Since in-
formation about the future typically is not available, it is at-
tained through learning from past situations. Branke et al.
[4] try to understand how the decisions made at one stage
influence the problems encountered in the future. Future
changes are anticipated by searching not only for good so-
lutions but also for solutions that additionally influence the
state of the problem in a positive way. These so-called flexi-
ble solutions are easily adjustable to changes in the environ-
ment. Studies on the tardiness job-shop problem, with jobs
arriving no-deterministically over time, showed that avoid-
ing early idle times increases flexibility, and thus the inclu-
sion of an early idle time penalty as secondary objective into
the scheduling algorithm can significantly enhance the sys-
tem’s performance. Stroud [15] used a Kalman-Extended
Genetic Algorithm (KGA) in which a Kalman filter is ap-
plied to the fitness values associated with the individuals
that make up the population. This is used to determine
when to generate a new individual, when to re-evaluate an
existing individual, and which one to re-evaluate. This KGA
is applied to the problem of maintaining a network configu-
ration with minimized message loss in which the nodes are
mobile and the transmission over a link is stochastic. As
the nodes move, the optimal network changes, but infor-
mation contained within the population of solutions allows
efficient discovery of better-adapted solutions. Van Hemert
et al. [16] introduced an EA with a meta-learner to esti-
mate at time ¢ how the environment will be at time ¢t+4.
This approach uses two populations, one that searches the
current optimum and another that uses the best individuals
in the past to predict the future best value. The prediction
is made based on observations from the past using two types
of predictors: a perfect predictor and a noisy predictor. In
reality they should not be called predictors. Concerning the
former, the correct optimal value at the future time step is
given to the solver, and for the latter the noisy predictor
just provides the system noisy values as the optimal solution
for the next step. The idea was tested with two benchmark
problems: the knapsack problem and the Osmera’s function.
Bosman [1],[2] proposed in the last years several approaches
focused on the importance of using learning and anticipa-
tion in online dynamic optimization. These works analyze
the influence of time-linkage present in problems such as
scheduling and vehicle routing. The presence of time-linkage
in this kind of problems can influence the overall perfor-
mance of the system: if a decision is made just to optimize
the score at a specific moment, it can negatively influence
the results obtained in the future. Bosman’s works propose
an algorithmic framework integrating evolutionary compu-
tation with machine learning and statistical learning tech-
niques to estimate future situations. Predictions are made
based on information collected from the past. The used pre-
dictor is a learning algorithm that approximates either the
optimization function or several of its parameters. Rossi et
al. [7] compare different techniques to improve the search
for tracking a moving optimum using the information pro-
vided by a predictor mechanism using Kalman filters. The
used predictor assumes that the changes in the environment
are not random and can be learned, helping the EA to keep
track of the current optimum. The use of linear regression
to predict the moment of next change was initially proposed
by Simdes and Costa [11]. The idea was tested with dif-
ferent dynamic optimization problems, using a variable-size

884

memory EA [12]. Several issues were analyzed such as the
speed or the severity of change. The results showed that,
if some pattern can be found in the changes of the environ-
ment, the predictor gives accurate estimations that can be
used to enhance the EA’s adaptability to future situations
[11]. Later, in [13] a predictor based on Markov chain was
added and used to predict which environments may appear
in the future.

3. USING PREDICTION IN THE EVOLU-
TIONARY ALGORITHM

Simdes and Costa [13] proposed a computational model
called PredEA to deal with dynamic environments. The
proposed architecture uses a traditional EA that evolves a
population of individuals that aim to optimize the current
fitness function. A memory is used to store useful infor-
mation from the past that is used in future changes. The
traditional memory-based EA was extended with two pre-
diction modules. The first module uses information about
when previous changes have occurred to estimate the gen-
eration when the next change will be observed. In previous
work, predictions provided by this module were made by a
linear regression predictor [13]. The second, using Markov
chains, keeps track of previous environments and provides
predictions about which environments will appear in the fu-
ture. A different module (anticipation) uses the information
provided by the previous two modules and prepares the EA
for the next change. Figure 1 illustrates the proposed archi-
tecture.

Evolutionary i
&— Insert —| - —
‘Algorithm Insel When (g) Predictor 1
store best Anticipation
individuals Module
Memory — Retrieve — *— How Predictor 2

Figure 1: Computational architecture

Here is a brief description of the components:

* Evolutionary Algorithm: standard evolutionary algo-
rithm which evolves a population of individuals through the
application of selection, crossover and mutation.

* Memory: the memorized individuals are associated with
the state (environment) where they were the best solution.
It is updated from time to time with the current best indi-
vidual of population.

* Predictor 1 (P1): this component uses previous infor-
mation to predict when next change may occur. In previous
work this module used a linear regression predictor. In this
paper we will propose and test a nonlinear based predictor
to this module.

* Predictor 2 (P2): every time a different environment
appears this module stores the environmental information.
It consists in a set of states (each state corresponds to a
different environment), a matrix of state transition proba-
bilities and the initial probability vector. Each state corre-



sponds to a different environment. The initial probability
vector is initialized choosing randomly the initial state. The
state transition probability matrix starts filled with zeros
and is updated on-the-fly when different environments ap-
pear. When this module is called, it uses all the available
information to estimate which environment(s) will ap-
pear next.

* Anticipation module (A): manages all the information
provided by the two predictors and decides when to acti-
vate the mechanisms to prepare the EA to the next change.
At that time, information from memory is retrieved and in-
serted into the population. This information corresponds to
those individuals that can be useful to the next predicted
environment(s). If the P2 module doesn’t provide any pre-
diction, five random individuals from memory are inserted
into the population, replacing five randomly selected.

The detailed description of each one of these modules can
be found in [13].

When used with a linear regression predictor the module
P1 works correctly if the change period follows a linear (or
close to linear) trend [13]. For instance, if the environment
changes in a periodic manner, every r generations, then the
predicted values are precise. If a different pattern is ob-
served in the change period, there will be an error associ-
ated to the values provided by the P1 module. A control
parameter called A was used in the algorithm to cover that
possible error and to decide how many generations before
the predicted change the A module must be activated. Ini-
tially the value of A was chosen off-line and kept constant
during the entire run. This method was a limitation to the
predictor’s efficacy and different methods of adjusting the
value of A during the run were proposed and successfully
tested [9]. The pseudocode of the PredEA is detailed in
Figure 2.

The efficacy of the linear predictor can be compromised
if the environment changes following a nonlinear trend. In
these cases the value of the prediction error may be so large
that the value of A leads to a significant Here, the P1 mod-
ule is tested using a nonlinear regression predictor which
will be able to make accurate predictions in environments
changing periodically or following linear and nonlinear pat-
terns.

4. NONLINEAR REGRESSION

Usually, linear regression is used to model relationships
between variables that follow a linear correlation. Some non-
linear functions can be modeled using linear regression (e.g.
polynomial regression) but nonlinear regression is often used
in these cases because allows modeling a wide range of func-
tions. In next sections we present the techniques for model-
ing data that displays nonlinear behaviors and use functions
that are nonlinear in the model parameters.

4.1 Nonlinear Regression Basics

The basic idea of nonlinear regression is the same as that
of linear regression, namely to relate a response y to a vec-
tor of predictor variables . Nonlinear regression is char-
acterized by the fact that the prediction equation depends
nonlinearly on one or more unknown parameters. The basic
form for a nonlinear model between the response y and a
predictor z is given as:

yi = f(2:,0) +e; (1)
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PredEA_improved(max, markov, initial-state)
1. Randomly create initial population
2. Create empty memory
3. Initialize A =5
4. Create the transition matrix with maxz sates filled
with zeros
5 repeat
6 Evaluate population
7. Evaluate memory
8. if is time to update memory then
9. Store best individual
10. Set next time to update memory
11. if an environmental change happens then
12. Store performance measures
13. Activate the P1 module
i. Update P1 information
ii. Predict g (next_change)
14. Update the value of A
15. Update the algorithm’s Markov transition matrix
16. if g (next_change) is close (g -A) then
17. Activate the P2 module
i. Predict next state(s)
18. Activate the A module:
i. Search memory for best individual(s)
ii. Introduce those individuals into pop.
%Standard EA steps
19. Perform Selection, crossover and mutation
20. Define next population
21. until stop_condition
max is the maximum number of states of the Markov chain
markov is the Markov model defined off-line used in P2
initial-state is the randomly chosen initial state for the
Markov model.

Figure 2: PredEA Pseudocode

where y; and z; are the data, f is a nonlinear function in-
volving the predictor and the parameter vector 6 and e; a
random error [8]. For instance, let’s assume the asymptotic
regression model:

f(z) =01 — 0203, where 0 < 03 < 1 (2)

Figure 3 shows two examples of functions using different
values for the parameters 6;.

Asymptotic regression model
16 - 0,=15;0,-30,0,=05
14 -
12 -
o | . %-10,200,05
z s [
s
6 |
4
2 |
o -
1 3 5 7 9 11 13 15 17 19 21 23 25
x

Figure 3: The asymptotic regression model

Although nonlinear regression is less intuitive and more
complicated to use than linear regression, it is more powerful
because allows predictions in both linear and nonlinear data



and are more suitable to model information of real world
which is in general nonlinear. The difficult task in nonlinear
regression is to estimate the correct values for the parameter
vector . Once estimated the parameters, predictions can
be performed using the nonlinear function. Next section
briefly explores the techniques for estimating the nonlinear
parameters.

4.2 Parameter Estimation

The task of parameter estimation for nonlinear regression
is not straightforward. Usually, statistical software using nu-
merical algorithms is used to analyze the data and produce
the best parameter’s choice for that data [8]. A nonlinear
parameter estimation problem is an optimization problem
which goal is to minimize the sum of squared errors given
by eq. 3:

n
Sume, = > (yi — f(x:,0,))°

i=1

®3)

Rather than minimizing the sum of squared errors, other
techniques minimize the sum of absolute deviations. Several
function minimization methods are used in parameter esti-
mation, for instance, weighted least squares, maximum like-
lihood, Quasi-Newton method, Simplex procedure or Hooke-
Jeeves pattern moves [8]. In general, these methods are not
easily controllable and require much auxiliary information
to work correctly. Another option, more general and easy to
apply, is to use a genetic algorithm to evolve a population
of individuals that minimize an objective function.

4.3 Nonlinear Regression in PredEA

In this work we propose a new method, which works with
nonlinear regression, to use in the P1 module showed in
Figure 1. Using a nonlinear based predictor we achieved
more robust and accurate predictions for the moment of next
change in a wider range of situations. The P1 module has
a set of functions fi, f2, ..., fn, that can be used to give
the predictions. At time ¢, only one function is active. The
choice of the active function is made measuring the predic-
tion errors of all functions. The function with lower error is
the selected one. The vector parameter 0; is estimated using
a standard GA as proposed by [6]. This GA uses the avail-
able information from the past to find the values for 6; which
minimize the errors of eq. 3. Every time a change occurs
in the environment and additional information is available,
the GA is executed to find a vector 6 that better fits the
data. The GA evolves a population of binary strings which
correspond to different values for 6. The fitness function
that the GA has to minimize is the least squares error func-
tion (eq. 3). Because individuals with higher fitness are
selected more often, after some generations the best indi-
vidual represents the optimal solution for #. The vector 6
is estimated using only the known data. Using these esti-
mated parameters and the selected function, the P1 module
predicts when next change will occur. After the real change
happens, the prediction error is computed. If the error is
superior to an established threshold «, the P1 module an-
alyzes all the available functions to see if this error can be
reduced. If so, a different function is used for future pre-
dictions. These actions correspond to the step 13i. of the
algorithm given in Fig. 2. Figure 4 shows how the proposed
module works. In the beginning, the first function is selected
randomly.
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5. EXPERIMENTAL DESIGN

The algorithm described before was tested and compared
with similar algorithms: an EA without any prediction mech-
anism, and the PredEA using linear regression in the P1
module. The identification of these three algorithms will be:
* PredEA-NLR: memory-based evolutionary algorithm us-
ing predictors based on Markov chains and nonlinear regres-
sion;

* PredEA-LR: memory-based evolutionary algorithm us-
ing predictors based on Markov chains and linear regression;
* NoPredEA : memory-based evolutionary algorithm with-
out prediction mechanisms.

Due to space restrictions we could not include all the de-
tails and results in this paper. More information and results
about next sections can be found in [14].

5.1 Benchmark Problems

The benchmarks used to test the proposed method were
the dynamic bitmatching problem (DBM) and the dynamic
knapsack problem (DKP). The first problem can be de-
scribed as: given a binary template, the individual’s fitness
is the number of bits matching the specified template. The
knapsack problem consists in selecting a number of items
to a knapsack with limited capacity. Each item has a value
and a weight and the objective is to choose the items that
maximize the total value, without exceeding the capacity of
the bag. When it is time to change the environment, the
template or the capacity of the bag are changed.

5.2 Experimental Setup
5.2.1 Parametersof the Evolutionary Algorithm

The EA’s parameters were set as follows: generational
replacement with elitism of size one, tournament selection
with tournament of size two, uniform crossover with prob-
ability p. = 0.7 and flip mutation applied with probability
pm = 0.01. Binary representation was used with chromo-
somes of size 100 (size of the binary templates and number
of items for the knapsack problem). Population of 80 in-
dividuals and a memory of 20 individuals were used. The
memory update times are made as suggested in [17] and the
individuals are stored in the memory using the generational
replacing strategy proposed in [10]. This scheme optimizes
de capacity of the memory storing the best individual found

PREDICTOR 1 USING NONLINEAR REGRESSION

Jifx. 8 GA Predict next
a8 Select fwith uses availabledata | change
lower prediction to estirmmate the
= fix,
Fuf, 8 errer vector parameter 6 Vpred f;( @
Whena
change
happerns
True
False Evaluate

prediction error
iferror< a

Figure 4: P1 module using nonlinear regression



so far for the present environment. When the memory be-
comes full, the similar individual is replaced by the best
individual in the main population.

5.2.2 Parametersof the GA for nonlinear regression
parameter’s estimation

The GA used to estimate the nonlinear regression param-
eters was run for 100 generations, using standard parameter
settings: population of 30 individuals, generational replace-
ment with elitism of size one, tournament selection with
tournament of size two, one-point crossover with probability
p.=0.75 and flip mutation applied with probability p,,=0.05
(as suggested in [6]).

5.2.3 Parametersof the P1 module

The nonlinear predictor was used with two functions which
can model both linear and nonlinear patterns.

fi(z) = 012® + 022 + 0 (4)

911’

fa(z) = 9t 0n (5)

The results presented in section 6 were obtained using

the A adjusting method called Max_Av_Err [9] either in
PredEA-NLR and PredEA-LR. This method updates
the value of A using the maximum prediction error and the
average of the positive prediction errors and was the ap-
proach that allowed the EA to obtain the best results.
The parameter «, used to choose which function will make
the predictions was set to 10. If the predicted error is su-
perior to a, a new evaluation of the model is done and the
module can change the active function if its application re-
duces the prediction error.

5.2.4 Parametersof the P2 module (Markov chain)

The number of different states (templates or capacities)
used in the experimentation were 3, 5, 10, 20 and 50. The
environmental transitions were of two kinds: deterministic,
i.e. the probability to change to the next state is always 1 or
probabilistic, where, in certain states, the transition can be
made to different states. The different states corresponding
to the different templates for the dynamic bitmatching prob-
lem or to the different capacities of the knapsack problem
were generated off-line and randomly selected every time a
change in the environment happens. More details can be
found in [13].

5.2.5 Typesof Change Period

Three different types of change period were used: peri-
odic, patterned and nonlinear.
Periodic (linear) This type of change period follows a lin-
ear trend. If the change period is set to r, the environment
changes every r generations. We used r = 10, » = 50,
r =100 and r = 200.
Patterned (close to linear) In this case, the change pe-
riod is generated through the repetition of a determined pat-
tern. A pattern is set and the moments of change are cal-
culated based on that pattern. Four different patterns were
investigated: 5-10-5, 10-20-10 (fast), 50-60-70 (medium) and
100-150-100 (slow). This way the intervals between changes
are not always the same, but the global behavior is close to
linear. For instance if the pattern 5-10-5 is used, the first
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change occurs at generation g1 = 5, the second at genera-
tion go = 54 10, the third at generation gs = 15+ 5, the i
generation at g; = gi—1+kj, with j=1orj=2. kg =5ifs
corresponds to a odd change number and k2 = 10 otherwise.
Nonlinear The two nonlinear change periods were gener-
ated using fi1 and f2 (eq. 4 and eq. 5) with the following
parameters: ¢; = 60, f2 = 2 and 03 =0.1 for f; and 6
= 62.67, 02 = 0.627 and 03 = 0.0047 for f>. This infor-
mation is unknown to the prediction module P1, which
evolves the values of 0; through a GA using only the known
data. These two functions allow to model different behav-
iors for the change period. In the first (f1), the environment
changes slower at the beginning and it becomes faster along
time. Using f2 the changes in the environment occur faster.
These types of change period will be referred as NL1 and
NL2, respectively. Figure 5 shows the generations where
the environment changes using fi; and fo.

5.2.6 Performance Measures

For each experiment, 30 runs were executed and the num-
ber of generations was computed based on 500 environmen-
tal changes. The overall performance used to compare the
algorithms was the best-of-generation fitness averaged over
30 independent runs, executed with the same random seeds.
To observe the algorithm’s performance along time we used
the off-line performance. Off-line performance is calculated
as the average of the best values found so far at each time
step [3]. Only the individuals evaluated since the last change
are considered.

6. RESULTS

In this section we will show some of the obtained results
concerning the efficacy of the predictors and the performance
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Figure 6: Off-line performance of PredEA, pattern
10-20-10, 10 states, probabilistic, DBM

of the different algorithms. The results were statistically val-
idated and the major statistical information of comparing
the different methods can be found in [14]. We used paired
one-tailed t-test at a 0.01 level of significance [5]. The sta-
tistical data support that the proposed predictor is efficient
and robust and improved the algorithm’s performance.

6.1 Prediction Efficacy

The efficacy of prediction was measured using the total
number of changes observed and the response of the algo-
rithm to those changes. If the algorithm was able to provide
useful information before the next change effectively hap-
pens and after the previous change, then we consider that
the prediction was accurate, otherwise it is considered inac-
curate. Table 1 shows the accuracy of the module P1 using
linear regression and the proposed nonlinear regression pre-
dictor. The average of the prediction errors and the size of
A are also shown. As we can see in Table 1 the proposed
predictor based on nonlinear regression was able to provide
accurate predictions in all types of change periods. For the
situations where the changes occurred in a nonlinear trend
and the linear predictor failed, the nonlinear predictor suc-
cessfully estimated the next change. The values reported
in Table 1 also show that the prediction error was smaller
using the nonlinear based predictor. This means that the
estimated values where equal or better than the values pro-
vided by the linear regression predictor. The value of A was
also improved. The smaller values for A obtained by the
nonlinear regression predictor mean that the algorithm was
able to react closer to the change in the environment, saving
computational effort.

6.2 PredEA’'s Performance

Table 2 shows the global performance of the algorithm
solving the DBM problem using different types of change
periods and different number of environments (states). The
best scores are marked with bold. The results show that the
algorithm using the nonlinear predictor (PredEA-NLR)
obtained the best results. In the change periods follow-
ing a nonlinear trend the results were significantly improved
when compared with the PredEA-LR algorithm. This is
more visible in the NL2 type. In this case the evironmen-
tal changes occur faster and the EA without prediction may
have some difficulties in readapting after the change. Also,
this was the case where the linear regression predictions lead
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Figure 7: Off-line performance of PredEA, pattern
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to an untimely use of the information given by the P2 mod-
ule. In this case, the information was always introduced
into the population after the change happens. The new
method avoids this error and the PredEA’s performance
was improved. The results obtained in the dynamic DKP
were analogous (see [14]). Figures 6 to 9 show the evolution
of the algorithms’ performance along time. The plots show
the off-line performance obtained by the EA with and with-
out prediction solving the the dynamic bitmatching prob-
lem. We can see that the PredEA using the new method
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based on nonlinear regression (PredEA-NLR) was able to
improve the algorithm’s performance. By the reasons stated
before, this enhancement was more considerable in the NL2
change period. In Figures 8 and 9 the PredEA-LR and no-
PredEA curves overlap.

More results can be consulted in [14]. All the results sup-
port that the proposed predictor is efficient and robust and
improved the algorithm’s performance. It is capable of accu-
rately predict when next change will occur in environments
changing periodically, following a repeated pattern or a non-
linear curve.

7. CONCLUSIONS

In this paper we propose a new, precise and robust pre-

diction method to use in EA dealing with dynamic environ-
ments. This predictor, which uses nonlinear regression, is
responsible to estimate when the next change in the envi-
ronment will happen. In previous work this task was made
by a predictor based on linear regression which was limita-
tive in situations where the change period was not periodic
or changes follow a nonlinear pattern. The proposed method
overcomes these limitations and proved to be robust and effi-
cient, allowing to make accurate predictions in a wider range
of situations.
Analyzing the obtained results, some conclusions can be
stated. First, the nonlinear regression predictor was able
to accurately predict when next change will take place in
all types of change periods studied. Second, the precision
of the predictions was improved, especially in the situations
where the linear regression predictor failed. Third, better
predictions lead to a better adjustment of the value of A
avoiding unnecessary and expensive computational efforts.
The major limitation of the proposed algorithm is the num-
ber of functions used in the predictor module P1. The ef-
ficacy of the EA can be compromised if the environment
changes following a pattern that cannot be modeled by any
of the existing functions. Some improvements are being in-
troduced and tested to overcome this limitation, namely
the incorporation of more functions and the use of a GP
to evolve the function that best fits the known data.
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Table 1: Prediction accuracy using linear regression and nonlinear regression in the P1 module of PredEA

Chg. Algorithm Prediction | Average | Average | Average
period Efficacy Error | Err (abs) A
periodic PredEA-LR 100.00% 0.00 0.00 5.00
(r) PredEA-NLR | 100.00% 0.00 0.00 5.00
5-10-5 PredEA-LR 99.87% -0.32 1.01 3.01
PredEA-NLR | 100.00% -0.36 1.01 2.02
10-20-10 PredEA-LR 99.73% -0.29 2.37 6.06
PredEA-NLR 99.73% -0.30 2.36 4.04
50-60-70 PredEA-LR 99.66% -0.29 4.43 8.06
PredEA-NLR 99.66% -0.28 4.38 5.12
100-150-100 PredEA-LR 99.66% -0.02 11.53 31.95
PredEA-NLR | 100.00% -0.27 10.77 27.77
NL1 PredEA-LR 0.00% -1885.52 | 1885.52 5.00
PredEA-NLR 98.45% -0.85 0.85 5.00
NL2 PredEA-LR 0.25% 778.56 778.56 592.53
PredEA-NLR | 100.00% -0.39 0.62 2.07

Table 2: Global results for the dynamic bitmatching problem

Bitmatching Number of states
Problem 3 5 10 20 50
noPredEA 89.68 | 90.63 | 85.99 | 86.53 | 80.74 | 81.97 | 75.27 | 76.53 69.74 70.89
r=10 PredEA-LR | 98.14 | 97.32 | 96.86 | 96.24 | 93.72 | 93.39 | 90.17 | 90.14 84.86 85.62

PredEA-NLR | 98.24 | 97.37 | 96.89 | 96.27 | 93.76 | 93.49 | 90.18 | 90.18 | 84.89 | 85.64
noPredEA 99.01 | 99.01 | 98.92 | 98.92 | 98.68 | 98.72 | 97.26 | 97.65 89.11 90.74
r=>50 PredEA-LR 99.86 | 99.85 | 99.79 | 99.80 | 99.64 | 99.58 | 99.27 | 99.22 98.20 98.03
PredEA-NLR | 99.91 | 99.89 | 99.83 | 99.81 | 99.66 | 99.63 | 99.32 | 99.25 | 98.26 | 98.05
noPredEA 99.50 | 99.50 | 99.44 | 99.45 | 99.31 | 99.33 | 99.12 | 98.82 94.44 95.42
r=100 PredEA-LR 99.93 | 99.92 | 99.88 | 99.87 | 99.77 | 99.75 | 99.54 | 99.51 98.84 98.71
PredEA-NLR | 99.94 | 99.93 | 99.89 | 99.88 | 99.78 | 99.76 | 99.55 | 99.52 | 98.86 | 98.72
noPredEA 99.73 | 99.73 | 99.70 | 99.70 | 99.60 | 99.61 | 99.46 | 99.31 97.17 97.49
r=200 PredEA-LR | 99.95 | 99.94 | 99.91 | 99.90 | 99.83 | 99.81 | 99.65 | 99.63 99.13 99.06
PredEA-NLR | 99.95 | 99.95 | 99.92 | 99.91 | 99.83 | 99.82 | 99.66 | 99.64 | 99.14 | 99.07
noPredEA 85.56 | 89.94 | 85.59 | 86.53 | 80.97 | 81.48 | 74.05 | 75.73 67.99 69.04
5-10-5 PredEA-LR 96.57 | 96.45 | 94.74 | 94.04 | 90.52 | 90.34 | 86.88 | 87.10 94.23 81.53
PredEA-NLR | 96.89 | 96.76 | 94.90 | 94.04 | 90.58 | 90.45 | 86.89 | 86.26 | 94.59 | 81.85
noPredEA 91.43 | 94.68 | 9242 | 92.47 | 87.69 | 88.42 | 81.00 | 82.87 73.40 75.00
10-20-10 PredEA-LR 97.79 | 98.31 | 97.67 | 96.40 | 95.14 | 94.22 | 92.80 | 92.32 87.22 86.52
PredEA-NLR | 98.10 | 98.62 | 97.92 | 97.20 | 95.90 | 95.07 | 93.12 | 92.83 | 87.38 | 87.02
noPredEA 99.15 | 99.15 | 99.06 | 99.07 | 98.83 | 98.86 | 98.15 | 97.88 90.78 92.34
50-60-70 PredEA-LR | 99.89 | 99.87 | 99.82 | 99.80 | 99.63 | 99.61 | 99.25 | 99.18 | 98.09 | 97.86
PredEA-NLR | 99.89 | 99.87 | 99.82 | 99.80 | 99.63 | 99.61 | 99.25 | 99.19 | 98.09 | 97.89
noPredEA 99.57 | 99.57 | 99.52 | 99.52 | 99.41 | 99.42 | 99.25 | 98.98 95.22 96.17
100-150-100 | PredEA-LR | 99.94 | 99.94 | 99.91 | 99.90 | 99.81 | 99.80 | 99.62 | 99.59 | 99.02 98.91
PredEA-NLR | 99.94 | 99.94 | 99.92 | 99.91 | 99.83 | 99.82 | 99.64 | 99.59 | 99.05 | 98.92
noPredEA 98.95 | 98.94 | 98.73 | 98.77 | 98.38 | 98.49 | 97.02 | 97.41 91.60 92.83
NLR 1 PredEA-LR 99.19 | 98.68 | 99.00 | 98.67 | 98.96 | 98.80 | 99.12 | 98.75 99.55 98.46
PredEA-NLR [ 99.74 | 99.68 | 99.64 | 99.61 | 99.48 | 99.48 | 99.25 | 99.22 | 99.58 | 98.53
noPredEA 98.11 | 98.14 | 97.96 | 97.97 | 97.58 | 97.35 | 97.01 | 94.40 84.08 85.36
NLR 2 PredEA-LR 98.12 | 98.15 | 97.96 | 97.97 | 97.57 | 97.35 | 97.01 | 94.22 84.10 85.43
PredEA-NLR [ 99.80 | 99.79 | 99.67 | 99.65 | 99.33 | 99.26 | 98.66 | 98.53 | 96.55 | 96.19
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