
Improving Prediction in Evolutionary Algorithms for
Dynamic Environments

Anabela Simões
∗

Coimbra Polythechnic
Rua Pedro Nunes - Quinta da Nora

3030-199 Coimbra, Portugal
abs@isec.pt

Ernesto Costa
CISUC, University of Coimbra

Polo II - Universidade de Coimbra
3030-290 Coimbra - Portugal

ernesto@dei.uc.pt

ABSTRACT
The addition of prediction mechanisms in Evolutionary Al-
gorithms (EAs) applied to dynamic environments is essential
in order to anticipate the changes in the landscape and max-
imize its adaptability. In previous work, a combination of
a linear regression predictor and a Markov chain model was
used to enable the EA to estimate when next change will
occur and to predict the direction of the change. Knowing
when and how the change will occur, the anticipation of the
change was made introducing useful information before it
happens. In this paper we introduce mechanisms to dynam-
ically adjust the linear predictor in order to achieve higher
adaptability and robustness. We also extend previous stud-
ies introducing nonlinear change periods in order to evaluate
the predictor’s accuracy.

Categories and Subject Descriptors
I. [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Performance

Keywords
Evolutionary Algorithms, Dynamic Environments, Predic-
tion, Markov chains, Linear regression

1. INTRODUCTION
Evolutionary Algorithms (EAs) are powerful tools to solve

a great variety of stationary optimization problems. Unfor-
tunately, techniques that are good for static problems may
not be effective for dynamic problems. Hence, some modi-
fications have been introduced in EAs in order to deal with
this kind of problems: the use of memory ([3], [18], [12]),

∗also belongs to CISUC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

the maintenance of population’s diversity ([7]) or the use of
several populations ([5]). See [9] and [17] for a in-dept re-
view.
When the environment is dynamic, in some cases, a certain
repeated behavior can be observed. For instance, the envi-
ronment can change in a cyclic manner or repeating a certain
pattern. In environments with these characteristics, we can
try to predict the moment and the pattern of the change.
Predicting modifications allows anticipating the sudden de-
crease in performance of an evolutionary algorithm and im-
prove its adaptability. The idea of anticipating the change
in dynamic environments continues to be an open subject
which must be further explored. The present paper extends
previous work and introduces new ideas for this subject.
The investigated method uses a traditional memory-based
EA combined with three other modules, responsible for pre-
dicting the future and preparing the EA for the change: the
first is based on linear regression and predicts when next
change will take place, the second is supported by a Markov
chain and estimates the environments that may appear in
the future; the third collects information from the previous
modules and prepares the EA to the change. The main goal
of this paper is to make the linear predictor more adaptable
and robust to different situations. This is done by making
adjustable some elements of the linear predictor. Four dif-
ferent mechanisms are proposed and introduced in the linear
regression module enhancing it and increasing its adaptabil-
ity and robustness. The predictor’s accuracy is evaluated in
different situations using change periods following a close-to-
linear behavior. Additionally, two different change periods,
following nonlinear curves are introduced and the efficacy
of the proposed predictors is evaluated.

The remaining text is organized as follows: section 2 de-
scribes related work concerning prediction and anticipation
used by EAs in the context of dynamic environments. In
section 3 we explain the overall architecture of an EA that
utilizes the Markov chain prediction and the linear regres-
sion module. The proposed mechanisms to improve the lin-
ear predictor are explained in section 4. In section 5 we
present the experimental setup used to test the investigated
ideas. Experimental results are summarized in section 6.
We conclude with some remarks and ideas for future work.

2. RELATED WORK
Recently, several studies concerning anticipation in chang-

ing environments using EAs have been proposed. Branke

875

et al. ([6]) try to understand how the decisions made at
one stage influence the problems encountered in the future.
Stroud ([15]) used a Kalman-Extended Genetic Algorithm
(KGA) in which a Kalman filter is applied to the fitness val-
ues associated with the individuals that make up the pop-
ulation. This is used to determine when to generate a new
individual, when to re-evaluate an existing individual, and
which one to re-evaluate. Van Hemert et al. ([16]) intro-
duced an EA with a meta-learner to estimate at time t how
the environment will be at time t + δ. This approach uses
two populations, one that searches the current optimum and
another that uses the best individuals in the past to predict
the future best value. Bosman ([1], [2]) proposed several
approaches focused on the importance of using learning and
anticipation in online dynamic optimization. These works
analyse the influence of time-linkage present in problems
such as scheduling and vehicle routing. Bosman propose
an algorithmic framework integrating evolutionary compu-
tation with machine learning and statistical learning tech-
niques to estimate future situations. Rossi et al ([10]) com-
pare different techniques to improve the search for tracking
a moving optimum using the information provided by a pre-
dictor mechanism using Kalman filters. The use of linear
regression to predict the moment of next change was ini-
tially proposed by Simões and Costa. ([11]). Later, in [14]
a predictor based on Markov chain was added and used to
predict which environments may appear in the future.

3. PREDICTION IN THE EA
Simões and Costa [14] proposed a computational model

called PredEA to deal with dynamic environments. The
proposed architecture uses a traditional EA that evolves a
population of individuals that aim to optimize the current
fitness function. A memory is used to store useful infor-
mation from the past that is used in future changes. The
traditional memory-based EA was extended with two pre-
diction modules. The first, uses a predictor based on lin-
ear regression and, using information about when previous
changes have occurred, estimates the generation when the
next change will be observed. The second module, uses a
Markov chain to memorize information about the different
environments that appear along time. Using this informa-
tion, this module provides predictions about which envi-
ronments may appear in the future. An additional module,
manages the information provided by the two predictors and
decides when to use it to anticipate the change and prepare
the main population to the next change. Figure 1 shows
the proposed architecture. Here is a brief description about

Evolutionary
Algorithm

Memory

Linear Regression
Module

Markov Chain
Module

Anticipation
Module

store best
individuals

HowRetrieve

Insert When (g)

Figure 1: Computational architecture of PredEA

each one of the components of the computational system:
Evolutionary Algorithm : standard evolutionary algorithm
which evolves a population of individuals through the appli-
cation of selection, crossover and mutation.
Memory : stores the best individual of the population in a
certain moment. The memorized individuals are associated
with the environments where they were the best solution.
The memory is updated from time to time as suggested by
[17].
Linear regression module (LR): this module saves the
generations when different changes have occurred and uses
this information to foresee when next change may take place.
The predictor uses a standard linear regression technique.
Markov chain module (MC): every time a different en-
vironment appears this module stores the environmental in-
formation. It consists in a set of states (each state corre-
sponds to a different environment), a matrix of state tran-
sition probabilities and the initial probability vector. Each
state corresponds to a different environment. The initial
probability vector is initialized choosing randomly the ini-
tial state. The state transition probability matrix starts
filled with zeros and is updated on-the-fly when different
environments appear. When this module is called, it uses
all the available information to estimate to which environ-
ment(s) the system will change.
Anticipation module (A): this module manages all the in-
formation provided by the two predictors and decides when
to activate the mechanisms to prepare the EA to the next
change. At that time, information from memory is retrieved
and inserted into the population. This information corre-
sponds to those individuals that can be useful to the next
predicted environment(s).
The dynamics of the environment is defined off-line: the
number of different states, the possible environments, the
sequence of environments to use during the simulation and
the initial state. However, we emphasize that all this in-
formation is unknown by the EA and that the Markov
model is constructed during the simulation. The activation
of the anticipation module (A) must be done at the cor-
rect time in order to prepare the population to the next
environment(s) predicted by the MC module. This ”good
moment” is provided by the LR module which estimates
the generation when next change will be observed. Know-
ing this value, the system starts preparing the change some
generations before. If the prediction mechanisms are accu-
rate and the correct information is introduced in the main
population before the change, the EA’s performance is not
affected by the changes in the environment and it contin-
ues evolving completely readapted to the new conditions.
When the prediction mechanisms fail and no anticipation is
made, the change is detected when it happens and the EA’s
performance suffers a sudden decrease taking some time to
readapt to the new environment. A change is detected if
at least one individual in the memory changes its fitness
(as it is suggested in [3]). A parameter, called ∆, is used
to decide how many generations before the predicted mo-
ment of change the A module is activated. The value of
this parameter is also used to cover minor prediction errors
associated to the LR module. The value of ∆ must be cho-
sen in order to assure that the A module is activated to
prepare the population before the change. The pseudocode
and the detailed description of the PredEA can be found in
[13]. In previous work [14] a constant value was used for

876

∆. This value was set before the algorithm starts running
and if the prediction errors of the LR module were greater
than expected it could not be enough to assure that the A
module was activated before the change. Prediction errors
can be positive or negative. A negative error means that
the predicted value for next change (g) was smaller than
the real value (g′), i.e, g < g′ and thus the anticipation of
change can be made. A positive error means the opposite.
In the latter case, if the value of ∆ is greater than the error,
the A module will be activated before the change, other-
wise, the change is detected when it occurs and no effective
anticipation is made. In this paper, we propose four differ-
ent methods to adjust the value of ∆ during the run aiming
to make the system more efficient and robust. In the next
section we describe the methods we implemented to make ∆
an adaptable parameter, learning with previous errors and
correcting its value on-the-fly, for each specific situation.

4. IMPROVING THE LINEAR REGRESSION
MODULE

The LR module works fine if the change period follows
a linear (or close-to-linear) trend [14]. For instance, if the
environment changes in a periodic manner, every r gener-
ations, then the predicted values are precise. If a different
pattern is observed in the change period, there will be an
error associated to the values foreseen by the LR module.
As referred before, in order to be effective, the A module
must act before the change. Therefore, if the change is ob-
served at generation g ′, the value of ∆ must assure that the
condition ∆ > |g− g ′| is observed. In addition, the value of
∆ must minimize the computational costs guaranteeing that
the anticipation is as closer to the change as possible. Thus,
the choice of the value of ∆ must be careful and correct.
The use of a constant value for ∆ is a weakness of the sys-
tem: for one hand requires preliminary experimentation to
decide what value to choose, for another, if the conditions of
the change period are altered, a new value must be chosen.
To overcome this limitation we propose several mechanisms
that use the previously observed prediction errors to contin-
uously change the value of ∆. Every time a change happens
the predictions provided by the LR module are evaluated
and if some prediction error is observed, the value of ∆ is
changed according to those observed errors. In all studied
approaches the parameter ∆ is initialized with the value 5
and this value is used for the first two changes when no pre-
dictions can be made. After that, the value of ∆ is updated
according to the studied methods, but it cannot be lower
than a minimum value of 2. This restriction assures that
the preparation to next change is made at least two genera-
tions before it happens. Next subsections describe the four
studied methods.

4.1 Using the maximum prediction error
This method will be called Max Err. The parameter ∆

is initialized with the value 5 and in the next changes the its
value is changed using the maximum observed prediction
error given by the linear predictor.

∆1(k) =

{
5 if k = 1, 2
max{2, e0, e1, ..., ek} if k > 2

(1)

where ei is the observed error at the ith change.

4.2 Using the average of the positive predic-
tion errors

This approach will be known as Av Err(+). As before,
the parameter ∆ is initialized with the value 5 and this value
is used for the first two changes when no predictions can
be made. In the next changes the value of ∆ is changed
using the average of the positive errors given by the linear
predictor:

∆2(k) =

{
5 if k = 1, 2

max{2,
∑k

i=1 ei

k
} if k > 2 and ei > 0

(2)

4.3 Using the average of the absolute value of
all the prediction errors

Known as Av Err(all), at change k this method updates
the value of ∆ using the average of the absolute values of
all errors.

∆3(k) =

{
5 if k = 1, 2

max{2,
∑k

i=1|ek|
k

} if k > 2
(3)

4.4 Using the maximum prediction error and
the average of the positive prediction er-
rors

We will call this method Max Av Err. After the two first
changes the value of ∆ is computed using the average of the
sum of the maximum observed error and the average of all
positive errors.

∆4(k) =

{
5 if k = 1, 2

max{2, ∆1(k)+∆2(k)
2

} if k > 2 and ei > 0
(4)

5. EXPERIMENTAL DESIGN
Experiments were carried out to compare the different ver-

sions of PredEA. The algorithm using a constant value for
∆ as proposed in [14] (PredEA Const) and the different
versions of the algorithm, using the methods described in
the previous section. The four EAs will be called:
PredEA Max Err: the ∆ parameter is adapted using the
maximum observed prediction error;
PredEA Av Err(+): the ∆ parameter is adapted using the
average of the positive observed prediction errors;
PredEA Av Err(all): the ∆ parameter is adapted using
the average of the absolute value of all observed prediction
errors;
PredEA Max Av Err: the ∆ parameter is adapted using
a linear combination of the maximum and the average of the
positive observed prediction errors.
Benchmark Problems The benchmarks used to test the
investigated ideas were the dynamic bitmatching problem
and the dynamic knapsack problem. The first problem can
be described as: given a binary template, the individual’s
fitness is the number of bits matching the specified tem-
plate. The knapsack problem consists in selecting a number
of items to a knapsack with limited capacity. Each item
has a value and a weight and the objective is to choose the
items that maximize the total value, without exceeding the
capacity of the bag. For the bitmatching problem, a set of
different binary templates was generated at the beginning
of the run. When a change happens, a different template is
chosen from that set. We used templates of length 100. For

877

the knapsack problem, different capacities are generated at
the beginning of the run. Each different capacity value dif-
fers from the previous one in 10%. When a change happens,
a different value is chosen from that set.

Experimental Setup The EA’s parameters were set as
follows: generational replacement with elitism of size one,
tournament selection with tournament of size two, uniform
crossover with probability pc = 0.7 and flip mutation applied
with probability pm = 0.01. Binary representation was used
with chromosomes of size 100 (size of the binary templates
and number of items for the knapsack problem). Population
of 80 individuals and a memory of 20 individuals were used.
The value of the ∆ constant referred above was 5 genera-
tions. For each experiment, 30 runs were executed and the
number of generations was computed based on 500 environ-
mental changes. The overall performance used to compare
the algorithms was the best-of-generation fitness averaged
over 30 independent runs, executed with the same random
seeds.
The number of different states (templates or capacities) used
in the experimentation were 3, 5, 10, 20 and 50. The envi-
ronmental transitions were of two kinds: deterministic, i.e.
the probability to change to the next state is always 1 or
probabilistic, where, in certain states, the transition can be
made to different states. More details can be found in [13].

When does the environment change?
Two different types of change period were used. In the first,
also used in previous work [14], the change period is gener-
ated through the repetition of a certain pattern. This type
of change period follows a linear trend and the moments
of change were calculated based on that pattern. Four dif-
ferent patterns were investigated: 5-10-5, 10-20-10 (fast),
50-60-70 (medium) and 100-150-100 (slow). Another type
of change, based on nonlinear functions, was analyzed in
this work. This situation was introduced to see how the LR
module behaves when the period of change follows a nonlin-
ear behavior. Two different nonlinear curves were studied,
according to the following equations [8]:

f1(x) = a + bx + cx2, a = 60, b = 2, c = 0.1 [NL1] (5)

f2(x) =
ax

b + cx
, a = 63, b = 0.63, c = 0.005 [NL2] (6)

In the first (f1), the environment changes slower at the be-
ginning and it becomes faster along time. Using f2 the
changes in the environment occur faster. These types of
change period will be referred as NL1 and NL2, respec-
tively.

6. RESULTS
Prediction Efficacy
The efficacy of prediction was measured using the total num-
ber of changes observed and the response of the algorithm
to those changes. If the algorithm was able to provide useful
information before the next change effectively happens and
after the previous change, then we consider that the pre-
diction was accurate, otherwise it is considered inaccurate.
Table 1 shows the accuracy of the linear predictor (Efficacy
column), the average of prediction error, the absolute value
of the error is also provided in terms of absolute value and
the corresponding value of ∆. As we can see in Table 1

the value of ∆ influences the prediction efficacy. For the
changes following a linear trend, based on a fixed pattern,
accurate predictions were provided. In this case, each ad-
justing method used a different value for ∆ and, in general,
the ∆ = Max Av Err provided the best responses. For the
situations where the changes occurred in a nonlinear trend,
the predictor failed. Since the predictor is based on linear
regression these results were expected. As shown in Table
1, the predictions in the two studied situations were mainly
wrong. In the first situation (NL1) the predicted values
correspond to generations before the real change (negative
value), but the associated error is huge and to a great extent
the predicted value was not even close to the next change.
In the second situation (NL2) all the predicted values were
provided after the change occur (positive values for the aver-
age prediction error), so the algorithm reacted untimely and
wrong. Table 2 shows the variation of the prediction error
for the analyzed situations. As we can see in the four situa-
tions based on linear behaviors the prediction error tends to
decrease along time. The opposite is observed in the non-
linear situations. The linear prediction module used in the
EA is obviously unsuitable for situations where the changes
follow a nonlinear pattern.

Algorithm’s Performance
The EA’s efficiency is directly related to the predictor’s ac-
curacy. In the nonlinear situations where the accuracy of the
predictor was very poor, the performance is similar for all
the situations including those where no prediction is used.
This happens because, in fact, there was no prediction for
all the situations. In the remaining cases we can see that the
use of the prediction mechanisms improved the EA’s perfor-
mance, especially for rapid change periods and using more
different states.
Table 3 shows the results obtained for the bitmatching prob-
lem. The best scores are marked with bold. Figures 2 to
5 show the evolution of the algorithm’s performance along
time. The plots show the offline performance obtained by
the EA with and without prediction. Offline performance
is calculated as the average of the best values found so far
at each time step ([4]). Only the individuals evaluated since
the last change are considered:

offline =
1

G

G∑
t=1

e′(t), e′(t) = max{eτ , eτ+1, ..., et} (7)

where G is the total number of generations and τ is the last
time step before t at which a change in the environment oc-
curred.
The ∆ adjustment type used in the next examples was the
Max Av Err strategy. We show results for both problems
using 10 states in deterministic and probabilistic changes,
for the 5-10-5 and NL1 patterns. More results can be con-
sulted in [13]. As we can see the use of prediction consid-
erably improves the EA’s performance, mostly in situations
where the number of generations between changes is smaller.
Statistical Analysis The major statistical results of com-
paring the different methods can be found in [13]. We used
paired one-tailed t-test at a 0.01 level of significance [8].
We’ve just saw that choosing different values for the param-
eter ∆ affects the prediction’s accuracy and the statistical
analysis support that this difference is statistically signifi-
cant.

878

Table 1: Prediction accuracy using different methods

Chg. period Adj. type Efficacy Av. Err. Av. Err.(abs) Av. ∆
∆=Const = 5 66.71% 5.00
∆=Max Err 66.71% 5.00

5-10-5 ∆=Av Err(+) 67.38% -0.32 1.01 2.00
∆=Max Err(all) 67.65% 2.00
∆=AvMax Err 99.87% 3.01
∆=Const = 5 99.46% 5.00
∆=Max Err 67.02% 9.97

10-20-10 ∆=Av Err(+) 68.10% -0.29 2.37 3.11
∆=Max Err(all) 68.63% 3.13
∆=AvMax Err 99.73% 6.06
∆=Const = 5 98.32% 5.00
∆=Const = 10 99.66% 10.00
∆=Max Err 99.66% 12.89

50-60-70 ∆=Av Err(+) 41.95% -0.29 4.43 3.32
∆=Max Err(all) 99.66% 4.34
∆=AvMax Err 99.66% 8.06
∆=Const = 5 98.32% 5.00
∆=Const = 25 99.66% 25.00
∆=Max Err 99.66% 49.55

100-150-100 ∆=Av Err(+) 41.95% -0.02 11.53 15.12
∆=Max Err(all) 99.66% 16.33
∆=AvMax Err 99.66% 31.95
∆=Const = 5 0.00% 5.00
∆=Max Err 0.00% 5.00

NL1 ∆=Av Err(+) 0.00% -1885.52 1885.52 5.00
∆=Max Err(all) 1.21% 631.70
∆=AvMax Err 0.00% 5.00
∆=Const = 5 1.01% 5.00
∆=Max Err 0.25% 775.32

NL2 ∆=Av Err(+) 0.25% 778.56 778.56 410.25
∆=Max Err(all) 0.25% 410.25
∆=AvMax Err 0.25% 592.53

Table 2: Prediction errors for the different types of change periods

Chg. number 5-10-5 10-20-10 50-60-70 100-150-100 NL1 NL2

Prediction Error
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 5 10 -10 50 -1 2
4 3 6 13 33 -1 2
5 -3 -5 5 -25 -1 3
6 1 2 -8 10 -1 4
7 2 4 7 23 -1 6
8 -3 -5 4 -22 -1 7
9 0 1 -8 5 -2 10
10 2 4 5 20 -2 12
. . .
295 1 3 3 16 -1456 1130
296 -2 -4 3 -17 -1466 1132
297 0 0 -7 0 -1476 1135
298 1 3 3 16 -1485 1137
299 -2 -4 3 -17 -1495 1139
300 0 0 -7 0 -1505 1141

879

Table 3: Global results for the dynamic bitmatching problem

Bitmatching Number of states

Problem 3 5 10 20 50
Ch. per ∆ Type Det. Prob. Det. Prob. Det. Prob. Det. Prob. Det. Prob.

noPredEA 85.56 89.94 85.59 86.53 80.97 81.48 74.05 75.73 67.99 69.04
Const = 5 94.92 94.14 92.85 91.99 89.18 88.05 85.87 85.65 81.00 80.75

5-10-5 Max Err 94.46 98.81 92.55 91.89 89.21 88.77 85.90 85.81 81.04 80.85
Av Err(+) 96.02 95.67 93.40 97.16 88.92 89.47 83.37 84.22 83.67 75.74
Av Err(all) 95.98 97.59 93.47 93.03 89.08 96.61 83.36 84.25 75.24 75.77
Av Max Err 96.57 96.45 94.74 94.04 90.52 90.34 86.88 87.10 94.23 81.53
noPredEA 91.43 94.68 92.42 92.47 87.69 88.42 81.00 82.87 73.40 75.00
Const = 5 97.60 98.59 97.78 96.91 95.67 94.69 92.99 92.57 87.25 86.72

10-20-10 Max Err 96.47 96.82 96.82 94.60 94.77 92.71 92.35 91.38 87.11 85.98
Av Err(+) 97.32 97.74 96.93 96.22 94.53 93.94 90.02 90.06 81.18 81.12
Av Err(all) 97.22 97.74 97.09 96.24 94.67 93.97 89.72 90.18 81.13 81.07
Av Max Err 97.79 98.31 97.67 96.40 95.14 94.22 92.80 92.32 87.22 86.52
noPredEA 99.15 99.15 99.06 99.07 98.83 98.86 98.15 97.88 90.78 92.34
Const = 5 99.87 99.87 99.81 99.79 99.62 99.60 99.25 99.18 98.09 97.85
Const = 10 99.89 99.87 99.81 99.71 99.63 99.60 99.25 99.18 98.09 97.85

50-60-70 Max Err 99.89 99.88 99.82 99.79 99.62 99.60 99.24 99.18 98.09 97.86
Av Err(+) 99.46 99.45 99.38 99.36 99.17 99.17 98.66 98.49 92.96 94.26
Av Err(all) 99.88 99.88 99.81 99.79 99.62 99.59 99.25 99.18 98.08 97.87
Av Max Err 99.89 99.87 99.82 99.80 99.63 99.61 99.25 99.18 98.09 97.86
noPredEA 99.57 99.57 99.52 99.52 99.41 99.42 99.25 98.98 95.22 96.17
Const = 5 99.82 99.81 99.78 99.77 99.68 99.67 99.49 99.35 97.63 97.92
Const = 25 99.94 99.94 99.91 99.90 99.81 99.80 99.62 99.59 99.02 98.92

100-150-100 Max Err 99.94 99.94 99.91 99.90 99.81 99.80 99.62 99.58 99.02 98.91
Av Err(+) 99.83 99.82 99.78 99.78 99.68 99.67 99.49 99.37 97.63 97.94
Av Err(all) 99.83 99.82 99.78 99.78 99.68 99.67 99.49 99.37 97.62 97.93
Av Max Err 99.94 99.94 99.91 99.90 99.81 99.80 99.62 99.59 99.02 98.91
noPredEA 98.95 98.94 98.73 98.77 98.38 98.49 97.02 97.41 91.60 92.83
Const = 5 99.20 98.70 99.02 98.63 99.01 99.86 99.13 98.75 98.56 98.45

NL1 Max Err 99.18 99.92 99.04 98.68 98.99 98.78 99.10 98.75 98.56 98.46
Av Err(+) 99.18 98.67 99.00 96.73 99.02 98.77 99.11 98.73 99.60 98.45
Av Err(all) 99.18 99.92 99.02 98.65 98.98 99.86 99.12 98.77 98.56 98.45
Av Max Err 99.19 98.68 99.00 98.67 98.96 98.80 99.12 98.75 99.55 98.46
noPredEA 98.11 98.14 97.96 97.97 97.58 97.35 97.01 94.40 84.08 85.36
Const = 5 98.13 98.15 97.96 97.98 97.58 97.37 97.01 94.09 84.15 85.48

NL2 Max Err 98.12 98.15 97.96 97.97 97.57 97.35 97.00 94.07 84.07 85.42
Av Err(+) 98.12 98.15 97.96 97.97 97.57 97.44 97.01 94.21 84.05 85.50
Av Err(all) 98.12 98.15 97.96 97.97 97.58 97.35 97.01 94.26 84.14 85.40
Av Max Err 98.12 98.15 97.96 97.97 97.57 97.35 97.01 94.22 84.10 85.43

Figure 2: Comparing offline performance for the bitmatching problem: noPredEA vs PredEA, 10 states,
pattern 5-10-5

880

Figure 3: Comparing offline performance for the knapsack problem: noPredEA vs PredEA, 10 states, pattern
5-10-5

Figure 4: Comparing offline performance for the bitmatching problem: noPredEA vs PredEA, 10 states,
nonlinear 1

Figure 5: Comparing offline performance for the knapsack problem: noPredEA vs PredEA, 10 states, non-
linear 1

881

7. CONCLUSIONS AND FUTURE WORK
This paper analyzes the use of prediction in an EA deal-

ing with dynamic environments. The accuracy of the linear
prediction module incorporated in the EA is evaluated using
different schemes for adjusting the value of ∆, a parameter
that considers the error associated to the LR predictions
and assures that the useful information supplied for the MC
module is introduced into the population before the change
happens. Four mechanisms were proposed to adjust the ∆
parameter during the run. All the proposed approaches use,
in different ways, the previously observed errors to learn how
to adapt the value of ∆.
Analyzing the obtained results, some conclusions can be
stated. First, the use of prediction mechanisms in EA deal-
ing with dynamic environments significantly improves its
performance. Second, analyzing the four proposed methods
for adjusting the value of ∆ in the linear prediction module,
in general the Max Av Err strategy was the most efficient.
Although in some situations the results are not clearly su-
perior to the ones obtained using a constant value for ∆,
the use of the adjustable mechanisms avoids the difficulty of
choosing the correct value for ∆ and, for each particular sit-
uation, this value will be found. In addition, no preliminary
experimentation is necessary to decide which value to use.
Third, the accuracy of predicted values for the moment of
next change depends on the behavior of the change period.
The proposed methods are effective if a linear or a close to
linear trend is observed in the change period. When the
change period follows a nonlinear behavior, as expected, the
linear predictor has a poor efficacy. The prediction errors
are huge and even though the ∆ in some situations ”covers”
the prediction error, its value implies computational costs
too expensive. To overcome this last conclusion, the linear
prediction module should be replaced by a scheme based on
nonlinear regression. This way, both linear and non-
linear changes can be successfully predicted. This work is
already in course and the first results are very promising.

8. ACKNOWLEDGEMENTS
The work of the first author was partially financed by the

PhD Grant BD/39293/2006 of the Foundation for Science
and Technology of the Portuguese Ministry of Science and
Technology and High Education.

9. REFERENCES
[1] P. A. Bosman. Learning, Anticipation and

Time-deception in Evolutionary Online Dynamic
Optimization. In S. Yang and J. Branke, editors,
GECCO Workshop on Evolutionary Algorithms for
Dynamic Optimization, 2005.

[2] P. A. Bosman. Learning and Anticipation in Online
Dynamic Optimization. In S. Yang, Y.S. Ong and Y.
Jin, editors, Evolutionary Computation in Dynamic
and Uncertain Environments. Springer-Verlag, 2007.

[3] J. Branke. Memory Enhanced Evolutionary
Algorithms for Changing Optimization Problems. In
IEEE Congress on Evolutionary Computation (CEC
1999), pages 1875–1882. IEEE Press, 1999.

[4] J. Branke. Evolutionary Optimization in Dynamic
Environments. Kluwer Academic Publishers, 2002.

[5] J. Branke, T. Kaußler and C. Schmidt, A
Multi-Population Approach to Dynamic Optimization

Problems. In I. Parmee, editor, Adaptive Computing
in Design and Manufacture (ACDM 2000), pages
299–308. Spriger-Verlag, 2000.

[6] J. Branke and D. Mattfeld. Anticipation in dynamic
optimization: The scheduling case. In M. Schoenauer,
K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo
and H.-P. Schwefel, editors, Parallel Problem Solving
from Nature, pages 253–262. Springer, 2000.

[7] H. G. Cobb. An Investigation into the Use of
Hypermutation as an Adaptive Operator in Genetic
Algorithms having Continuous, Time-Dependent
Nonstationary Environment. Technical Report TR
AIC-90-001, Naval Research Laboratory 1990.

[8] D. S. Moore and G. P. McCabe. Introduction to the
Practice of Statistics (4th edition). Freeman and
Company, 2003.

[9] Y. Jin and J. Branke. Evolutionary Optimization in
uncertain Environments: a survey. IEEE Transactions
on Evolutionary Computation, 9(3): 303–317, 2005.

[10] C. Rossi, M. Abderrahim and J. C. Dı́az. Tracking
Moving Optima Using Kalman-Based Predictions.
Evolutionary Computation, 16(1): 1–30, MIT Press,
2008.

[11] A. Simões and E. Costa. Using Linear Regression to
Predict Changes in Evolutionary Algorithms dealing
with Dynamic Environments. Technical Report TR
2007/005, ISSN 0874-338X, CISUC, 2007.

[12] A. Simões and E. Costa. Variable-size Memory
Evolutionary Algorithm to Deal with Dynamic
Environments. In M. Giacobini et al., editors,
Applications of Evolutionary Computing, volume 4448
of Lecture Notes in Computer Science, pages 617–626.
Springer, 2007.

[13] A. Simões and E. Costa. Evaluating Prediction’s
Accuracy in Evolutionary Algorithms for Dynamic
Environments. Technical Report TR 2008/04, ISSN
0874-338X, CISUC, 2008.

[14] A. Simões and E. Costa. Evolutionary Algorithms for
Dynamic Environments: Prediction using Linear
Regression and Markov Chains. In Parallel Problem
Solving from Nature (PPSN X), pages 306–315.
Springer, 2008.

[15] P. D. Stroud. Kalman-extended Genetic Algorithm for
Search in Nonstationary Environments with Noisy
Fitness Evaluations. IEEE Transactions on
Evolutionary Computation, 5(1): 66–77, 2001.

[16] J. van Hemert, C. Van Hoyweghen, E. Lukshandl and
K. Verbeeck. A Futurist Approach to Dynamic
Environments. In GECCO EvoDOP Workshop, pages
35–38, 2001.

[17] S. Yang. Explicit Memory Schemes for Evolutionary
Algorithms in Dynamic Environments. In S. Yan, Y-S.
Ong and Y. Jin, editors, Evolutionary Computation in
Dynamic and Uncertain Environments, pages 3–28.
Springer-Verlag, 2007.

[18] S. Yang and X. Yao. Experimental Study on
Population-Based Incremental Learning Algorithms
for Dynamic Optimization problems. Soft Computing,
9(11): 815–834, 2005.

882

