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Abstract. Usually, evolutionary algorithms keep the size of the popu-
lation fixed. In the context of dynamic environments, many approaches
divide the main population into two, one part that evolves as usual an-
other that plays the role of memory of past good solutions. The size of
these two populations is often chosen off-line. Usually memory size is
chosen as a small percentage of population size, but this decision can
be a strong weakness in algorithms dealing with dynamic environments.
In this work we do an experimental study about the importance of this
parameter for the algorithm’s performance. Results show that tuning the
population and memory sizes is not an easy task and the impact of that
choice on the algorithm’s performance is significant. Using an algorithm
that dynamically adjusts the population and memory sizes outperforms
standard approach.

1 Introduction

Evolutionary Algorithms (EAs) have been used with success in a wide area of
applications, involving environments either static or dynamic. Traditional EAs
usually have a number of control parameters that are specified before starting
the algorithm. These parameters include, for example, the probabilities of muta-
tion and crossover or the population size. The effects of setting the parameters
of EAs has been the subject of extensive research and in the last years several
approaches using self-adaptive EAs, which can adjust the parameters on-the-fly,
have been proposed. The study of EAs for stationary domains has previously
focused on the adjustment of parameters of genetic operators. The choice of the
size of the population has received less attention by researchers. However, if we
look to natural systems that inspire EAs, the number of individuals of a cer-
tain species changes over time and tends to become stable around appropriate
values, according to environmental characteristics or natural resources ([1]). In
evolutionary computation the population size is usually an unchanging param-
eter and finding an appropriate dimension is a difficult task. Several adaptive
population sizing methods have been suggested (see [2] for a review). When EAs
are used to deal with dynamic environments, some modifications have to be in-
troduced to avoid premature convergence since convergence is disadvantageous
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when a change happens. These enhancements include increasing diversity after
a change ([3]), maintaining diversity throughout the run ([4]), using memory
mechanisms ([5], [6]) and multi-population schemes ([7]). The global functioning
of EAs designed to deal with dynamic applications had inherited most of the
characteristics of EAs used for static domains: the adjustment of mutation rate,
the use of typical values for the crossover operator and the specification of un-
changing population sizes. Even, when an explicit memory is used, its size is also
set at the beginning and is usually a small percentage of the main population
size. Less attention has been devoted to study the influence that population size
can have in the performance of the EA.

Some research has been made about this issue: Schönemann ([8]) studied the
impact of population size in the context of Evolutionary Strategies for dynamic
environments and the results showed that the choice of the population size can af-
fect the algorithm’s performance. Simões et al. ([9]) proposed an EA to deal with
changing environments which controls the size of population and memory dur-
ing the run. Results from that work show that the performance of the EA can be
considerably improved. Recently, Richter et al. ([10]) proposed a memory-based
abstraction method using a grid to memorize useful information and the results
obtained suggest that an optimal grid size may depend on the type of dynamics.

In this work we describe an extensive empirical study whose focus was the
performance of distinct memory-based EAs that faced different environmental
characteristics. The study is based on two benchmark problems and is divided in
two parts: in the first part, we kept the populations sizes fixed and ran the EAs
for different values for these parameters in order to analyze the impact of the
chosen values on the EA’s performance. In the second part, an EA using pop-
ulation and memory whose size may vary is ran and compared with the results
of the previous experimentation. We show that the values set to population and
memory sizes can have a great influence in the EA’s performance. The use of
an algorithm capable of dynamically adjusting the population and memory sizes
during the run outperforms, in general, all the scenarios analyzed using constant
populations sizes. These results are statistically supported. Due to space restric-
tions, we will not be able to show the complete and detailed description of this
work. For more details see [11]. The rest of the paper is organized as follows:
next section briefly reviews memory schemes for EAs in dynamic environments.
Section 3, describes the three implemented memory-based EAs and Section 4
details the dynamic test environments used for this study. The experimental re-
sults and the analysis are presented in section 5. Section 6 concludes the paper
and some considerations are made about future work.

2 Memory-Based Evolutionary Algorithms for Dynamic
Environments

EAs using memory schemes work by storing information about the different
environments that may occur and selectively retrieving that information later
when another change in the environment is detected. Information can be stored
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in memory implicitly or explicitly ([12]). In the case of implicit memory the
stored information is kept in redundant representations of the genotype. There
are some variants, e.g., using diploid (or multiploid) representations ([13]) or
dualism mechanisms ([14]). In explicit memory schemes an extra space, called
memory population, is used. Its main goal is to store useful information about
the current environment and possibly reuse it each time a change occurs. It may
also permit the main population to move to a different area in the landscape
in one step, which in principle is harder when we rely only on standard genetic
operators. ([12]).

Considerations about Memory: When using memory-based EA some ques-
tions can be asked concerning memory: 1) when and which individuals to store
in memory, 2) which size to choose, 3) which individuals should be replaced
when memory is full, 4) which individuals should be selected from memory and
introduced in the main population when a change happens ([12]). In explicit
memory schemes, the information stored in memory corresponds to the cur-
rent best individual of the main population. Other approaches, together with
this information, also keep information about the environment. The size of the
memory is an important issue. Since the size of the memory is limited, it is
necessary to decide which individuals should be replaced when new ones need
to be stored. This process is usually called replacing strategy. Several replacing
schemes have been proposed ([5], [9], [6]). The retrieval of memory information
when a change occurs depends on what was stored. In some cases, memory is
re-evaluated and the best individuals of memory replace the worst of the main
population. Other approaches use the stored environmental information together
with the best memory individual to create new information to introduce in the
population when a change happens.

Population and Memory Sizes: Usually, memory-based EAs for changing
environments use a memory of small size, when compared with the dimension of
the main population. In most cases, the dimension of memory is chosen between
5% and 20% of the population size, with 10% the most chosen one, as can be
seen in the used values in several studies listed in [11]. Choosing a constant value
for population and memory sizes is widely used in memory-based EAs. Memory
is always seen as playing a secondary role in the process, and is used always with
a smaller dimension.

3 Description of the Implemented Memory-Based EAs

We choose to implement a memory-immigrant based EA (MIGA) and a direct
memory EA (MEGA). Both use population and memory with unchanging sizes.
An additional algorithm, using a direct memory scheme with changing popula-
tion and memory sizes was implemented (VMEA), ran and compared with the
other two. The three algorithms will be briefly described.

Memory-Immigrants Genetic Algorithm: The Memory-Immigrants Ge-
netic Algorithm (MIGA) uses a direct memory scheme. It was proposed by
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([15]) and works in the following way: the algorithm evolves a population of
individuals in the standard evolutionary way: selection, crossover and mutation.
Additionally, a memory is initialized randomly and used to store the current best
individual of the population, replacing one of the initially randomly generated
individuals, if it exists, or replacing the most similar in memory if it is better.
Every generation the best individual in memory is used to create a set of new
individuals, called immigrants that are introduced into the population replacing
the worst ones. These new individuals are created mutating the best solution in
memory using a chosen mutation rate. When a change is detected it is expected
that the diversity introduced in the population by adding these immigrants can
help the EA to readapt to the new conditions.

Memory-Enhanced Genetic Algorithm: The Memory-Enhanced Genetic Al-
gorithm (MEGA) ([15]) is an adaptation of Branke’s algorithm ([5]) and evolves
a population of n individuals through the application of selection, crossover and
mutation. Additionally, a memory of size m is used, starting with randomly cre-
ated individuals. From time to time memory is updated in the following way: if
any of the initial random individuals still exist, the current best solution of the
population replaces one of them arbitrarily; if not, the most similar memory up-
dating strategy is used to choose which individual to exchange. Memory is evalu-
ated every generation and, when a change is detected, the memory is merged with
the best n−m individuals of the current population to form the new population,
while memory remains unchanged.

Variable-size Memory Evolutionary Algorithm: Simões and Costa ([9])
proposed a Variable-size Memory Evolutionary Algorithm (VMEA) to deal with
dynamic environments. This algorithm uses a population that searches for the
optimum and evolves as usual, through selection, crossover and mutation. A
memory population is responsible for storing good individuals of the main pop-
ulation at several moments of the search process. The two populations - main
and memory - have variable sizes that can change between two boundaries. The
basic idea of VMEA is to use the limited resources (total number of individuals)
in a flexible way. The size of the two populations can change but the their sum
cannot go beyond a certain limit. If an environmental modification is detected,
the best individual of the memory is introduced into the population. In the case
of either the population size or the sum of the two populations has reached
the allowed maximum, the best individual in memory replaces the worst one
in the current population. The algorithm was compared with other memory-
based schemes using the standard dimensions for population and memory and
the results validate its effectiveness.

4 Experimental Design

4.1 Dynamic Test Environments

The dynamic environments to test our approach were created using Yang’s Dy-
namic Optimization Problems (DOP) generator ([16]). This generator allows
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constructing different dynamic environments from any binary-encoded station-
ary function using the bitwise exclusive-or (XOR) operator. The characteristics
of the change are controlled by two parameters: the speed of the change, r,
which is the number of generations between two changes, and the magnitude
of the change, ρ that controls how different is the new environment from the
previous one.

In this work we constructed 16 cyclic DOPs, setting the parameter r to 10,
50, 100 and 200. The ratio ρ was set to different values in order to test different
levels of change: 0.1 (a light shifting) 0.2, 0.5 and 1.0 (severe change). This group
of 16 DOPs was tested using the three different algorithms with two benchmark
problems, using ten different combinations os population and memory sizes. A
total of 960 different situations were tested in this work. The selected bench-
mark problems, used to test the different EAs with different parameter settings
were the dynamic Knapsack problem and the Onemax problem. The Knapsack
problem is a NP-complete combinatorial optimization problem often used as
benchmark. It consists in selecting a number of items to a knapsack with limited
capacity. Each item has a value (vi) and a weight (wi) and the objective is to
choose the items that maximize the total value without exceeding the capacity
of the bag (C). We used a Knapsack problem with 100 items using strongly
correlated sets of randomly generated data. The Onemax problem aims to
maximize the number of ones in a binary string. So, the fitness of an individual
is equal to the number of ones present in the binary string. This problem has a
unique solution. In our experiments we used individuals of length 300. For more
details see [11].

4.2 Parameters Setting

The EA’s parameters were set as follows: generational replacement with elitism
of size one, tournament selection with tournament of size two, uniform crossover
with probability pc = 0.7 and flip mutation with probability pm = 0.01. Binary
representation was used with chromosomes of size 100 for the Knapsack and
300 for Onemax problem. The probability of mutation and the ratio of immi-
grants introduced in population used in MIGA were 0.01 and 0.1, respectively,
as suggested by [15].

All simulations used a global number of individuals equal to 100. These in-
dividuals were divided in main population and memory, in the following way:
the main population used a population size between 10 and 90 individuals, in
increases of 10 (10, 20,..., 90). Memory size was calculated with the remaining
individuals: M(size) = 100 − P (size). The generational replacing strategy pro-
posed by [6] was used in all EAs. For each experiment of an algorithm, 30 runs
were executed. Each algorithm was run for a number of generations correspond-
ing to 200 environmental changes. The overall performance used to compare the
algorithms was the best-of-generation fitness averaged over 30 independent runs,
executed with the same random seeds.
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5 Results

In this section we will show partial results concerning: (a) the overall perfor-
mance of the studied algorithms; (b) the adaptability of the algorithms along
time, (c) the diversity of population and memory for the different algorithms
and (d) the variation of population and memory sizes in VMEA.

The global results regarding MIGA and VMEA in the the Knapsack problem
under different environments are shown in Figure 1. VMEA’s scores are plot-
ted in the upper right corner. As we see, depending on the change period and
the change ratio, the choice of population and memory sizes affects the algo-
rithm’s performance. For the Knapsack problem, using MIGA, the best choice
was population with 60 or 50 individuals (and memory of 40 and 50 respectively),
for dynamics changing rapidly (r = 10). In environments with slower changes
(r = 50, r = 100, r = 200), the best results were achieved with population size
of 80 or 70 and memory with 20 or 30 individuals, respectively. Either smaller or
larger populations lead to a decrease of the EAs’ performance. For the Onemax
problem, MIGA obtained best results using population size of 40 individuals us-
ing faster changes and lower change ratios (ρ = 0.1 and ρ = 0.2) and population
with 60 individuals for larger change ratios (ρ = 0.5 and ρ = 1.0). Increasing the
change ratio and the change period, larger populations are required to achieve
the best results: 70 to 90 individuals. Observing the graphics, it is visible the
influence that population and memory sizes can have in the performance of this
algorithm. It is evident there must be a tradeoff between memory and population
sizes. The usual split of 10% for the memory size and 90% for the population
size is not the best choice. In all cases, VMEA outperformed all instances of
MIGA and MEGA (not shown here for lack of space), demonstrating robustness
and adaptability in the studied problems under different environmental char-
acteristics. As happens in the stationary environments ([2]) it is possible that
different sizes of population and memory might be optimal at different stages of
the evolutionary process.

The statistical validation of the obtained results used paired one-tailed t-
test at a 0.01 level of significance and can be found in [11]. Statistical results
support that choosing different sizes for the population and memory affects the
algorithm’s performance and this difference is statistically significant. In general,
VMEA performed significant better than MIGA’s and MEGA’s best results on
most dynamic environments. These results validate our expectation of the impact
that a bad choice of population and memory sizes can have in EA’s performance
and also that dynamically sizing approaches should be further investigated.

Figure 2 shows an example of how the different algorithms evolved through the
entire run for the Knapsack problem. These results were obtained using ρ = 0.5.
For the other cases, the results were analogous. In all cases the difference in the
algorithm’s performance using a ”good choice” and a ”bad choice” for the popu-
lation and memory sizes is considerable, especially in rapidly changing environ-
ments. In MIGA’s and MEGA’s worst results, the evolution is slower and the best
performance is only achieved when r = 200 and at the end of the process, since
more time between changes is given to the algorithms. VMEA’s performance is
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Fig. 1. Global results obtained in the dynamic Knapsack problem using MIGA (with
different population and memory sizes) and VMEA

Fig. 2. Behavior of MIGA and VMEA in the Knapsack problem, r = 10, r = 50,
r = 100 and r = 200, ρ = 0.5
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Fig. 3. Population’s Diversity using MIGA and VMEA in the Knapsack problem, r =
10 and r = 50, ρ = 0.5

Fig. 4. Changes on Population and Memory Sizes using VMEA in Knapsack, r = 10
and r = 50, ρ = 0.5

always superior when compared with best performances of the other algorithms.
To understand the previously shown results, we analyzed the diversity for differ-
ent sizes of population and memory. Figure 3 shows the population’s diversity
using MIGA (best and worst results) and VMEA for the Knapsack problem. As
we can see the worst performance of MIGA corresponds to the lower population’s
diversity and higher memory diversity. VMEA was the algorithm that maintains
higher diversity in the population. In MIGA this observation was generalized
to all situations. For MEGA the results are not clear and there are some cases
where the best results were achieved by the population and memory sizes that
maintained lower diversity. Thus, it’s not straightforward that diversity is the
reason for best or worst performances. Figure 4 shows the evolution of popula-
tion and memory sizes during time using VMEA for different change periods in
the Knapsack problem. The evolution of population and memory sizes has a typ-
ical behavior. In general memory tends to increase and population to decrease.
As the number of generations increase this increase/decrease is slower. At the
end of the process, population and memory sizes stabilize around similar values:
population of 60-70 individuals and memory of 40-30 individuals, corresponding
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to the set of values that often lead to best scores using MIGA and MEGA. The
adjustment of population and memory sizes performed by VMEA can be con-
sidered ”blind” since its only restrictions are the fixed boundaries and the global
number of individuals. Nevertheless, superior results were attained.

6 Conclusions and Future Work

Usually, memory-based EAs dealing with dynamic environments use population
and memory of constant sizes. Typically, memory size is set as a small percentage
of population size. In this work we tried to understand if different population and
memory sizes can have considerable influence in the performance of memory-
based EAs dealing with different dynamic environments. Two direct memory
EAs were ran with different values for population and memory sizes in two
benchmark problems. A third algorithm, using dynamically adjusting population
and memory sizes was also tested and compared with the other two algorithms.
The obtained results show that the traditionally used values for population and
memory sizes do not allow the best performance of the implemented EAs. It is
clear that the tuning of the population and memory sizes has significant influence
in the efficacy and convergence of the EAs. The best choice of values depends on
the environmental characteristics, the problem to solve or the used algorithm.
So, this choice is not linear or easy and trying to tune the population size before
running the algorithm is practically impossible, since the combinations are huge
and the process is time consuming. A preferred solution is the use of an EA
capable of controlling the populations sizes during the run. In this work we used
a simple EA which dynamically adjusts the population and memory dimensions
and the results demonstrate its effectiveness and robustness to all environments
and problems tested.

As future work we plan to investigate other sizing mechanisms in EAs to cope
with dynamic environments. These approaches should take into account other
information besides the limited number of the individuals that can exist, like,
for example, the average fitness of population or aging mechanisms.
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