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Abstract. In this work we investigate the use of prediction mechanisms
in Evolutionary Algorithms for dynamic environments. These mecha-
nisms, linear regression and Markov chains, are used to estimate the
generation when a change in the environment will occur, and also to pre-
dict to which state (or states) the environment may change, respectively.
Different types of environmental changes were studied. A memory-based
evolutionary algorithm empowered by these two techniques was success-
fully applied to several instances of the dynamic bit matching problem.

1 Introduction

Evolutionary algorithms (EAs) have been applied successfully to a great vari-
ety of stationary optimization problems. However, most real-world applications
change over time and some modifications have been introduced in EAs in order
to deal with this kind of problems: the use of memory, the maintenance of pop-
ulation’s diversity or the use of several populations. See ([1],[2]) for a review.
When the environment is dynamic, in some cases we can try to predict the
moment and the pattern of the change. Predicting modifications allows antic-
ipating the sudden decrease in performance of an evolutionary algorithm and
improve its adaptability. Our method involves the use of a memory of good past
individuals, besides the normal population. That memory interplays with two
other modules: one based on linear regression and the other supported by a
Markov chain. Linear regression is used to estimate when the next change in
the environment will happen; Markov chains are used to model what is known
about all possible environments and the transitions among them. The Markov
chain is used to predict which new environments will most probably appear in
the future. The output of the linear regression module is based on the time of
past changes. Once that moment is defined we use the Markov chain model to
predict how the new possible environments will look like. Before the predicted
moment of change we seek from memory good individuals for these new situ-
ations and inject them in the normal population. The main goal of this paper
is to investigate the effectiveness of using predictors based on linear regression
and Markov chains. We assume that the reader is familiar with the concepts of



linear regression and Markov chains. Also, due to lack of space we only present
a small part of the results we obtained. The interested reader should consult
[3]. The remaining text is organized as follows: section 2 describes related work
concerning prediction and anticipation used by EAs in the context of dynamic
environments. In section 3 we explain the overall architecture of an EA that uti-
lizes the Markov chain prediction and the linear regression module. In section 4
we present the experimental setup used to test the proposed ideas. Experimental
results are summarized in section 5. We conclude with some remarks and ideas
for future work.

2 Related Work

Recently, several studies concerning anticipation in changing environments using
EAs have been proposed. Branke et al. ([4]) try to understand how the decisions
made at one stage influence the problems encountered in the future. Future
changes are anticipated by searching not only for good solutions but also for
solutions that additionally influence the state of the problem in a positive way.
These so-called flexible solutions are easily adjustable to changes in the environ-
ment.
Stroud ([5]) used a Kalman-Extended Genetic Algorithm (KGA) in which a
Kalman filter is applied to the fitness values associated with the individuals that
make up the population. This is used to determine when to generate a new indi-
vidual, when to re-evaluate an existing individual, and which one to re-evaluate.
Van Hemert et al. ([6]) introduced an EA with a meta-learner to estimate at
time t how the environment will be at time t + ∆. This approach uses two pop-
ulations, one that searches the current optimum and another that uses the best
individuals in the past to predict the future best value. The prediction about the
future is made based on observations from the past using two types of predictors:
a perfect predictor and a noisy predictor.
Bosman ([7], [8]) proposed several approaches focused on the importance of using
learning and anticipation in online dynamic optimization. These works analyse
the influence of time-linkage present in problems such as scheduling and vehi-
cle routing. Bosman propose an algorithmic framework integrating evolutionary
computation with machine learning and statistical learning techniques to esti-
mate future situations.
Linear regression was used in [9] to improve local convergence in dynamic prob-
lems.

3 System’s Overview

In this section we will detail each component of the proposed system, called
PredEA. The major components of the complete architecture are the follow-
ing: (1) a standard evolutionary algorithm; (2) memory of past good individuals;
(3) Markov chain model module; (4) linear regression module.
The dynamics of the environment is defined off-line: the number of different



states, the possible environments, the sequence of environments to use during
the simulation and the initial state. We emphasize that all this information is
completely unknown by the EA, and that the Markov model is constructed
during the simulation. As the predictions made by the linear regression module
may not be exact, we use a parameter, called ∆, to control the maximum esti-
mated error, measured in terms of generations before the actual occurrence of
the change. More explicitly, if the predicted value returned by the linear regres-
sion module is generation g, at generation g−∆, the Markov model ([10]) is used
to predict the next possible states. At that time individuals from the memory
are retrieved and introduced in the population, replacing the worst ones. The
selected memory individuals are those who were good solutions in the state(s)
that are considered to be the next possible ones by the Markov chain model.
Every time a change actually happens, the probabilities of the transition matrix
of the Markov chain are updated accordingly. This includes the case when a new
state appears. In that situation, the new state is included in the model and,
again, the transition matrix is updated. Notice that, during the earlier stages of
the simulation prediction is difficult, because the algorithm needs to experience
a learning phase to set up the values of the transition matrix. As we will see,
the anticipation based on the introduction of useful information from memory,
avoids the decrease of the algorithm’s performance. Each component will be ex-
plained in detail now.

Evolutionary Algorithm It’s a standard memory-based EA. One popula-
tion of individuals evolve by means of selection, crossover and mutation and is
used to find the best solution for the current environment. The memory popula-
tion is used to store the best current individual, which we do from time to time.
When a change happens or is predicted, the information stored in memory is
retrieved and used to help the EA to readapt to the new environment.

Memory Memory is used to store best individuals of the current population.
It starts empty and has a limited size (20 individuals). An individual is stored
into memory in two situations: (1) if the environment changed in the meantime
and no individual related to this new environment was previously stored; (2)
if an individual already exists in memory for the current environment, but it is
worst than the current best, the latter individual replaces the former in memory.
If memory is full we replace the most similar individual, in terms of Hamming
distance, by the current best if it is better ([11]). This way we maximize the
capacity of the memory to keep an individual for each different environment.
This scheme, called generational replacing strategy, was proposed in [12] and
proved to be very efficient in memory-based EAs for changing environments.
Memory is also used to detect changes in the environment: a change occurs if at
least one individual of the memory has its fitness changed.

Markov Chain Module In our approach, each state of the Markov chain
corresponds to a template that represents the global optimum for a certain en-
vironment. Initially, a maximum number of different states is defined as well
as the possible sequence of states that may occur during the algorithmic pro-



cess. The initial state is randomly chosen among the existing ones. Again we
stress that all this information is unknown to the algorithm, which works with
a Markov model that it builds dynamically. Ideally, after some generations and
environmental changes our algorithm will construct a Markov model identical
to the hidden one. From then on, the next state(s) can be correctly predicted
making possible the introduction of important information before the effective
change, allowing the continuous adaptation of the EA to the new conditions.
Our algorithm starts with its transition matrix filled with zeros. Each time a
transition is detected, say from state i to another state j, the probability values
involving state i and all the other states j are changed to take into account the
number of times the environment moved from i to j.

Linear Regression Module Knowing the best moment to start using the
predicted information provided by the Markov chain module can improve the
adaptation’s capabilities of our EA. This moment is computed by calling the
Linear Regression Module. The method is simple: the first two changes of the
environment are stored after they happen (no prediction can be made yet).
Based on these two values, a first approximation of the regression line can be
built and the regression module starts providing the predictions about the next
possible moment of change. Then, each time a change occurs the regression line
is updated.

PredEA Pseudocode Now that we have described the different components
we can present the pseudocode of PredEA.

PredEA(max, markov, initial-state)

1 Randomly create initial population
2 Create empty memory
3 Create the transition matrix with max states filled with zeros
4 repeat
5 Evaluate population
6 Evaluate memory
7 if Is time to update memory
8 then Store the best individual
9 Set next time to update memory

10 if An environmental change happens
11 then Store performance measures
12 Update the linear regression line
13 Predict g (next-change)
14 Update the algorithm’s Markov transition matrix
15 if g (next-change) is close (as defined by g −∆)
16 then Predict next state(s) (using EA’s Markov model)
17 Search memory for best individual(s) for that(ese) state(s)
18 Introduce the selected individual(s) into population

¤ Standard EA steps
19 Perform selection, crossover and mutation
20 Define next population
21 until Stop-condition

max is the maximum number of states of the Markov chain, markov is the
Markov model defined off-line, and initial-state is the randomly chosen initial
state for the Markov model.



4 Experimental Design

Experiments were carried out to compare the PredEA with a similar algorithm
without prediction capabilities (we will refer this second algorithm as noPre-
dEA). The latter algorithm is an EA with the direct memory scheme proposed
by [2]. Memory is updated using the same time method, but instead of the re-
placing strategy used by [2] a generational scheme is used instead: after a change
is detected, population and memory are merged and the best N −M individuals
are selected as a temporary population to go through crossover and mutation,
while the memory remains unaffected (N is the size of population, M is the
size of memory). The benchmark used was the dynamic bit matching problem:
given a binary template, the individual’s fitness is the number of bits matching
the specified template. A set of different binary templates is generated at the
beginning of the run. When a change happens, a different template is chosen
from that set.

Experimental Setup In the Table 1 we summarize the EA’s settings used
in our experiments.

Table 1. Parameters’ settings

EA parameters value

individual’s representation binary
initialization uniform randomly created

population size 80
memory size 20

crossover uniform, probability 70%
mutation flip, probability 1%

parent’s selection tournament, size 2
survivors’ selection generational with elitism of size 1

stop criterion number of generations necessary for 200 environmental changes
goal maximize matching with template
∆ {5,10,25}

For each experiment, 30 runs were executed and the number of generations
was computed based in 200 environmental changes. The overall performance
used to compare the algorithms was the best-of-generation fitness averaged over
30 independent runs, executed with the same random seeds. The results were
statistically validated ([3]).

Usually, in papers related with the algorithms’ performance on changing en-
vironments (e.g. [11], [13], [2]), the measures are saved only after the change is
detected and some actions had been taken (as the introduction of information
from memory). This way, we don’t know what really happened to the EA’s per-
formance instantly after the change. In this work, the performance measure is
saved immediately after a change is detected. This way we can see if the infor-
mation introduced before the change, based on given predictions, is really useful
to the algorithm’s adaptability.



The number of different states (templates) used in the experimentation was
3, 5, 10, 20 and 50. The environmental transitions were of two kinds: deter-
ministic, i.e. the probability to change to the next state is always 1 (this kind
of dynamics will be denoted by Pij = 1) or probabilistic, where, in certain
states, the transition can be made to different states (this kind of dynamics
will be denoted by Pij <> 1 ). The period was changed in two different ways:
periodically, every r generations or according to a fixed pattern. In periodic envi-
ronments the parameter r was used with four different values: 10, 50, 100 and 200
generations between changes. This type of changes will be called cyclic-periodic
environments. In the second case, a pattern was set and the moments of change
were calculated based on that pattern. Four different patterns were investigated:
5-10-5, 10-20-10 (fast), 50-60-70 (medium) and 100-150-100 (slow). This way
the intervals between changes are not always the same, but follow some pattern
making prediction possible. This means that we tested 80 different situations.
Only partial results will be shown (see [3]).

5 Results

Accuracy of Predicted Values using Linear Regression When changes
occur every r generations, linear regression gives correct predictions, since all
the observed values are on the regression line. Using a pattern to generate the
periodicity of the change, we may have situations where the predicted values are
not precise. In the cases of patterns 5-10-5 and 10-20-10, there is an associated
error that slowly decreases over time. In these cases, the ∆ constant assumed in
our implementation (5 generations), was sufficient to reduce to zero that error,
and the insertion of individuals in the population was always made before the
change occurs. That is not true for the patterns 50-60-70 and 100-150-100, and
we had to use an increased value of ∆ to avoid a decrease in performance of our
algorithm PredEA.

PredEA versus noPredEA Results obtained for cyclic-periodic environ-
ments (changing every r generations) are given in Table 2 . The best scores are
marked in bold.

We used a paired one-tailed t-test at a 0.01 level of significance to compare
the two algorithms. The results obtained with PredEA were always statistically
significantly better than the noPredEA. Using prediction to insert informa-
tion before change happens actually improves the EA’s performance. In rapidly
changing environments (r = 10), the improvements introduced with the antici-
pation of change are clearly positive. Besides, as the number of different states
increases, the noPredEA’s performance decreases faster than the PredEA’s.
Using 50 states the results were inferior since, in some cases, the algorithm has
not enough time to complete the ’learning phase’. In these cases, more time of
evolution is necessary.

Figure 1 shows the typical behavior of the algorithms in the first 5000 gener-
ations, using 10 different states with cyclic (Pij = 1) dynamics. PredEA has a



Table 2. Global Results for cyclic-periodic environments and change period r

Number of States

r Algorithm 3 5 10 20 50

10 PredEA (Pij = 1) 98.24 97.92 97.87 97.33 94.42
PredEA (Pij <> 1) 98.10 97.78 97.25 96.55 93.55
NoPredEA (Pij = 1) 89.41 84.90 80.04 74.87 69.69
NoPredEA (Pij <> 1) 89.64 85.41 80.58 75.40 70.38

50 PredEA (Pij = 1) 99.39 99.04 98.08 96.46 91.31
PredEA (Pij <> 1) 98.90 98.39 98.69 96.45 90.19
NoPredEA (Pij = 1) 98.72 98.39 97.66 95.40 88.29
NoPredEA (Pij <> 1) 98.71 98.39 97.65 95.76 89.28

100 PredEA (Pij = 1) 99.69 99.51 99.01 98.55 95.48
PredEA (Pij <> 1) 99.43 99.67 99.29 99.14 95.10
NoPredEA (Pij = 1) 99.38 99.24 98.90 98.29 94.11
NoPredEA (Pij <> 1) 99.37 99.24 98.91 98.29 94.70

200 PredEA (Pij = 1) 99.84 99.75 99.50 99.37 97.74
PredEA (Pij <> 1) 99.72 99.79 99.64 99.56 97.75
NoPredEA (Pij = 1) 99.69 99.62 99.45 99.15 97.04
NoPredEA (Pij <> 1) 99.69 99.62 99.46 99.15 97.34

starting phase where the performance is very unstable with a decrease in fitness
every time there is an environmental change. This is the ’learning phase’ when
the algorithm is building the Markov chain model and its transition matrix.
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Fig. 1. PredEA versus NoPredEA, r = 200, 10 states, deterministic

After that initial phase the predictions are correctly made by the two pre-
dictor modules and the PredEA’s performance reaches an ’equilibrium phase’.
On the other hand, the behaviour of noPredEA is always very unstable. After
a change, we observe a decrease of the fitness and only after retrieving infor-
mation from memory, which is made immediately after a change happens, the
EA recovers. Similar results were obtained for cyclic-pattern environments. For
the patterns 50-60-70 and 100-150-100, the value of 5 for ∆ constant was not a
good choice for the prediction modules. For these two situations, we repeated
the experiments adjusting the constant value to 10 and 25, respectively. That



way we always anticipated the actual moment of change. The results were bet-
ter, and since the levels of population’s diversity in the two cases are practically
the same, this increase in the performance is due to the introduction of retrieved
memory information before the change happens. Table 3 shows the global results
obtained in all the experiments carried out. Best results are marked with bold.
The statistical analysis of the obtained results can be found in [3].

Table 3. Global Results for cyclic-pattern environments 5-10-5, 10-20-10, 50-60-70 and 100-150-100

Number of States

Pattern Algorithm 3 5 10 20 50

5-10-5 PredEA∆5 (Pij = 1) 97.49 97.27 97.50 97.65 95.63
PredEA∆5(Pij <> 1) 97.10 96.13 96.77 96.79 94.60
NoPredEA (Pij = 1) 91.98 90.35 85.89 79.36 72.62
NoPredEA (Pij <> 1) 93.18 90.58 86.01 79.90 73.57

10-20-10 PredEA∆5 (Pij = 1) 98.36 98.11 97.95 97.46 94.64
PredEA∆5 (Pij <> 1) 98.24 97.49 97.12 96.29 93.01
NoPredEA (Pij = 1) 91.26 92.25 88.13 80.97 73.40
NoPredEA (Pij <> 1) 94.71 91.52 87.89 81.67 74.51

50-60-70 PredEA∆5 (Pij = 1)) 99.54 99.37 98.82 97.04 94.60
PredEA∆5 (Pij <> 1)) 99.52 99.34 98.79 97.24 94.38
PredEA∆10 (Pij = 1) 99.80 99.65 99.31 98.60 96.52
PredEA∆10 (Pij <> 1) 99.79 99.61 99.15 98.23 95.92
NoPredEA (Pij = 1) 99.44 99.16 98.64 96.45 94.54
NoPredEA (Pij <> 1) 99.44 99.17 98.58 97.02 95.13

100-150-100 PredEA∆5 (Pij = 1) 99.64 99.52 99.20 98.07 95.94
PredEA∆5 (Pij <> 1) 99.65 99.53 99.23 98.17 96.45
PredEA∆25 (Pij = 1) 99.89 99.79 99.65 99.29 98.25
PredEA∆25 (Pij <> 1) 99.89 99.78 99.55 99.10 97.95
NoPredEA (Pij = 1) 99.71 99.59 99.27 98.31 97.24
NoPredEA (Pij <> 1) 99.71 99.59 99.29 98.52 97.56

Again, in rapidly changing environments (patterns 5-10-5 and 10-20-10) the
incorporation of prediction and the anticipation of change allowed outstanding
improvements in the algorithm’s performance. PredEA also ensures best scores
as the number of states increases. In the other two situations, using a suitable
value for the ∆ constant, PredEA also achieves the best results. Figure 2 shows
the typical behavior of the algorithms in the first 5000 generations, using 10
different states with cyclic (Pij = 1) dynamics. As in the case of cyclic-periodic
environments we observe the presence of the learning and equilibrium phases
when using PredEA. noPredEA behaves in the same way as in previous cases.
In all situations, except when the PredEA has a ∆ value of 5, the pattern
was 100-150-100 and the change deterministic, our algorithm was statistically
significantly better than NoPredEA.
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Fig. 2. PredEAversus NoPredEA, pattern 100-150-100, 10 states, deterministic

6 Conclusions and Future Work

We have proposed the integration of prediction capabilities in a standard memory-
based evolutionary algorithm to cope with changing environments. Two addi-
tional modules were used: one based on linear regression to predict when next
change will occur, the other uses a Markov chain which stores the environmental
information and is used to predict the next possible state(s).
Analyzing the obtained results, some conclusions can be stated: first, anticipat-
ing the moment of change and using information gathered in the past to prepare
the algorithm for future environmental changes, significantly improves the EA’s
adaptability. Second, these improvements have more impact when the environ-
ment changes faster. In these cases, if the prediction capabilities are removed,
the algorithm has a very poor performance. Third, PredEA is more robust than
noPredEA as the number of repeated states increases. Fourth, the linear regres-
sion method, used to predict the moments of subsequent changes, is suitable only
for a restricted kind of changing periods. In fact, if there is an error because the
effective change occurred before the predicted one, the algorithm’s performance
is compromised. This is due to an untimely use of the solution obtained from the
Markov chain module, making the use of Markov chains predictions unhelpful.
Finally, the use of a Markov chain to store the environmental information proved
to be a powerful mechanism to keep the history of the changing dynamics which
allows the algorithm to learn and predict which states can appear in the next
step.
The major limitations of the proposed architecture are related to the linear re-
gression module. First, the use of linear regression to predict future change points
is feasible only for certain patterns. For more complex patterns, linear regres-
sion may fail, due to large prediction errors. Second, the use of a fixed value for
the error interval (the ∆ parameter) assumed in the linear regression predicted
values is not always effective. If an unsuitable value is used for this constant, the
algorithm’s performance considerably decreases. Some enhancements are being
introduced to improve this module: the use of non linear regression and the
dynamic adjustment of the ∆ constant during the simulation. Other land-



scapes are also being used to test the proposed ideas.
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