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Abstract. Usually Evolutionary Algorithms keep the size of the population fixed. Nevertheless, in Evolutionary
Algorithms dealing with stationary problems some work has been done involving the idea of adapting the population's
size along generations. In the context of dynamic environments, less attention has been devoted to the choice of this
parameter. In fact, approaches based on the idea of dividing the main population into two, one that evolves as usual and
the other one that plays the role of memory of past good solutions. Typically, in these approaches the size of these two
populations is chosen off-line and kept constant. Usually memory size is chosen as a small percentage of population size,
but this decision can be a strong weakness in algorithms dealing with dynamic environments. Recent work which makes
possible changing the size of the population and memory during a run proved that the performance of evolutionary
algorithm can be considerably improved. In this work we do an experimental study about the importance of this parameter
for the algorithm's performance. In a first set of experiments the size of each component was kept constant but the relative
proportion was changed; in a second set of runs we used an algorithm where the size of the two populations could change
and compare it with the other fixed size schemes. Results show that tuning the population and memory sizes is not an easy
task and the impact of that choice on the algorithm's efficacy is significant. Using an algorithm that dynamically adjusts
the population and memory sizes outperforms the previous approach.
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1 Introduction

Evolutionary Algorithms (EAs) have been used with success in a wide area of applications, either static or dynamic.
Traditional EAs usually have a number of control parameters that must be specified before starting the algorithm. These
parameters include, for example, the probabilities of mutation and crossover or the population size. The effects of setting the
parameters of EAs has been the subject of extensive research ([1], [2], [3]) and in the last years several approaches using
self-adaptive EAs, which can adjust the parameters on-the-fly, have been proposed ([4], [5], [6]). The study of EAs for
stationary domains had been focused in the adjustment of parameters of genetic operators ([7]). The choice of the size of
the population has received less attention by researchers. However, if we look to natural systems that inspire EAs, the
number of individuals of a certain species changes over time and tends to become stable around appropriate values,
according to environmental characteristics or natural resources ([8]). In evolutionary computation the population size is
usually an unchanging parameter, kept constant during a run. The off-line specification of this parameter can be
problematic: if is too small the EA may not be able to find good solutions; if is too large, too much computational effort is
spent. Finding an appropriate population size is a difficult task and several adaptive population sizing methods have been
suggested ([9], [10], [11], [12], [13]).
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When EAs are used to deal with dynamic environments, some modifications have to be introduced to avoid premature
convergence since convergence is disadvantageous when a change happens. These enhancements include increasing
diversity after a change ([14], [15]), maintaining diversity throughout the run ([16], [17], [18], [19]), using memory
mechanisms ([20], [21], [22], [23], [24], [25], [26]) and multipopulation schemes ([27], [28]). Although these modifications,
the global functioning of EAs designed to deal with dynamic applications had inherited most of the characteristics of EAs
used for static domains: the adjustment of mutation rate when a change is detected, the use of typical values for the
crossover operator of the specification of unchanging populations sizes. Even, when an explicit memory is used, its size is
also set at the beginning and is usually a small percentage of the main population size. Not much attention has been devoted
to study the influence that population size can have in the performance of the EA. It is also a fact that, in approaches using
memory, no validation exists for the use of a specific size.

Some research has been made about this issue: Schénemann ([29], [30]) studied the impact of population size in the context
of Evolutionary Strategies for dynamic environments, and concluded that the choice of the population size can be a
determinant factor in certain classes of problems and, therefore, more research should be done. Simdes et al. ([31]) proposed
an EA to deal with changing environments which controls the size of population and memory during the run. Results from
that work show that the performance of the EA can be considerably improved. Recently, Richter et al. ([32]) proposed a
memory-based abstraction method using a grid to memorize useful information and the results obtained suggest that an
optimal grid size depends on the type of dynamics and authors claim that the use of an adaptive grid size would increase the
performance of the abstraction memory, indicating this issue as future research.

In this work we describe an extensive empirical study that we made and whose focus was the performance of distinct
memory-based EAs that faced different environmental characteristics. The study is based on two benchmark problems and
is divided in two parts: in the first part, we kept the populations sizes fixed and ran the EAs for different values for these
parameters in order to analyze the impact of the chosen values on the EA's performance. In the second part, an EA using
population and memory of changing sizes was ran and compared with the results of the previous experimentation. We show
that the values set to population and memory sizes can have a great influence in the EA's performance. The use of a more
flexible algorithm that can dynamically adjust the population and memory sizes during the run outperforms, in general, all
the scenarios analyzed using unchanging sizes. These results are statistically supported.

The rest of the report is organized as follows: next section briefly reviews memory schemes for EAs in dynamic
environments. Section 3, describes the three implemented memory-based EAs and Section 4 details the dynamic test
environments used for this study. The experimental results and the analysis are presented in section 5. Section 6 concludes
the report and some considerations are made about future work.

2 Memory-based Evolutionary Algorithms for Dynamic Environments

EAs using memory schemes work by storing useful information about the different environments that may occur and
selectively retrieving that information later when another change in the environment is detected. When the environment is
cyclic and different states repeatedly appear over time, memory-based Evolutionary Algorithms are good approaches to use,
for the use of information from the past can help the EA to quickly readapt each time a previous situation reappears.
Information can be stored in memory implicitly or explicitly ([33]). Next sections explain these two memory mechanisms.

2.1 Implicit Memory

In the case of implicit memory approaches the stored information is kept in redundant representations of the genotype. There
are some variants, e.g., using diploid (or multiploid) representations ([34], [35], [36]) or dualism mechanisms ([37], [38],
[39]). The idea of using diploid representations was suggested by Goldberg and Smith ([34]) as an extension of the standard
GA. Diploidy was particularly studied in the context of dynamic environments ([34], [35], [36]). The redundant information
when using a diploid representation acts as a memory for remembering past solutions and promotes diversity in the
population. In diploid chromosomes there are two genes to represent a certain characteristic, but only one of them is
expressed in the phenotype. This is controlled by a dominance mechanism.

Dualism mechanisms are inspired by the complementarity and dominance schemes found in nature. Yang ([38]) proposed a
new genetic algorithm called primal-dual genetic algorithm (PDGA) which operates on a pair of chromosomes that are
primal-dual to each other in the sense of maximum distance of the corresponding genotypes, e.g., the Hamming distance for
binary representations. With PDGA during the phase of survivors' selection a set of low fit individuals is chosen and their
corresponding duals are evaluated. If they are better they have a chance to pass to the next generation.
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2.2 Explicit Memory

In explicit memory schemes an extra space, called memory population, is used. Its main goal is to store useful information
about the current environment and possibly reuse it each time a change occurs. It may also permit the population to move to
a different area in the landscape in one step, which in principle is harder when we rely only on standard genetic operators.
([33]). The stored information can be the current best individual of the population, information about the environment or
both. Another approach proposed by ([32]) does not store explicitly good solutions but an abstraction, i.e, the approximate
location of the individual in the search space.

Explicit memory approaches were recently divided into direct memory and associative memory schemes ([26]). In direct
memory schemes the information stored in memory consists of past good solutions that are directly used when a change is
detected. Associative memory schemes store useful information about the environment as well as good solutions and both
are retrieved when a change happens.

Examples of direct memory approaches can be found in ([20], [31], [17], [40]) and for associative memory schemes see

([21], [26], [40]).

2.3 Considerations about Memory

When using memory-based EA some questions can be asked concerning memory: 1) when and which individuals to store in
memory, 2) which size to choose, 3) which individuals should be replaced when memory is full, 4) which individuals
should be selected from memory and introduced in the population when a change happens ([33]).

As stated before, typically, in explicit memory schemes, the information stored in memory corresponds to the current best
individual of the population. Other approaches, together with this information, also keep information about the environment
([24], [25], [26]). Ritcher et al. ([32]) propose a memory scheme based on the idea of abstraction. The abstract storage
process consists of two steps: a selection process and a memorizing process. The selecting process picks good individuals
from the population while the EA runs. During the memorizing process, the selected individuals are sorted according to the
partition of the search space they represent. So, what is memorized is no longer the individual itself but an abstraction, i.e.,
its approximate location in the search space.

Concerning the size of the memory, no intensive investigation has been made yet. In this work we will be focused in this
topic to make some conclusions about the best choice for the memory (and population) size. The size of the memory is an
important issue. Since the size of the memory is limited, it is necessary to decide which individuals should be replaced when
new ones need to be stored. This process is usually called replacing strategy. Branke ([20]) compares different replacement
strategies for inserting new individuals into the memory. The most popular is called similar and consists in selecting the
individual in memory most similar to the new one replacement taking place if the latter has better fitness. Simdes and Costa
([31]) proposed two replacing strategy based on the aging of memory individuals. In the first one, all individuals of the
memory start with an age equal to zero, and at every generation their age is increased by one. Besides, if they were selected
to the population when a change occurs, their age is increased by a certain value until a limit age is reached in which case
the age is reset to zero. When it's necessary to update memory, the youngest one is selected to be replaced. In a different
age-based replacing scheme the age of each individual is calculated as a linear combination of its actual age and its fitness.
Besides, in this scheme, memory individuals never die, i.e., their age is not reset to zero. This way, individuals that last long
in memory and contributed to the evolutionary process are not penalized. Another replacing strategy, called generational,
was proposed in ([23]). This scheme selects for replacement the worst individual present in the memory since the last
environmental change. For instance, if last change occurred at generation t; and currently the algorithm is in generation t,,
when it is time to insert an individual into the memory the worst individual that was stored between generation t;+1 and t,-1
will be replaced. If no individual has been stored since last change, the similar strategy is used and the closest individual in
terms of Hamming distance, if it is worse than the current best, is replaced. The generational replacing strategy was tested in
several memory-based EA and significantly improved its performance ([41]). The retrieval of memory information when a
change occurs depends on what was stored. In some cases, memory is re-evaluated and the best individuals of memory
replace the worst of population. Other approaches use the stored environmental information together with the best memory
individual to create new information to introduce in the population when a change happens.

2.4 Population and Memory Sizes

Usually, memory-based EAs for changing environments use a memory of small size, comparing with the dimension of the
main population. In most cases, the dimension of memory is chosen between 5% and 20% of the population size, with 10%
the most chosen one. A brief listing of the values used in several studies is presented:
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The enhanced memory EA proposed by Branke ([20]) uses a population of 90 individuals and a memory with size 10.
Karaman et al. ([21]) propose a memory indexing EA and compare it with Branke's algorithm. In both situations memory is
set to 10 individuals, while the population size is 50.

Mori et al. ([22]) present a memory-based termodynamical GA which uses a memory of size 8 and a population with 46
individuals.

Simdes et al. ([16]) propose a GA inspired in the natural immune system. The algorithm uses a search population of size
100 and a memory of 20 B-cells. Other empirical studies of these authors ([31], [41]) compare several memory-based EAs
using memory of size 10 and population with 110 chromosomes.

The approach suggested by Trojanosky et al. ([24]) uses a population with 100 individuals and memory size equal to 20.
EAs using associative memory schemes studied in ([39], [25]) uses memory of size 10 and population with 110
chromosomes. Other studies using diverse memory-based EAs for dynamic environments can be found in ([17], [18], [40])
and use population and memory sizes of 100 and 10 individuals, respectively.

As we can see, choosing a constant value for population and memory sizes is widely used in memory-based EAs. Memory
is always seen as playing a secondary role in the process, and is used always with a smaller dimension. Some authors start
questioning that generalized assumption. Ritcher et al. ([32]) use a matrix with fixed dimension to store the abstraction of
the good solutions and studied the influence of this parameter in the performance of the algorithm. This author claims that
an optimal grid size depends on the type of dynamics and the size of the bounded region in search space which the memory
considers and suggests the investigation of an adaptive grid size. Schonemann ([29]) also points out that it is worthwhile to
study approaches where the size of the population should be dynamically adjusted. An EA that uses the global individuals
of population and memory in a more flexible method was suggested by ([31]). Simdes et al. proposed an EA which adapts
the population and memory sizes during the run. The obtained results proved that the EA's performance was significantly
improved.

3 Description of the Implemented Memory-based EAs

In this section we will describe the algorithms that were used to perform the empirical study about the issue of the
importance of the sizes of the populations. We will be interested in analyzing each different algorithm and see if there is a
correspondence between the choice for the population and the memory size and the performance of those algorithms.

We choose to implement a memory-immigrant based EA and a direct memory EA. Both use population and memory with
unchanging sizes. An additional algorithm, using a direct memory scheme with changing population and memory sizes was
implemented, ran and compared with the other two. The three algorithms will be briefly described in following sections.
Additional information can be found in the original works already cited.

3.1 Memory-Immigrants Genetic Algorithm

The Memory Immigrants Genetic Algorithm (MIGA) is an EA using a direct memory scheme. It was proposed by ([17])
and works in the following way: the algorithm evolves a population of individuals in the standard evolutionary way:
selection, crossover and mutation. Additionally, a memory is initialized randomly and used to store the current best
individual of the population, replacing an initially created random individual (if it exists) or replacing the most similar in
memory if it is better. Every generation the best individual in memory is used to create a set of new individuals, called
immigrants that are introduced into the population replacing the worst ones. These new individuals are created mutating the
best solution in memory using a chosen mutation rate. The number of solutions created is a percentage of the population
size. When a change is detected nothing is done and it is expected that the diversity introduced in the population by adding
these immigrants can help the EA to readapt to the new conditions.

3.2 Memory-Enhanced Genetic Algorithm

The Memory-Enhanced Genetic Algorithm (MEGA) also uses a direct memory scheme ([17]). This algorithm consists in an
adaptation of Branke's algorithm ([20]). Later, this algorithm was used in other studies under the general name Direct
Memory Genetic Algorithm (DMGA) ([26], [40]).

The algorithm can be described as follows: MEGA is a standard genetic algorithm that evolves a population of n individuals
through the application of selection, crossover and mutation. Additionally, a memory of size m is used, starting with
randomly created individuals. From time to time memory is updated in the following way: if any of the initial random
individuals still exist, the current best solution of the population replaces one of them arbitrarily; if not, the most similar
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memory updating strategy is used to choose which individual to exchange. This strategy replaces the closest individual in
memory if it is better. Memory is evaluated every generation and, when a change is detected, the memory is merged with
the best n-m individuals of the current population to form the new population, while memory remains unchanged.

3.3 Variable-size Memory Evolutionary Algorithm

Simdes and Costa proposed a Variable-size Memory Evolutionary Algorithm (VMEA) to deal with dynamic
environments. This algorithm uses a population that searches for the optimum and evolves as usual, through selection,
crossover and mutation. A memory population is responsible for storing good individuals of the evolved population at
several moments of the search process. The two populations - search and memory - have variable sizes that can change
between two boundaries. The basic idea of VMEA is to use the limited resources (total number of individuals) in a flexible
way. The size of the populations can change according to the evolutionary process, but the sum of the two populations
cannot go beyond a certain limit. The memory is updated from time to time and if the established limits are not reached, the
best individual of the current population is stored in the memory. If there is no room to keep this new solution, then the best
individual of the current population is introduced replacing a memory individual chosen accordingly to the replacing
scheme. The memory is evaluated every generation and a change is detected if at least one individual in the memory
changes its fitness. If an environmental modification is detected, the best individual of the memory is introduced into the
population. In the case of either the population size or the sum of the two populations has reached the allowed maximum,
the best individual in memory replaces the worst one in the current population. The algorithm was compared with other
memory-based schemes using the standard dimensions for population and memory and the results validate its effectiveness.
More details about this algorithm can be found in ([42], [31]).

4 Experimental Design

4.1 Dynamic Test Environments

The dynamic environments to test our approach were created using Yang's Dynamic Optimization Problems (DOP)
generator ([26]). This generator allows constructing different dynamic environments from any binary-encoded stationary
function using the bitwise exclusive-or (XOR) operator. The basic idea of the generator is to perform the operation X®M to
an individual x, where @ is the bitwise XOR operator and M a binary mask previously generated. Then, the resulting
individual is evaluated to obtain its fitness value. If a change happens at generation t, then we have f(x, t+1) = f(x®M, t).
Using the DOP generator the characteristics of the change are controlled by two parameters: the speed of the change, r,
which is the number of generations between two changes, and the magnitude of the change, p that consists in the ratio of
ones in the mask M. The more ones in the mask the more severe is the change. The DOP generator also allows the definition
of problems where the changes can be cyclic, cyclic with noise or non-cyclic. In the first case, several masks are generated
according to the parameter and are consecutively applied when a change occurs. It is thus possible that previous
environments reappear later. In the second case noise is added by mutating some bits in the mask with a small probability.
In the third case, the mask applied to the individuals is always randomly generated every time we change the environment.

In this work we constructed 16 cyclic DOPs, setting the parameter r to 10, 50, 100 and 200. The ratio o was set to different
values in order to test different levels of change: 0.1 (a light shifting) 0.2, 0.5 and 1.0 (severe change). This group of 16
DOPs was tested using the three different algorithms in two benchmark problems, using different population and memory
sizes. A total of 960 different situations were tested in this work.

The DOP was applied to two benchmark problems, used to test the different EAs with different parameter settings: the
dynamic Knapsack problem and the Onemax problem.

4.2 Knapsack Problem

The knapsack problem is a NP-complete combinatorial optimization problem often used as benchmark. It consists in
selecting a number of items (m) to a knapsack with limited capacity. Each item has a value (v;) and a weight (w;) and the
objective is to choose the items that maximize the total value, without exceeding the capacity of the bag (C):
max v(x) = >_V;X, (1)

i=1

subject to the weight constraint:
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We used a knapsack problem with 100 items (m=100) using strongly correlated sets of randomly generated data constructed
in the following way ([43], [39]):

w; = uniformly random integer [1, 50] 3)

v; = w; + uniformly random integer [1, 5] 4)
100

C=06x3 W, (5)

i=1

The fitness of an individual is equal to the sum of the values of the selected items, if the weight limit is not reached. If too
many items are selected, then the fitness is penalized in order to ensure that invalid individuals are distinguished from the
valid ones. The fitness function is defined as follows:

100 100
> ovix,if > wix <C 6)
f(x)= 100 100

1070 x {z W, — Y WX, } otherwise
i=1 i=1

4.3 Onemax Problem

The Onemax problem aims to maximize the number of ones in a binary string. So, the fitness of an individual consists in the
number of ones present in the binary string. This problem has a unique solution. In our experiments we used individuals of
length 300.

4.4 Parameters Setting

The EA’s parameters were set as follows: generational replacement with elitism of size one, tournament selection with
tournament of size two, uniform crossover with probability p,=0.7 and mutation with probability p,=0.01. Binary
representation was used with chromosomes of size 100 for the Knapsack and 300 for Onemax problem. The probability of
flip mutation and the ratio of immigrants introduced in population used in MIGA were 0.01 and 0.1, respectively.

All simulations used a global number of individuals equal to 100. These individuals were divided in population and
memory, in the following way: Population varied between 10 and 90 individuals, in increases of 10 (10, 20, 30 ,... 90).
Memory size was calculated with the remaining individuals: M(size)=100-P(size), i.e., 90, 80, 70, ..., 10.

The generational replacing strategy proposed by [23] was used in all EAs. For each experiment of an algorithm, 30 runs
were executed for 200 environmental changes. In each case the algorithm ran r*number_of changes generations.

The overall performance used to compare the algorithms was the best-of-generation fitness averaged over 30 independent
runs, executed with the same random seeds:
G

1 1& @)
Foverall = — E — E F...
G [R =t bm”}

i=1

G=number of generations, R=number of runs.

5 Results

In this section we will show the obtained results concerning the overall performance of the studied algorithms. Results
showing the adaptability of the algorithms along time will also be presented. We will also analyze the diversity in
population and memory for the different algorithms, as well as the variation of population and memory sizes in VMEA.
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5.1 Global Results

The experimental results regarding MIGA, MEGA and VMEA in the two studied benchmarks under different environments
are shown in Table 1. Best results obtained by MIGA and MEGA are marked in bold. The blue shadowed line reports the
results obtained by VMEA which can be compared with the first two.

As we see, depending on the change period and the change ratio, the choice of population and memory sizes affects the
algorithm's performance. For the Knapsack problem, using MIGA, the best choice was population with 60 or 50 individuals
(and memory of 40 and 50 respectively), for dynamics changing rapidly (» = /0). In environments with slower changes (» =
50, r = 100, r = 200), the best results were achieved with population size of 80 or 70 and memory with 20 or 30 individuals,
respectively. Either smaller or larger populations lead to a decrease of the EAs' performance. For the Onemax problem,
MIGA obtained best results using population size of 40 individuals using faster changes and lower change ratios (p = 0.1
and p = 0.2) and population with 60 individuals for larger change ratios (o = 0.5 and p = 1.0). Increasing the change ratio
and the change period, larger populations are required to achieve the best results: 70 to 90 individuals.

Using MEGA for the Knapsack problem, in general, the best choice was population with smaller size and larger memory:
populations of 40, 30 or 20 and memory with 60, 70 and 80 individuals, respectively. Larger population sizes conjugated
with smaller memories were always bad options. When the population size is used with a very small size (10) and larger
memory size, the performance was also very poor. For the Onemax problem, analyzing the results obtained by MEGA we
conclude that smaller populations are needed to achieve the best performance when the change period is small. As the
change period increases, larger populations were those that allowed best performances, mainly in the case of lower change
ratios.

It is evident that exists an interval of values which optimize the different algorithms' efficacy, and outside that interval its
performance decrease. In Table 1 those intervals are marked using a shadow. In all cases, VMEA outperformed all instances
of MIGA and MEGA, demonstrating robustness and adaptability in the studied problems under different environmental
characteristics.

Figures 1 to 4 show the previous scores in a graphical form. Each plot refers to a different value of the change period r. All
graphics have four lines for different change ratios: dashed gray line with squares corresponds to p = 1.0; dashed black line
with triangles refers to p=0.5; dashed gray line with crosses is used to p = 0.2 and the black solid line with circles concerns
to p = 0.1. In dark red, using the same markers, are the results obtained by VMEA. Observing these plots, it is visible the
influence that population and memory sizes can have in the performance of this algorithm. It is evident there must be a
tradeoff between memory and population sizes. The usual split of 10% for the memory size and 90% for the population size
is not the best choice. As happens in the stationary environments ([7]) it is possible that different sizes of population and
memory might be optimal at different stages of the evolutionary process.
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Knapsack Onemax
Performance MIGA MEGA MIGA MEGA

r=10,p=> 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
P90_M10 17750 17743 17796 17809 | 1767.7 17647 17717 17753 || 239.1 2319 2304  239.8 | 2328 2170 2039  209.3
P80_M20 17783 17788 17849 17908 | 17710 17709 17752  1779.7 || 2445 2365 2377 2510 | 2386 2234 2127 2216
P70_M30 1779.4 17808  1787.6  1793.1 | 17733 17735 17774 17827 || 2458 2383 2421 2593 | 2403 2269 2199  230.2
P60_M40 1779.4 17809  1787.1 17949 | 17755 17756 17785  1784.4 || 2463 2395 2439 2625 | 2415 2295 2242 2370
P50_M50 17795 17808 17884 17957 | 17756 17768 17801  1787.1 || 2459 2393 2462  263.0 | 2420 2309 2281 2446
P40_M60 17788  1780.1  1787.1 17956 | 17757 17765 1781.8  1790.1 || 244.8 2387 2464 2640 | 2413 2320 2328 2505
P30_M70 1776.7 17781 17848 17950 | 17753 17759 17811  1790.6 || 242.8 2372 2459 2639 | 2396 2327 2353 2549
P20_M80 17735 17754 17811 17905 | 1773.0 17744 17801  1788.6 || 238.6 2345 2435 262.0 | 2369 2314 2379 2573
P10_M90 1766.3 17682 17752 17833 | 17684  1768.0 ~ 1773.0  1780.7 | 229.4 2265 2379 2563 | 229.4 2268 2383  257.0
VMEA 17825 17841 17916  1799.3 | 17825 17841  1791.6  1799.3 || 249.1 2415 2503 2665 | 249.1 2415 2503  266.5

r=50,p= 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
P90_M10 17985 18038 18123  1816.1 | 17868  1788.3  1796.6  1802.1 || 271.0  279.7 2934  297.2 | 2686 2707 2766  283.6
P80_M20 1804.4  1809.4 18133  1817.3 | 1791.6 17958  1798.3  1802.9 || 280.1  287.0 2942 297.2 | 2744 2767 2792 2844
P70_M30 1805.1  1809.6 18145  1817.7 | 17934  1796.7  1799.8  1805.6 || 281.8 287.6 2941 297.3 | 2756 2767 2804  286.6
P60_M40 18049 18069 18136  1817.1 | 17934 17972 18024  1806.7 || 2817 2861 2931 2966 | 2749 2756 2814 2879
P50_M50 1801.9  1806.6 18120 18168 | 17951  1797.8 18025  1809.1 || 281.1 2856 2929 2964 | 2740 2752 2818  288.0
P40_M60 1801.0 18048  1811.1 18155 | 17955  1797.6  1803.3 18105 || 279.0 2837 2913 2959 | 2725 2745 2814 2885
P30_M70 1797.9 18022 18088 18135 | 17945 17985 18041  1810.2 || 2765 2812  290.1 2946 | 269.9 2727 2813 2885
P20_M80 17952 17988  1806.7 18123 | 17925 17963  1804.6  1810.2 || 272.1 2764 2867 293.0 | 2665 2699 2804  288.0
P10_M90 1786.1 17895  1800.6  1807.7 | 1787.6 17905 18004  1807.9 || 261.3 2654  279.6  287.1 | 260.8 2663 2782  287.3
VMEA 1807.2 18113  1817.9 18196 | 1807.2  1811.3 18179  1819.6 || 2826  289.2 2961 2984 | 2826 2892 2961 2984

r=100, p= 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
P90_M10 1806.1 18127 18159  1817.7 | 17926 17977 18058 18084 || 2795 2895 2975 2988 | 2755 2822 2873 2920
P80_M20 18115 18149  1817.8 18199 | 17972 18027  1807.3 18113 || 2885 2941 2972 2988 | 280.7 2848 289.0  293.7
P70_M30 1811.3 18145  1817.7 18201 | 17994  1802.8  1808.1 18115 || 290.6 2942  297.3 2987 | 280.8 2845 2897  294.0
P60_M40 18111 18132  1817.8  1819.2 | 1800.3  1803.7  1809.1 18119 || 2904 2940 297.3 2986 | 2806 2833 2888  294.2
P50_M50 1809.3 18124 18169  1819.2 | 1800.7  1804.2  1809.3  1813.2 || 289.2 2931 2968 2983 | 279.4 2826 2886  293.8
P40_M60 1807.7 18112 18164 18180 | 18014 18044 18101  1813.8 || 2875 2917 2963 2983 | 2783 2817 2883  293.7
P30_M70 1805.3  1809.6 ~ 18147  1817.8 | 1800.7 18053 18111 18152 || 2851  290.1 2954  297.8 | 2765 2804  287.8  293.4
P20_M80 1801.9  1806.9 18123 18163 | 1800.2 18050  1810.7 18151 || 2813 2862 2933 2965 | 2742 2790 2880 2935
P10_M90 17944 1799.9 18068  1813.0 | 1793.0 17994  1807.6  1813.1 || 270.8  277.3 2871 2929 | 271.0 2774 2873 2934
VMEA 18142 18162 18195 18226 | 18142 18162 18195  1822.6 || 291.9 2966  297.8 2989 | 2919 2966  297.8  298.9

r=200,p= 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
P90_M10 1811.7 18160 18182 18200 | 1797.3 18050  1808.8 18135 || 2865 297.0 2969 2984 | 279.8 2891 2919  296.7
P80_M20 1816.2 18182 18206  1821.8 | 1803.0  1806.7  1810.0  1814.6 | 2955 2977 2988 299.3 | 2855 289.6 2937  296.7
P70_M30 18160  1817.9 18204  1821.9 | 18048  1808.1  1811.9 18154 || 2957 2975 2988 299.4 | 2852 2896 2939  297.3
P60_M40 18157  1817.4 18202  1821.2 | 1806.1  1809.2  1813.3  1816.2 || 295.6 2972 2988 299.3 | 2851 2887 2940  297.3
P50_M50 18146 18163  1819.4  1821.3 | 18064  1809.4  1813.9  1816.6 || 294.6 2968 2985 299.2 | 2842 2882 2938  296.5
P40_M60 18135 18157 18189 18207 | 1806.6  1809.5  1813.9  1816.8 | 293.6 2962 2984  299.1 | 2834 2875 2933  297.0
P30_M70 18115 18139 18175 18203 | 1807.6  1809.7 18148 18183 || 2922 2952 2978 2989 | 2823 2869 2930  296.4
P20_M80 1808.6 18119 18164 18188 | 18065  1809.8 18151 18189 |l 288.7 2931  297.0 2985 | 281.0 2858 2934  296.4
P10_M90 1801.3  1806.9 18127  1817.3 | 1801.3  1806.8  1813.2  1816.8 [ 279.8 2861 2934 2965 | 280.0 2854 2933  296.8
VMEA 1817.4 18204 18225 18236 | 18174 18204 18225  1823.6 || 2957 2981 2989 2995 | 2957 2981 2989 2995

Table 1. Experimental results concerning the overall performance of the algorithms
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Figure 1. Global results obtained in the dynamic Knapsack problem using MIGA with different population and memory sizes
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Figure 2. Global results obtained in the dynamic Onemax problem using MIGA with different population and memory sizes
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Figure 3. Global results obtained in the dynamic Knapsack problem using MEGA with different population and memory sizes
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Figure 4. Global results obtained in the dynamic Onemax problem using MEGA with different population and memory sizes
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The major statistical results of comparing the different EAs are in Table 2. We used paired one-tailed t-test at a 0.01 level of
significance. The notation used in Table 2 to compare each pair of algorithms is “+”, “-*, “++” or “--*, when the first
algorithm is better than, worse than, significantly better than, or significantly worse than the second algorithm.

We saw before that choosing different sizes for the population and memory affects the algorithm's performance. Results on
Table 2 support that this difference is statistically significant. In general, VMEA performed significant better than MIGA's
and MEGA's best results on most dynamic environments. These results validate our expectation of the impact that a bad
choice of population and memory sizes can have in EA's performance and also that dynamically sizing approaches should
be further investigated.

t-test Knapsack Onemax
r=10,p=> 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
MIGA's best -- MIGA's worst ++ ++ ++ ++ ++ ++ ++ ++
VMEA's -- MIGA's best ++ + ++ ++ ++ + ++ ++
MEGA's best -- MEGA's worst ++ ++ ++ ++ ++ ++ ++ ++
VMEA's -- MEGA's best ++ ++ ++ ++ ++ ++ ++ ++
r=50,p= 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
MIGA's best -- MIGA's worst ++ ++ ++ ++ ++ ++ ++ ++
VMEA's -- MIGA's best + ++ ++ ++ + ++ ++ +
MEGA's best -- MEGA's worst ++ ++ ++ ++ ++ ++ +
VMEA's -- MEGA's best ++ ++ ++ ++ ++ ++ ++ ++
r=100, p = 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
MIGA's best -- MIGA's worst ++ ++ ++ ++ ++ ++ ++ ++
VMEA's -- MIGA's best ++ ++ ++ ++ ++ ++ +
MEGA's best -- MEGA's worst ++ ++ ++ ++ ++ =+ =+ +
VMEA's -- MEGA's best ++ ++ ++ ++ ++ ++ ++ ++
r=200,p> 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
MIGA's best -- MIGA's worst ++ ++ ++ ++ ++ ++ ++ ++
VMEA's -- MIGA's best ++ ++ ++ ++ + ++ + +
MEGA's best -- MEGA's worst ++ ++ ++ ++ ++ ++
VMEA's -- MEGA's best ++ ++ ++ ++ ++ ++ ++ ++

Table 2. Statistical significance of the obtained results

5.2 Dynamic Behavior of different EAs

In this section we show some examples of how the different algorithms through the entire run. For MIGA and MEGA we
show the best and the worst results. VMEA's performance is also included.

For all cases, we will show the results obtained using o= 0.5. For the other cases, the results were analogous. Figures 5 and
6 refer to the results obtained by MIGA and VMEA. In Figures 7 and 8 is the performance of MEGA and VMEA.

In all cases we can see that the difference in the algorithm's performance using a "good choice" and a "bad choice" for the
population and memory sizes is considerable, especially in rapidly changing environments. In MIGA's and MEGA's worst
results, it is evident that the evolution is slower and the best performance is only achieved when » = 200 and at the end of
the process, since more time between changes is given to the algorithms. VMEA's performance is always superior when
compared with best performances of the other algorithms.
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Figure 5

. Behavior of MIGA and VMEA in the Knapsack problem, r = 10, r =50, r = 100 and r = 200, p= 0.5
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5.3 Diversity of Population and Memory

To understand the previously shown results, we analyzed the diversity of population and memory using different sizes. We
used a standard measure of diversity defined by Equation 8.

Div(Pop)=#ZP:ZP: HD(p;, p;) @)
LP(P-1) 54

where L is the length of the chromosome, P, the population (or memory) size, p;, the i" individual in the population and HD
the Hamming distance.

Figures 9 and 10 show the population's diversity using MIGA (best and worst results) and VMEA for the Knapsack and
Onemax problems. As we can see the worst performance of MIGA corresponds to the lower population's diversity and
higher memory's diversity. VMEA was the algorithm that maintains higher diversity in the population. In MIGA this
observation was generalized to all situations. Figures 11 and 12 show the diversity of population using MEGA and Figures
13 and 14 refer to memory's diversity using MEGA. In this case the results are not clear and there are some cases where the
best results were achieved by the population and memory sizes that maintained lower diversity. Thus, it's not
straightforward that diversity is the reason for best or worst performances.
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0.6 MIGA's bastchoice: P=30M=30 06 - MIGA's bestchoice: P=70M=30
2 | smemm MIGA's worst choice: P=10 M=50 = J --------- MIGA's worst choice: P=10 M=50
0.5 VMEA - VMEA
z 04 z 04
E o3 £ 03
£ &
& oz S 02
o ") oL N l‘/.'"\-'é ] Tl
0 iR At nns o
= = o o = - & = 2 P o <
g g g 2 g g E 2 2 2
Generations Generations

Figure 9. Population’s Diversity using MIGA and VMEA in the Knapsack problem, r =10 and r =50, p=0.5
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Figure 10. Population’s Diversity using MIGA and VMEA in the Onemax problem, r =10 and r =50, p=0.5
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Figure 11. Population’s Diversity using MEGA and VME

A in the Knapsack problem, r = 10 and r = 50, p=0.5
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Figure 12. Population’s Diversity using MEGA and VME

A in the Onemax problem, r =10 and r =50, p=0.5
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Figure 14. Memory’s Diversity using MIGA and VMEA in the Onemax problem, r =10 and r =50, p=0.5
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Figure 15. Memory’s Diversity using MEGA and VMEA in the Knapsack problem, r =10 and r =50, p=0.5
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Figure 16. Memory’s Diversity using MEGA and VMEA in the Onemax problem, r =10 and r = 50, p= 0.5

5.4 Population and Memory sizes in VMEA

16

In this section we show how population and memory sizes changed during time using VMEA in the studied problems.

Figure 17 shows the evolution of these sizes for different change periods in the Knapsack problem, and Figure 18 has the
same results for the Onemax problem.

The population and memory sizes are changed according to the established limits to population and memory maximum and
minimum values and also to the sum of all individuals. In this case the total number of individuals cannot surpass 100, the
minimum and maximum for population and memory were 90 and 10 individuals. When the established limits are reached,
the algorithm performs a cleaning process which removes from memory individuals with identical genotype, to store new
and different individuals. Based on this implementation, the evolution of population and memory sizes has a typical
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behavior. In general memory tends to increase and population to decrease. As the number of generations increase this
increase/decrease is slower. At the end of the process, population and memory sizes establishes around similar values:
Population of 60-70 individuals and memory of 40-30 individuals, corresponding to the set of values that often lead to best
scores using MIGA and MEGA.

The adjustment of population and memory sizes performed by VMEA can be considered "blind" since it regards only to the
fixed boundaries and the global number of individuals. Nevertheless, superior results were attained. Other sizing
mechanisms, incorporating information about the average fitness or the diversity of population, will be tested in near future.
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Figure 17. Changes on Population and Memory Sizes using VMEA in Knapsack, r = 10, r =50, r =100 and r = 200, p= 0.5

6 Conclusions and Future Work

Using population and memory of fixed sizes is commonly used in memory-based EAs to deal with dynamic environments.
Typically, memory size is set as a small percentage of population size. No valid or extensive justification was found to this
generalized use. In this work we tried to understand if different population and memory sizes can have considerable
influence in the performance of memory-based EAs dealing with different dynamic environments. Two direct memory EAs
were ran with different values for population and memory sizes in two benchmark problems. A third algorithm, using
dynamically adjusting population and memory sizes was also tested and compared with previous.

The obtained results show that the traditionally used values for population and memory sizes do not allow the best
performance of the implemented EAs. The best performance was achieved using different combinations of population and
memory sizes, depending on the type of the environment: severity or speed of change, and also on the used algorithm.

Population's and memory's diversity were analyzed but no consistent results were obtained in order to allow some
conclusions about the relation of diversity and performance. It is clear that the tuning of the population and memory sizes
has significant influence in the efficacy and convergence of the EAs. The best choice of values depends on the
environmental characteristics, the problem to solve or the used algorithm. So, this choice is not linear or easy and trying to
tune the population size before running the algorithm is practically impossible, since the combinations are huge and time
consuming. A preferred solution is the use of an EA capable of controlling the populations' sizes during the run. In this
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work we used a simple EA which dynamically adjusts the population and memory dimensions and the results demonstrate
its effectiveness and robustness to all environments and problems tested.

As future work we plan to investigate other sizing mechanisms in EAs to cope with dynamic environments. These
approaches should take into account other information besides the limited number of the individuals that can exist, like, for
example, the average fitness of population or aging mechanisms.
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Figure 18. Changes on Population and Memory Sizes using VMEA in Onemax, r = 10, r =50, r = 100 and r = 200, p= 0.5
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