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Abstract. In this work we investigate the use of prediction mechanisms in Evolutionary Algorithms for dynamic 

environments. These mechanisms, linear regression and Markov chains, are used to estimate the generation when a 

change in the environment will occur and also to predict to which state (or states) the environment may change, 

respectively. Our study is made using environments where some pattern can be observed. Environments can change in 

two ways: periodically, following a fixed change period, or according to a repeated pattern of change. Markov Chains are 

applied to model the characteristics of the environment and we use that model to predict about possible future states. To 

forecast when a change will probably arise, we employ a linear regression predictor. Both predictions modules use 

information from the past to estimate the future. Knowing à priori when a change will take place and which state(s) will 

appear next, we can introduce useful information in the population before change happens, avoiding the performance’s 

decrease usually observed with standard evolutionary algorithms. The techniques are applied to several instances of the 

dynamic bit matching problem and the obtained results prove the effectiveness of the proposed mechanisms. 

Keywords: Evolutionary Algorithms, Dynamic Environments, Prediction, Markov chains, Linear Regression 

 

1 Introduction 

Evolutionary algorithms (EAs) have been applied successfully to a great variety of stationary optimization problems. 

However, most real-world applications change over time and some modifications have been introduced in EAs in order to 

deal with this kind of problems: the use of memory [1, 10, 13, 14, 20, 21], the maintenance of population‟s diversity [8, 9, 

13] or the use of several populations [3,19]. 

When the environment is dynamic, in some cases, a certain repeated functioning can be observed.  For instance, the 

environment can change in a cyclic manner or repeating a certain pattern. In environments with these characteristics, we can 

try to predict the moment  and the pattern of the change. Predicting modifications allows anticipating the sudden decrease in 

performance of an evolutionary algorithm and improve its adaptability. 

The idea of anticipating the change in dynamic environments has already been explored. A brief description of these works 

will be done in next section. In our case, our method involves the use of a memory of good past individuals, besides the 

normal population. That memory interplays with two other modules: one based on linear regression, and the other supported 

by a Markov chain. Linear regression is used to estimate when the next change in the environment will happen; Markov 

chains are used to model what is known about all possible environments and the transitions among them. The Markov chain 

is used to predict which new environments will most probably appear in the future. 
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The output of the linear regression module is based on the time of past changes. Once that moment is defined we use the 

Markov chain model to predict how the new possible environments will look like. Before the predicted moment of change 

we seek from memory good individuals for these new situations and inject them in the normal population. 

The main goal of this paper is to investigate the effectiveness of using   predictors based on linear regression and Markov 

chains. The remaining text is organized as follows: section 2 describes related work concerning prediction and anticipation 

used by EAs in the context of dynamic environments. Section 3 presents the basics of Markov. Prediction based on linear 

regression method is explained in section 4. In section 5 we explain the overall architecture of an EA that utilizes the 

Markov chain prediction and the linear regression module. In section 6 we present the experimental setup used to test the 

proposed ideas. Experimental results are summarized in section 7. We conclude with some remarks and ideas for future 

work. 

 

2 Related Work 
Recently, several studies concerning anticipation in changing environments using EAs have been proposed. The main goal 

of these approaches is to estimate future situations and so decide the algorithm‟s behaviour in the present. Since information 

about the future typically is not available, it  is attained through learning from past situations.  

Branke et al. [2] try to understand how the decisions made at one stage influence the problems encountered in the future. 

Future changes are anticipated by searching not only for good solutions but also for solutions that additionally influence the 

state of the problem in a positive way. These so-called flexible solutions are easily adjustable to changes in the environment. 

Studies on the tardiness job-shop problem, with jobs arriving on-deterministically over time, showed that avoiding early idle 

times increases flexibility, and thus the inclusion of an early idle time penalty as secondary objective into the scheduling 

algorithm can significantly enhance the system‟s performance. 

Stroud [17] used a Kalman-Extended Genetic Algorithm (KGA) in which a Kalman filter is applied to the fitness values 

associated with the individuals that make up the population. This is used to determine when to generate a new individual, 

when to re-evaluate an existing individual, and which one to re-evaluate. This KGA is applied to the problem of maintaining 

a network configuration with minimized message loss in which the nodes are mobile and the transmission over a link is 

stochastic. As the nodes move, the optimal network changes, but information contained within the population of solutions 

allows efficient discovery of better-adapted solutions. The ability of the KGA to continually find near-optimal solutions is 

demonstrated at several levels of process and observation noise. 

Van Hemert et al. [18] introduced an EA with a meta-learner to estimate at time t how the environment will be at time t+Δ.  

This approach uses two populations, one that searches the current optimum and another that uses the best individuals in the 

past to predict the future best value. The prediction about the future is made based on observations from the past using two 

types of predictors: a perfect predictor and a noisy predictor. In reality they should not be called predictors. Concerning the 

former, the correct optimal value at the future time step is given to the solver, and for the latter the noisy predictor just 

provides the system noisy values as the optimal solution for the next step.  The idea was tested with two benchmark 

problems: the knapsack problem and the Ǒsmera„s function. Results showed that future prediction was useful in the 

Ǒsmera‟s function and more experimentation is claimed necessary to assess about the usefulness of prediction in the 

knapsack problem. As far as we know this work was not further explored. 

Bosman [4, 5, 6, 7] proposed in the last years several approaches focused on the importance of using learning and 

anticipation in online dynamic optimization. These works analyse the influence of time-linkage present in problems such as 

scheduling and vehicle routing. The presence of time-linkage in this kind of problems can influence the overall performance 

of the system: if a decision is made just to optimize the score at a specific moment, it can negatively influence the results 

obtained in the future. Bosman‟s works propose an algorithmic framework integrating evolutionary computation with 

machine learning and statistical learning techniques to estimate future situations. Predictions are made based on information 

collected from the past. The used predictor is a learning algorithm that approximates either the optimization function or 

several of its parameters. 

The use of linear regression to predict the moment of next change was initially proposed by Simões and Costa [16]. The 

idea was tested with different dynamic optimization problems, using a variable-size memory EA. Several issues were 

analysed such as the speed or the severity of change. The results showed that, if some pattern can be found in the changes of 

the environment, the predictor gives accurate estimations that can be used to enhance the EA‟s adaptability to future 

situations. 
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3 Markov Chains 

There are random processes that do not keep memory of the whole past. They are called Markov processes. If a process can 

assume only a finite or countable set of states we talk of Markov chains. A discrete Markov chain model can be defined by 

the tuple {S, P, }. S is the state space, a finite or countable infinite set of possible values for a sequence of random 

variables X1, X2, X3, .... P is a matrix representing transition probabilities between states and  is the initial probability 

distribution for all the states in S. 

Markov chains are memoryless, meaning that the present state is enough to predict future states, i.e.:  

 

Pr(Xn+1= x |Xn=xn, …, X1=x1) = Pr(Xn+1 = x | Xn=xn) 

 

A Markov chain is fully specified by [12]: 

 The probability of initial states: ={p0, p1, p2, …} with pi, the probability of starting at state i. 

 The transition probabilities matrix:  
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where pij is the probability from going from state i (line) to state j (row). 

 
 

4 Linear Regression 
Simple linear regression studies the relationship between a response variable y and a single explanatory variable x. This 

statistical method assumes that for each value of x the observed values of y are normally distributed about a mean that 

depends on x. These means are usually denoted by y. In general the means y can change according to any sort of pattern as 

x changes. In simple linear regression it is assumed that they all lie on a line when plotted against x. The equation of that 

line is: 

y = 0 + 1 * x          (1) 

with intercept 0 and slope 1.  This is the linear regression line and describes how the mean response changes with x. The 

observed y values will vary around the mean and it‟s assumed that this variation, measured by the standard deviation, is the 

same for all the values of x [11]. 

Linear regression allows inferences not only for samples for which the data is known, but also for those corresponding to 

x‟s not present in the data. Three inferences are possible: (1) estimate the slope 1 and the intercept 0 of the regression line; 

(2) estimate the mean response y, for a given value of x; (3) predict a future response y for a given value of x. 

In general, the goal of linear regression is to find the line that best predicts y from x. Linear regression does this by finding 

the line that minimizes the sum of the squares of the vertical distances of the points from the line.  

The estimated values for 0 and 1 called b0 and b1 are obtained using previous observations through equations (2) and (3). 

The intercept b0 is given by: 

xbyb *10 
       (2) 

The slope b1 is given by: 

x

y

s

s
crb *1 

       (3) 

Where ӯ is the mean of the observed values of y, 𝑥 is the mean of the observed values of x, cr the correlation between x and 

y given by equation (4), sx and sy the standard deviations of the observed x and y, respectively, given by equation (5). 
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with n, the number of previous observations from x and y. 

Once estimated the slope and intercept of the regression line, we can predict the value of y (called byŷ) from a given x using 

the regression line equation: 

xbby *ˆ
10 

       (6) 

Notice that linear regression does not test if the data are linear. It assumes that the data are linear, and finds the slope and 

intercept that make a straight line best fit the known data. If the error in measuring x is large, other inference methods are 

needed. 

 

5 System Overview 
 

In this section we will detail each component of the proposed system, called PredEA. Figure 1 shows the overview of the 

implemented architecture using the Markov chain and the linear regression modules to enhance the EA with prediction 

capabilities. The major components of the complete architecture are the following: 

(a) Evolutionary Algorithm: standard evolutionary algorithm which evolves a population of individuals through the 

application of selection, crossover and mutation.  

(b) Memory: the memorized individuals are associated with the state index where they were the best solution. It is 

updated from time to time with the current best individual of population. 

(c) Markov chain module: consists in set of states (templates), a matrix of state transition probabilities and the initial 

probability vector. The initial probability vector is initialized choosing randomly the initial state. The state 

transition probability matrix starts filled with zeros and is updated on-the-fly when different states appear. 

(d) Linear regression module: based on previous information, this component is used to predict when next change may 

occur.  

 

 
 

 

 

 

 

 

 

 

 

Figure 1. Computational platform of the PredEA 

 

The dynamics of the environment is defined off-line: the number of different states, the possible environments, the sequence 

of environments to use during the simulation and the initial state. We emphasize that all this information is unknown by the 

EA and that the Markov model is constructed during the simulation. 
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As the predictions made by the linear regression module may not be exact, we use a parameter, called , to control the 

maximum estimated error, measured in terms of generations before the actual occurrence of the change. More explicitly, if 

the predicted value returned by the linear regression model is generation g, at generation g - , the Mrakov model is issued 

to predict possible future states. At that time, individuals from the memory are retrieved and introduced in the population, 

replacing the worst ones. The selected memory individuals are those who were good solutions in the state(s) that are 

considered to be the next possible ones by the Markov chain model. 

Every time a change actually happens, the probabilities of the transition matrix of the Markov chain are updated 

accordingly. This includes the case when a new state appears. In that case, the new state is included in the model and, again, 

the transition matrix is updated. Notice that, in the earlier stages of the simulation, prediction is difficult, since the algorithm 

needs to experience a learning phase to set up the values of the transition matrix.  

As we will see, the anticipation based on the introduction of useful information from memory, avoids the decrease of the 

algorithm‟s performance. 

Each component will be explained in detail in next sections and the pseudocode can be found in section 5.5. 
 

5.1 Evolutionary Algorithm 

It‟s a standard memory-based EA. One population of individuals evolve by means of selection, crossover and mutation and 

is used to find the best solution for the current environment. The memory population is used to store the best current 

individual from time to time. When a change happens or is predicted, the information stored in memory is retrieved and 

used to help the EA to readapt to the new environment. 

 

5.2 Memory 
Memory is used to store best individuals of the current population. It starts empty and has a limited size (20 individuals). 

The update time, TM(t),  is computed as suggested in [20]: TM(0)=rand(5,10) and TM (t)= TM(t-1) + rand(5,10). 

An individual is stored in two situations: 

 if the environment changed in the meantime and no individual related to this environment was previosly stored. 

 if an individual already exists in memory for the current environment, but it is worst than current best,the latter 

individual replaces the former in memory. 

If memory is full we replace the most similar individual, in terms of Hamming distance by the current best if it is better [1]. 

This way we maximize the capacity of the memory to keep an individual for each different environment. 

This scheme, called generational replacing strategy, was proposed in [15] and proved to be very efficient in memory-based 

EAs for changing environments. 

Memory is also used to detect changes in the environment: a change occurs if at least one individual of the memory has its 

fitness changed. 

 

5.3 Markov Chain Module 
In our approach, each state of the Markov chain corresponds to a template that represents the global optimum for a certain 

environment. Initially, the maximum number of different states is defined as well as the possible sequence of states that may 

occur during the algorithmic process. The initial state is randomly chosen among the existing states.  Again we stress that 

this information is unknown to the algorithm and the model is updated along time. 

 

Example 

In Figure 2 we show an example of a possible situation where there are four different states and transitions, together with 

the corresponding templates. Assume that the different states will appear following the sequence illustrated in figure 2 (left.) 

This sequence has a corresponding succession of binary templates that the EA must optimize (Figure 2, right). 
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Figure 2. An example of environmental changes 

 

The transition matrix starts with all positions filled with zero, and when a transition is detected, the probability value is 

updated according to the number of transitions that already exist from that state. The sum of the probabilities in the same 

row of the matrix must be 1. 

Each element pij of the matrix P is calculated as follows: 
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Where C(i,j) is the number of times that state j follows state i. 

Ideally, after some generations and environmental changes our algorithm will construct a Markov model identical to the 

hidden one. From then on, the next state(s) can be correctly predicted making possible thee introduction of important 

information before change, allowing the continuous adaptation of the EA to the new conditions. 

 

For example, assume that 4 different states are supposed to appear according to the following transition and initial 

probabilities matrices (this is the hidden model): 
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The algorithm builds the following model step by step: 

Step 1: initial state (defined in vector ) 
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Step 2: go to state 2 (according to matrix P, probability p12) 
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Step 3: probabilistically chooses to go to state 3 or 1 (3 was assumed as the chosen state) 
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Step 4: probabilistically chooses to go to state 1, 2 or 3 (2 was assumed as the chosen state) 
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Step 5: probabilistically chooses to go to state 3 or 1 (1 was assumed as the chosen state) 

At this step, since state 2 already appeared in the past, the Markov chain module gives as prediction a possible transition to 

state 3 (known information until the present moment) 
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Step 6: go to state 2 

At this step, since state 1 already appeared in the past, the Markov chain module gives as prediction a possible transition to 

state 2 (known information until the present moment) 
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Continuing this reasoning, the matrix P‟ will evolve towards the values of P defined offline at the beginning (unknown 

information to the EA):  
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5.4 Linear Regression Module 
Knowing the best moment to start using the predicted information provided by the Markov chain module can improve the 

adaptation‟s capabilities of our EA. This moment is computed by calling the Linear Regression Module. The method is 

simple: the first two changes of the environment are stored after they happen (no prediction can be made yet). Based on 

these two values, a first approximation of the regression line can be built and the regression module starts providing the 

1 2 3 

1 2 

3 

1 2 

3 

1 2 

3 



Evolutionary Algorithms for Dynamic Environments: Prediction using Linear Regression and Markov Chains 8 

predictions about the next possible moment of change. Then, each time a change occurs new values of b0 and b1 are 

computed and, using Equation 2, the regression line is updated. 

We will assume that the changes in the environment are periodic or following a certain pattern that is repeatedly observed.  

In these situations it makes sense to use linear regression to predict the generation when next change will take place, based 

on previous observations. 

Example 

For example, suppose that three observations were already made (n = 3): 

Obs x y 

1 1 50 

2 2 100 

3 3 150 

The first change at generation 50, the second change at generation 100 and the third change at generation 150. Can we 

predict when will occur the fourth change? 

Using equations (2) and (3), the estimated values for the slope and intercept of the regression line are: 

50
1

50
*11 b and 02*501002*100 10  bb  

Using equation (6) we can predict when the fourth change will occur (x = 4): 

2004*500*ˆ
10  xbbynextgen  

In this case, if the change is determined with a fixed change period of size r = 50, the prediction is exact and there is no 

related error. 

This component was incorporated in the EA and, every time a change happens, the moment when next change will probably 

occur is predicted. This prediction is made based on previous changes and uses that information to estimate the slope 1 and 

the intercept 0 of the regression line. Based on this line, the generation where next change will occur is estimated. 

 

5.5 PredEA Pseudocode 

Now that we have described the different components we can present the pseudocode of PredEA. The global system can be 

described as follows: 

 

Figure 3. Pseudocode for the PredEA 

 

PredEA(max, markov, initial-state) 
1. Randomly create initial population 

2. Create empty memory 

3. Create the transition matrix with max sates filled with zeros 

4. repeat 

5.             Evaluate population 

6.             Evaluate memory 

7.             if is time to update memory then 

8.  Store best individual 

9.  Set next time to update memory  

10.             if an environmental change happens then 

11.  Store performance measures 

                                  %Prediction modules 
12.                         Update linear regression line 

13.                         Predict g (next_change) (Linear Regression Module) 

14.  Update the algorithm’s Markov transition matrix 

15.             if g (next_change) is close (as defined by g - ) then 

16.  Predict next state(s) (using EA’s Markov model) 

17.  Search memory for best individual(s) for that(ese) state(s) 

18.  Introduce the selected individual(s) into population 

                       %Standard EA steps 
19.              Perform  Selection, crossover and mutation 

20.              Define next population 

21. until  stop_condition 
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max is the maximum number of states of the Markov chain, markov is the Markov model defined off-line and initial-state is 

the randomly chosen initial state for the Markov model. The action described in 12 will be explained in section 6 (Equation 

7). 

 

6 Experimental Design 

Experiments were carried out to compare the PredEA with a similar algorithm without prediction capabilities (we will refer 

this second algorithm as noPredEA). The latter algorithm is an EA with the direct memory scheme proposed by [21]. 

Memory is updated using the same time method, but instead of the similar replacing strategy used by [21], a generational 

scheme is used instead. After a change is detected, population and memory are merged and the best N - M individuals are 

selected as a temporary population to go through crossover and mutation, while the memory remains unaffected (N is the 

size of population, M is the size of memory). 

 

6.1 Dynamic Bit Matching Problem 

The benchmark used to test the investigated ideas was the well-known dynamic bit matching problem: given a binary 

template, the individual‟s fitness is the number of bits matching the specified template.  

A set of different binary templates is generated at the beginning of the run. When a change happens, a different template is 

chosen from that set.  

 

6.2 Experimental Setup 

6.2.1 EA’s parameters 

The EA‟s parameters were set as follows: generational replacement with elitism of size one, tournament selection with 

tournament of size two, uniform crossover with probability pc=0.7 and mutation applied with probability pm=0.01. Binary 

representation was used with chromosomes of size 100 (size of the binary templates). Population of 80 individuals and a 

memory of 20 individuals were used. The value of the  constant referred above was 5 generations. Other experiments were 

made changing this parameter , and some preliminary results are shown in section 7. 

Table 1 summarizes the EA’s settings: 

EA parameters value 

Individual‟s representation  

initialization 
population size 

memory size 

crossover 
mutation 

parent‟s selection  

survivors‟ selection  
stop criterion 

goal 

 

binary 

uniform randomly created 
80 

20 

uniform, probability 70% 
flip, probability 1% 

tournament, size 2 

generational with elitism of size one 
the number of generations necessary for 200 environmental changes 

maximize matching with template 
{5, 10, 25} 

Table 1. Evolutionary Algorithm‟s parameters‟ settings 

 

6.2.2 Performance Measure  

For each experiment, 30 runs were executed and the number of generations was computed based in 500 environmental 

changes. The overall performance used to compare the algorithms was the best-of-generation fitness averaged over 30 

independent runs, executed with the same random seeds: 
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G=number of generations, R=number of runs. 

 



Evolutionary Algorithms for Dynamic Environments: Prediction using Linear Regression and Markov Chains 10 

Usually, in papers related with the algorithms‟ performance on changing environments (e.g. [1, 13, 21]), the measures are 

saved only after the change is detected and some actions had been taken (as the introduction of information from memory). 

This way, we don‟t know what really happened to the EA‟s performance instantly after the change. 

In this work, the performance measure is saved immediately after a change is detected. This way we can see if the 

information introduced before the change, based on given predictions, is really useful to the algorithm‟s adaptability. 

 

 

6.2.3 Number and transition between states 
The number of different states (templates) used in the experimentation were 3, 5, 10, 20 and 50. The environmental 

transitions were of two kinds: deterministic, i.e. the probability to change to the next state is always 1 (this kind of dynamics 

will be denoted by Pij=1) or probabilistic, where, in certain states, the transition can be made to different states (this kind of 

dynamics will be called by Pij<>1). See section 6.2.5 for more details. 

In the case of deterministic transitions we have a situation as the one illustrated in figure 4.  

 
 

 

 

 

Figure 4. Deterministic changing environments  

 

With probabilistic transitions we may have many different possibilities. In our work we considered Markov chains with 

3,5,10, 20 and 50 states. The transitions and the corresponding probabilities were defined off-line. The figure 5 shows an 

example with 5 states. 

 

 

 

 

 

 

 

Figure 5. Probabilistic changing environments with 5 states 

 

6.2.4 When does the environment change? 
The period was changed in two different ways: periodically, every r generations or according to a fixed pattern.  

In periodic environments the parameter r was used with four different values: 10, 50, 100 and 200 generations between 

changes. This type of changes will be denoted as cyclic-periodic environments. 

In the second case, a pattern was set and the moments of change were calculated based on that pattern.  Four different 

patterns were investigated: 5-10-5, 10-20-10 (fast), 50-60-70 (medium) and 100-150-100 (slow). This way the intervals 

between changes are not always the same, but follow some pattern making prediction possible.  

In the first case (pattern 5-10-5), changes will occur at generations 5, 15, 20, 25, 35, 40, 45, 55, 60, .., i.e, the pattern 

provides the gap between the changes. This type of change will be referred as cyclic-pattern environments. This means that 

80 different situations were analyzed. Table 2 summarizes the different scenarios tested in this work. 
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Type of change Change period Number of states Type of states dynamics 

Cyclic-periodic 

10 

3 

Deterministic (Pij=1) Probabilistic (Pij<>1) 

5 

10 

20 

50 

50 

3 

Deterministic(Pij=1) Probabilistic (Pij<>1) 

5 

10 

20 

50 

100 

3 

Deterministic(Pij=1) Probabilistic (Pij<>1) 

5 

10 

20 

50 

200 

3 

Deterministic(Pij=1) Probabilistic (Pij<>1) 

5 

10 

20 

50 

Cyclic-pattern 

5-10-5 

3 

Deterministic(Pij=1) Probabilistic (Pij<>1) 

5 

10 

20 

50 

 

10-20-10 

3 

Deterministic(Pij=1) Probabilistic (Pij<>1) 

5 

10 

20 

50 

 

50-60-70 

3 

Deterministic(Pij=1) Probabilistic (Pij<>1) 

5 

10 

20 

50 

 

100-150-100 

3 

Deterministic(Pij=1) Probabilistic (Pij<>1) 

5 

10 

20 

50 

Table 2. Different environmental dynamics tested 

 

7 Results 
In this section obtained results are analysed. First we show the accuracy of the linear regression predictor and then the 

PredEA’s performance is compared with a similar EA without the prediction capabilities (noPredEA). Statistical 

information will also be provided. 

 

7.1 Accuracy of Predicted Values using Linear Regression  
When changes are defined by the parameter r and they occur every r generations, the statistical model using linear 

regression gives correct predictions, since all observed values are on the regression line. Figure 6 shows the predicted values 

using periodic changes of size 10 and 50 (r=10, r = 50). 
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Figure 6. Prediction accuracy in periodic environments with a fixed period (r = 10 and r = 50) 

 

Using a pattern to generate the periodicity of the change, we may have situations where the predicted values are not precise. 

In these cases, there is an associated error that decreases over time. Nevertheless this decreasing is very slow. For the 20 

first changes observed using the patterns 5-10-5 and 10-20-10 and plotted in Figures 7 and 8, we can see that the prediction 

model was not exact. In this case, the  constant assumed in our implementation (5 generations), in general, was enough to 

cover that error, and in this case, the insertion of individuals in the population was always made before the change occurs. 

  

Figure 7. Prediction accuracy in periodic environments with a 

pattern change (5-10-5) 

Figure 8. Prediction accuracy n periodic environments with a 

pattern change (10-20-10) 

 

In the case of pattern 50-60-70, in some cases, the  constant of 5 wasn’t enough to ensure that some action could be taken 

before change. As we will see in next section, this fact leads to a poor performance of the algorithm. Figure 9 shows the 

predicted values using this pattern’s change. 

Using a different pattern, 100-150-100 the used prediction model had worse predicted values. The errors associated to the 

estimated values were in most cases superior to 5, and our module using an interval margin of 5 generations didn’t deal with 

these changes before they happen. Figure 10 shows the expected values and the resultant error. Once again we observe a 

decrease of PredEA’s performance. 
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Figure 9. Prediction accuracy in periodic environments with a 

pattern change (50 – 60 – 70) 

Figure 10. Prediction accuracy in periodic environments with a 

pattern change (100 – 150 – 100) 

 

 

7.2 PredEA versus noPredEA 

7.2.1 Results on cyclic-periodic environments 

Results obtained for cyclic-periodic environments (changing every r generations) are given in table 3. The best scores are 

marked in bold. 

The statistical results of comparing the two EAs are given in table 4. We used a paired one-tailed t-test at a 0.01 level of 

significance. The notation used in tables 4 to compare each pair of algorithms is „+”, “-“, “++” or “--“, when the first 

algorithm is better than, worse than, significantly better than, or significantly worse than the second algorithm. 

  Number of states 

r Algorithm 3 5 10 20 50 

10 

 

Pred-EA (Pij = 1) 98.24 97.92 97.87 97.33 94.42 

Pred-EA (Pij<>1) 98.10 97.78 97.25 96.55 93.55 

NoPred-EA  (Pij = 1) 89.41 84.90 80.04 74.87 69.69 

NoPred-EA  (Pij<> 1) 89.64 85.41 80.58 75.40 70.38 

50 

 

Pred-EA (Pij = 1) 99.39 99.04 98.08 96.46 91.31 

Pred-EA (Pij<>1) 98.90 98.39 98.69 96.45 90.19 

NoPred-EA  (Pij = 1) 98.72 98.39 97.66 95.40 88.29 

NoPred-EA  (Pij<> 1) 98.71 98.39 97.65 95.76 89.28 

100 

 

Pred-EA (Pij = 1) 99.69 99.51 99.01 98.55 95.48 

Pred-EA (Pij<>1) 99.43 99.67 99.29 99.14 95.10 

NoPred-EA  (Pij = 1) 99.38 99.24 98.90 98.29 94.11 

NoPred-EA  (Pij<> 1) 99.37 99.24 98.91 98.29 94.70 

200 

 

Pred-EA (Pij = 1) 99.84 99.75 99.50 99.37 97.74 

Pred-EA (Pij<>1) 99.72 99.79 99.64 99.56 97.75 

NoPred-EA  (Pij = 1) 99.69 99.62 99.45 99.15 97.04 

NoPred-EA  (Pij<> 1) 99.69 99.62 99.46 99.15 97.34 

 

Table 3. Global results on cyclic-periodic environments, with change period r 
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  Nº of states 

T-test results   r 3 5 10 20 50 

PredEA -- noPredEA (Pij= 1) 
10 

++ ++ ++ ++ ++ 

PredEA -- noPredEA (Pij<> 1) ++ ++ ++ ++ ++ 

PredEA -- noPredEA (Pij = 1) 
50 

++ ++ ++ ++ ++ 

PredEA -- noPredEA (Pij<> 1) ++ + ++ ++ ++ 

PredEA -- noPredEA (Pij = 1) 
100 

++ ++ ++ ++ ++ 

PredEA -- noPredEA (Pij<> 1) ++ ++ ++ ++ ++ 

PredEA -- noPredEA (Pij = 1) 
200 

++ ++ ++ ++ ++ 

PredEA -- noPredEA (Pij<> 1) ++ ++ ++ ++ ++ 

Table 4.Statistical significance of comparing PredEA with  noPredEA (ttest) in cyclic-periodic environments (r=10,50, 100 and 200)

The results obtained with PredEA were always significant better than the noPredEA. Using prediction to insert information 

before change happens actually improves the EA’s performance. In rapidly changing environments (r = 10), the 

improvements introduced with the anticipation of change are clearly positive. Besides, as the number of different states 

increases, the noPredEA’s performance decreases faster than the PredEA’s. Using 50 states the results were inferior since, 

in some cases, the algorithm has not enough time to complete the “learning phase”. In these cases, more time of evolution is 

necessary. Figure 11 plots the achieved results. 

 

 

Figure 11. Global results for PredEA and noPredEA in cyclic-periodic environments (r = 10, 50, 100 and 200) 

 

In figures 12 to 15 we can see the behaviour of the algorithms in the first 5000 generations, using 10 different states with 

cyclic (Pij=1) dynamics. PredEA has a starting phase where the performance is very instable and abruptly decreases every 

time a change is detected. This is the “learning phase” where the algorithm builds the Markov chain model and its transition 

matrix. After that, and since repeated environments reappear, the predictions are correctly made by the two predictor 

modules and the PredEA’s performance reaches an “equilibrium phase”. Using r=10, this equilibrium is not reached in the 

60

65

70

75

80

85

90

95

100

3 5

1
0

2
0

5
0

F
it

n
es

s

Number of states

PredEA vs noPredEA, r = 10

PredEA (Pij = 1) NoPredEA  (Pij = 1)

PredEA (Pij <>1) NoPredEA  (Pij <> 1)

85

87

89

91

93

95

97

99

3 5

1
0

2
0

5
0

F
it

n
es

s

Number of states

PredEA vs noPredEA, r = 50

PredEA (Pij = 1) NoPredEA  (Pij = 1)

PredEA (Pij <>1) NoPredEA  (Pij <> 1)

92

93

94

95

96

97

98

99

100

3 5

1
0

2
0

5
0

F
it

n
es

s

Number of states

PredEA vs noPredEA, r=100

PredEA (Pij = 1) NoPredEA  (Pij = 1)

PredEA (Pij <>1) NoPredEA  (Pij <> 1)
96

97

98

99

100

3 5

1
0

2
0

5
0

F
it

n
es

s

Number of states

PredEA vs noPredEA, r=200

PredEA (Pij = 1) NoPredEA  (Pij = 1)

PredEA (Pij <>1) NoPredEA  (Pij <> 1)



Evolutionary Algorithms for Dynamic Environments: Prediction using Linear Regression and Markov Chains 15 

first 5000 generations, since the gap between changes is small and the algorithm can’t find the global optimum. In this case, 

the equilibrium phase is completely attained after a larger number of generations. 

The behaviour of noPredEA is very unstable. After a change, we observe a decrease on its fitness and only after retrieving 

information from memory, which is made immediately after a change happens, the EA recovers.   

 

Figure 12. PredEA versus noPredEA, change period r = 10, 10 states, dynamics of type Pij=1 

 

 

Figure 13. PredEA versus noPredEA, change period r = 50, 10 states, dynamics of type Pij=1 

 

 

Figure 14. PredEA versus noPredEA, change period r = 100, 10 states, dynamics of type Pij=1 
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Figure 15. PredEA versus noPredEA, change period r = 200, 10 states, dynamics of type Pij=1 

 

Following, we show similar results for probabilistic changing dynamics. In this casa, as the EA needs more time to capture 

all information about environment, we show complete results, concerning the number of generations. 

 

Figure 16. PredEA versus noPredEA, change period r = 10, 10 states, dynamics of type Pij<>1 

 

  

Figure 17. PredEA versus noPredEA, change period r = 50, 10 states, dynamics of type Pij<>1 
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Figure 18. PredEA versus noPredEA, change period r = 100, 10 states, dynamics of type Pij<>1 

 

 

Figure 19. PredEA versus noPredEA, change period r = 200, 10 states, dynamics of type Pij<>1 

 

7.2.2. Results on cyclic-pattern environments 

Similar results were obtained in cyclic-pattern environments. As referred before, for the patterns 50-60-70 and 100-150-

100, the  constant set to 5 was not suitable to the accuracy of the linear regression module. For these two situations, we 

repeated the experiments adjusting the constant value to 10 and 25. The results, as we expected, were better and since the 

levels of population‟s diversity in the two cases are practically the same, this increase in the performance is due to the 

introduction of retrieved memory information before the change happens. Using a fixed value for the  constant a limitation 

of the system and will be improved in future work. 

Table 5 shows the global results obtained in all the experiments carried out. Best results are marked with bold. The 

statistical results of comparing the two EAs are given in Table 6. 
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  Number of states 

Pattern Algorithm 3 5 10 20 50 

5-10-5 

PredEA - =5 (Pij = 1) 97.49 97.27 97.50 97.65 95.63 

PredEA - =5 (Pij<>1) 97.10 96.13 96.77 96.79 94.60 

NoPredEA  (Pij = 1) 91.98 90.35 85.89 79.36 72.62 

NoPredEA  (Pij<> 1) 93.18 90.58 86.01 79.90 73.57 

10-20-10 

PredEA - =5 (Pij = 1) 98.36 98.11 97.95 97.46 94.64 

PredEA - =5 (Pij<>1) 98.24 97.49 97.12 96.29 93.01 

NoPredEA  (Pij = 1) 91.26 92.25 88.13 80.97 73.40 

NoPredEA  (Pij<> 1) 94.71 91.52 87.89 81.67 74.51 

50-60-70 

PredEA - =5 (Pij = 1) 99.54 99.37 98.82 97.04 94.60 

PredEA - =5 (Pij<>1) 99.52 99.34 98.79 97.24 94.38 

PredEA - =10 (Pij = 1) 99.80 99.65 99.31 98.60 96.52 

PredEA - =10 (Pij<>1) 99.79 99.61 99.15 98.23 95.92 

NoPredEA  (Pij = 1) 99.44 99.16 98.64 96.45 94.54 

NoPredEA  (Pij<> 1) 99.44 99.17 98.58 97.02 95.13 

100-150-100 

PredEA - =5 (Pij = 1) 99.64 99.52 99.20 98.07 95.94 

PredEA - =5  (Pij<>1) 99.65 99.53 99.23 98.17 96.45 

PredEA - =25 (Pij = 1) 99.89 99.79 99.65 99.29 98.25 

PredEA - =25 (Pij<>1) 99.89 99.78 99.55 99.10 97.95 

NoPredEA  (Pij = 1) 99.71 99.59 99.27 98.31 97.24 

NoPredEA  (Pij<> 1) 99.71 99.59 99.29 98.52 97.56 

Table 5.     Global results on cyclic-pattern environments, with change patterns 5-10-5, 10-20-10, 50-60-70 and 100-150-100 

 

PredEA‟s performance in the last pattern, using the =5 was not satisfactory. noPredEA was better in this case. Adjusting 

the value of the constant to 25, we could significantly increase the PredEA‟s performance. 

   Nº of states 

 T-test results   Pattern 3 5 10 20 50 

CYCLIC 

PATTERN 

PredEA - =5   -- noPredEA (Pij == 1) 
5-10-5 

++ ++ ++ ++ ++ 

PredEA - =5   -- noPredEA (Pij<> 1) ++ ++ ++ ++ ++ 

PredEA - =5   -- noPredEA (Pij == 1) 
10-20-10 

++ ++ ++ ++ ++ 

PredEA - =5   -- noPredEA (Pij<> 1) ++ ++ ++ ++ ++ 

PredEA - =5   -- noPredEA (Pij == 1) 

50-60-70 

++ ++ ++ ++ + 

PredEA - =5   -- noPredEA (Pij<> 1) ++ ++ ++ ++ -- 

PredEA - =10 -- noPredEA (Pij == 1) ++ ++ ++ ++ ++ 

PredEA - =10 -- noPredEA (Pij<> 1) ++ ++ ++ ++ ++ 

PredEA - =10 -- PredEA_INT 5 (Pij == 1) ++ ++ ++ ++ ++ 

PredEA - =10 -- PredEA_INT 5 (Pij<> 1) ++ ++ ++ ++ ++ 

PredEA - =5   -- noPredEA (Pij == 1) 

100-150-100  

-- -- -- -- -- 

PredEA - =5   -- noPredEA (Pij<> 1) -- -- - -- -- 

PredEA - =25 -- noPredEA (Pij == 1) ++ ++ ++ ++ ++ 

PredEA - =25 -- noPredEA (Pij<> 1) ++ ++ ++ ++ ++ 

PredEA - =25 -- PredEA_INT 5 (Pij == 1) ++ ++ ++ ++ ++ 

PredEA - =25 -- PredEA_INT 5 (Pij<> 1) ++ ++ ++ ++ ++ 

Table 6. Statistical significance of comparing PredEA with  noPredEA (ttest) in cyclic-pattern environments
 

Figure 16 graphically shows the achieved results. Once again, in rapidly changing environments (patterns 5-10-5 and 10-20-

10) the incorporation of prediction and the anticipation of change allowed outstanding improvements in the algorithm‟s 

performance. PredEA also ensures best scores as the number of states increases. In the other two situations, using a suitable 

value for the  constant, PredEA also achieves the best results. 



Evolutionary Algorithms for Dynamic Environments: Prediction using Linear Regression and Markov Chains 19 

 

 

Figure 20. Global results for PredEA and noPredEA in cyclic-pattern environments (5-10-5, 10-20-10, 50-60-70 and 100-150-100) 

 

In figures 17 to 20 we can see the behaviour of the algorithms in the first 5000 generations, using 10 different states with 

cyclic (Pij=1) dynamics. As in the case of cyclic-periodic environments, analysed in the previous section, we observe the 

presence of the learning and equilibrium phases when using PredEA. Once again, in quickly changing environments the 

equilibrium was not attained in the first 5000 generations. noPredEA behave in the same way as the previous cases. 

 

Figure 21. PredEA versus noPredEA, pattern 5-10-5, 10 states, dynamics of type Pij=1 
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Figure 22. PredEA versus noPredEA, pattern 10-20-10, 10 states, dynamics of type Pij=1 

 

 

Figure 23. PredEA (=10) versus noPredEA, pattern 50-60-70, 10 states, dynamics of type Pij=1 

 

 

Figure 24. PredEA versus noPredEA (=25), pattern 100-150-100, 10 states, dynamics of type Pij=1 

 

Similar results were obtained in environments changing in a probabilistic manner. Figures 25 to 28 show the results 

obtained with 10 states. 
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Figure 25. PredEA versus noPredEA (=5), pattern 5-10-5, 10 states, dynamics of type Pij<>1 

 

 

Figure 26. PredEA versus noPredEA (=5), pattern 10-20-10, 10 states, dynamics of type Pij<>1 

 

 

Figure 27. PredEA versus noPredEA (=10), pattern 50-60-70, 10 states, dynamics of type Pij<>1 
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Figure 28. PredEA versus noPredEA (=25), pattern 100-150-100, 10 states, dynamics of type Pij<>1 

 

8  Conclusions and Future Work 

We have proposed the integration of prediction capabilities in a standard memory-based evolutionary algorithm to cope 

with changing environments. Two modules were used: one based on linear regression to predict when next change will 

occur, the other uses a Markov chain which stores the environmental information and is used to predict the next possible 

state(s). 

The investigated algorithm, called PredEA, was tested using several instances of the dynamic bit matching problem and 

compared with a similar EA without the prediction modules.  

Analyzing the obtained results, some conclusions can be stated: first, anticipating the moment of change and using 

information gathered in the past to prepare the future, significantly improves the EA’s adaptability. Second, these 

improvements have more impact when the environment changes faster. In these cases, if the prediction capabilities are 

removed, the algorithm has a very poor performance. Third, PredEA is more robust than noPredEA as the number of 

repeated states increases. Fourth, the linear regression method, used to predict the moments of subsequent changes, is 

suitable only for a restricted kind of changing periods. In fact, if there is an error because the effective change occurred 

before the predicted one, the algorithm’s performance is compromised. This is due to an untimely use of the solution 

obtained from the Markov chain module, making the use of Markov chain’s predictions unhelpful. Finally, the use of a 

Markov chain to store the environmental information proved to be a powerful mechanism to keep the history from the 

changing dynamics which allows the algorithm to learn and predict which states can appear in the next step. 

The major limitations of the proposed architecture are related to the linear regression module. First, the use of linear 

regression to predict future change points is feasible only for certain patterns. For more complex patterns, linear regression 

fails, giving large prediction errors. Second, the use of a fixed value for the error, assumed in the linear regression predicted 

values, it’s not very effective. If an unsuitable value is used for this constant, the algorithm’s performance considerably 

decreases. Some enhancements are being introduced to improve this module: the use of non linear regression and the 

dynamic adjustment of the  constant during the simulation. 

Other issues we intend to investigate include: (a) the influence of the severity change, (b) what should be stored as a 

representation of the “environmental information”, (c) the application of the proposed approach to noisy environments and 

(d) the use of high-order Markov chains to allow predictions based not only in the current state, but use more information 

from the past to estimate the future. Also, more experimentation, using different benchmark problems, must be carried out. 
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