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Abstract. When dealing with dynamic environments two major aspects must be 
considered in order to improve the algorithms’ adaptability to changes: 
diversity and memory. In this paper we propose and study a new evolutionary 
algorithm that combines two populations, one playing the role of memory, with 
a biological inspired recombination operator to promote and maintain diversity. 
The size of the memory mechanism may vary along time.  The size of the 
(usual) search population may also change in such a way that the sum of the 
individuals in the two populations does not exceed an established limit.  The 
two populations have minimum and maximum sizes allowed that change 
according to the stage of the evolutionary process:  if an alteration is detected in 
the environment, the search population increases its size in order to readapt 
quickly to the new conditions. When it is time to update memory, its size is 
increased if necessary. A genetic operator, inspired by the biological process of 
conjugation, is proposed and combined with this memory scheme. Our ideas 
were tested under different dynamics and compared with other approaches on 
two benchmark problems. The obtained results show the efficacy, efficiency 
and robustness of the investigated algorithm. 

1 Introduction 

Evolutionary Algorithms (EAs) have been used with success in a wide area of 
applications. Traditionally, EAs are well suited to solve problems where the 
environment is static. The generational process of evolution often leads the EA to the 
best solution. However, most of real-world applications are dynamic and the 
algorithms used to solve them must be able to adapt to the new circumstances.  

For this type of optimization, an effective EA must be able to deal with the 
changes, detecting and reacting rapidly when they occur. Classical EAs are not suited 
for this kind of problems, since they have the tendency to prematurely converge to a 
solution and, when the conditions of the environment change, the population has all 
individuals usually concentrated in a specific point of the search space. So, it takes 
some time for the population to readapt and move towards the new solution. 

To deal with these limitations, some improvements have been proposed as 
extensions of the classical EA. These improvements include 1) maintaining diversity 
using several strategies [4, 6, 8, 10, 15], 2) using memory schemes either  implicit [5, 

Published in M. Giacobini et al. (Eds.): EvoWorkshops 2007, Applications of Evolutionary 
Computing, LNCS 4448, pp. 617-626, Springer Verlag, 2007. 



 

11, 13] or explicit [1, 15, 20, 22] and 3) using multi-populations [3, 18]. Recent works 
successfully studied the combination of memory schemes and mechanisms for 
promoting and maintaining diversity [15, 19]. 

In this paper we are also interested in studying the combination of these two 
important issues. We propose an EA with a search population and a memory 
population whose size may change. Both search and memory populations have 
minimum and maximum values and the global number of individuals in the two 
populations cannot go beyond an established value. The memory is updated from time 
to time and its size changes whenever it is necessary and possible. If the maximum 
size is reached, the memory is cleaned to make room for new individuals. When a 
change occurs, the best individuals from the memory are selected and inserted in the 
population.  

Besides this memory framework, we introduce a new way of using the biologically 
inspired conjugation operator, which improves the quality of the solutions. 
Conjugation will be used as the main recombination operator. This mechanism is 
applied after the mating pool is selected. The best individuals of the pool will transfer 
part of their genetic material to the worst individuals of the pool. After that, the new 
individuals are merged with the old population to form the next population. 

2 Memory and Diversity: Relevant Background  

The most known approach using redundant representations is to use diploid instead of 
haploid chromosomes. This idea was suggested by [5] as an extension of the standard 
GA. Later, other authors investigated the idea of diploidy, particularly its use in the 
context of dynamic environments [11, 13] . 
 When using explicit memory the main goal is to store useful information (good 
solutions) about the current environment and reuse them when a change occurs. It can 
also permit the population to move to a different area in the landscape in one step, 
which would not be possible with common genetic operators [2]. Different 
approaches have been proposed in the literature. For instance, [1, 15, 20, 22]. 

Several techniques have been proposed in order to preserve the diversity in a 
population. The most popular techniques to promote populations’ diversity are 
hypermutation [4, 10], random immigrants [6], tag bits [8] or alternative genetic 
operators [15]. Their aim is to maintain or increase population’s diversity in an EA 
allowing a quick reaction when modifications are detected. There are some works 
where these two issues – diversity and memory – are combined within the same 
algorithm claiming improved performance [15, 19]. 

3 Variable-size Memory Evolutionary Algorithm  

We propose a new EA called VMEA – Variable-size Memory Evolutionary 
Algorithm, comprising two populations: the main population searches the best 
solution and evolves as usual through selection, crossover and mutation. The main 
difference is that its size can change between two bounds: POP_MIN and POP_MAX. 



 

The second population plays the role of a memory, where the best individuals of 
the population in several points of the generational process are stored. Its size also 
changes between off-line established limits MEM_MIN and MEM_MAX. The sum of 
the two populations cannot go beyond a certain limit (TOTAL_MAX). The 
individuals of the memory are aged: their age starts at zero, being increased by one at 
every generation. If an individual is selected to the population when a change is 
detected, an extra value is added to its age. Oldest individuals are those who stay 
longer in memory and/or contributed to adaptability of the population in an 
environmental change. If individuals reach a LIMIT_AGE their ages are reset to zero. 
The age of the individuals in the memory is used to select which individual to choose 
to withdraw when memory is full (or the sum of the size of the two populations is 
equal to the permitted limit). The memory is updated from time to time and if the 
established limits are not reached, the best individual of the current population is 
stored. If there is no room to save this new solution, we first clean the memory 
removing the individuals with the same genotype. If no individual was deleted 
through this process of cleaning, then the best individual of the current population, if 
is fittest than the one with lowest age present in the memory, replaces it. 

The memory is evaluated every generation and a change is detected if at least one 
individual in the memory changes its fitness (as it was suggested in [1] and [22]) and 
it is updated at time TM=t + rand(5,10), the same way as in [22]. 

If an environmental modification is detected, the best individual of the memory is 
introduced into the population. In the case of either the population’s size or the sum of 
the two populations reach the allowed maximum, the best individual in memory 
replaces the worst one in the current population. A complete description of the 
algorithm can be consulted in [16]. 

4 Promoting Diversity in the Search Population 

Traditionally EAs use crossover as the main genetic operator. In the past other 
biologically inspired operators have been proposed and tested with some degree of 
success. These new genetic operators were applied either in static [7, 14], or dynamic 
environments [15, 19].  

In biology, bacterial conjugation is the transfer of genetic material between 
bacteria through cell-to-cell contact. Sometimes bacterial conjugation is regarded as 
the bacterial equivalent of sexual reproduction or mating, but in fact, it is merely the 
transfer of genetic information from a donor to a recipient cell [12]. 

Computational conjugation was introduced independently by Harvey and Smith.  
Smith [17] proposed an implementation of this operator, called simple conjugation: 
the donor and the recipient were chosen randomly, transferring the genetic material 
between two random points. Harvey [7] introduced a tournament based conjugation:  
two parents are selected on a random basis, and then the winner of the tournament 
becomes the donor and the loser the recipient of the genetic material. That way, the 
conjugation operator can be applied repeatedly by different donors to a single 
recipient.  



 

In this paper conjugation is applied  differently. We perform conjugation involving 
the individuals selected to the mating pool, using the idea of donor-recipient genetic 
transfer. As it happens in biology, the donor individuals give genetic material to the 
recipient ones. After selecting the individuals to mate, using the established selection 
method, they are divided into two groups: the n/2 best individuals become the 
‘donor’, the remaining become the ‘recipient’ (n is the current size of the population). 
Then, the ith donor transfers part of its genetic material to the ith recipient (i=1, …n/2). 
This injection is controlled by two points randomly chosen. The donor remains 
unchanged. Following that, all offspring created by this process are joined with the 
donor individuals and they become the next population of size n. A complete 
explanation of conjugation is given in [16]. 

5 Experimental Study 

5.1. Dynamic Test Environments 

We selected two benchmark problems to test our VMEA so we can compare it with 
other algorithms easier: the knapsack problem (100 items) and oneMax problem (300 
bits).  In this paper, due to the restrictions of space, we only show partial results. A 
detailed set of results can be consulted in [16]. 

Knapsack Problem 
The knapsack problem is a NP-complete combinatorial optimization problem often 
used as benchmark. It consists in selecting a number of items to a knapsack with 
limited capacity. Each item has a value (vi) and a weight (wi) and the objective is to 
choose the items that maximize the total value, without exceeding the capacity of the 
bag. We used a knapsack problem with 100 items using strongly correlated sets of 
randomly generated data [9, 21]. The fitness of an individual is equal to the sum of 
the values of the selected items, if the weight limit is not reached. If too many items 
are selected, then the fitness is penalized in order to ensure that invalid individuals are 
distinguished from the valid ones. 

OneMax problem 
The OneMax problem aims to maximize the number of ones in a binary string. So  the 
fitness of an individual consists in the number of ones present in the binary string. 
This problem has a unique solution. In our experiments we used individuals of length 
300. 

Three kinds of environments were created for each of these two base problems, 
using Yang’s Dynamic Optimization Problems (DOP) generator: cyclic, cyclic with 
noise and random. The environment was changed every r generations (r = 10, 50, 100 
and 200) and the ratio ρ  was set to different values in order to test different levels of 
change: 0.1 (a light shifting) 0.2, 0.5, 1.0 (severe change). In order to study the 
behaviour of the algorithms in randomly changing environments we also set ρ to a 
uniformly randomly generated value in the interval [0.01 and 0.99] (called by rnd).  



 

Details about Yang’s DOP generator can be found in [20]. With this generator it is 
possible to construct different dynamic environments from any binary-encoded 
stationary function using the bitwise exclusive-or (XOR) operator.  The basic idea of 
the generator can be described as follows: when evaluating an individual x in the 
population, first we perform the operation x∆M  where ∆ is the bitwise XOR 
operator and M a binary mask previously generated. Then, the resulting individual is 
evaluated to obtain its fitness value. If a change happens at generation t, then we have 
f(x, t+1) = f(x ∆ M). Using the DOP generator the characteristics of the change are 
controlled by two parameters: the speed of the change, r, that is the number of 
generations between two changes, and the magnitude of the change, ρ, that consists in 
the ratio of ones in the mask M. The more ones in the mask the more severe is the 
change. The DOP generator also allows constructing problems where the changes can 
be cyclic, cyclic with noise or non-cyclic. In the first case, several masks are 
generated according to the ρ parameter and are consecutively applied when a change 
occurs. It is thus possible that previous environments reappear later. In the second 
case noise is added by mutating some bits in the mask with a small probability. In the 
third case, the mask applied to the individuals is always randomly generated every 
time we change the environment. 

5.2. Experimental Setup 

Algorithms’ parameters 
To compare our approach we used two other algorithms: the random immigrants 
algorithm [6] and the memory-enhanced GA (MEGA) studied in [22]. VMEA was 
tested using conjugation (VMEA-Cj) and uniform crossover (VMEA-Cx), in order to 
make conclusions about the efficiency of the proposed genetic operator in changing 
problems. For all the algorithms, parameters were set as follows: generational 
replacement with elitism of size one, tournament selection with tournament of size 
two, uniform crossover with probability pc=0.7 (the same probability was used with 
conjugation) and mutation applied with probability pm=0.01. The population size for 
VMEA, RIGA and MEGA was set to 120 individuals. In MEGA, 10 individuals were 
used as memory, which is updated according the description given in [22]. The ratio 
of immigrants used in RIGA was 0.1. The mutation ratio used for noisy environments 
was 0.05. In VMEA the memory size varied between 10 and 50 individuals. However, 
the total of individuals in the two populations could not surpass 120. The age limit for 
the individuals in memory was set to G/2, where G is the total number of generations.  

For each experiment of an algorithm, 30 runs were executed and the number of 
environmental changes was 100 with r =10 (1000 generations), 40 with r =50 (2000 
generations) and 20 with r=100 and 200 (2000 and 4000 generations, respectively). 
The overall performance used to compare the algorithms was the best-of-generation 
fitness averaged over 30 independent runs, executed with the same random seeds: 
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G=number of generations, N=number of runs. 



 

5.3 Experimental Results 

The experimental results carried out to assess the efficiency of our algorithm shows 
that VMEA outperformed the other two approaches. The statistical results comparing 
the algorithms are reported in tables 1 and 2. We used paired one-tailed t-test at a 0.01 
level of significance. The notation used in tables 1 and 2, to compare each pair of 
algorithms is ‘+”, “-“, “++” or “--“, when the first algorithm is better than, worse 
than, significantly better than, or significantly worse than the second algorithm. Fig. 1 
plots the average of the best-of-generation fitness obtained in the knapsack problem. 
Fig. 2 and 3 show some examples of the algorithms’ behaviour during the 
generations.  

  

Table 1. The t-test results of comparing the different algorithms (knapsack problem).  
    CYCLIC CYCLIC WITH NOISE NON CYCLIC 

Statistical significance r,  ρ→ 0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd 
VMEA Cx - RIGA ++ ++ ++ ++ ++ -- ++ ++ ++ -- ++ - -- ++ -- 
VMEA Cj - RIGA ++ ++ ++ ++ ++ -- ++ ++ ++ -- ++ -- -- ++ -- 

VMEA Cx - MEGA ++ ++ ++ ++ ++ + ++ ++ ++ ++ ++ + ++ ++ ++ 
VMEA Cj - MEGA ++ ++ ++ ++ ++ + ++ ++ ++ - ++ -- -- ++ ++ 

VMEA Cj  - VMEA Cx 

10 

++ ++ ++ ++ ++ - - ++ ++ - ++ -- -- ++ -- 
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ 
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ - ++ ++ 

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

VMEA Cj  - VMEA Cx 

50 

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ - -- ++ ++ 
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

VMEA Cj  - VMEA Cx 

100 

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ -- ++ ++ 
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

VMEA Cj  - VMEA Cx 

200 

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ 

 

Table 2. The t-test results of comparing the different algorithms (OneMax problem). 
    CYCLIC CYCLIC WITH NOISE NON CYCLIC 

Statistical significance r,  ρ→ 0.1 0.2 0.5 1 rnd 0.1 0.2 0.5 1 rnd 0.1 0.2 0.5 1 rnd 
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ + 
VMEA Cj - RIGA ++ ++ ++ ++ ++ -- -- -- -- -- -- -- -- ++ -- 

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - MEGA ++ ++ ++ ++ ++ -- -- -- -- -- -- -- -- ++ -- 

VMEA Cj  - VMEA Cx 

10 

-- -- -- -- -- -- -- -- -- -- -- -- -- ++ -- 
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ -- -- ++ -- 

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - MEGA -- ++ ++ ++ -- -- -- -- -- -- -- -- -- ++ -- 

VMEA Cj  - VMEA Cx 

50 

-- -- ++ ++ -- -- -- -- -- -- -- -- -- ++ -- 
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ -- ++ ++ 

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - MEGA -- ++ ++ ++ -- -- -- -- - -- -- -- -- ++ -- 

VMEA Cj  - VMEA Cx 

100 

-- -- ++ ++ -- -- -- -- -- -- -- -- -- ++ -- 
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ - -- ++ - 

VMEA Cj  - VMEA Cx 

200 

++ ++ ++ ++ ++ -- -- -- -- -- ++ -- -- + -- 

 
In cyclic environments, our approach obtained at all times the best solutions. As 

expected, RIGA had the worst performance, obviously because it doesn’t use any 
memory mechanism. Comparing VMEA and MEGA, we can conclude that the 
mechanism we introduced performs very well in cyclic environments. Also, 



 

conjugation shows a better performance in cyclic environment, obtaining almost all 
the times the best results. Decreasing the ratio of change, the effect of memory is not 
so visible. In fact, both memory algorithms, VMEA and MEGA, need some time to 
readapt when a change happens. This is because with small changes in the XOR 
mask, when a repeated state reappears, memory has already lost the useful 
information previously stored. 

For cyclic with noise and random environments the results were in general very 
poor. The four algorithms didn’t achieve high results as in the case of cyclic 
environments. Nevertheless, VMEA obtained, in most cases, the best results, as we 
can see in Tables 1 and 2. 
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Fig. 1. Global results for the knapsack problem. 
 
In cyclic with noise environments, algorithms behave in similar way: after a change 
they need some time to readapt and find a best solution. Memory improves the 
algorithm (VMEA-Cx achieves, in general, the highest scores), but its effect is not as 
obvious as in cyclic environment. Fig. 2 shows the evolutionary behavior of the 
algorithms for ρ=1 and ρ=0.1, with r=10 and r=200. 

In random environments, with high ratio changes (ρ=1), VMEA achieved very 
good results. The memory allows the algorithm to continuously improve its 
performance. The good performance reduced as we decrease the change ratio. The 
new environment is slightly different from the previous one, but repeated states 
appear after a long time on and so memory has already lost the related information. 
Fig. 3 shows the behavior of the algorithms in noisy and random environments with 
ρ=1. For random change ratio (ρ = rnd) we observed a degradation of the results. In 
this case, RIGA and the other two memory-based algorithms performed in a very 
similar way: after a change in the environment the best-of generation falls for lower 
values and it is required some time for the algorithms to start evolving again. Even so, 
VMEA, typically arise the best marks. 



 

Cyclic -  r = 10, change ratio = 1

200

210

220

230

240

250

260

270

280

290

300

1 78 155 232 309 386 463 540 617 694 771 848 925

RIGA
MEGA
VMEA Cx
VMEA Cj

Cyclic -  r = 200, change ratio = 1

200

210

220

230

240

250

260

270

280

290

300

1 333 665 997 1329 1661 1993 2325 2657 2989 3321 3653 3985

RIGA
MEGA
VMEA Cx
VMEA Cj

Cyclic -  r = 10, change ratio = 0.1

150

170

190

210

230

250

270

1 79 157 235 313 391 469 547 625 703 781 859 937

RIGA
MEGA
VMEA Cx
VMEA Cj

 

Cyclic -  r = 200, change ratio = 0.1
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Fig. 2. Dynamic behavior of the algorithms in cyclic environments (OneMax problem) 

 
Cyclic with noise-  r = 10, change ratio = 1
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Cyclic with noise-  r = 200, change ratio = 1
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Fig. 3. Dynamic behavior in cyclic with noise and random environments (OneMax problem). 
 
The VMEA algorithm combined with the conjugation operator performed better in 

the knapsack problem. In fact, VMEA-Cj was, usually, the best algorithm. The same 
was not observed in the OneMax problem. In this benchmark problem, VMEA-Cx 
obtained the highest marks and VMEA with conjugation performed better in cyclic 
environments with larger change periods. 



 

5.4 Memory and Population Sizes 

The restrictions we impose when we increase the size of the memory and search 
populations imply that memory tends to grow until its maximum is achieved and so 
population is ‘penalized’ because we run out of resources. This happens because, 
when the established limits are attained, we only increase the population size when 
there is room for at least one more individual and this is possible only if some 
individuals of the memory have been cleaned. After the maximum value for the 
memory is reached, the process of deleting individuals with the same genotype from 
the memory allows periodical increases in the population size. Fig. 4 shows a 
representative graphic of the evolution of the populations’ size. 
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Fig. 4. Evolution of the population’s and memory’s size. 

6 Conclusions 

In this paper we proposed an EA with memory of variable size to deal with dynamic 
environments. Additionally, we introduced a different biological operator to test its 
efficiency in the promotion of diversity. The investigated algorithm, called  VMEA, 
was tested and compared with other approaches in different dynamic environments: 
cyclic, cyclic with noise and random. From the obtained results we can conclude that 
VMEA is very efficient. The best results were observed in cyclic environments: the 
greater the change ratio, the better the performance. For small change ratios, besides 
the change is not so severe, there are more different states reappearing in the 
environment. We can also conclude that the combination of the variable memory 
scheme and the conjugation operator increases the performance of the algorithm, 
mainly in cyclic environments. Finally, we must stress that for the implemented and 
compared algorithms, VMEA predominantly achieved the best results.  
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