

Variable-size Memory Evolutionary Algorithm to Deal
with Dynamic Environments

Anabela Simões1,2, Ernesto Costa2

1 Dept. of Informatics Engineering, ISEC – Coimbra Polytechnic, R. Pedro Nunes
Quinta da Nora, 3030-199 Coimbra - Portugal

2 CISUC, University of Coimbra, Polo II, 3030-290 Coimbra - Portugal
abs@isec.pt, ernesto@dei.uc.pt

Abstract. When dealing with dynamic environments two major aspects must be
considered in order to improve the algorithms’ adaptability to changes:
diversity and memory. In this paper we propose and study a new evolutionary
algorithm that combines two populations, one playing the role of memory, with
a biological inspired recombination operator to promote and maintain diversity.
The size of the memory mechanism may vary along time. The size of the
(usual) search population may also change in such a way that the sum of the
individuals in the two populations does not exceed an established limit. The
two populations have minimum and maximum sizes allowed that change
according to the stage of the evolutionary process: if an alteration is detected in
the environment, the search population increases its size in order to readapt
quickly to the new conditions. When it is time to update memory, its size is
increased if necessary. A genetic operator, inspired by the biological process of
conjugation, is proposed and combined with this memory scheme. Our ideas
were tested under different dynamics and compared with other approaches on
two benchmark problems. The obtained results show the efficacy, efficiency
and robustness of the investigated algorithm.

1 Introduction

Evolutionary Algorithms (EAs) have been used with success in a wide area of
applications. Traditionally, EAs are well suited to solve problems where the
environment is static. The generational process of evolution often leads the EA to the
best solution. However, most of real-world applications are dynamic and the
algorithms used to solve them must be able to adapt to the new circumstances.

For this type of optimization, an effective EA must be able to deal with the
changes, detecting and reacting rapidly when they occur. Classical EAs are not suited
for this kind of problems, since they have the tendency to prematurely converge to a
solution and, when the conditions of the environment change, the population has all
individuals usually concentrated in a specific point of the search space. So, it takes
some time for the population to readapt and move towards the new solution.

To deal with these limitations, some improvements have been proposed as
extensions of the classical EA. These improvements include 1) maintaining diversity
using several strategies [4, 6, 8, 10, 15], 2) using memory schemes either implicit [5,

Published in M. Giacobini et al. (Eds.): EvoWorkshops 2007, Applications of Evolutionary
Computing, LNCS 4448, pp. 617-626, Springer Verlag, 2007.

11, 13] or explicit [1, 15, 20, 22] and 3) using multi-populations [3, 18]. Recent works
successfully studied the combination of memory schemes and mechanisms for
promoting and maintaining diversity [15, 19].

In this paper we are also interested in studying the combination of these two
important issues. We propose an EA with a search population and a memory
population whose size may change. Both search and memory populations have
minimum and maximum values and the global number of individuals in the two
populations cannot go beyond an established value. The memory is updated from time
to time and its size changes whenever it is necessary and possible. If the maximum
size is reached, the memory is cleaned to make room for new individuals. When a
change occurs, the best individuals from the memory are selected and inserted in the
population.

Besides this memory framework, we introduce a new way of using the biologically
inspired conjugation operator, which improves the quality of the solutions.
Conjugation will be used as the main recombination operator. This mechanism is
applied after the mating pool is selected. The best individuals of the pool will transfer
part of their genetic material to the worst individuals of the pool. After that, the new
individuals are merged with the old population to form the next population.

2 Memory and Diversity: Relevant Background

The most known approach using redundant representations is to use diploid instead of
haploid chromosomes. This idea was suggested by [5] as an extension of the standard
GA. Later, other authors investigated the idea of diploidy, particularly its use in the
context of dynamic environments [11, 13] .
 When using explicit memory the main goal is to store useful information (good
solutions) about the current environment and reuse them when a change occurs. It can
also permit the population to move to a different area in the landscape in one step,
which would not be possible with common genetic operators [2]. Different
approaches have been proposed in the literature. For instance, [1, 15, 20, 22].

Several techniques have been proposed in order to preserve the diversity in a
population. The most popular techniques to promote populations’ diversity are
hypermutation [4, 10], random immigrants [6], tag bits [8] or alternative genetic
operators [15]. Their aim is to maintain or increase population’s diversity in an EA
allowing a quick reaction when modifications are detected. There are some works
where these two issues – diversity and memory – are combined within the same
algorithm claiming improved performance [15, 19].

3 Variable-size Memory Evolutionary Algorithm

We propose a new EA called VMEA – Variable-size Memory Evolutionary
Algorithm, comprising two populations: the main population searches the best
solution and evolves as usual through selection, crossover and mutation. The main
difference is that its size can change between two bounds: POP_MIN and POP_MAX.

The second population plays the role of a memory, where the best individuals of
the population in several points of the generational process are stored. Its size also
changes between off-line established limits MEM_MIN and MEM_MAX. The sum of
the two populations cannot go beyond a certain limit (TOTAL_MAX). The
individuals of the memory are aged: their age starts at zero, being increased by one at
every generation. If an individual is selected to the population when a change is
detected, an extra value is added to its age. Oldest individuals are those who stay
longer in memory and/or contributed to adaptability of the population in an
environmental change. If individuals reach a LIMIT_AGE their ages are reset to zero.
The age of the individuals in the memory is used to select which individual to choose
to withdraw when memory is full (or the sum of the size of the two populations is
equal to the permitted limit). The memory is updated from time to time and if the
established limits are not reached, the best individual of the current population is
stored. If there is no room to save this new solution, we first clean the memory
removing the individuals with the same genotype. If no individual was deleted
through this process of cleaning, then the best individual of the current population, if
is fittest than the one with lowest age present in the memory, replaces it.

The memory is evaluated every generation and a change is detected if at least one
individual in the memory changes its fitness (as it was suggested in [1] and [22]) and
it is updated at time TM=t + rand(5,10), the same way as in [22].

If an environmental modification is detected, the best individual of the memory is
introduced into the population. In the case of either the population’s size or the sum of
the two populations reach the allowed maximum, the best individual in memory
replaces the worst one in the current population. A complete description of the
algorithm can be consulted in [16].

4 Promoting Diversity in the Search Population

Traditionally EAs use crossover as the main genetic operator. In the past other
biologically inspired operators have been proposed and tested with some degree of
success. These new genetic operators were applied either in static [7, 14], or dynamic
environments [15, 19].

In biology, bacterial conjugation is the transfer of genetic material between
bacteria through cell-to-cell contact. Sometimes bacterial conjugation is regarded as
the bacterial equivalent of sexual reproduction or mating, but in fact, it is merely the
transfer of genetic information from a donor to a recipient cell [12].

Computational conjugation was introduced independently by Harvey and Smith.
Smith [17] proposed an implementation of this operator, called simple conjugation:
the donor and the recipient were chosen randomly, transferring the genetic material
between two random points. Harvey [7] introduced a tournament based conjugation:
two parents are selected on a random basis, and then the winner of the tournament
becomes the donor and the loser the recipient of the genetic material. That way, the
conjugation operator can be applied repeatedly by different donors to a single
recipient.

In this paper conjugation is applied differently. We perform conjugation involving
the individuals selected to the mating pool, using the idea of donor-recipient genetic
transfer. As it happens in biology, the donor individuals give genetic material to the
recipient ones. After selecting the individuals to mate, using the established selection
method, they are divided into two groups: the n/2 best individuals become the
‘donor’, the remaining become the ‘recipient’ (n is the current size of the population).
Then, the ith donor transfers part of its genetic material to the ith recipient (i=1, …n/2).
This injection is controlled by two points randomly chosen. The donor remains
unchanged. Following that, all offspring created by this process are joined with the
donor individuals and they become the next population of size n. A complete
explanation of conjugation is given in [16].

5 Experimental Study

5.1. Dynamic Test Environments

We selected two benchmark problems to test our VMEA so we can compare it with
other algorithms easier: the knapsack problem (100 items) and oneMax problem (300
bits). In this paper, due to the restrictions of space, we only show partial results. A
detailed set of results can be consulted in [16].

Knapsack Problem
The knapsack problem is a NP-complete combinatorial optimization problem often
used as benchmark. It consists in selecting a number of items to a knapsack with
limited capacity. Each item has a value (vi) and a weight (wi) and the objective is to
choose the items that maximize the total value, without exceeding the capacity of the
bag. We used a knapsack problem with 100 items using strongly correlated sets of
randomly generated data [9, 21]. The fitness of an individual is equal to the sum of
the values of the selected items, if the weight limit is not reached. If too many items
are selected, then the fitness is penalized in order to ensure that invalid individuals are
distinguished from the valid ones.

OneMax problem
The OneMax problem aims to maximize the number of ones in a binary string. So the
fitness of an individual consists in the number of ones present in the binary string.
This problem has a unique solution. In our experiments we used individuals of length
300.

Three kinds of environments were created for each of these two base problems,
using Yang’s Dynamic Optimization Problems (DOP) generator: cyclic, cyclic with
noise and random. The environment was changed every r generations (r = 10, 50, 100
and 200) and the ratio ρ was set to different values in order to test different levels of
change: 0.1 (a light shifting) 0.2, 0.5, 1.0 (severe change). In order to study the
behaviour of the algorithms in randomly changing environments we also set ρ to a
uniformly randomly generated value in the interval [0.01 and 0.99] (called by rnd).

Details about Yang’s DOP generator can be found in [20]. With this generator it is
possible to construct different dynamic environments from any binary-encoded
stationary function using the bitwise exclusive-or (XOR) operator. The basic idea of
the generator can be described as follows: when evaluating an individual x in the
population, first we perform the operation x∆M where ∆ is the bitwise XOR
operator and M a binary mask previously generated. Then, the resulting individual is
evaluated to obtain its fitness value. If a change happens at generation t, then we have
f(x, t+1) = f(x ∆ M). Using the DOP generator the characteristics of the change are
controlled by two parameters: the speed of the change, r, that is the number of
generations between two changes, and the magnitude of the change, ρ, that consists in
the ratio of ones in the mask M. The more ones in the mask the more severe is the
change. The DOP generator also allows constructing problems where the changes can
be cyclic, cyclic with noise or non-cyclic. In the first case, several masks are
generated according to the ρ parameter and are consecutively applied when a change
occurs. It is thus possible that previous environments reappear later. In the second
case noise is added by mutating some bits in the mask with a small probability. In the
third case, the mask applied to the individuals is always randomly generated every
time we change the environment.

5.2. Experimental Setup

Algorithms’ parameters
To compare our approach we used two other algorithms: the random immigrants
algorithm [6] and the memory-enhanced GA (MEGA) studied in [22]. VMEA was
tested using conjugation (VMEA-Cj) and uniform crossover (VMEA-Cx), in order to
make conclusions about the efficiency of the proposed genetic operator in changing
problems. For all the algorithms, parameters were set as follows: generational
replacement with elitism of size one, tournament selection with tournament of size
two, uniform crossover with probability pc=0.7 (the same probability was used with
conjugation) and mutation applied with probability pm=0.01. The population size for
VMEA, RIGA and MEGA was set to 120 individuals. In MEGA, 10 individuals were
used as memory, which is updated according the description given in [22]. The ratio
of immigrants used in RIGA was 0.1. The mutation ratio used for noisy environments
was 0.05. In VMEA the memory size varied between 10 and 50 individuals. However,
the total of individuals in the two populations could not surpass 120. The age limit for
the individuals in memory was set to G/2, where G is the total number of generations.

For each experiment of an algorithm, 30 runs were executed and the number of
environmental changes was 100 with r =10 (1000 generations), 40 with r =50 (2000
generations) and 20 with r=100 and 200 (2000 and 4000 generations, respectively).
The overall performance used to compare the algorithms was the best-of-generation
fitness averaged over 30 independent runs, executed with the same random seeds:

∑ ∑
= =

⎥
⎦

⎤
⎢
⎣

⎡
=

G

i

N

j
ijbestF

NG
Foverall

1 1

11
(1)

G=number of generations, N=number of runs.

5.3 Experimental Results

The experimental results carried out to assess the efficiency of our algorithm shows
that VMEA outperformed the other two approaches. The statistical results comparing
the algorithms are reported in tables 1 and 2. We used paired one-tailed t-test at a 0.01
level of significance. The notation used in tables 1 and 2, to compare each pair of
algorithms is ‘+”, “-“, “++” or “--“, when the first algorithm is better than, worse
than, significantly better than, or significantly worse than the second algorithm. Fig. 1
plots the average of the best-of-generation fitness obtained in the knapsack problem.
Fig. 2 and 3 show some examples of the algorithms’ behaviour during the
generations.

Table 1. The t-test results of comparing the different algorithms (knapsack problem).
 CYCLIC CYCLIC WITH NOISE NON CYCLIC

Statistical significance r, ρ→ 0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd
VMEA Cx - RIGA ++ ++ ++ ++ ++ -- ++ ++ ++ -- ++ - -- ++ --
VMEA Cj - RIGA ++ ++ ++ ++ ++ -- ++ ++ ++ -- ++ -- -- ++ --

VMEA Cx - MEGA ++ ++ ++ ++ ++ + ++ ++ ++ ++ ++ + ++ ++ ++
VMEA Cj - MEGA ++ ++ ++ ++ ++ + ++ ++ ++ - ++ -- -- ++ ++

VMEA Cj - VMEA Cx

10

++ ++ ++ ++ ++ - - ++ ++ - ++ -- -- ++ --
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ - ++ ++

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - VMEA Cx

50

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ - -- ++ ++
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - VMEA Cx

100

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ -- ++ ++
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - VMEA Cx

200

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++

Table 2. The t-test results of comparing the different algorithms (OneMax problem).
 CYCLIC CYCLIC WITH NOISE NON CYCLIC

Statistical significance r, ρ→ 0.1 0.2 0.5 1 rnd 0.1 0.2 0.5 1 rnd 0.1 0.2 0.5 1 rnd
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ +
VMEA Cj - RIGA ++ ++ ++ ++ ++ -- -- -- -- -- -- -- -- ++ --

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - MEGA ++ ++ ++ ++ ++ -- -- -- -- -- -- -- -- ++ --

VMEA Cj - VMEA Cx

10

-- -- -- -- -- -- -- -- -- -- -- -- -- ++ --
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ -- -- ++ --

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - MEGA -- ++ ++ ++ -- -- -- -- -- -- -- -- -- ++ --

VMEA Cj - VMEA Cx

50

-- -- ++ ++ -- -- -- -- -- -- -- -- -- ++ --
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ -- ++ ++

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - MEGA -- ++ ++ ++ -- -- -- -- - -- -- -- -- ++ --

VMEA Cj - VMEA Cx

100

-- -- ++ ++ -- -- -- -- -- -- -- -- -- ++ --
VMEA Cx - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ - -- ++ -

VMEA Cj - VMEA Cx

200

++ ++ ++ ++ ++ -- -- -- -- -- ++ -- -- + --

In cyclic environments, our approach obtained at all times the best solutions. As

expected, RIGA had the worst performance, obviously because it doesn’t use any
memory mechanism. Comparing VMEA and MEGA, we can conclude that the
mechanism we introduced performs very well in cyclic environments. Also,

conjugation shows a better performance in cyclic environment, obtaining almost all
the times the best results. Decreasing the ratio of change, the effect of memory is not
so visible. In fact, both memory algorithms, VMEA and MEGA, need some time to
readapt when a change happens. This is because with small changes in the XOR
mask, when a repeated state reappears, memory has already lost the useful
information previously stored.

For cyclic with noise and random environments the results were in general very
poor. The four algorithms didn’t achieve high results as in the case of cyclic
environments. Nevertheless, VMEA obtained, in most cases, the best results, as we
can see in Tables 1 and 2.

C yc lic , r=10

1760

1770

1780

1790

1800

1810

1820

1830

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

C yc lic with no is e , r=10

1770

1775

1780

1785

1790

1795

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

R a ndo m , r=10

1740

1750

1760

1770

1780

1790

1800

1810

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

C yc lic , r=5 0

1770

1780

1790

1800

1810

1820

1830

1840

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

C yc lic with no is e , r=5 0

1780

1785

1790

1795

1800

1805

1810

1815

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

R a ndo m , r=5 0

1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

C yc lic , r=10 0

1780

1790

1800

1810

1820

1830

1840

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

C yc lic with no is e , r=10 0

1785

1790

1795

1800

1805

1810

1815

1820

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

R a ndo m , r=10 0

1770

1780

1790

1800

1810

1820

1830

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

C yc lic , r=2 0 0

1780

1790

1800

1810

1820

1830

1840

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

C yc lic with no is e , r=2 0 0

1785
1790
1795
1800
1805
1810
1815
1820
1825

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

R a ndo m , r=2 0 0

1770

1780

1790

1800

1810

1820

1830

1840

0.1 0.2 0.5 1 rnd

RIGA
MEGA
VMEA Cx
VMEA Cj

Fig. 1. Global results for the knapsack problem.

In cyclic with noise environments, algorithms behave in similar way: after a change
they need some time to readapt and find a best solution. Memory improves the
algorithm (VMEA-Cx achieves, in general, the highest scores), but its effect is not as
obvious as in cyclic environment. Fig. 2 shows the evolutionary behavior of the
algorithms for ρ=1 and ρ=0.1, with r=10 and r=200.

In random environments, with high ratio changes (ρ=1), VMEA achieved very
good results. The memory allows the algorithm to continuously improve its
performance. The good performance reduced as we decrease the change ratio. The
new environment is slightly different from the previous one, but repeated states
appear after a long time on and so memory has already lost the related information.
Fig. 3 shows the behavior of the algorithms in noisy and random environments with
ρ=1. For random change ratio (ρ = rnd) we observed a degradation of the results. In
this case, RIGA and the other two memory-based algorithms performed in a very
similar way: after a change in the environment the best-of generation falls for lower
values and it is required some time for the algorithms to start evolving again. Even so,
VMEA, typically arise the best marks.

Cyclic - r = 10, change ratio = 1

200

210

220

230

240

250

260

270

280

290

300

1 78 155 232 309 386 463 540 617 694 771 848 925

RIGA
MEGA
VMEA Cx
VMEA Cj

Cyclic - r = 200, change ratio = 1

200

210

220

230

240

250

260

270

280

290

300

1 333 665 997 1329 1661 1993 2325 2657 2989 3321 3653 3985

RIGA
MEGA
VMEA Cx
VMEA Cj

Cyclic - r = 10, change ratio = 0.1

150

170

190

210

230

250

270

1 79 157 235 313 391 469 547 625 703 781 859 937

RIGA
MEGA
VMEA Cx
VMEA Cj

Cyclic - r = 200, change ratio = 0.1

220

230

240

250

260

270

280

290

300

1 333 665 997 1329 1661 1993 2325 2657 2989 3321 3653 3985

RIGA
MEGA
VMEA Cx
VMEA Cj

Fig. 2. Dynamic behavior of the algorithms in cyclic environments (OneMax problem)

Cyclic with noise- r = 10, change ratio = 1

150

170

190

210

230

250

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

RIGA
MEGA
VMEA Cx
VMEA Cj

Random- r = 10, change ratio = 1

100

120

140

160

180

200

220

240

260

280

300

1 77 153 229 305 381 457 533 609 685 761 837 913 989

RIGA
MEGA
VMEA Cx
VMEA Cj

Cyclic with noise- r = 200, change ratio = 1

190

210

230

250

270

290

1 137 273 409 545 681 817 953 1089 1225 1361 1497 1633 1769 1905

RIGA
MEGA
VMEA Cx
VMEA Cj

Random- r = 200, change ratio = 1

90

140

190

240

290

1 329 657 985 1313 1641 1969 2297 2625 2953 3281 3609 3937

RIGA
MEGA
VMEA Cx
VMEA Cj

Fig. 3. Dynamic behavior in cyclic with noise and random environments (OneMax problem).

The VMEA algorithm combined with the conjugation operator performed better in

the knapsack problem. In fact, VMEA-Cj was, usually, the best algorithm. The same
was not observed in the OneMax problem. In this benchmark problem, VMEA-Cx
obtained the highest marks and VMEA with conjugation performed better in cyclic
environments with larger change periods.

5.4 Memory and Population Sizes

The restrictions we impose when we increase the size of the memory and search
populations imply that memory tends to grow until its maximum is achieved and so
population is ‘penalized’ because we run out of resources. This happens because,
when the established limits are attained, we only increase the population size when
there is room for at least one more individual and this is possible only if some
individuals of the memory have been cleaned. After the maximum value for the
memory is reached, the process of deleting individuals with the same genotype from
the memory allows periodical increases in the population size. Fig. 4 shows a
representative graphic of the evolution of the populations’ size.

Evolution of population and memory size

0

50

100

1 136 271 406 541 676 811 946 1081 1216 1351 1486 1621 1756 1891

generations

av
er

ag
e

of
 p

op
ul

at
io

n'
s s

iz
e

Pop. Size
Mem. Size
Total

Fig. 4. Evolution of the population’s and memory’s size.

6 Conclusions

In this paper we proposed an EA with memory of variable size to deal with dynamic
environments. Additionally, we introduced a different biological operator to test its
efficiency in the promotion of diversity. The investigated algorithm, called VMEA,
was tested and compared with other approaches in different dynamic environments:
cyclic, cyclic with noise and random. From the obtained results we can conclude that
VMEA is very efficient. The best results were observed in cyclic environments: the
greater the change ratio, the better the performance. For small change ratios, besides
the change is not so severe, there are more different states reappearing in the
environment. We can also conclude that the combination of the variable memory
scheme and the conjugation operator increases the performance of the algorithm,
mainly in cyclic environments. Finally, we must stress that for the implemented and
compared algorithms, VMEA predominantly achieved the best results.

References

1. J. Branke. Memory Enhanced Evolutionary Algorithms for Changing Optimization
Problems. Proc. of Congress on Evol. Computat. 1999, pp. 1875-1882, IEEE, 1999.

2. J. Branke. Evolutionary Optimization in Dynamic Environments. Norwell MA: Kluwer,
2001.

3. J. Branke, T. Kaußler, C. Schmidt and H. Schmeck. A Multi-Population Approach to
Dynamic Optimization Problems. Adaptive Computing in Design and Manufacture (ACDM
2000), pp. 299-308, Springer, 2000.

4. H. Cobb. An Investigation into the Use of Hypermutation as an Adaptive Operator in
Genetic Algorithms Having Continuous, Time-Dependent Non-Stationary Environments.
Technical Report AIC-90-001, 1990.

5. D. E. Goldberg and R. E. Smith. Nonstationary Function Optimization using Genetic
Algorithms with Dominance and Diploidy. Proc. of the 2nd Int. Conf. on Genetic
Algorithms, pp. 59-68. Laurence Erlbaum Associates, 1987.

6. J. J. Grefenstette. Genetic Algorithms for Changing Environments. Proc. of the 2nd Int.
Conf. Parallel Problem Solving from Nature 2, pp. 137-144, North-Holland, 1992.

7. I. Harvey. The Microbial Genetic Algorithm. Unpublished, 1996.
8. W. Liles and K. De Jong. The Usefulness of Tag Bits in Changing Environments.

Proceedings of Congress on Evol. Computat. 1999, pp. 2054-2060, IEEE, 1999.
9. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. 3rd Edition

Springer-Verlag, 1999.
10. R. W. Morrison and K. De Jong. Triggered Hypermutation Revisited. Proc. of Congress on

Evol. Computat. 1999, pp. 1025-1032, IEEE, 1999.
11. K. P. Ng and K. C. Wong. A New Diploid Scheme and Dominance Change Mechanism for

Non-stationary Function Optimization. Proc. of the 6th Int. Conf. on Genetic Algorithms,
pp. 159-166, Morgan Kaufmann, 1995.

12. P. J. Russell. Genetics. 5th edition, Addison-Wesley, 1998.
13. A. Sima Uyar and A. Emre Harmanci. A New Population Based Adaptive Domination

Change Mechanism for Diploid Genetic Algorithms in Dynamic Environments. Soft
Computing, vol. 9, pp. 803-814, 2005.

14. A. Simões and E. Costa. Transposition: A Biologically Inspired Mechanism to Use with
Genetic Algorithms. Proc. of the 4th Int. Conf. on Artificial Neural Networks, pp. 612- 19,
Springer-Verlag 1999.

15. A. Simões and E. Costa. An Immune System-Based Genetic Algorithm to Deal with
Dynamic Environments: Diversity and Memory. Proc. of the 6th Int. Conf. on Artificial
Neural Networks, pp. 168-174, Roanne, France, 23-25 April, Springer, 2003.

16. A. Simões and E. Costa. Variable-size Memory Evolutionary Algorithm to Deal with
Dynamic Environments: an empirical study. CISUC Technical Report, TR 2006/004 - ISSN
0874-338X, November 2006.

17. P. Smith. Conjugation: A Bacterially Inspired Form of Genetic. Late Breaking Papers at
the Genetic Programming 1996 Conf., Stanford Univ., July 28-31, 1996.

18. M. Wineberg and F. Oppacher. Enhancing GA’s Ability to Cope with Dynamic
Environments. Proc. of the 2000 Genetic and Evol. Comp. Conf., pp. 3-10, Las Vegas, USA,
8-12 July, San Francisco, CA, 2000.

19. S. Yang. A Comparative Study of Immune System Based Genetic Algorithms in Dynamic
Environments. Proc. of the 2006 Genetic and Evol. Comp. Conf, pp. 1377-1384, ACM
Press, 2006.

20. S. Yang. Associative Memory Scheme for Genetic Algorithms in Dynamic Environments.
Proc. of the EvoWorkshops 2006, LNCS 3097, pp. 788-799, Springer-Verlag, 2006.

21. S. Yang. Experimental Study on Population-Based Incremental Learning Algorithms for
Dynamic Optimization problems. Soft Computing, vol. 9, nº 11, pp. 815-834, 2005.

22. S. Yang. Memory-Based Immigrants for Genetic Algorithms in Dynamic Environments.
Proc. of the 2005 Genetic and Evol. Comp. Conf, Vol. 2, pp. 1115-1122, ACM Press, 2005.

