

Abstract—When using Evolutionary Algorithms (EAs) in
dynamic environments some extensions have been introduced
in order to avoid the premature convergence of the population
towards a non-optimal point of the search space. One of these
improvements consists in adding an explicit memory used for
storing good individuals from the search population. When the
environment is cyclic and previous environments reappear
later memory should maintain EA’s performance by keeping
individuals’ fitness at an acceptable level. But in most situations
this purpose is not achieved and the typical behavior of an EA
when a change occurs involves the decrease of the best
individual’s fitness and some time is necessary to readapt to the
new conditions. The key problem when using explicit memory
is the restriction usually imposed on its size. So, when it is
necessary to store a new individual and memory is full we need
to replace some individuals. This replacement can lead to the
destruction of information that might be useful in the future. In
this paper we are interested in the enhancement of memory’s
usage and we propose two new replacing methods to apply
when memory is full. The investigated methods were tested in
several memory-based EAs and the results show that memory
can be used in a more effective way so algorithms’ performance
is strongly improved.

I. INTRODUCTION
VOLUTIONARY algorithms (EAs) have been widely
used in the search of good solutions in changing

environments. One of the most used mechanisms is the
incorporation of explicit memory, which plays the role of
storage for good individuals obtained during the
evolutionary process, which can be useful in future
situations [1], [5], [7], [9], [14] and [16]. The standard
approaches use memory with restricted size and when it is
full individuals previously stored have to be replaced. This
can destroy information that could be valuable in future
contexts.
When the environment is cyclic and prior environments
come back later an EA with explicit memory must be able
to store and keep relevant information to provide the
minimum decrease of the algorithms’ performance when a
change happens. Generally this is not observed and the
typical curve of an EA’s performance when dealing with

Manuscript received May 28, 2007.
A. Simões is with the Department of Informatics and Systems

Engineering, ISEC, Coimbra Polytechnic, 3030 – 390 Coimbra, Portugal
(phone: 351-239-790350; e-mail: abs@isec.pt

E. Costa is with CISUC, Department of Informatics Engineering,
University of Coimbra, 3030 – 390 Coimbra, Portugal (phone: 351-239-
790000; e-mail: ernesto@dei.uc.pt).

dynamic environments is characterized by the reduction of
the best individual’s fitness followed by the algorithm’s
readaptation to the new conditions of the environment [7],
[15].

In a previous work we proposed an algorithm called
Variable-size Memory Evolutionary Algorithm (VMEA)
that includes a search and memory populations with variable
size that was used with considerable success in changing
environments [9]. In this paper we are interested in studying
different schemes to improve the memory’s efficiency in an
EA. We propose two different mechanisms for storing
individuals into the memory (replacing strategies) and will
test them against VMEA and other memory-based EAs.
Also, we will use a biologically inspired genetic operator
called conjugation to control the population’s diversity. This
genetic operator is compared with uniform crossover and
interesting conclusions about the population’s diversity may
be drawn.

The paper is organized as follows: section 2 presents
previous work using the Variable-size Memory Evolutionary
Algorithm (VMEA). Section 3 describes several
replacement strategies found in literature and introduces two
new replacing schemes. Section 4 describes the
implementation of the conjugation operator. The
experimental setup is explained in section 5. In section 6 we
show the obtained results concerning algorithms efficiency,
growth of the memory and the population’s diversity.
Finally, in section 7 we state the main conclusions and ideas
for future work.

II. VARIABLE-SIZE MEMORY EVOLUTIONARY
ALGORITHM

Simões and Costa [9] proposed an EA called VMEA –
Variable-size Memory Evolutionary Algorithm, to deal with
dynamic environments. This algorithm uses a memory
population, responsible for storing good individuals of the
evolved population in several points of the search process.
The innovative aspect of the algorithm is that the two
populations - search and memory – have variable sizes that
can change between two boundaries. The basic idea behind
VMEA is to use the limited resources (total number of
individuals) in a flexible way. The size of the populations
can change according to the evolutionary process, but the
sum of the two populations cannot go beyond a certain limit.
The memory is updated from time to time and if the
established limits are not reached, the best individual of the

Improving Memory’s Usage in Evolutionary Algorithms for
Changing Environments

A. Simões, E. Costa

E

Proceedings of the IEEE 2007 Congress on Evolutionary Computation, Singapore,
25-28 September 2007.

current population is stored into the memory. If there is no
room to keep this new solution, then the best individual of
the current population is introduced replacing one individual
of the memory chosen accordingly with a replacing scheme.
In that paper, an aging-based replacing strategy was used
that will be explained in the next section.

The memory is evaluated every generation and a change
is detected if at least one individual in the memory changes
its fitness. Notice that the environmental changes occur very
r generations but the algorithm has no information about
when the next change will occur and so it is necessary to
make its discovery every generation.

If an environmental modification is detected, the best
individual of the memory is introduced into the population.
In the case of either the population’s size or the sum of the
two populations has reached the allowed maximum, the best
individual in memory replaces the worst one in the current
population. For a complete description of the algorithm see
[9] and [10].

III. REPLACING STRATEGIES
The idea of adding a memory to an EA has been widely

studied by a large number of authors. Memory can be used
as a pool of good individuals that can be useful in future
situations. For instance, in cyclic environments if the
memory correctly updated, when an environment reappears,
an individual belonging to the memory can avoid an abrupt
decrease on the algorithm’s performance when we transfer it
to the evolving population. Memory can also be used to
maintain diversity in the population, fostering a better
readaptation of the EAs. Some questions can be drawn
concerning memory: 1) when and which individuals to store
in memory, 2) how many, 3) which ones should be replaced
when memory is full, 4) which individuals should be
selected from memory and introduced in the population
when a change happens [1]. In this paper we will try to give
an answer to the third question. Since the size of the
memory is limited, it is necessary to decide which
individuals should be replaced when new ones need to be
stored. This process is usually called by replacing strategy.
Branke [1] compares a number of replacement strategies for
inserting new individuals into the memory. The most
popular is called similar and selects the most analogous
individual currently in memory for replacement, as long as
this individual is better. This replacing strategy was already
used in several works ([1], [14], [15]).

Simões and Costa [9] proposed a replacing strategy based
on the aging of memory individuals: all individuals of the
memory start with age equal to zero and every generation
their age is increased by one. Besides, if they were selected
to feed the population when a change occurs its age is
increased by a certain value. In the case a limit age is
reached their age is reset to zero. When it is necessary to
update the memory the youngest element is selected for
replacement. The basic idea is to swap one individual with a

poor contribution in the evolutionary process, i.e. one that
was never selected to the population or that is in the memory
for a long time. This approach was called by age1. The
comparative analysis of age1 method to the similar
replacing scheme showed that there was no considerable
improvement in the performance of the studied algorithms
[10].

In this paper we propose two different replacing strategies
to use memory in a more efficient way and thus confer to the
EAs a better performance.

The first, will be called by age2, is also based on the age
of memory individuals. The age of an individual i is given
by:

agei(t) = agei (t) + 1 + fitnessi*fit_rate (1)
As suggested by [1], the individuals’ age is computed

every generation as a linear combination of their actual age
and a contribution of their fitness (fit_rate).

Moreover memory individuals never die, i.e. their age is
not reset to zero. This way, we do not penalize individuals
that last long in memory.

Using this method the individual to replace is also the
youngest one, considering that age was calculated using
equation 1.

The second replacing strategy, will be called by
generational, and selects the worst individual present in the
memory since the last change to be replaced. For instance,
if the last change occurred at generation t1 and currently the
algorithm is in generation t2, when it is time to insert an
individual into the memory we will replace the worst
individual that was stored between generation t1+1 and t2-1.

When it is time to update the memory, if no individual has
been stored since last change, we use the similar strategy
and substitute the closest individual in terms of Hamming
distance, if it is worse than the current best. Therefore, in the
case of VMEA, the maximum size of the memory is reached
slower, the redundant information is minimized and the best
information of a certain period of the evolutionary process is
stored. This strategy, in next references, will be called by
gen.

IV. BACTERIAL CONJUGATION
It is widely accepted in the Evolutionary Computation

community that genetic operators are essential to the
efficiency of EAs. They allow creating new individuals,
from the genetic information of previous ones, so the
algorithm will in general converge to the desired solution.
Traditionally crossover is used as the main genetic operator.
Nevertheless, other biologically inspired operators have
been proposed and tested with some degree of success.
These new genetic operators were applied either in static [7],
or dynamic environments [8].

In biology, bacterial conjugation is the transfer of genetic
material between bacteria through cell-to-cell contact.
Sometimes bacterial conjugation is regarded as the bacterial
equivalent of sexual reproduction or mating, but in fact, it is

Mating pool

1110001110 F= 6
0000110011 F=4
1111100111 F=7
0000000000 F=0
1111111110 F=9
1000000000 F=1

Donors

1110001110 F= 6
1111100111 F=7
1111111110 F=9

Recipients

0000110011 F=4
0000000000 F=0
1000000000 F=1

Selected pair:
Donor: 1111100111
Recipient: 0000000000

random points: 3, 7

Offspring: 0001100100

create
ONE new
individual

merely the transfer of genetic information from a donor to a
recipient cell [6].

Computational conjugation was introduced independently
by Harvey and Smith. Smith [12] proposed an
implementation of this operator, called simple conjugation:
the donor and the recipient were chosen randomly,
transferring the genetic material between two random points.
Harvey [3] investigated a tournament-based conjugation:
two parents are selected at random, and the winner of the
tournament (fittest individual) becomes the donor and the
loser the recipient of the genetic material. That way, the
conjugation operator can be applied repeatedly by different
donors to a single recipient.

Simões and Costa [9] used conjugation in the context of
dynamic environments. The authors applied conjugation
after selecting the individuals to the mating pool using the
idea of donor-recipient genetic transfer. As it happens in
biology, the donor individuals give genetic material to the
recipient ones. After selecting the individuals to mate, using
the established selection method, they are divided into two
groups: the n/2 best individuals become the ‘donor’ while
the remaining becomes the ‘recipient’ (n is the current size
of the population). Then, the ith donor transfers part of its
genetic material to the ith recipient (i=1, …n/2). Two points
randomly chosen control this injection. The donor remains
unchanged. Following that, all offspring created by this
process are joined with the donor individuals and they
become the next population of size n. Fig. 1 shows how
conjugation is applied to one pair of individuals of the
mating pool.

Fig. 1. Creating a new individual using conjugation

The obtained results in dynamic optimization problems

using this genetic operator were quite promising [9].

V. EXPERIMENTAL DESIGN

A. Dynamic Test Environments
The dynamic environments used to test our approaches

were constructed using Yang’s Dynamic Optimization
Problems (DOP) generator. With this generator it is possible
to construct different dynamic environments from any
binary-encoded stationary function using the bitwise
exclusive-or (XOR) operator. The basic idea of the
generator can be described as follows: when evaluating an
individual x in the population, first we perform the operation
x∆M where ∆ is the bitwise XOR operator and M a binary
mask previously generated. Then, the resulting individual is

evaluated to obtain its fitness value. If a change happens at
generation t, then we have f(x, t+1) = f(x ∆ M, t). Using the
DOP generator the characteristics of the change are
controlled by two parameters: the speed of a change, r,
which is the number of generations between two changes,
and the magnitude of a change,ρ that consists in the ratio of
ones in a temporary template that is created for each
environment and integrated to the mask M. The more ones
in this template, the more severe is the change. The DOP
generator allows constructing problems where the changes
can be cyclic, cyclic with noise or non-cyclic. In the first
case, several masks are generated according to the ρ
parameter and are consecutively applied when a change
occurs. It is thus possible that previous environments
reappear later. In the second case noise is added by mutating
some bits in the mask with a small probability. In the third
case, the mask applied to the individuals is always randomly
generated every time we change the environment. More
details about Yang’s DOP generator can be found in [16].

In this paper we constructed 20 cyclic DOPs, setting the
parameter r to 10, 50, 100 and 200. The ratio ρ was set to
different values in order to test different levels of change:
0.1 (a light shifting) 0.2, 0.5, 1.0 (severe change). In order to
study the behavior of the algorithm in randomly changing
environments we also set ρ to a uniformly randomly
generated value in the interval [0.01, 0.99] (called by rnd).

To test and compare the several replacing schemes
combined with two different genetic operators, we selected
two benchmark problems: the knapsack problem (100 items)
and OneMax problem (300 bits).

1) Knapsack Problem

The knapsack problem is a NP-complete combinatorial
optimization problem often used as benchmark. It consists in
selecting a number of items to a knapsack with limited
capacity. Each item has a value (vi) and a weight (wi) and
the objective is to choose the items that maximize the total
value, without exceeding the capacity of the bag. We used a
knapsack problem with 100 items using strongly correlated
sets of randomly generated data [4]. The fitness of an
individual is equal to the sum of the values of the selected
items, if the weight limit is not reached. If too many items
are selected, then the fitness is penalized in order to ensure
that invalid individuals are distinguished from the valid
ones. Details about the implemented knapsack, including the
penalty function can be found in [10].
2) OneMax problem

The OneMax problem aims to maximize the number of
ones in a binary string. So, the fitness of an individual
consists in the number of ones present in the binary string.
This problem has a unique solution. In our experiments we
used individuals of length 300.

B. Experimental Setup
1) Algorithms’ parameters

Previous work compared VMEA using the age1 replacing
strategy with other algorithms: the random immigrants’
algorithm (RIGA) [2] and the memory-enhanced GA
(MEGA) studied in [13]. The results proved that VMEA,
using either crossover (VMEA Cx) or conjugation (VMEA
Cj), generally outperformed the other approaches. A typical
comparative graphic of the behavior of VMEA and the other
studied algorithms is shown in Fig. 2. To see more results
consult [10].

Fig. 2. VMEA vs MEGA and RIGA. Typical curve of the algorithms in the
dynamic Knapsack problem

In this paper we will be focused in the performance of
memory-based EAs using the proposed replacing schemes.
Besides the above mentioned algorithms we will also
introduce the Memory-based Immigrants Genetic Algorithm
(MIGA) proposed in [14]. We will compare the algorithms’
efficiency using the following methods: similar (sim),
proposed by Branke in [1], age2 and gen. We will also
combine the conjugation operator with the replacing
methods to make some conclusions about the efficiency of
this genetic operator in changing problems and study its
impact in the population’s diversity. The comparison of the
VMEA using the similar method and the originally proposed
in [9] called age1 can be found in [10]. The different
VMEAs will be designated by; VMEA-age2Cx, VMEA-
age2Cj, VMEA-genCx, VMEA-genCj, VMEA-simCx and
VMEAsimCj. The originally proposed MIGA and MEGA
will be referred the same way and use the similar replacing
method and uniform crossover [14], [13]. The other variants
will be called using the same notation used in VMEAs:
MIGA-age2Cx, MIGA-age2Cj, MIGA-genCx, MIGA-
genCj. Same designations will be used for MEGA: MEGA,
MEGA-age2Cx, MEGA-age2Cj, MEGA-genCx, MEGA-
genCj.

The algorithms’ parameters were set as follows:
generational replacement with elitism of size one,
tournament selection with tournament of size two, uniform
crossover with probability pc=0.7 (the same probability was
used with conjugation) and mutation applied with
probability pm=0.01. In VMEA, the search population starts
with 100 individuals, the memory starts with 10 individuals.
Their sizes are variable, changing along time, but the sum of

the two populations cannot surpass 120. The age2 strategy,
was computed according to equation (1), with fit_rate set to
0.1 (value chosen after some preliminary experimentation).
MIGA and MEGA use populations of 110 individuals and a
memory of 10 individuals. For MIGA, the ratio of
immigrants was set to 0.1 and the mutation rate to create the
immigrants was 0.01. For each experiment of an algorithm,
30 runs were executed and the number of environmental
changes was 200 with r=10 (2000 generations), 80 with
r=50 (4000 generations) and 40 with r=100 and 200 (4000
and 8000 generations, respectively). The overall
performance used to compare the algorithms was the best-
of-generation fitness averaged over 30 independent runs,
executed with the same random seeds:

∑ ∑
= =

⎥
⎦

⎤
⎢
⎣

⎡
=

G

i

N

j
ijbestF

NG
Foverall

1 1

11 (2)

G=number of generations, N=number of runs.

VI. EXPERIMENTAL RESULTS
The amount of data, graphics and tables produced in this

comparative study was enormous and in this paper we can
only show part of the results, using representative graphics
of each analyzed situation. All information concerning this
work can be consulted in [11]. The statistical validation of
the results was made using paired one-tailed t-test at a 0.01
level of significance. The validation tables comparing all the
approaches are also available in the referred document. In
the next sections we show the results concerning: (1) the
efficiency of the algorithms using the different replacing
strategies, (2) the diversity levels measured in population
and memory and (3) the observed results in the growth of
the population and memory sizes using the different
schemes for VMEA.

A. Comparing Replacing Strategies
The global results for the different VMEAs are plotted in Fig.

3 (Knapsack) and Fig. 4 (OneMax) and for the different MIGAs
and MEGAs in Fig 5 and Fig. 6 (Knapsack). Analyzing the
results on both problems, we can see that for the VMEAs, the
proposed gen replacing scheme always obtained the best results,
except when r=10. This happens because the change period is
small and when a change occurs, most of the times, no
individual of that period was already stored. So, we replace the
most similar. In this case, the best replacing strategy was the
proposed age2. The age2 scheme compared with the remaining
was not so effective. In fact, the results show that, age2
performs better in small change periods and when combined
with conjugation. These results confirm the difficulty of finding
a tradeoff between the fitness and age contributions, as
suggested in [1]. In MIGAs and MEGAs gen methods
substantially improves the performance in environments of
small periods and with severe changes. The age2 method was
also superior in most of the times, but the enhancement
introduced is not as visible as in the gen scheme. Conjugation
improves the performance in the analyzed VMEAs just as
observed before [9], but has no influence in the studied MIGAs

and MEGAs. Observing Fig. 8 to 11 we confirm that using the
proposed gen scheme the different algorithms considerably
improved their performances. The information stored in
memory allows a continuously adaptation of the analyzed EAs,
contrary to the remaining replacing strategies. The use of
population and memory with variable sizes combined with the
gen replacing method and conjugation (VMEA-genCj) was the

algorithm that globally achieved the best performance. MIGAs
and MEGAs, due to the restriction of memory’s size, even using
the gen scheme, have a degradation of its performance
mainly in environments with larger change periods, since the
replacing is more often and the destruction of good individuals
occurs frequently.

Fig. 3. VMEA: Results on dynamic Knapsack problem, with different change ratios (ρ) and r=10, 50, 100 and 200

Fig. 4. VMEA: Results on dynamic OneMax problem, with different change ratios (ρ) and r = 10, 50, 100 and 200

Fig. 5. MEGA: Results on dynamic Knapsack problem, with different change ratios (ρ) and r = 10, 50, 100 and 200

Fig. 6. MIGA: Results on dynamic Knapsack problem, with different change ratios (ρ) and r = 10, 50, 100 and 200

B. Population’s and Memory’s Diversity
In order to study the impact of the genetic operators in the

diversity dynamics, we stored the population and memory
diversity at every generation using the standard measure
based on the Hamming distance. At generation t, the
diversity is given by:

∑ ∑∑
= = ≠

⎥
⎦

⎤
⎢
⎣

⎡
−

=
N

k

n

i

n

ij
tkHDij

lnlN
tDiv

1 1
),(

)1(.
11)(

 (3)

where N is the number of runs, l is the length of the
chromosomes, n is the population (or memory) size at
generation t and HDij(k,t) is the Hamming distance between
individuals i and j at generation t, in the kth run. Analyzing
the recorded values for population’s and memory’s
diversity, we conclude that the conjugation operator always

kept lower diversity levels in the population. Nevertheless,
very often the best results are achieved using the
conjugation operator! As an example, we show the diversity
of memory and population stored on the studied
benchmarks, with r=50 and ρ=0.2 using the gen replacing
scheme. As we can see in Fig. 7, the algorithm using the gen
scheme and conjugation obtained the best results. From the
analysis of the results it follows that the population’s and
memory’s diversity levels is inferior when using
conjugation. This is also true for the remaining strategies
and for different values of r andρ.
These results show that the usual idea that in dynamic
environments it is crucial to maintain high diversity in the
population to improve the adaptability of algorithm is not

always true

Fig. 7. Population’s and Memory’s diversity for the first 20 environmental
changes in dynamic Knapsack

One reason to this fact maybe because conjugation is less
disruptive, since the information about the best individuals
is always preserved and that appear to be positive in the
studied problems. We are making more experiments in order
to provide more consistent conclusions.

Fig. 8. Dynamic behavior of VMEAs on dynamic Knapsack, with r = 50 and r = 200, when ρ = 0.5, ρ = 1.0

Fig. 9. Dynamic behavior of VMEAs on dynamic OneMax, with r = 50 and r = 200, when ρ = 0.5, ρ = 1.0

Fig. 10. Comparing MEGAs on dynamic Knapsack, with r = 50 and r = 200, when ρ = 0.5, ρ = 1.0

Fig. 11. Comparing MIGAs on dynamic Knapsack, with r = 50 and r = 200, when ρ = 0.5, ρ = 1.0

C. Memory and Populations Sizes in VMEA
The results concerning the growth of memory’s and

population’s sizes confirm our conjecture that using the gen
replacing scheme the memory should increase slower.
Actually, this was observed in all studied DOPs. Fig. 12
shows a typical example of how population and memory
grow using the different replacing schemes. We can see that,
with gen replacing strategy (black lines), the memory’s size
increased gradually and its maximum is only attained at the
end of the evolutionary process.

By replacing the worst individual memorized since the
last environmental change we save space (in the case of
VMEA) for good individuals that may appear in future
generations, minimizing the substitution of helpful
information. The results confirm our initial assumption that
the memory’s usage can be improved if the replacing
scheme is chosen carefully.

Fig. 12. Population’s and Memory’s sizes on dynamic Knapsack

VII. CONCLUSIONS
This paper proposed two new replacing strategies and

tested its efficiency against several memory-based EAs. A
genetic operator called conjugation was used combined with
the proposed schemes. An experimental studied was carried
out using different dynamic optimization problems based in
two benchmark problems. From the obtained results several
conclusions can be drawn: First, the age2 replacing scheme
obtained better results in dynamics with small period
changes if combined with conjugation. For the remaining
cases, the gen replacing scheme was superior. Second, in the
studied VMEAs, conjugation typically outperformed
uniform crossover (few exceptions were found). Third, the
proposed gen replacing scheme provided excellent
improvement in the studied algorithms, minimizing (or even
abolishing) the decrease of individual’s fitness after a
change. These results prove that when dealing with dynamic
environments the information stored in memory is crucial to
the effectiveness of the algorithms. Since the memory’s
capacity usually has limited size, this approach of replacing
the individuals proved to be an excellent choice. To
fundament our conclusions we are currently testing the
proposed ideas in other algorithms, using different problem
benchmarks and including environments with noise.

ACKNOWLEDGMENT
This paper was partially financed by the PhD Grant

BD/39293/2006 of the Foundation for Science and
Technology of the Portuguese Ministry of Science and High
Education.

REFERENCES
[1] J. Branke. Memory Enhanced Evolutionary Algorithms for Changing

Optimization Problems. Proc. of Congress on Evolutionary.
Computation 1999, pp. 1875-1882, IEEE, 1999.

[2] J. J. Grefenstette. Genetic Algorithms for Changing Environments.
Proc. of the 2nd Int. Conf. Parallel Problem Solving from Nature 2,
pp. 137-144, North-Holland, 1992.

[3] I. Harvey. The Microbial Genetic Algorithm. Unpublished, 1996.
[4] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution

Programs. 3rd Edition Springer Verlag Berlin, 1999.
[5] N. Mori, H. Kita, and Y. Nishikawa. Adaptation to a Changing

Environment by Means of the Thermodynamical Genetic Algorithm.
In H.-M. Voigt, editor, Parallel Problem Solving from Nature, 1141 in
LNCS, pp. 513-522. Springer Verlag Berlin, 1996.

[6] P. J. Russell. Genetics. 5th edition, Addison-Wesley, 1998.
[7] A. Simões and E. Costa. On Biologically Inspired Genetic Operators:

Transformation in the Standard Genetic Algorithm. In Spector, L., E.
Goodman, A. Wu, W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M.
Dorigo, S. Pezeshk, M. Garzon, and E. Burke, (eds). 2001 Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO-
2001. pp. 584-591, San Francisco, USA, 7-11 July, CA: Morgan
Kaufmann Publishers, 2001

[8] A. Simões and E. Costa. An Immune System-Based Genetic
Algorithm to Deal with Dynamic Environments: Diversity and
Memory. Proc. of the 6th Int. Conf. on Artificial Neural Networks, pp.
168-174, Roanne, France, 23-25 April, Springer, 2003.

[9] A. Simões and E. Costa. Variable-size Memory Evolutionary
Algorithm to Deal with Dynamic Environments. In M. Giacobini et al.
(Eds.): EvoWorkshops 2007, Applications of Evolutionary
Computing, LNCS 4448, pp. 617–626, Springer Verlag, 2007.

[10] A. Simões and E. Costa. VMEA: Studies of the impact of different
replacing strategies in the algorithm's performance an in the
population's diversity when dealing with dynamic environments.
CISUC Technical Report TR2007/001, ISSN 0874-338X, February
2007.

[11] A. Simões and E. Costa. Improving Memory-based Evolutionary
Algorithms in Changing Environments. CISUC Technical Report
TR2007/004, ISSN 0874-338X, March 2007.

[12] P. Smith. Conjugation: A Bacterially Inspired Form of Genetic. Late
Breaking Papers at the Genetic Programming 1996 Conf., Stanford
Univ., July 28-31, 1996.

[13] S. Yang and X. Yao. Experimental Study on Population-Based
Incremental Learning Algorithms for Dynamic Optimization
problems. Soft Computing, vol. 9, nº 11, pp. 815-834, 2005.

[14] S. Yang. Memory-Based Immigrants for Genetic Algorithms in
Dynamic Environments. Proc. of the 2005 Genetic and Evolutionary
Computation Conference, Vol. 2, pp. 1115-1122, ACM Press, 2005.

[15] S. Yang. A Comparative Study of Immune System Based Genetic
Algorithms in Dynamic Environments. Proc. of the 2006 Genetic and
Evolutionary Computation Conference, pp. 1377-1384, ACM Press,
2006.

[16] S. Yang. Associative Memory Scheme for Genetic Algorithms in
Dynamic Environments. Applications of Evolutionary Computing,
LNCS 3097, pp. 788-799, Springer Verlag Berlin, 2006.

