
 
 

 

  

Abstract—When using Evolutionary Algorithms (EAs) in 
dynamic environments some extensions have been introduced 
in order to avoid the premature convergence of the population 
towards a non-optimal point of the search space. One of these 
improvements consists in adding an explicit memory used for 
storing good individuals from the search population. When the 
environment is cyclic and previous environments reappear 
later  memory should maintain EA’s performance by keeping 
individuals’ fitness at an acceptable level. But in most situations 
this purpose is not achieved and the typical behavior of an EA 
when a change occurs  involves the decrease of the best 
individual’s fitness and some time is necessary to readapt to the 
new conditions. The key problem when using explicit memory 
is the restriction usually imposed on its size. So, when it is 
necessary to store a new individual and memory is full we need 
to replace some individuals. This replacement can lead to the 
destruction of information that might be useful in the future. In 
this paper we are interested in the enhancement of memory’s 
usage and we propose two new replacing methods to apply 
when memory is full. The investigated methods were tested in 
several memory-based EAs and the results show that memory 
can be used in a more effective way so algorithms’ performance 
is strongly improved. 

I. INTRODUCTION 
VOLUTIONARY algorithms (EAs) have been widely 
used in the search of good solutions in changing 

environments. One of the most used mechanisms is the 
incorporation of explicit memory, which plays the role of 
storage for good individuals obtained during the 
evolutionary process, which can be useful in future 
situations [1], [5], [7], [9], [14] and [16]. The standard 
approaches use memory with restricted size and when it is 
full individuals previously stored have to be replaced. This 
can destroy information that could be valuable in future 
contexts. 
When the environment is cyclic and prior environments 
come back later  an EA with explicit memory must be able 
to store and keep relevant information to provide the 
minimum decrease of the algorithms’ performance when a 
change happens. Generally this is not observed and the 
typical curve of an EA’s performance when dealing with 
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dynamic environments is characterized by the reduction of 
the best individual’s fitness followed by the algorithm’s 
readaptation to the new conditions of the environment [7], 
[15].  

In a previous work we proposed an algorithm called 
Variable-size Memory Evolutionary Algorithm (VMEA) 
that includes a search and memory populations with variable 
size that was used with considerable success in changing 
environments [9].  In this paper we are interested in studying 
different schemes to improve the memory’s efficiency in an 
EA. We propose two different mechanisms for storing 
individuals into the memory (replacing strategies) and will 
test them against VMEA and other memory-based EAs. 
Also, we will use a biologically inspired genetic operator 
called conjugation to control the population’s diversity. This 
genetic operator is compared with uniform crossover and 
interesting conclusions about the population’s diversity may 
be drawn. 

The paper is organized as follows: section 2 presents 
previous work using the Variable-size Memory Evolutionary 
Algorithm (VMEA). Section 3 describes several 
replacement strategies found in literature and introduces two 
new replacing schemes. Section 4 describes the 
implementation of the conjugation operator. The 
experimental setup is explained in section 5. In section 6 we 
show the obtained results concerning algorithms efficiency, 
growth of the memory and the population’s diversity. 
Finally, in section 7 we state the main conclusions and ideas 
for future work.  

II. VARIABLE-SIZE MEMORY EVOLUTIONARY 
ALGORITHM 

Simões and Costa [9] proposed an EA called VMEA – 
Variable-size Memory Evolutionary Algorithm, to deal with 
dynamic environments. This algorithm uses a memory 
population, responsible for storing good individuals of the 
evolved population in several points of the search process. 
The innovative aspect of the algorithm is that the two 
populations - search and memory – have variable sizes that 
can change between two boundaries. The basic idea behind 
VMEA is to use the limited resources (total number of 
individuals) in a flexible way. The size of the populations 
can change according to the evolutionary process, but the 
sum of the two populations cannot go beyond a certain limit. 
The memory is updated from time to time and if the 
established limits are not reached, the best individual of the 
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current population is stored into the memory. If there is no 
room to keep this new solution, then the best individual of 
the current population is introduced replacing one individual 
of the memory chosen accordingly with a replacing scheme. 
In that paper, an aging-based replacing strategy was used  
that will be explained in the next section. 

The memory is evaluated every generation and a change 
is detected if at least one individual in the memory changes 
its fitness. Notice that the environmental changes occur very 
r generations but the algorithm has no information about 
when the next change will occur and so it is necessary to 
make its discovery every generation.  

If an environmental modification is detected, the best 
individual of the memory is introduced into the population. 
In the case of either the population’s size or the sum of the 
two populations has reached the allowed maximum, the best 
individual in memory replaces the worst one in the current 
population. For a complete description of the algorithm see 
[9] and [10]. 

III. REPLACING STRATEGIES  
The idea of adding a memory to an EA has been widely 

studied by a large number of authors. Memory can be used 
as a pool of good individuals that can be useful in future 
situations. For instance, in cyclic environments if the 
memory correctly updated, when an environment reappears, 
an individual belonging to the memory can avoid an abrupt 
decrease on the algorithm’s performance when we transfer it 
to the evolving population. Memory can also be used to 
maintain diversity in the population, fostering a better 
readaptation of the EAs. Some questions can be drawn 
concerning memory:  1) when and which individuals to store 
in memory, 2) how many, 3) which ones should be replaced 
when memory is full, 4) which individuals should be 
selected from memory and introduced in the population 
when a change happens [1]. In this paper we will try to give 
an answer to the third question. Since the size of the 
memory is limited, it is necessary to decide which 
individuals should be replaced when new ones need to be 
stored. This process is usually called by replacing strategy. 
Branke [1] compares a number of replacement strategies for 
inserting new individuals into the memory. The most 
popular is called similar and selects the most analogous 
individual currently in memory for replacement, as long as 
this individual is better. This replacing strategy was already 
used in several works ([1], [14], [15]). 

Simões and Costa [9] proposed a replacing strategy based 
on the aging of memory individuals: all individuals of the 
memory start with age equal to zero and every generation 
their age is increased by one. Besides, if they were selected 
to feed the population when a change occurs its age is 
increased by a certain value. In the case a limit age is 
reached their age is reset to zero. When it is necessary to 
update the memory  the youngest element is selected for 
replacement. The basic idea is to swap one individual with a 

poor contribution in the evolutionary process, i.e. one that 
was never selected to the population or that is in the memory 
for a long time. This approach was called by age1. The 
comparative analysis of age1 method to the similar 
replacing scheme showed that there was no considerable 
improvement in the performance of the studied algorithms 
[10].  

In this paper we propose two different replacing strategies 
to use memory in a more efficient way and thus confer to the 
EAs a better performance. 

The first, will be called by age2, is also based on the age 
of memory individuals. The age of an individual i is given 
by: 

agei(t) = agei (t) + 1 + fitnessi*fit_rate                  (1) 
As suggested by [1], the individuals’ age is computed 

every generation as a linear combination of their actual age 
and a contribution of their fitness (fit_rate). 

Moreover memory individuals never die, i.e. their age is 
not reset to zero. This way, we do not penalize individuals 
that last long in memory.  

Using this method the individual to replace is also the 
youngest one, considering that age was calculated using 
equation 1. 

The second replacing strategy, will be called by 
generational, and selects the worst individual present in the 
memory since the last change to be replaced. For instance, 
if the last change occurred at generation t1 and currently the 
algorithm is in generation t2, when it is time to insert an 
individual into the memory we will replace the worst 
individual that was stored between generation t1+1 and t2-1.  

When it is time to update the memory, if no individual has 
been stored since last change, we use the similar strategy 
and substitute the closest individual in terms of Hamming 
distance, if it is worse than the current best. Therefore, in the 
case of VMEA, the maximum size of the memory is reached 
slower, the redundant information is minimized and the best 
information of a certain period of the evolutionary process is 
stored. This strategy, in next references, will be called by 
gen. 

IV. BACTERIAL CONJUGATION 
It is widely accepted in the Evolutionary Computation 

community that genetic operators are essential to the 
efficiency of EAs. They allow creating new individuals, 
from the genetic information of previous ones, so the 
algorithm will in general converge to the desired solution. 
Traditionally crossover is used as the main genetic operator. 
Nevertheless, other biologically inspired operators have 
been proposed and tested with some degree of success. 
These new genetic operators were applied either in static [7], 
or dynamic environments [8]. 

In biology, bacterial conjugation is the transfer of genetic 
material between bacteria through cell-to-cell contact. 
Sometimes bacterial conjugation is regarded as the bacterial 
equivalent of sexual reproduction or mating, but in fact, it is 
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0000110011  F=4 
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1111111110  F=9 
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1111100111  F=7 
1111111110  F=9 

Recipients 
 

0000110011  F=4 
0000000000  F=0 
1000000000  F=1 

Selected pair: 
Donor:      1111100111 
Recipient: 0000000000  
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Offspring: 0001100100  

create 
ONE new 
individual 

merely the transfer of genetic information from a donor to a 
recipient cell [6]. 

Computational conjugation was introduced independently 
by Harvey and Smith. Smith [12] proposed an 
implementation of this operator, called simple conjugation: 
the donor and the recipient were chosen randomly, 
transferring the genetic material between two random points. 
Harvey [3] investigated a tournament-based conjugation:  
two parents are selected at random, and the winner of the 
tournament (fittest individual) becomes the donor and the 
loser the recipient of the genetic material. That way, the 
conjugation operator can be applied repeatedly by different 
donors to a single recipient.  

Simões and Costa [9] used conjugation in the context of 
dynamic environments. The authors applied conjugation 
after selecting the individuals to the mating pool  using the 
idea of donor-recipient genetic transfer. As it happens in 
biology, the donor individuals give genetic material to the 
recipient ones. After selecting the individuals to mate, using 
the established selection method, they are divided into two 
groups: the n/2 best individuals become the ‘donor’ while 
the remaining becomes the ‘recipient’ (n is the current size 
of the population). Then, the ith donor transfers part of its 
genetic material to the ith recipient (i=1, …n/2). Two points 
randomly chosen control this injection. The donor remains 
unchanged. Following that, all offspring created by this 
process are joined with the donor individuals and they 
become the next population of size n.  Fig. 1 shows how 
conjugation is applied to one pair of individuals of the 
mating pool. 

 
 
 
 
 
 
 

 

Fig. 1.  Creating a new individual using conjugation 
 
The obtained results in dynamic optimization problems 

using this genetic operator were quite promising [9]. 

V. EXPERIMENTAL DESIGN  

A. Dynamic Test Environments 
The dynamic environments used to test our approaches 

were constructed using Yang’s Dynamic Optimization 
Problems (DOP) generator. With this generator it is possible 
to construct different dynamic environments from any 
binary-encoded stationary function using the bitwise 
exclusive-or (XOR) operator.  The basic idea of the 
generator can be described as follows: when evaluating an 
individual x in the population, first we perform the operation 
x∆M where ∆ is the bitwise XOR operator and M a binary 
mask previously generated. Then, the resulting individual is 

evaluated to obtain its fitness value. If a change happens at 
generation t, then we have f(x, t+1) = f(x ∆ M, t). Using the 
DOP generator the characteristics of the change are 
controlled by two parameters: the speed of a change, r, 
which is the number of generations between two changes, 
and the magnitude of a change,ρ that consists in the ratio of 
ones in a temporary template that is created for each 
environment and integrated to the mask M. The more ones 
in this template, the more severe is the change. The DOP 
generator allows constructing problems where the changes 
can be cyclic, cyclic with noise or non-cyclic. In the first 
case, several masks are generated according to the ρ 
parameter and are consecutively applied when a change 
occurs. It is thus possible that previous environments 
reappear later. In the second case noise is added by mutating 
some bits in the mask with a small probability. In the third 
case, the mask applied to the individuals is always randomly 
generated every time we change the environment. More 
details about Yang’s DOP generator can be found in [16]. 

In this paper we constructed 20 cyclic DOPs, setting the 
parameter r to 10, 50, 100 and 200. The ratio ρ was set to 
different values in order to test different levels of change: 
0.1 (a light shifting) 0.2, 0.5, 1.0 (severe change). In order to 
study the behavior of the algorithm in randomly changing 
environments we also set ρ to a uniformly randomly 
generated value in the interval [0.01, 0.99] (called by rnd).  

To test and compare the several replacing schemes 
combined with two different genetic operators, we selected 
two benchmark problems: the knapsack problem (100 items) 
and OneMax problem (300 bits).   

 
1) Knapsack Problem 

The knapsack problem is a NP-complete combinatorial 
optimization problem often used as benchmark. It consists in 
selecting a number of items to a knapsack with limited 
capacity. Each item has a value (vi) and a weight (wi) and 
the objective is to choose the items that maximize the total 
value, without exceeding the capacity of the bag. We used a 
knapsack problem with 100 items using strongly correlated 
sets of randomly generated data [4]. The fitness of an 
individual is equal to the sum of the values of the selected 
items, if the weight limit is not reached. If too many items 
are selected, then the fitness is penalized in order to ensure 
that invalid individuals are distinguished from the valid 
ones. Details about the implemented knapsack, including the 
penalty function can be found in [10]. 
2) OneMax problem 

The OneMax problem aims to maximize the number of 
ones in a binary string. So, the fitness of an individual 
consists in the number of ones present in the binary string. 
This problem has a unique solution. In our experiments we 
used individuals of length 300. 



 
 

 

B. Experimental Setup 
1) Algorithms’ parameters 

Previous work compared VMEA using the age1 replacing 
strategy with other algorithms: the random immigrants’ 
algorithm (RIGA) [2] and the memory-enhanced GA 
(MEGA) studied in [13]. The results proved that VMEA, 
using either crossover (VMEA Cx) or conjugation (VMEA 
Cj), generally outperformed the other approaches. A typical 
comparative graphic of the behavior of VMEA and the other 
studied algorithms is shown in Fig. 2. To see more results 
consult [10]. 

 
Fig. 2.  VMEA vs MEGA and RIGA. Typical curve of the algorithms in the 
dynamic Knapsack problem 
 

In this paper we will be focused in the performance of 
memory-based EAs using the proposed replacing schemes. 
Besides the above mentioned algorithms we will also 
introduce the Memory-based Immigrants Genetic Algorithm 
(MIGA) proposed in [14]. We will compare the algorithms’ 
efficiency using the following methods: similar (sim), 
proposed by Branke in [1], age2 and gen. We will also 
combine the conjugation operator with the replacing 
methods to make some conclusions about the efficiency of 
this genetic operator in changing problems and study its 
impact in the population’s diversity. The comparison of the 
VMEA using the similar method and the originally proposed 
in [9] called age1 can be found in [10]. The different 
VMEAs will be designated by; VMEA-age2Cx, VMEA-
age2Cj, VMEA-genCx, VMEA-genCj, VMEA-simCx and 
VMEAsimCj. The originally proposed MIGA and MEGA 
will be referred the same way and use the similar replacing 
method and uniform crossover [14], [13]. The other variants 
will be called using the same notation used in VMEAs: 
MIGA-age2Cx, MIGA-age2Cj, MIGA-genCx, MIGA-
genCj. Same designations will be used for MEGA: MEGA, 
MEGA-age2Cx, MEGA-age2Cj, MEGA-genCx, MEGA-
genCj. 

The algorithms’ parameters were set as follows: 
generational replacement with elitism of size one, 
tournament selection with tournament of size two, uniform 
crossover with probability pc=0.7 (the same probability was 
used with conjugation) and mutation applied with 
probability pm=0.01. In VMEA, the search population starts 
with 100 individuals, the memory starts with 10 individuals. 
Their sizes are variable, changing along time, but the sum of 

the two populations cannot surpass 120. The age2 strategy, 
was computed according to equation (1), with fit_rate set to 
0.1 (value chosen after some preliminary experimentation). 
MIGA and MEGA use populations of 110 individuals and a 
memory of 10 individuals. For MIGA, the ratio of 
immigrants was set to 0.1 and the mutation rate to create the 
immigrants was 0.01. For each experiment of an algorithm, 
30 runs were executed and the number of environmental 
changes was 200 with r=10 (2000 generations), 80 with 
r=50 (4000 generations) and 40 with r=100 and 200 (4000 
and 8000 generations, respectively). The overall 
performance used to compare the algorithms was the best-
of-generation fitness averaged over 30 independent runs, 
executed with the same random seeds: 
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G=number of generations, N=number of runs. 

VI. EXPERIMENTAL RESULTS 
The amount of data, graphics and tables produced in this 

comparative study was enormous and in this paper we can 
only show part of the results, using representative graphics 
of each analyzed situation. All information concerning this 
work can be consulted in [11]. The statistical validation of 
the results was made using paired one-tailed t-test at a 0.01 
level of significance. The validation tables comparing all the 
approaches are also available in the referred document. In 
the next sections we show the results concerning: (1) the 
efficiency of the algorithms using the different replacing 
strategies, (2) the diversity levels measured in population 
and memory and (3) the observed results in the growth of 
the population and memory sizes using the different 
schemes for VMEA. 

A. Comparing Replacing Strategies 
The global results for the different VMEAs are plotted in Fig. 

3 (Knapsack) and Fig. 4 (OneMax) and for the different MIGAs 
and MEGAs in Fig 5 and Fig. 6 (Knapsack). Analyzing the 
results on both problems, we can see that for the VMEAs, the 
proposed gen replacing scheme always obtained the best results, 
except when r=10. This happens because the change period is 
small and when a change occurs, most of the times, no 
individual of that period was already stored. So, we replace the 
most similar. In this case, the best replacing strategy was the 
proposed age2. The age2 scheme compared with the remaining 
was not so effective. In fact, the results show that, age2 
performs better in small change periods and when combined 
with conjugation. These results confirm the difficulty of finding 
a tradeoff between the fitness and age contributions, as 
suggested in [1].  In MIGAs and MEGAs gen methods 
substantially improves the performance in environments of 
small periods and with severe changes. The age2 method was 
also superior in most of the times, but the enhancement 
introduced is not as visible as in the gen scheme. Conjugation 
improves the performance in the analyzed VMEAs just as 
observed before [9], but has no influence in the studied MIGAs 



 
 

 

and MEGAs. Observing Fig. 8 to 11 we confirm that using the 
proposed gen scheme the different algorithms considerably 
improved their performances. The information stored in 
memory allows a continuously adaptation of the analyzed EAs, 
contrary to the remaining replacing strategies. The use of 
population and memory with variable sizes combined with the 
gen replacing method and conjugation (VMEA-genCj) was the 

algorithm that globally achieved the best performance. MIGAs 
and MEGAs, due to the restriction of memory’s size, even using 
the gen scheme, have a   degradation  of  its  performance 
mainly in environments with larger change periods, since the 
replacing is more often and the destruction of good individuals 
occurs frequently. 

 

 
Fig. 3.  VMEA: Results on dynamic Knapsack problem, with different change ratios (ρ) and r=10, 50, 100 and 200 

 

 
Fig. 4.  VMEA: Results on dynamic OneMax problem, with different change ratios (ρ) and r = 10, 50, 100 and 200 

 
Fig. 5. MEGA: Results on dynamic Knapsack problem, with different change ratios (ρ) and r = 10, 50, 100 and 200 
 

 
Fig. 6. MIGA: Results on dynamic Knapsack problem, with different change ratios (ρ) and r = 10, 50, 100 and 200 

 
 

B. Population’s and Memory’s Diversity 
In order to study the impact of the genetic operators in the 

diversity dynamics, we stored the population and memory 
diversity at every generation using the standard measure 
based on the Hamming distance. At generation t, the 
diversity is given by: 
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where N is the number of runs, l is the length of the 
chromosomes, n is the population (or memory) size at 
generation t and HDij(k,t)  is the Hamming distance between 
individuals i and j at generation t, in the kth run. Analyzing 
the recorded values for population’s and memory’s 
diversity, we conclude that the conjugation operator always 

kept lower diversity levels in the population. Nevertheless, 
very often the best results are achieved using the 
conjugation operator! As an example, we show the diversity 
of memory and population stored on the studied 
benchmarks, with r=50 and ρ=0.2  using the gen replacing 
scheme. As we can see in Fig. 7, the algorithm using the gen 
scheme and conjugation obtained the best results. From the 
analysis of the results it follows that the population’s and 
memory’s diversity levels is inferior when using 
conjugation. This is also true for the remaining strategies 
and for different values of r andρ.  
These results show that the usual idea that in dynamic 
environments it is crucial to maintain high diversity in the 
population to improve the adaptability of algorithm is not 



 
 

 

always true 

 

Fig. 7.  Population’s and Memory’s diversity for the first 20 environmental 
changes in dynamic Knapsack 

One reason to this fact maybe because conjugation is less 
disruptive, since the information about the best individuals 
is always preserved and that appear to be positive in the 
studied problems. We are making more experiments in order 
to provide more consistent conclusions. 

           

            
Fig. 8.  Dynamic behavior of VMEAs on dynamic Knapsack, with r = 50 and r = 200, when ρ = 0.5, ρ = 1.0 
 

          



 
 

 

               
Fig. 9.  Dynamic behavior of VMEAs on dynamic OneMax, with r = 50 and r = 200, when ρ = 0.5, ρ = 1.0 

             

             
Fig. 10.  Comparing MEGAs on dynamic Knapsack, with r = 50 and r = 200, when ρ = 0.5, ρ = 1.0 

           

             
Fig. 11.  Comparing MIGAs on dynamic Knapsack, with r = 50 and r = 200, when ρ = 0.5, ρ = 1.0 

 
 



 
 

 

C. Memory and Populations Sizes in VMEA 
The results concerning the growth of memory’s and 

population’s sizes confirm our conjecture that using the gen 
replacing scheme the memory should increase slower. 
Actually, this was observed in all studied DOPs. Fig. 12 
shows a typical example of how population and memory 
grow using the different replacing schemes. We can see that, 
with gen replacing strategy (black lines), the memory’s size 
increased gradually and its maximum is only attained at the 
end of the evolutionary process.  

By replacing the worst individual memorized since the 
last environmental change we save space (in the case of 
VMEA) for good individuals that may appear in future 
generations, minimizing the substitution of helpful 
information. The results confirm our initial assumption that 
the memory’s usage can be improved if the replacing 
scheme is chosen carefully.  

 
Fig. 12.  Population’s and Memory’s sizes on dynamic Knapsack 

VII. CONCLUSIONS 
This paper proposed two new replacing strategies and 

tested its efficiency against several memory-based EAs. A 
genetic operator called conjugation was used combined with 
the proposed schemes. An experimental studied was carried 
out using different dynamic optimization problems based in 
two benchmark problems.  From the obtained results several 
conclusions can be drawn: First, the age2 replacing scheme 
obtained better results in dynamics with small period 
changes if combined with conjugation. For the remaining 
cases, the gen replacing scheme was superior. Second, in the 
studied VMEAs, conjugation typically outperformed 
uniform crossover (few exceptions were found). Third, the 
proposed gen replacing scheme provided excellent 
improvement in the studied algorithms, minimizing (or even 
abolishing) the decrease of individual’s fitness after a 
change. These results prove that when dealing with dynamic 
environments the information stored in memory is crucial to 
the effectiveness of the algorithms. Since the memory’s 
capacity usually has limited size, this approach of replacing 
the individuals proved to be an excellent choice. To 
fundament our conclusions we are currently testing the 
proposed ideas in other algorithms, using different problem 
benchmarks and including environments with noise. 
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