
Using Linear Regression to Predict Changes in Evolutionary Algorithms dealing with Dynamic Environments 1 

Using Linear Regression to Predict Changes in Evolutionary 

Algorithms dealing with Dynamic Environments 
 

Anabela Simões
1,2

, Ernesto Costa
2

 

1Dept. of Informatics and Systems Engineering 

ISEC - Coimbra Polytechnic 

Rua Pedro Nunes - Quinta da Nora  

3030-199 Coimbra – Portugal 

 
2Centre for Informatics and Systems of the University of Coimbra 

Pólo II – Pinhal de Marrocos 

3030 - 290 Coimbra – Portugal 

abs@isec.pt, ernesto@dei.uc.pt 

CISUC TECHNICAL REPORT TR 2007/005 - ISSN 0874-338X                                          April 2007 

Abstract. Many real-word problems change over time and usually, the moment when next change will happen is unknown. 

Evolutionary Algorithms have been widely used to deal with changing environments and the algorithm is constantly 

monitoring for alterations and just after detecting one some action is taken. Nevertheless, some of the studied environments 

are characterized by the periodicity of the change.  In these cases it is possible to predict when the next change will occur 

and start using some mechanisms before the change take place. In this report we carried out an investigation in cyclic 

changing environments with periodic changes, using linear regression to predict when next change will occur. Based on the 

predicted value, the algorithm starts preparing the population for the near change. This idea is tested in a memory-based EA 

using a population and memory of variable sizes previously studied with considerable success. We assume that the 

predicted moment can have a small error. Before the change occurs two different actions can be taken in order to avoid the 

decrease of the algorithm‟s performance under the new conditions. The results show that prediction is useful for cyclic 

environments when the period between changes is small and when more different states can appear in the environment. 

Keywords: Evolutionary Algorithms, Dynamic Environments, Prediction,  Memory, Statistics, Linear Regression 

 

1 Introduction 

Most real-world problems change over time and traditional Evolutionary Algorithms (EAs) are not suited to solve them. In 

these cases, some improvements have been introduced in EAs, such as the addition of memory or the use of strategies to 

promote the population‟s diversity.  

The main purpose of the memory-based approaches is to gather information from the past that can be useful in the future. The 

rationale behind promoting the population‟s diversity is to avoid the convergence of the complete population towards a point 

of the search space, which may difficult its readaptation if a change happens. Nevertheless, most of evolutionary-based 

approaches used in changing optimization problems wait for the observation of an environmental alteration to decide what to 

do: use the information of memory [1], [7], [9], [12], [19], or change the rate of mutation in order to increase population‟s 

diversity [4], for instance. Usually, the result is a reduction on the algorithm‟s performance after a change, taking some time 

to readapt and find the new optimum. 

When the environment is chaotic or completely random, we should not expect the EA to readapt to new situations 

immediately. But, assuming that the environment has some predictability, such as periodic changes or a certain repeated 

pattern, it is reasonable to think that using information from the past it is possible to estimate future situations. 

mailto:abs@isec.pt
mailto:ernesto@dei.uc.pt


Using Linear Regression to Predict Changes in Evolutionary Algorithms dealing with Dynamic Environments 2 

Recently, several studies concerning anticipation in changing environments using EAs have been proposed. The main goal of 

these approaches is to estimate future situations and so decide the algorithm‟s behavior in the present. Since that information 

about the future is not available, this information is attained through learning from past situations.  

Stroud (2001) used a Kalman-Extended Genetic Algorithm in which a Kalman filter is used to determine when to generate a 

new individual, when to re-evaluate an existing individual and which one to re-evaluate [16].  

Van Hemert et al. (2001) introduced an EA with a meta-learner to estimate the direction of change for a single discrete time 

step.  This approach uses two populations, one that searches the current optimum and another which uses the best individuals 

in the past to predict the future best value [17]. 

Bosman (2005) proposed an algorithmic framework integrating evolutionary computation with machine learning and 

statistical learning techniques to estimate future situations [2]. An extension of this work, applied to the dynamic vehicle 

routing problem was proposed in [3]. 

In this work we explore the application of a general idea for predicting the generation when next change will occur. This way, 

we can introduce useful information in the population before the change occurs and increase the algorithm‟s adaptability. 

When the environments change periodically or with a fixed pattern, next changes can be estimated from information observed 

in previous changes. This prediction can be made with minimum error using a linear regression method. 

Having estimation for the next change, we can prepare the algorithm to the future, introducing helpful information in the 

population, and so reduce the effects of the environmental modifications. 

The remaining text is organized as follows: section 2 describes previous work that will be used to test the proposed ideas, 

section 3 details how the linear regression works and how we used it to predict the generation of next change. The 

experimental setup is explained in section 4. In section 5 we show the obtained results concerning algorithms efficiency and 

the accuracy of the predicted values. Finally, in section 6 we state the main conclusions and ideas for future work. 
 

2. Previous Work 

2.1. Variable-size Memory Evolutionary Algorithm 
In [13] was proposed an EA called VMEA – Variable-size Memory Evolutionary Algorithm, to deal with dynamic 

environments. This algorithm uses a memory, responsible for storing good individuals of the evolved population in several 

points of the search process. The innovative aspect of the algorithm is that the two populations - search and memory – have 

variable sizes that can change between fixed boundaries. The global resources (the sum of the memory and population 

individuals) are limited up to an established maximum but it‟s the algorithm which decides the sizes of the memory and search 

population at any moment. The memory is updated from time to time and if the established limits are not reached, the best 

individual of the current population is stored in the memory. If there is no room to save this new solution, then the best 

individual of the current population is introduced replacing a memory individual chosen accordingly to the replacing scheme. 

The memory is evaluated every generation and a change is detected if at least one individual in the memory changes its 

fitness. The memory is updated following a dynamic time pattern as follows: After a memory update in generation t, next 

memory updating will be decided by generating a random integer R in the interval [5, 10] and the next memory update will 

take place in generation t+R. Notice that, besides the environmental changes occur periodically every r generation, the 

algorithm has no information about when next change will occur and so, it is necessary to make its detection at every time 

step. After detecting an environmental modification the best individual is retrieved from the memory and introduced into the 

population. In the case of either the population‟s size or the sum of the two populations has reached the allowed maximum, 

the best individual in memory replaces the worst one in the current population. 
 

2.2. Replacing Strategies 
The performance of the VMEA was compared using different replacing strategies and its efficiency was strongly increased 

using a method that replaces the worst individual stored in the memory since the last change [14]. This method was called 

generational and will be used in the experimental study of this work.  
 

2.3. Bacterial Conjugation 
In biology, bacterial conjugation is the transfer of genetic material between bacteria through cell-to-cell contact. Sometimes 

bacterial conjugation is regarded as the bacterial equivalent of sexual reproduction or mating, but in fact, it is merely the 

transfer of genetic information from a donor to a recipient cell [11]. Computational conjugation was proposed by [6] and [15].  

VMEA was also tested in several dynamic optimization problems using this genetic operator as an alternative to crossover. 

The authors applied conjugation after selecting the individuals to the mating pool, using the idea of donor-recipient genetic 



Using Linear Regression to Predict Changes in Evolutionary Algorithms dealing with Dynamic Environments 3 

transfer. The exhaustive experimental study comparing this operator with crossover in different benchmark problems showed 

that, in general, conjugation allows VMEA to achieve improved results [13], [14]. Conjugation will be used in this work as 

the main genetic operator of the EA. 

 

3. Predicting with Linear Regression 

3.1. Statistical Model for Linear Regression 
Simple linear regression studies the relationship between a response variable y and a single explanatory variable x. This 

statistical method assumes that for each value of x the observed values of y are normally distributed about a mean that 

depends on x. These means are usually denoted by y. In general the means y can change according to any sort of pattern as x 

changes. In simple linear regression is assumed that they all lie on a line when plotted against x [10]. The equation of that line 

is: 

  y = 0 + 1 * x         (1) 

with intercept 0 and slope 1.  This is the linear regression line and describes how the mean response changes with x. The 

observed y values will vary about these means and it‟s assumed that this variation, measured by the standard deviation, is the 

same for all the values of x. 

Linear regression allows inferences not only for samples for which the data is known, but also for those corresponding to x‟s 

not present in the data. Three inferences are possible: (1) estimate the slope 1 and the intercept 0 of the regression line; (2) 

estimate the mean response y, for a given value of x; (3) predict a future response y for a given value of x. 

In general, the goal of linear regression is to find the line that best predicts y from x. Linear regression does this by finding the 

line that minimizes the sum of the squares of the vertical distances of the points from the line.  

The estimated values for 0 and 1 called b0 and b1 are obtained using previous observations through equations (2) and (3). 

The intercept b0 is given by: 

xbyb *10                (2) 

The slope b1 is given by: 

x

y

s

s
crb *1 

           (3) 

where y is the mean of the observed values of y, x  is the mean of the observed values of x, cr the correlation between x and y 

given by equation (4), sx and sy the standard deviations of the observed  x and y, respectively, given by equations (5). 













 









 


 

y

i

x

i

s

yy

s

xx

n
cr

1

1          (4) 

 

  



2

1

1
xx

n
s ix

   



2

1

1
yy

n
s iy

      (5) 

 

with n, the number of previous observations from x and y. 

Once estimated the slope and intercept of the regression line, we can predict the value of y (called by ŷ ) from a given x using 

the regression line equation [10] : 

xbby *ˆ
10           (6) 

In the next section we will show an example. 

Note that linear regression does not test whether the data are linear. It assumes that the data are linear, and finds the slope and 

intercept that make a straight line best fit the known data. If the error in measuring x is large, more inference methods are 

needed. 
 

3.2. Predicting Next Change 
We will assume that the changes in the environment are periodic or following a certain pattern that is repeatedly observed.  In 

these situations it makes sense to use linear regression to predict the generation when next change will take place, based on 

previous observations. 

In our implementation, the first two changes of the environment are stored without prediction. After that, it is possible to start 

predicting the next change based on the previous observations.  

Suppose that three observations were already made (n = 3): 



Using Linear Regression to Predict Changes in Evolutionary Algorithms dealing with Dynamic Environments 4 

Obs x y 

1 1 50 

2 2 100 

3 3 150 
 

The first change at generation 50, the second change at generation 100 and the third change at generation 150. Can we predict 

when will occur the fourth change? 

Using equations (2) and (3), the estimated values for the slope and intercept of the regression line are: 

50
1

50
*11 b  and 02*501002*100 10  bb  

Using equation (7) we can predict when the fourth change will occur (x = 4): 
2004*500*ˆ

10  xbbynextgen
 

In this case, if the change is determined with a fixed change period of size r = 50, the prediction is exact and there is no 

related error. 

 

3.3. Prediction in VMEA 
We used the previously described VMEA to test these ideas. A module of prediction was included in the algorithm. This unit 

is responsible for keeping track of previous changes and uses that information to estimate the slope 1 and the intercept 0 of 

the regression line. Based on this line, the generation where next change will occur is predicted.  It is assumed that the 

predicted value may not be exact and small error is considered (error). This error will be used to define an interval where the 

change probably will occur: [nextgen–error, nextgen+ error]. 

So, when the current generation reaches the value nextgen–error the algorithm starts preparing the eventuality of an 

environmental alteration.  The actions taken can be one of following two: 

 (1) when algorithm reaches generation nextgen–error, we merge the actual population to the memory, allowing the population 

size to increase up to the standard limit. Then, when a change occurs or when the generation nextgen+error is reached, the 

worst individuals of the population are removed until the previous standard limit is assured (we will call this method upd1). 

(2) the second approach is similar to the previous one, but M/2 of the individuals merged with the population are new 

individuals, and the remaining are the best M/2 memory individuals (M is the actual memory size). The new individuals are 

created applying the conjugation genetic operator to the individuals of memory. Once again, the population size is allowed to 

increase during the same period referred before, or until the change occurs (we will call this method upd2). 
 

4. Experimental Design 

4.1. Dynamic Test Environments 
The dynamic environments to test our approach were created using Yang‟s Dynamic Optimization Problems (DOP) generator 

[18]. This generator allows constructing different dynamic environments from any binary-encoded stationary function using 

the bitwise exclusive-or (XOR) operator.  The basic idea of the generator is to perform the operation xM to an individual x, 

where  is the bitwise XOR operator and M a binary mask previously generated. Then, the resulting individual is evaluated to 

obtain its fitness value. If a change happens at generation t, then we have f(x, t+1) = f(x  M, t). Using the DOP generator the 

characteristics of the change are controlled by two parameters: the speed of the change, r, which is the number of generations 

between two changes, and the magnitude of the change, that consists in the ratio of ones in the mask M. The more ones in the 

mask the more severe is the change. The DOP generator also allows constructing problems where the changes can be cyclic, 

cyclic with noise or non-cyclic. In the first case, several masks are generated according to the  parameter and are 

consecutively applied when a change occurs. It is thus possible that previous environments reappear later. In the second case 

noise is added by mutating some bits in the mask with a small probability. In the third case, the mask applied to the 

individuals is always randomly generated every time we change the environment.  

In this work we constructed 16 cyclic DOPs, setting the parameter r to 10, 50, 100 and 200. The ratio  was set to different 

values in order to test different levels of change: 0.1 (a light shifting) 0.2, 0.5 and 1.0 (severe change). We also introduced 

some changes in Yang‟s DOP in order to have the period between changes controlled by a pattern, instead of the fixed period 

size r. So, if we define a pattern 50-60-70, for instance, it means that the changes will occur after 50 generations, then after 60 

generations, then after 70 generations, and this pattern is repeated the required number of times.  
 



Using Linear Regression to Predict Changes in Evolutionary Algorithms dealing with Dynamic Environments 5 

4.2. Knapsack Problem 
The benchmark used was the 0/1 dynamic knapsack. The knapsack problem is a NP-complete combinatorial optimization 

problem often used as benchmark. It consists in selecting a number of items to a knapsack with limited capacity. Each item 

has a value (vi) and a weight (wi) and the objective is to choose the items that maximize the total value, without exceeding the 

capacity of the bag:  





m

i

ii xvxv
1

)(max         (7) 

subject to the weight constraint:  





m

i

ii Cxw
1

         (8) 

We used a knapsack problem with 100 items using strongly correlated sets of randomly generated data constructed in the 

following way ([8], [18]):  

wi = uniformly random integer [1, 50]      (9) 

 

vi = wi + uniformly random integer [1, 5]      (10) 





100

1

6.0
i

iwC         (11) 

The fitness of an individual is equal to the sum of the values of the selected items, if the weight limit is not reached. If too 

many items are selected, then the fitness is penalized in order to ensure that invalid individuals are distinguished from the 

valid ones. The fitness function is defined as follows: 



























 

 

 



 

otherwisexww

Cxwifxv

xf

i i

iii

i i

iiii

,10

,

)(
100

1

100

1

10

100

1

100

1
      (12) 

 

4.3. Experimental Setup 

4.3.1. Algorithms’ parameters 
Previous work ([13], [14]) compared VMEA with other evolutionary algorithms: the random immigrants‟ algorithm (RIGA) 

[5], the memory- based immigrants GA (MIGA) [18] and the memory-enhanced GA (MEGA) [18]. The results proved that 

VMEA, generally outperformed the other approaches. The best results were achieved when VMEA used the generational 

replacing strategy and the conjugation operator [14]. 

We will compare VMEA enhanced with the prediction unit, using bacterial conjugation and the generational replacing method 

as well. This VMEA was run using the two possible actions formerly described: upd1 (VMEAp_upd1) and upd2 

(VMEAp_upd1). 

The algorithms‟ parameters were set as follows: generational replacement with elitism of size one, tournament selection with 

tournament of size two, conjugation with probability pc=0.7 and mutation applied with probability pm=0.01. VMEA using 

prediction will start with a population of 100 individuals and a memory of 10 individuals. The sum of the two populations 

cannot go beyond 150 individuals, except in the intervals described in section 3.3. In this interval the allowed maximum 

raised to 200 individuals. VMEA was run as described in [13], using initial sizes for population and memory of 125 and 25 

individuals, respectively. The sum of the two populations could not surpass the 200 individuals.  The assumed error for the 

predicted values in VMEA_p, to identify the interval [nextgen–error, nextgen+error], was 5 generations. 

For each experiment of an algorithm, 30 runs were executed and the number of environmental changes was: (1) in 

environments changing every r generations: 200 when r = 10 (2000 generations), 80 when r = 50 (4000 generations) and 40 

when r = 100 and 200 (4000 and 8000 generations, respectively);  (2) using the patterned periodic changes, the number of 

generations was computed based in 200 environmental changes. The overall performance used to compare the algorithms was 

the best-of-generation fitness averaged over 30 independent runs, executed with the same random seeds: 

 
 











G

i

N

j
ijbestF

NG
Foverall

1 1

11                     (13) 

                

G=number of generations, N=number of runs. 
 



Using Linear Regression to Predict Changes in Evolutionary Algorithms dealing with Dynamic Environments 6 

5. Results 

5.1. Accuracy of the Prediction Method 
When changes are defined by the parameter r and occur every r generations, the statistical model using linear regression gives 

exact predictions, since the observed values lie down in the regression line. Figure 1 shows the predicted values using 

periodic changes of size 50 (r = 50). 

Using a pattern to generate the periodicity of the change, we can have situations where the predicted values are not precise. In 

these cases, there is an associated error that decreases over time. Nevertheless this decreasing is very slow. For the 20 first 

changes observed using the pattern 10-20-10 and plotted in Figure 2, we can see that the prediction model was not exact. In 

this case, the interval assumed in our implementation (5 generations) was enough to cover that error, and in this case, the 

insertion of individuals in the population was always made before the change occurs. 

For a different pattern, 50-60-70, the same observations were made. The predicted values for the next change were not 

precise, the error decreases during the time, and the used interval       [nextgen–error, nextgen+error] was able to guarantee, 

most of the times, that the change was detected before it happens. Figure 3 shows the predicted values using this pattern 

change. 

 

 
Figure 1 – Prediction in periodic environments with a 

fixed period (r = 50) 
 

 
Figure 2 - Prediction in periodic environments with a 

pattern change (10 – 20 – 10) 

 

Using a different pattern, 100-150 the used prediction model had worse predicted values. The errors associated to the 

estimated values were in some cases superior to 5, and our module using an interval margin of 5 generations didn‟t deal with 

these changes before they happen. Figure 4 shows the expected values and the resultant error. For cases like this it is 

necessary to introduce in the prediction correction mechanisms based on the previous measured errors. 

 

 
Figure 3 - Prediction in periodic environments with a 

pattern change (50 – 60 – 70) 
 

 
Figure 4 - Prediction in periodic environments with a 

pattern change (100 – 150 – 100) 



Using Linear Regression to Predict Changes in Evolutionary Algorithms dealing with Dynamic Environments 7 

 

5.2. Performance of the Algorithms 
In this section we will show the results obtained by the VMEA without the prediction module (VMEA) and by VMEA using 

prediction (VMEAp_upd1 and VMEAp_upd2). The results are exposed in two separated sections: the first for changes in every 

r generation and another for changes determined by a pattern such as described in section 4.1.  

The statistical results comparing the algorithms are reported in tables 1 and 2. We used paired one-tailed t-test at a 0.01 level 

of significance. The notation used in tables 1 and 2, to compare each pair of algorithms is „+”, “-“, “++” or “--“, when the first 

algorithm is better than, worse than, significantly better than, or significantly worse than the second algorithm.  
 

5.1.1. Results in cyclic environments with a fixed change period 
The global results given by equation (13) are plotted in Figure 5.  

We can see that for small change periods, the prediction module introduced in the algorithm increased its performance. For 

larger change periods, all the algorithms had similar behavior, except when the change ratio was higher. 
 

Table 1. T-test results comparing VMEAs in cyclic environments with fixed change period = 10, 50, 100, 200 

  Change ratio 

T-test results Chg. period 0.1 0.2 0.5 1.0 

VMEA - VMEAp_upd1 

10 

-- -- -- -- 

VMEA - VMEAp_upd2 -- -- -- -- 

VMEAp_upd1 - VMEAp_upd2 - - -- + 

VMEA - VMEAp_upd1 

50 

-- -- - -- 

VMEA - VMEAp_upd2 - -- -- -- 

VMEAp_upd1 - VMEAp_upd2 ++ - -- - 

VMEA - VMEAp_upd1 

100 

+ ++ + -- 

VMEA - VMEAp_upd2 - - -- -- 

VMEAp_upd1 - VMEAp_upd2 - -- -- - 

VMEA - VMEAp_upd1 

200 

+ - + -- 

VMEA - VMEAp_upd2 - + -- -- 

VMEAp_upd1 - VMEAp_upd2 - ++ -- - 

 

In this case, the introduction of the prediction module allowed faster adaptation of the algorithm to the observed alterations. 

Table 1 confirms these observations. We see that VMEA globally achieved the worst performances. In table 1 we can also see 

that the method upd2 used to prepare the population before the change was in general better than the upd1 method. 

Figures 6 and 7 show some examples of how the VMEAs‟ performance evolved through the time. It is clear that for smaller 

change periods the prediction unit was very helpful and increased the algorithm‟s performance. For larger change periods 

(200) the improvements are visible for inferior change ratios, because in these cases the number of different states is superior 

and the memory in certain periods wasn‟t enough to allow continuous adaptability. 
 

5.1.2.  Results in periodic environments following a pattern change 
In the environments with periodic changes based on a repeated pattern the conclusions were similar to the previously 

described. In the patterns with smaller periods, 10-20-10 and 50-60-70, the VMEA using prediction obtained the best scores.  

In the pattern with larger periods, 100-150-100, the improvements introduced by the prediction method were not so visible. 

Table 2 and Figure 8 show the global results comparing all the algorithms in the three tested patterns. In all the analyzed cases 

the upd2 and upd1 methods obtained analogous results. Figures 9 and 10 show some examples of the dynamics of the 

algorithms along the time. All the conclusions stated before are once again visible in these plots. 
 

 

 

 

 



Using Linear Regression to Predict Changes in Evolutionary Algorithms dealing with Dynamic Environments 8 

Table 2. T-test results comparing VMEAs in cyclic environments with changes following a fixed pattern 

  Change ratio 

T-test results pattern 0.1 0.2 0.5 1.0 

VMEA - VMEAp_upd1 

10-20-10 

-- + -- -- 

VMEA - VMEAp_upd2 -- - -- -- 

VMEAp_upd1 - VMEAp_upd2 + - - + 

VMEA - VMEAp_upd1 

50-60-70 

-- -- -- -- 

VMEA - VMEAp_upd2 -- -- -- - 

VMEAp_upd1 - VMEAp_upd2 + - + + 

VMEA - VMEAp_upd1 

100-150-100 

-- -- + + 

VMEA - VMEAp_upd2 -- -- ++ + 

VMEAp_upd1 - VMEAp_upd2 - + + + 

 
 

 

Figure 5. Overall performance of VMEAs in periodic environments: r=10; r=50; r=100; r=200 

 

Figure 6. VMEAs performance in cyclic environments with change period 10, =1 and =0.1 

 
Figure 7. VMEAs performance in cyclic environments with change period 200, =1 and =0.

 

 



Using Linear Regression to Predict Changes in Evolutionary Algorithms dealing with Dynamic Environments 9 

 
Figure 8. Overall performance of VMEAs in cyclic environments with changes following a fixed pattern 

  
Figure 9. VMEAs performance in cyclic environments with change period following a fixed pattern 10-20-10, =1 and =0.1 

 

  
Figure 10. VMEAs performance in cyclic environments with change period following a fixed pattern 100-150-100, =1 and =0.1 

 

5.1.3. Is prediction really useful? 

To see if the prediction unit was responsible for the observed improvements, we run VMEA without the prediction module, 

but using the upd1 and upd2 methods after the change occur. So, instead of using the scheme of the original VMEA (retrieve 

from the memory the best individual and introduce it into the population), we allowed the global number of individuals to 

increase up to 200 in the moment after the change, merging the memory with the population (upd1) or creating some new 

individuals applying conjugation in the memory and then merging this individuals with the population and with part of the 

memory (upd2). 

We observed that using these schemes the VMEA‟s performance was increased, when compared with the original VMEA, 

but the algorithms using the prediction unit were in fact the most proficient, Figures 11 and 12 show some of the results 

comparing VMEA with no prediction and VMEA without prediction and using the upd1 and upd2 schemes (applied after the 

change). So, it seems that the prediction unit was in fact responsible for the observed improvements. Preparing the 

population before the change happens proved to be helpful to the readaptation of the algorithm. Currently we are trying to 

use different methods before the change occur, such us, estimating also the direction of the change and introducing 

individuals that probably will be the fittest after the next change happens. 
 



Prediction using Linear Regression in Dynamic Environments with Periodic Changes 10 

 
Figure 11. Comparing VMEA with VMEAp_upd1 and 

VMEA without the prediction unit using the upd1 

method after the change: pattern 10-20-10. 

 
Figure 12. Comparing VMEA with VMEAp_upd2 and 

VMEA without the prediction unit using the upd2 

method after the change: pattern 10-20-10. 

 

6. Conclusions and Future Work 

A prediction method was applied using linear regression to estimate the moment when next change will occur. This 

prediction unit was applied in an EA to deal with dynamic environments. Based on the predicted moment of future 

changes we tried to prepare the population before the alteration occurs. Since the prediction could not be precise, we 

assume a possible error of five generations. When next change was close, we used two methods for changing the 

population before the change and minimize the consequences in the EA‟s efficiency: merge population and memory 

or merge the population with part of the memory and with some new created individuals. We observed that the 

proposed schemes enhanced the EA‟s performance in cyclic environments with smaller change periods. It was 

observed a continuous improving of the EA‟s adaptability along time. Currently, we are extending this work, 

introducing methods for estimate the direction of the change and try to be more exact in the information introduced in 

the population before the change happens. Mechanisms to reduce the error in the predicted values are also being 

tested. We are also interested in use this approach and compare it with other methods based on estimation.  
 

7. Acknowledgment 

The work described in this report was partially financed by the PhD Grant BD/39293/2006 of the Foundation for Science and 

Technology of the Portuguese Ministry of Science and Technology and High Education. 

 

8. References 

[1] J. Branke. Memory Enhanced Evolutionary Algorithms for Changing Optimization Problems. Proc. of Congress on 

Evolutionary. Computation, pp. 1875-1882, IEEE, 1999. 

[2] P. A. N. Bosman. Learning, Anticipation and Time-deception in Evolutionary Online Dynamic Optimization. In S. Yang and 

J. Branke, editors, GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization, 2005. 

[3] P. A. N. Bosman, H. La Poutré. Computationally Intelligent Online Dynamic Vehicle Routing by Explicit Loa Prediction in 

Evolutionary Algorithm. Proceedings of Parallel Problem Solving from Nature, Lecture Notes in Computer Science 4193, 

pp. 312-321, Springer Verlag Berlin, 2006. 

[4] H. G. Cobb. An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms having 

Continuous, Time-Dependent Nonstationary Environments. TR AIC-90-001, Naval Research Laboratory, 1990. 

[5] J. J. Grefenstette. Genetic Algorithms for Changing Environments. Proc. of the 2nd Int. Conf. Parallel Problem Solving from 

Nature 2, pp. 137-144, North-Holland, 1992. 

[6] I. Harvey. The Microbial Genetic Algorithm. Unpublished, 1996. 

[7] S. J. Louis and Z. Xu. Genetic algorithms for open shop scheduling and re-scheduling. In M. E. Cohen and D. L. Hudson, 

editors, ISCA Eleventh International Conference on Computers and their Applications, pp. 99-102, 1996. 

[8] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. 3rd edition, Springer Verlag Berlin, 1999. 



Prediction using Linear Regression in Dynamic Environments with Periodic Changes 11 

[9] N. Mori, H. Kita, and Y. Nishikawa. Adaptation to a changing environment by means of the thermodynamical genetic 

algorithm. In H.-M. Voigt, editor, Parallel Problem Solving from Nature, 1141 in LNCS, pp. 513-522. Springer Verlag 

Berlin, 1996. 

[10] D. S. Moore and G. P. McCabe. Introduction to the Practice of Statistics. Freeman and Company, 4 th Edition, 2003. 

[11] P. J. Russell. Genetics. 5th edition, Addison-Wesley, 1998. 

[12] A. Simões and E. Costa. An Immune System-Based Genetic Algorithm to Deal with Dynamic Environments: Diversity and 

Memory. Proc. of the 6th Int. Conf. on Artificial Neural Networks, pp. 168-174, Roanne, France, 23-25 April, Springer, 

2003. 

[13] A. Simões and E. Costa. Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments. In M. 

Giacobini et al. (Eds.): EvoWorkshops 2007, Applications of Evolutionary Computing, LNCS 4448, pp. 617–626, Springer 

Verlag, 2007. 

[14] A. Simões and E. Costa. Improving Memory-based Evolutionary Algorithms in Changing Environments. In CISUC 

Technical Report TR2007/004, ISSN 0874-338X, March 2007. 

[15] P. Smith. Conjugation: A Bacterially Inspired Form of Genetic. Late Breaking Papers at the Genetic Programming 1996 

Conf., Stanford Univ., July 28-31, 1996. 

[16] P. D. Stroud. Kalman-extended Genetic Algorithm for Search in Nonstationary Environments with Noisy Fitness 

Evaluations. IEEE Transactions on Evolutionary Computation, 5(1):66-77, 2001. 

[17] J. van Hemert, C. Van Hoyweghen, E. Lukshandl, and K. Verbeeck. A Futurist Approach to Dynamic Environments. 

GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pages 35-38, 2001. 

[18] S. Yang. Experimental Study on Population-Based Incremental Learning Algorithms for Dynamic Optimization problems. 

Soft Computing, vol. 9, nº 11, pp. 815-834, 2005. 

[19] S. Yang. Memory-Based Immigrants for Genetic Algorithms in Dynamic Environments. Proc. of the 2005 Genetic and 

Evolutionary Computation Conference, Vol. 2, pp. 1115-1122, ACM Press, 2005. 


