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Abstract. Diversity and memory are two major aspects when dealing with dynamic environments. The 
algorithms’ adaptability to changes is usually dependent on these two issues. In this paper we investigate some 
improvements to a memory-based evolutionary algorithm already studied with success in dynamic optimization 
problems. This algorithm uses a memory and a population both with variable sizes and a biological inspired 
recombination operator to control the population’s diversity. We propose two new replacing strategies to 
incorporate in the algorithm and we perform a comparative study with previous approaches. These replacing 
strategies allow the memory to grow in a more controlled manner, storing relevant information from the different 
environments. The results show that the adaptability of the algorithm improves through the time, proving that the 
stored information becomes useful in future situations. Combined with the conjugation operator the proposed 
schemes powerfully improve the effectiveness of the algorithm. We also evidenced that high diversity levels 
doesn’t always mean better performance of Evolutionary Algorithms in dynamic environments. 

Keywords: Evolutionary Algorithms, Dynamic Environments, Memory, Diversity, Replacing Strategies 

 

1 Introduction 
Evolutionary Algorithms (EAs) have been used with success in a wide area of applications. Traditionally, EAs are 
well suited to solve problems where the environment is static. The generational process of evolution often leads the 
EA to the best solution. However, most of real-world applications are dynamic and the algorithms used to solve 
them must be able to adapt to the new circumstances.  
One intuitive and widely explored idea of helping the EAs to continuously adapt to new conditions in the 
environment is to use information obtained in the past. A number of authors have addressed the issue of keeping 
track of best individuals’ information in several points of the evolutionary process and use it whenever a change 
occurs. This scheme is usually referred as memory and can be implicit, such as diploid representations ([8], [10]), or 
explicit, usually implemented with an extra population ([1], [12], [13], [16]). Other extensions introduced to classical 
EAs to deal with dynamic environments include maintaining population’s diversity ([3], [7], [12]) or using multi-
populations ([2], [15]). 
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In this report we are interested in studying proficient ways of using memory. We propose two different and efficient 
schemes of storing individuals into the memory (replacing strategies) and will test them in an EA with population 
and memory of variable size previously proposed and studied in [13]. Also, we will use a biologically inspired 
genetic operator called conjugation to control the population’s diversity. This genetic operator is compared with 
uniform crossover and interesting conclusions about the population’s diversity may be drawn. 
The report is organized as follows: section 2 presents previous work using the Variable-size Memory Evolutionary 
Algorithm (VMEA). Section 3 describes several replacement strategies found in literature and introduces two new 
replacing schemes. Section 4 describes the implementation of the conjugation operator. The experimental setup is 
explained in section 5. In section 6 we show the obtained results concerning algorithms efficiency, growth of the 
memory and the population’s diversity. Finally, in section 7 we state the main conclusions and ideas for future work. 
 

2. Variable-Size Memory Evolutionary Algorithm 
Simões and Costa [13] proposed an EA called VMEA – Variable-size Memory Evolutionary Algorithm, to deal with 
dynamic environments. This algorithm uses a memory population, responsible for storing good individuals of the 
evolved population in several points of the search process. The innovative aspect of the algorithm is that the two 
populations - search and memory – have variable sizes that can change between two boundaries: the population 
starts with a value of POP_MIN and the memory starts with MEM_MIN individuals. Both populations are created at 
random. The size of the populations can change according to the evolutionary process, but the sum of the two 
populations cannot go beyond a certain limit (TOTAL_MAX). The memory is updated from time to time and if the 
established limits are not reached, the best individual of the current population is stored in the memory. If there is no 
room to save this new solution, the memory is cleaned, removing individuals of equal genotype. If no individual was 
removed with this cleaning process, the best individual of the current population is introduced, replacing a memory 
individual chosen accordingly to the replacing scheme. In that paper, it was used an aging based replacing strategy 
that will be explained in the next section. 
The memory is evaluated every generation and a change is detected if at least one individual in the memory changes 
its fitness. If a memory updating happens at generation t, then the next memory updating time is Tchg = t + 
rand(5,10);  rand(5,10) is a random integer generated in the interval [5, 10]. 
If an environmental modification is detected, the best individual of the memory is introduced into the population. In 
the case of either the population’s size or the sum of the two populations reach the allowed maximum, the best 
individual in memory replaces the worst one in the current population.  
The pseudocode of VMEA is given in Fig. 1. 

 
3. Replacing Strategies 
The idea of adding memory to an EA has been widely used by a large number of authors. The main reason for the 
fact that so many algorithms explore this idea is that memory can store individuals that can be useful in the future, 
when previous environments reappear. Memory can be also used to maintain diversity in the population, allowing 
better readaptation of the EAs. Some questions can be drawn concerning memory:  1) when and which individuals to 
store in memory, 2) how many, 3) which should be replaced when memory is full, 4) which individuals should be 
selected from memory and introduced in the population when a change happens [1]. In this report we will try to 
answer to the third question: since the size of the memory in not unlimited, it is necessary to choose which 
individuals should be replaced when new ones have been selected to be stored. This process is usually called by 
replacing strategy. Branke [1] compares a number of replacement strategies for inserting new individuals into the 
memory. The most popular is called by similar and selects the most analogous individual current in memory to be 
replaced, as long as the new one it is better. This replacing strategy was already used in several works ([1], [16], 
[17]). In future references in this text, it will be called by sim. 
Simões and Costa [13] proposed a replacing strategy based in the aging of memory individuals: all individuals of the 
memory start with age equal to zero, and every generation their age is increased by one. Besides, if they were 
selected to the population when a change occurs, its age is increased by a certain value and finally if a limit age is 
reached, their ages are reset to zero. When the memory is full and it is necessary to start replacing individuals, the 
youngest one is selected. The basic idea is to replace one individual with less contribution in the evolutionary 
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process: one that was never selected to the population or that was in the memory for a long time and so, its age 
became zero. This replacing strategy in future references will be called by age1. 
In this report we propose two different replacing strategies to use in VMEA. The first, called by age2, is also based 
on the age of memory individuals, but their ages are computed in a different way. The age of an individual i is given 
by: 

agei(t) = agei (t) + 1 + fitnessi*fit_rate                  (1) 

 
As suggested by [1], the individuals’ age is computed every generation as a linear combination of their actual age 
and a contribution of its fitness (fit_rate). 
Besides, memory individuals never die, i.e., their age is not reset to zero. This way, we do not penalize individuals 
that last long in memory.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 - Pseudo-code of the Variable Memory Evolutionary Algorithm (VMEA) 

 

pop_size = POP_MAX   
mem_size = MEM_MIN 
Initialize Memory Randomly 
Initialize Population Randomly 
TM = rand(5,10) 
t=0; 
repeat 
 Evaluate memory 
 Evaluate population 
 Select mating pool 
 Recombination  
 Mutation 
 if  is time to update memory  then 
      TM = t + rand(5,10) 
      Select best individual of the population 
      if there is room to one more individual in memory then 
       Store best individual in memory 
  Increase mem_size 
      else 
  if cleanMemory is successful then 

                   Update mem_size 

                   Store best individual in memory 
     else 

        Replace individual of memory according the replacing scheme 

if  change is detected  then 
      Select best individual from memory 

      if there is room to one more individual in population then 

                   Store individual in population 

             Increase pop_size 
          else 
             if cleanMemory is successful then 

           Update mem_size 

                      Store individual in population 
          else 

        Replace worst individual of population 

until stop_condition 
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Mating pool 
 

1110001110  F= 6 
0000110011  F=4 
1111100111  F=7 
0000000000  F=0 
1111111110  F=9 
1000000000  F=1 

Donors 
 

1110001110  F= 6 
1111100111  F=7 
1111111110  F=9 

Recipients 
 

0000110011  F=4 
0000000000  F=0 
1000000000  F=1 

Selected pair: 
Donor:      1111100111 
Recipient: 0000000000  
  
random points: 3, 7 
 
Offspring: 0001100100  

create 
ONE new 
individual 

When its time to update memory, if there is room for the best individual of current population, we add it to memory, 
increasing its size. If memory is full, we will replace the youngest individual, considering that age was calculated 
using equation 1. 
The second replacing strategy, denominated by generational, selects the worst individual present in the memory 
since the last change. For instance, if last change occurred at generation t1 and currently the algorithm is in 
generation t2, when it is time to insert an individual into the memory we will replace the worst individual that was 
stored between generation t1+1 and t2-1.  
When its time to update memory, if no individual has been stored since last change and the memory is not full, we 
add the best individual of the population to the memory. In the case of the maximum size of the memory has been 
reached, we use the ‘most similar’ strategy and substitute the closest individual in terms of Hamming distance, if it is 
worse than the current best. This way, the maximum size of the memory is reached slower, the redundant 
information is minimized and the best information of a certain period of the evolutionary process is stored. This 
strategy will be called by gen. 
 

4. Bacterial Conjugation 
It is widely accepted in the Evolutionary Computation community that genetic operators are essential to the 
efficiency of EAs. They allow creating new individuals, using the genetic information of previous ones, allowing the 
algorithm to converge to the desired solution. Traditionally crossover is used as the main genetic operator. 
Nevertheless, other biologically inspired operators have been proposed and tested with some degree of success. 
These new genetic operators were applied either in static ([5], [11]), or dynamic environments ([12], [17]).  
In biology, bacterial conjugation is the transfer of genetic material between bacteria through cell-to-cell contact. 
Sometimes bacterial conjugation is regarded as the bacterial equivalent of sexual reproduction or mating, but in fact, 
it is merely the transfer of genetic information from a donor to a recipient cell [9]. 
Computational conjugation was introduced independently by Harvey and Smith.  Smith [14] proposed an 
implementation of this operator, called simple conjugation: the donor and the recipient were chosen randomly, 
transferring the genetic material between two random points. Harvey [5] introduced a tournament based conjugation:  
two parents are selected on a random basis, and then the winner of the tournament becomes the donor and the loser 
the recipient of the genetic material. That way, the conjugation operator can be applied repeatedly by different 
donors to a single recipient.  
Simões and Costa [13] used conjugation in the context of dynamic environments. The authors applied conjugation 
after selecting the individuals to the mating pool, using the idea of donor-recipient genetic transfer. As it happens in 
biology, the donor individuals give genetic material to the recipient ones. After selecting the individuals to mate, 
using the established selection method, they are divided into two groups: the n/2 best individuals become the 
‘donor’, the remaining become the ‘recipient’ (n is the current size of the population). Then, the ith donor transfers 
part of its genetic material to the ith recipient (i=1, …n/2). This injection is controlled by two points randomly 
chosen. The donor remains unchanged. Following that, all offspring created by this process are joined with the donor 
individuals and they become the next population of size n.  Fig. 2 shows how conjugation is applied to one pair of 
individuals of the mating pool. 
 

 

 

 

 

Fig. 2 - Creating a new individual using conjugation 
 
The results obtained using this operator in an EA to solve dynamic optimization problems were quite promising [13]. 
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5. Experimental Design 

5.1. Dynamic Test Environments 
The dynamic environments used to test our approaches were constructed using Yang’s Dynamic Optimization 
Problems (DOP) generator. With this generator it is possible to construct different dynamic environments from any 
binary-encoded stationary function using the bitwise exclusive-or (XOR) operator.  The basic idea of the generator 
can be described as follows: when evaluating an individual x in the population, first we perform the operation x∆M 
where ∆ is the bitwise XOR operator and M a binary mask previously generated. Then, the resulting individual is 
evaluated to obtain its fitness value. If a change happens at generation t, then we have f(x, t+1) = f(x ∆ M, t). Using 
the DOP generator the characteristics of the change are controlled by two parameters: the speed of the change, r, 
which is the number of generations between two changes, and the magnitude of the change, ρ, that consists in the 
ratio of ones in the mask M. The more ones in the mask the more severe is the change. The DOP generator also 
allows constructing problems where the changes can be cyclic, cyclic with noise or non-cyclic. In the first case, 
several masks are generated according to the ρ parameter and are consecutively applied when a change occurs. It is 
thus possible that previous environments reappear later. In the second case noise is added by mutating some bits in 
the mask with a small probability. In the third case, the mask applied to the individuals is always randomly generated 
every time we change the environment. More details about Yang’s DOP generator can be found in [18]. 
In this paper we constructed 20 cyclic DOP, setting the parameter r to 10, 50, 100 and 200. The ratio ρ  was set to 
different values in order to test different levels of change: 0.1 (a light shifting) 0.2, 0.5, 1.0 (severe change). In order 
to study the behavior of the algorithm in randomly changing environments we also set ρ to a uniformly randomly 
generated value in the interval [0.01 and 0.99] (called by rnd).  
To test and compare the several replacing schemes combined with two different genetic operators, we selected two 
benchmark problems: the knapsack problem (100 items) and OneMax problem (300 bits).   
 
Knapsack Problem 
The knapsack problem is a NP-complete combinatorial optimization problem often used as benchmark. It consists in 
selecting a number of items to a knapsack with limited capacity. Each item has a value (vi) and a weight (wi) and the 
objective is to choose the items that maximize the total value, without exceeding the capacity of the bag. We used a 
knapsack problem with 100 items using strongly correlated sets of randomly generated data [6]. The fitness of an 
individual is equal to the sum of the values of the selected items, if the weight limit is not reached. If too many items 
are selected, then the fitness is penalized in order to ensure that invalid individuals are distinguished from the valid 
ones. 
 
OneMax problem 

The OneMax problem aims to maximize the number of ones in a binary string. So, the fitness of an individual 
consists in the number of ones present in the binary string. This problem has a unique solution. In our experiments 
we used individuals of length 300. 
 
5.2. Experimental Setup 
 
Algorithms’ parameters 
Previous work compared VMEA using the age1 replacing strategy with other algorithms: the random immigrants’ 
algorithm [4] and the memory-enhanced GA (MEGA) studied in [16]. The results proved that VMEA, using either 
crossover (VMEA Cx) or conjugation (VMEA Cj), generally outperformed the other approaches. A typical 
comparative graphic of the behavior of VMEA and the other studied algorithms is shown in Fig. 3. To see more 
results consult [13]. 
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(a)                               (b) 

Fig. 3 - VMEA versus MEGA and RIGA in a) Knapsack and b) OneMax 

 
In this study we will be focused in the performance of VMEA and we will compare its efficiency using several 
replacing strategies: similar (sim), proposed by Branke in [1], age1, already used in previous work [13] and the two 
new ones proposed and explained before in this paper (age2 and gen). For each case, VMEA was tested using 
conjugation (VMEA-Cj) and uniform crossover (VMEA-Cx). This way we could make some conclusions about the 
efficiency of this genetic operator in changing problems and study its impact in the population’s diversity. The 
algorithms parameters were set as follows: generational replacement with elitism of size one, tournament selection 
with tournament of size two, uniform crossover with probability pc=0.7 (the same probability was used with 
conjugation) and mutation applied with probability pm=0.01. The search population starts with 100 individuals, the 
memory starts with 10 individuals, both created randomly. Their sizes are variable, changing through the time, but 
the sum of the two populations can not surpass 120. The age1 strategy was implemented the same way as described 
in [13]. For the strategy age2, computed according equation (1), we set fit_rate with 0.1 (value chosen after some 
preliminary experimentation). 
For each experiment of an algorithm, 30 runs were executed and the number of environmental changes was 200 with 
r =10 (2000 generations), 80 with r =50 (4000 generations) and 40 with r=100 and 200 (4000 and 8000 generations, 
respectively). The overall performance used to compare the algorithms was the best-of-generation fitness averaged 
over 30 independent runs, executed with the same random seeds: 

∑ ∑
= =

⎥
⎦

⎤
⎢
⎣

⎡
=

G

i

N

j
ijbestF

NG
Foverall

1 1

11                            (2) 

G=number of generations, N=number of runs. 
 

6. Experimental Results 
The statistical validation of the results was made using paired one-tailed t-test at a 0.01 level of significance. Each 
line of the tables 1 and 2 compares a pair of replacement schemes and the used notation is ‘+”, “-“, “++” or “--“, 
when the first strategy is better than, worse than, significantly better than, or significantly worse than the second one. 
In the next sections we show the results concerning the efficiency of the algorithm using the different replacing 
strategies, the diversity levels measured in population and memory and finally, the observed results in the growth of 
the population and memory sizes using the different schemes. 
 

6.1. Comparing Replacing Strategies 
The global results are plotted in Fig. 4 and 5. Analyzing the results on dynamic knapsack, through the values of 
Table 2 and Fig. 4, we can see that the proposed gen replacing scheme obtained the best results always, except when 
r=10. This happens because the change period is small and, when a change occurs, most of the times, no individual 
of that period was already stored. So, in this case, when memory is full, we replace the most similar. Therefore, the 
observations made when r=50, 100 and 200 didn’t happen for r=10. In this case, the best replacing strategy was the 



Variable-size Memory Evolutionary Algorithm: Studies on the impact of different replacing strategies in the algorithm’s 
performance and in the population’s diversity when dealing with dynamic environments 

7

proposed age2. The age2 scheme compared with the remaining was not so effective. In fact, the results in Table 1 
show that, age2 performs better in small change periods and combined with conjugation. These results confirm the 
difficulty of finding a trade-off between the fitness and age contributions, as suggested in [1].   
On dynamic OneMax, the gen replacing strategy outperformed the remaining schemes on most DOPs.  Once again 
the weak performance was observed when r=10. Table 2 and Fig. 5 show the global results on dynamic OneMax. 
 

age2 vs others Knaspsack OneMax
T-test results r↓   0.1 0. 0. 1 rnd 0. 0. 0. 1 rnd 

age2 Cx -- age1 ++ ++ ++ ++ ++ ++ + + + ++ 
age2 Cx -- age1 -- -- - - -- ++ ++ -- -- ++ 
age2 Cx -- sim ++ ++ ++ ++ ++ ++ + + + ++ 
age2 Cx -- sim -- ++ -- - -- ++ ++ + + ++ 
age2 Cx -- gen + ++ + ++ - - - + + - 
age2 Cx -- gen -- - -- - -- ++ ++ -- -- ++ 
age2 Cj -- age1 ++ ++ ++ ++ ++ -- - ++ ++ -- 
age2 Cj -- age1 ++ ++ ++ ++ ++ ++ + - - ++ 
age2 Cj -- sim ++ ++ ++ ++ ++ -- - ++ ++ -- 

age2 Cj -- sim Cj ++ ++ ++ ++ ++ ++ ++ ++ ++ + 
age2 Cj -- gen ++ ++ ++ ++ ++ -- -- ++ ++ -- 

age2 Cj -- gen Cj ++ ++ ++ ++ ++ + + - - - 
age2 Cj - age2 

10 

++ ++ ++ ++ ++ -- -- ++ ++ -- 
age2 Cx -- age1 -- + ++ + -- -- ++ + - -- 
age2 Cx -- age1 -- -- -- -- -- -- -- -- -- -- 
age2 Cx -- sim -- -- - + -- -- -- + - -- 
age2 Cx -- sim -- -- -- -- -- -- ++ -- -- -- 
age2 Cx -- gen -- -- -- -- -- -- -- -- -- -- 
age2 Cx -- gen -- -- -- -- -- -- -- -- -- -- 
age2 Cj -- age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
age2 Cj -- age1 -- ++ ++ - -- ++ + - -- ++ 
age2 Cj -- sim ++ ++ ++ ++ + -- ++ ++ ++ -- 

age2 Cj -- sim Cj -- -- - + -- -- ++ + -- -- 
age2 Cj -- gen -- -- -- -- -- -- -- -- -- -- 

age2 Cj -- gen Cj -- -- -- -- -- -- ++ + - -- 
age2 Cj - age2 

50 

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
age2 Cx -- age1 -- -- ++ + - -- -- - + -- 
age2 Cx -- age1 -- -- -- -- -- -- -- -- -- -- 
age2 Cx -- sim -- -- - + -- -- -- -- - -- 
age2 Cx -- sim -- -- -- -- -- -- -- -- -- -- 
age2 Cx -- gen -- -- -- -- -- -- -- -- -- -- 
age2 Cx -- gen -- -- -- -- -- -- -- -- -- -- 
age2 Cj -- age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
age2 Cj -- age1 -- + + - -- -- ++ -- -- -- 
age2 Cj -- sim ++ ++ ++ ++ ++ + ++ ++ ++ + 

age2 Cj -- sim Cj -- -- -- - -- -- -- -- -- -- 
age2 Cj -- gen -- -- -- -- -- -- -- -- -- -- 

age2 Cj -- gen Cj -- -- -- -- -- -- -- -- - -- 
age2 Cj - age2 

100 

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
age2 Cx -- age1 - - + - + - + ++ - - 
age2 Cx -- age1 -- -- -- -- -- -- -- -- -- -- 
age2 Cx -- sim -- -- -- -- -- -- -- -- -- -- 
age2 Cx -- sim -- -- -- -- -- -- -- -- -- -- 
age2 Cx -- gen -- -- -- -- -- -- -- -- -- -- 
age2 Cx -- gen -- -- -- -- -- -- -- -- -- -- 
age2 Cj -- age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
age2 Cj -- age1 - - + - - + + + - - 
age2 Cj -- sim ++ ++ ++ ++ ++ ++ + ++ ++ ++ 

age2 Cj -- sim Cj ++ ++ ++ ++ ++ -- -- ++ ++ -- 
age2 Cj -- gen -- -- -- -- -- -- -- -- -- -- 

age2 Cj -- gen Cj -- -- -- -- -- -- -- -- -- -- 
age2 Cj - age2 

200 

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

Table 1. The t-test results of comparing the age2 scheme with all the other 
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gen vs others KP OneMax
T-test results r↓   ρ→ 0.1 0. 0. 1 rnd 0. 0. 0. 1 rnd 
gen Cx - ag1 ++ - + + ++ ++ ++ - + ++ 
gen Cx - age1 -- -- -- -- -- ++ ++ -- -- ++ 
gen Cx - age2 - -- - -- + + + - - + 
gen Cx - age2 -- -- -- -- -- ++ ++ -- -- ++ 
gen Cx - sim ++ ++ + ++ ++ ++ ++ + + ++ 

gen Cx - sim Cj -- - -- -- -- ++ ++ + + ++ 
gen Cj - ag1 Cx ++ ++ ++ ++ ++ -- -- ++ ++ -- 
gen Cj - age1 + - + - + ++ + - + ++ 
gen Cj - age2 ++ + ++ + ++ -- -- ++ ++ -- 
gen Cj - age2 -- -- -- -- -- - - + + + 

gen Cj - sim Cx ++ ++ ++ ++ ++ -- -- ++ ++ -- 
gen Cj - sim Cj ++ ++ - - + ++ ++ ++ ++ ++ 
gen Cj - gen Cx 

10 

++ ++ ++ ++ ++ -- -- ++ ++ -- 
gen Cx - ag1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - sim ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

gen Cx - sim Cj ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - ag1 Cx ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - age1 ++ ++ ++ ++ ++ ++ - - - ++ 
gen Cj - age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - age2 ++ ++ ++ ++ ++ ++ -- - + ++ 

gen Cj - sim Cx ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - sim Cj ++ ++ ++ ++ ++ ++ ++ + - ++ 
gen Cj - gen Cx 

50 

++ ++ ++ ++ ++ -- -- -- -- -- 
gen Cx - ag1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - sim ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

gen Cx - sim Cj ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - ag1 Cx ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - age1 ++ ++ ++ ++ ++ ++ ++ ++ -- ++ 
gen Cj - age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - age2 ++ ++ ++ ++ ++ ++ ++ ++ + ++ 

gen Cj - sim Cx ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - sim Cj ++ ++ ++ ++ ++ ++ ++ ++ -- ++ 
gen Cj - gen Cx 

100 

++ ++ ++ ++ ++ - ++ ++ -- + 
gen Cx - ag1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cx - sim ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

gen Cx - sim Cj ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - ag1 Cx ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - age1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - age2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

gen Cj - sim Cx ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - sim Cj ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
gen Cj - gen Cx 

200 

++ ++ ++ ++ ++ ++ ++ + - ++ 
 
Table 2. The t-test results of comparing the gen scheme with all the other 
 

Observing Fig. 6 to 15 we confirm that using the proposed gen scheme the VMEA obtained excellent performances. 
The information stored in memory allows a continuously adaptation of the algorithm, contrary to the remaining 
replacing strategies. Another observed fact is that conjugation, combined with any replacing strategy, is in general 
superior to uniform crossover, just as observed in previous results published in [13]. 
Even with random change ratio, the algorithm implemented with the gen scheme was able to readapt quickly after a change. This 
behaviour indicates that the information stored in memory is useful in future situations and in general the important information 
about the past is not destroyed when it’s necessary start replacing individuals. 
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Fig. 4 - Results on dynamic Knapsack problem, with different change ratios (ρ) and r=10, 50, 100 and 200 
 

 
Fig. 5 - Results on dynamic OneMax problem, with different change ratios (ρ) and r=10, 50, 100 and 200 
 
 

 
 

Fig. 6 – Dynamic behavior of VMEAs on dynamic Knapsack, with r=10, 50, 100 and 200, when ρ = 0.1 
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Fig. 7 - Dynamic behavior of VMEAs on dynamic Knapsack, with r=10, 50, 100 and 200, when ρ = 0.2 
 
 

 
Fig. 8 - Dynamic behavior of VMEAs on dynamic Knapsack, with r=10, 50, 100 and 200, when ρ = 0.5 
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Fig. 9 - Dynamic behavior of VMEAs on dynamic Knapsack, with r=10, 50, 100 and 200, when ρ = 1.0 
 
 

 
Fig. 10 - Dynamic behavior of VMEAs on dynamic Knapsack, with r=10, 50, 100 and 200, when ρ = rnd 
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Fig. 11 - Dynamic behavior of VMEAs on dynamic OneMax, with r=10, 50, 100 and 200, when ρ = 0.1 
 
 

 
Fig. 12 - Dynamic behavior of VMEAs on dynamic OneMax, with r=10, 50, 100 and 200, when ρ = 0.2 
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Fig. 13 - Dynamic behavior of VMEAs on dynamic OneMax, with r=10, 50, 100 and 200, when ρ = 0.5 
 

 
Fig. 14 - Dynamic behavior of VMEAs on dynamic OneMax, with r=10, 50, 100 and 200, when ρ = 1.0 
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Fig. 15 - Dynamic behavior of VMEAs on dynamic OneMax, with r=10, 50, 100 and 200, when ρ = rnd 

 

6.2. Population’s and Memory’s Diversity 
In order to study the impact of the genetic operators in the diversity dynamics, we stored the population’s and 
memory’s diversity at every generation using the standard measure based on the Hamming distance. At generation t, 
the diversity is given by: 
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where N is the number of runs, l is the length of the chromosomes, n is the population (or memory) size at generation 
t and HDij(k,t)  is the Hamming distance between individuals i and j at generation t, in the kth run.  
Analyzing the recorded values for population’s and memory’s diversity, we conclude that the conjugation operator 
always kept lower diversity levels in the population. Nevertheless, commonly, the best results are achieved using 
conjugation operator! As an example, we show the diversity of memory and population stored on the studied 
benchmarks, with r=50 and ρ=0.2, using the gen replacing scheme. As we saw in Fig. 6 to 15, the algorithm using 
the gen scheme and conjugation obtained the best results. From Fig. 16, it follows that the diversity level of the 
population using conjugation in this situation was inferior. In the memory, the opposite happens: the proposed 
replacing method keeps more diversity in the memory during the first environmental changes. After that, the 
memory’s diversity remains constant because different individuals keep being introduced. This is also true for the 
remaining strategies and for different values of r and ρ.  
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(a)            (b) 

Fig. 16 - Population’s and Memory’s diversity in the first 20 environmental changes in a) dynamic Knapsack and b) dynamic 
Onemax 
 
These results show that the usual idea that in dynamic environments it is crucial to maintain high diversity in the 
population, in order to improve the adaptability of algorithm, is not always true. One reason to this fact maybe 
because conjugation is less disruptive, since the information of the best individuals is always preserved, and that 
appear to be positive in the studied problems. We are making more experimentation in order to provide more 
consistent conclusions. 
 

6.3. Memory and Populations Sizes 
The results concerning the growth of memory’s and population’s sizes validate our assumption that using the gen 
replacing scheme the memory should grow slower. In fact, this was observed in all studied DOPs. Fig. 17 shows a 
typical example of how population and memory grow using the different replacing schemes. We can see that, with 
gen replacing strategy (black lines), the memory’s size increased very slowly and its maximum is only reached at the 
end of the evolutionary process.  

       
(a)                          (b) 

Fig. 17 - Population’s and Memory’s sizes on a) dynamic Knapsack and b) dynamic OneMax 
 
By storing individuals in memory, replacing the worst one that was memorized in the same change period, we save 
space to the good individuals that will appear in future generations, without having the need of replacing useful 
information. 
 
 
7. Conclusions 
This report exhaustively studied two new replacing strategies and tested its efficiency in the Variable-size Memory 
Evolutionary Algorithm. A genetic operator called conjugation was used combined with the proposed schemes. An 
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experimental studied was carried out using different dynamic optimization problems based in two benchmark 
problems. From the obtained results several conclusions can be drawn: First, the age2 replacing scheme obtained 
better results in dynamics with small period changes if combined with conjugation. For the remaining cases, the 
other replacing schemes were usually better. Second, analyzing the results inside the same method (age1-Cx vs 
age1-Cj, age2-Cx vs age2-Cj, sim-Cx, vs sim-cj and gen-Cx vs gen-Cj), conjugation typically outperformed uniform 
crossover (few exceptions were found). Third, the proposed gen replacing scheme provided excellent improvement 
in the algorithm’s performance. Few exceptions were observed for some DOPs with small change periods. These 
results prove that, when dealing with dynamic environments, the information stored in memory is crucial to the 
effectiveness of the algorithms. Since the memory’s capacity usually has limited size, this approach of replacing the 
individuals when memory is full proved to be an excellent choice. 
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