
Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

1

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic

Environments: an empirical study

Anabela Simões
1,2

, Ernesto Costa
2

1Dept. of Informatics and Systems Engineering

ISEC - Coimbra Polytechnic

Rua Pedro Nunes - Quinta da Nora

3030-199 Coimbra – Portugal

2Centre for Informatics and Systems of the University of Coimbra

Pólo II – Pinhal de Marrocos

3030 - 290 Coimbra – Portugal

abs@isec.pt, ernesto@dei.uc.pt

CISUC TECHNICAL REPORT TR 2006/04 - ISSN 0874-338X NOVEMBER 2006

Abstract. When dealing with dynamic environments two major aspects must be considered in order to

improve the algorithms‟ adaptability to changes: diversity and memory. Integrating these two

mechanisms in Evolutionary Algorithms we can enhance their performance. In this paper we propose and

study a new EA that combines two populations, one playing the role of memory, with a biological

inspired recombination operator to promote and maintain diversity. The size of the memory mechanism

may vary along time. The size of the (usual) search population may also change in such a way that the

sum of the individuals in the two populations does not exceed an established limit. The two populations

have minimum and maximum lengths allowed and their sizes change according with the stage of the

evolutionary process: if a alteration is detected in the environment, the search population increases its

size in order to readapt quickly to the new conditions. When it is time to update memory, its size is

increased if necessary. A genetic operator, inspired in the biological process of conjugation, is proposed

and used combined with this memory scheme. Our ideas were tested under different dynamics and

compared with other approaches on two benchmark problems. The obtained results show the efficacy,

efficiency and robustness of the investigated algorithm.

Keywords: Evolutionary algorithms, memory, diversity, dynamic environments

1 Introduction
Evolutionary Algorithms (EA) have been used with success in a wide area of applications. Traditionally, EA

are well suited to solve problems were the environment is static. The generational process of evolution often

leads the EA to the best solution. However, most of real-world applications are non-stationary and the

algorithms used to solve them must be able to adapt to the new circumstances.

For this type of optimization, an effective EA must be able to deal with the changes, detecting and reacting

rapidly when they occur. Classical EA are not suited for this kind of problems, since they have the tendency

to prematurely converge to a solution and, when the conditions of the environment change, the population

has all individuals usually concentrated in a specific point of the search space. So, it takes some time to the

population readapt and move towards the new solution.

To deal with these limitations, some improvements have been proposed as extensions of the classical EA.

These improvements include 1) maintaining diversity using several strategies,(e.g. triggered hypermutation

[4,14], random immigrants [8], new genetic operators [22],[23] or tag bits [11]), 2) using memory schemes

either implicit (e.g. [5], [7], [9], [15], [18] and [19]) or explicit (e.g. [1], [16], [23], [26], [29], [31] and 3)

using multi-populations (e.g. [3], [27])..

Recent works simultaneously studied with success the combination of memory schemes and mechanisms

for promoting and maintaining diversity [23], [28].

mailto:abs@isec.pt
mailto:ernesto@dei.uc.pt

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

2

In this paper we are also interested in study the combination of these two important issues. We propose an

EA with a search population and a memory population whose size may change. Both, search and memory

populations have minimum and maximum values and the global number of individuals in the two populations

cannot go beyond an established value.

The memory is updated from time to time and its size changes whenever it is necessary and possible. If the

maximum size is reached, the memory is cleaned to make room for new individuals.

When a change occurs, the best individuals from the memory are selected and inserted in the population.

The population‟s size can increase in several ways: until reach its maximum or until reach the total‟s

maximum. If one of these situations occurs, there are possible reactions of the algorithm: replace the worst

individuals of population or clean the memory.

Besides this memory framework, we introduce a new way of using the biologically inspired conjugation

operator, which improves quality of the solutions. Conjugation will be used as the main recombination

operator. This mechanism is applied after the matting pool is selected. The best individuals of the pool will

transfer part of its genetic material to the worst individuals of the pool. After that, the new individuals are

merged with the old population to form the next population.

The paper is organized as follows: section 2 presents an overview about past research using memory

schemes and promotion and maintenance of diversity in dynamic environments. Section 3 explains in detail

how the population and the memory of the EA change its size moving individuals from the latter to the

former. Section 4 describes the implementation of the conjugation operator. The experimental setup is

explained in section 5 and, finally, in section 6 we state the main conclusions and ideas for future work.

2 Relevant background

In the following we will give a short overview about different proposals involving memory schemes and/or

mechanisms to promote and maintain diversity in the context of dynamic environments.

4.1 Memory schemes

The most known approach using redundant representations is to use diploid instead haploid chromosomes.

This idea was suggested by [7] as an extension of the standard GA. Later, other authors investigated the idea

of diploidy, particularly its use in the context of dynamic environments (see [5], [9], [15], [18], [19].) The

redundant information when using a diploid representation acts as a memory for remembering past solutions

and promotes diversity in the population. In diploid chromosomes there are two genes to represent a certain

characteristic, but only one of them is expressed in the phenotype. This is controlled by a chosen dominance

mechanism.

When using explicit memory the main goal is to store useful information (good solutions) about the current

environment and reuse them when a change occurs. It can also permit the population to move to a different

area in the landscape jn one step, which would not be possible with common genetic operators [2].

Different approaches have been proposed in the literature. For instance, [16], introduced an algorithm which

stores in a memory the good candidate solutions for a robot controller together with information about the

environment. If a similar environment reappears in future then the corresponding stored solution is activated.

 [12] proposed an EA applied to scheduling. The idea behind this work is that when a change in the

environment occurs, the population is restarted using information of the population last run. [26] investigated

an algorithm in which individuals store information about their ancestors. When a change is detected, the

current and the past solutions are re-evaluated and the best one is activated. [1] proposed an EA with memory

which stores useful information about the environment. As the memory has a fixed size, several replacement

strategies were proposed in this paper. [23] introduced an EA inspired in the immune system in which

memory is similar to the functioning of B-Cells in human body. When a change is detected (an invasion

occurs), a B-Cell with high affinity is retrieved from memory, hypermutated, cloned and introduced in the

population in order to help the algorithm to readapt to the new conditions. A memory-enhanced GA was

proposed by [31] and uses a fixed size memory to store the best individual of the population. When the

environment changes, the memory is merged with the old population and the best individuals are selected to

undergo evolution. This author also investigated an associative memory scheme, where information of the

environments is kept associated with the best individual. So, when the environment changes this information

is used to generate a new chromosome [29].

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

3

4.2 Promoting Diversity

Several techniques have been proposed in order to preserve the diversity in a population. Standard EAs

because of selective pressure are biased towards a particular region of the search space. This fact implies a

premature convergence of the population and must be avoided, especially if we are dealing with dynamic

problems. The most popular techniques to promote populations‟ diversity are hypermutation [4], [14], which

consists in changing the mutation rate when a change is detected. Other approaches such as the random

immigrants [8], tag bits [11], or alternative genetic operators [22] aim to maintain or increase population‟s

diversity in EA allowing a quick reaction when modifications are detected.

There are some works where these two issues – diversity and memory – are combined within the same

algorithm claiming improved performance [23], [28].

3 Variable-size Memory Evolutionary Algorithm

We propose a new EA called VMEA – Variable-size Memory Evolutionary Algorithm, comprising two

populations: the main population searches the best solution and evolves as usual through selection, crossover

and mutation. The main difference is that its size can change between two bounds: POP_MIN and

POP_MAX.

The second population play the role of a memory, where the best individuals of the population in several

points of the generational process are stored. Its size also changes between off-line established limits

MEM_MIN and MEM_MAX. The sum of the two populations cannot go beyond a certain limit

(TOTAL_MAX). The individuals of the memory are aged: their age starts at zero, being increased by one at

every generation. If an individual is selected to the population when a change is detected, an extra value is

added to its age. Oldest individuals are those who stay longer in memory and/or contributed to adaptability of

the population in an environmental change. If individuals reach a LIMIT_AGE their ages are reset to zero.

The age of the individuals in the memory is used to select which individual to choose to withdraw when

memory is full (or the sum of the size of the two populations is equal to the permitted limit). The memory is

updated from time to time and if the established limits are not reached, the best individual of the current

population is stored. If there is no room to save this new solution, we first clean the memory removing the

individuals with the same genotype. If no individual was deleted through this process of cleaning, then the

best individual of the current population, if is fittest than the one with lowest age present in the memory,

replaces it.

The memory is evaluated every generation and a change is detected if at least one individual in the

memory changes its fitness (as it is suggested in [1] and [23]) and its updated at time TM=t + rand(5,10), the

same way as in [23].

If an environmental modification is detected, the best individual of the memory is introduced in the

population. In the case of either the population‟s size or the sum of the two populations have reached the

allowed maximum, the best individual in memory replaces the worst one in the current population.

Fig. 1, in the next page, describes in pseudo-code the general functioning of VMEA.

4 Promoting Diversity in the Search Population

Traditionally, EAs use crossover as the main genetic operator. In the past other biological inspired operators

have been proposed and tested with some degree of success . These new genetic operators were applied either

in static [6], [10], [20], [21] or dynamic environments [22], [23], [28].

When dealing with dynamic environments, the main purpose of using different biological operators is to

maintain the population‟s diversity in order to allow a better performance of the EA when a change is

detected.

In biology bacterial conjugation is the transfer of genetic material between bacteria through cell-to-cell

contact. Sometimes bacterial conjugation is regarded as the bacterial equivalent of sexual reproduction or

mating. But it cannot be considered actually sexual, as it does not involve the fusing of gametes and the

creation of a zygote. It is merely the transfer of genetic information from a donor cell to a recipient. In order

to perform conjugation, one of the bacteria, the donor, is the host to a conjugative plasmid [17].

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

4

Fig. 1. Pseudo-code of the Variable Memory Evolutionary Algorithm (VMEA)

Computational conjugation was introduced independently by Harvey and Smith (see [10], [24], [25]).

Smith used bacterial conjugation to neighbouring individuals placed in a square matrix in the context of

solving hard satisfiability problems. In simple conjugation two individuals of the matting pool are randomly

chosen and who is the donor and the recipient is also decided in a random manner. Then, two points are

defined and the donor gives the genes bounded by those points to the recipient [25]. Harvey introduced a

tournament based conjugation: two parents are selected on a random basis, and then the winner of the

tournament becomes the donor and the loser the recipient of the genetic material. That way, the conjugation

operator can be applied repeatedly by different donors to a single recipient [10]. In this paper conjugation is

applied differently. We perform conjugation involving the individuals selected to the mating pool, using the

idea of donor-recipient genetic transfer. As it happens in biology, the donor individuals give genetic material

to the recipient ones. After selecting the individuals to mate, using the established selection method, they are

divided in two groups: the n/2 best individuals become „donor‟, the remaining, becomes „recipient‟ (n is the

current size of the population). Then, the i
th

 donor transfers part of its genetic material to the i
th

 recipient

(i=1, …n/2). This injection is controlled by two points randomly chosen. The donor remains unchanged.

Following that, all offspring created by this process are joined with the donor individuals and they become

the next population of size n. Fig. 2 shows how conjugation is applied to one pair of the mating pool.

pop_size = POP_MAX

mem_size = MEM_MIN

Initialize Memory Randomly

Initialize Population Randomly

TM = rand(5,10)

t=0;

repeat

 Evaluate memory

 Evaluate population

 Select mating pool

 Recombination

 Mutation

 if is time to update memory then

 TM = t + rand(5,10)

 Select best individual of the population

 if there is room to one more individual in memory then

 Store best individual in memory

 Increase mem_size

 else

 if cleanMemory is successful then

 Update mem_size

 Store best individual in memory

 else

 Replace youngest individual of memory (if best)

if change is detected then

 Select best individual from memory

 if there is room to one more individual in population then

 Store individual in population

 Increase pop_size

 else

 if cleanMemory is successful then

 Update mem_size

 Store individual in population

 else

 Replace worst individual of population

until stop_condition

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

5

Mating pool

1110001110 F= 6

0000110011 F=4

1111100111 F=7

0000000000 F=0

1111111110 F=9

1000000000 F=1

Donors

1110001110 F= 6

1111100111 F=7

1111111110 F=9

Recipients

0000110011 F=4

0000000000 F=0

1000000000 F=1

Selected pair:

Donor: 1111100111

Recipient: 0000000000

random points: 3, 7

Offspring: 0001100100

create ONE new

individual

Fig. 2. Create a new individual using conjugation

5 Experimental study

5.1. Dynamic test environments

To test the performance of the proposed EA we constructed several dynamic environments using Yang‟s

DOP generator [29, 32]. With this generator it is possible to construct different dynamic environments from

any binary-encoded stationary function using the bitwise exclusive-or (XOR) operator.

The basic idea of the generator can be described as follows: when evaluating an individual x in the

population, first we perform the operation xM where  is the bitwise XOR operator and M a binary mask

previously generated. Then, the resulting individual is evaluated to obtain its fitness value. If a change

happens at generation t, then we have f(x, t+1) = f(x  M) [30])

For instance, suppose we have the individual x = 11111 which in the OneMax problem has the maximum

fitness. But if the environment changes and the mask M = 11111 is applied to x, then it becomes x = 00000

with fitness zero.

Using the DOP generator the characteristics of the change are controlled by two parameters: the speed of

the change, r, that is the number of generations between two changes, and the magnitude of the change, ,

that consists in the ratio of ones in the mask M. The more ones in the mask the more severe is the change

[32].

The DOP generator also allows constructing problems where the changes can be cyclic, cyclic with noise

or non-cyclic. In the first case, several masks are generated according to the  parameter and are

consecutively applied when a change occurs. This allows for characteristics of previous environments

reappear later. In the second case noise is added by mutating some bits in the mask with a small probability.

In the third case, the mask applied to the individuals is always randomly generated whenever is time to

change the environment. [29].

5.2. Experimental Setup

We selected two benchmark problems to test our VMEA to make comparisons with other algorithms easier:

the knapsack problem (100 items) and oneMax problem (300 bits).

Knapsack Problem

The knapsack problem is a NP-complete combinatorial optimization problem often used as benchmark. It

consists in selecting a number of items to a knapsack with limited capacity. Each item has a value (vi) and a

weight (wi) and the objective is to choose the items that maximize the total value, without exceeding the

capacity of the bag:





m

i

ii xvxv
1

)(max (1)

subject to the weight constraint:

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

6





m

i

ii Cxw
1

 (2)

We used a knapsack problem with 100 items using strongly correlated sets of randomly generated data

constructed in the following way [13, 30]:

wi = uniformly random integer [1, 50]
(3)

vi = wi + uniformly random integer [1, 5]
(4)





100

1

6.0
i

iwC (5)

The fitness of an individual is equal to the sum of the values of the selected items, if the weight limit is not

reached. If too many items are selected, then the fitness is penalized in order to ensure that invalid

individuals are distinguished from the valid ones. The fitness function is defined as follows:



























 

 

 



 

elsexww

Cxwifxv

xf

i i

iii

i i

iiii

,10

,

)(
100

1

100

1

10

100

1

100

1 (6)

Onemax problem

The onemax problem aims to maximize the number of ones in a binary string. So the fitness of an individual

consists in the number of ones present in the binary string. This problem has a unique solution. In our

experiments we used individuals of length 300.

Algorithms’ Parameters

Three kinds of environments were created from each of these two base problems, using Yang‟s DOP

generator: cyclic, cyclic with noise and random. The environment was changed every r generations (r = 10,

50, 100 and 200) and the ratio  was set to different values in order to test different levels of change: 0.1 (a

light shifting) 0.2, 0.5, 1.0 (severe change). In order to study the behaviour of the algorithms in randomly

changing environments we also set  to a uniformly randomly generated value in the interval [0.01 and 0.99]

(called by rnd).

To compare our approach we used two other algorithms: the random immigrants‟ algorithm [8] and the

MEGA algorithm proposed by [31]. VMEA was tested using conjugation (VMEA-Cj) and uniform crossover

(VMEA-Cx), in order to conclude about the efficiency of the proposed genetic operator in non-stationary

problems

For all the algorithms, parameters were set as follows: generational replacement with elitism of size one,

tournament selection with tournament of size two, uniform crossover with probability pc=0.7 (the same

probability was used with conjugation) and mutation applied with probability pm=0.01.

The population size was set to 100 individuals. This value was used as the maximum approved size for

the population in VMEA. In MEGA, the memory was used with size 10, and updated according the

description given in [31]. The ratio of immigrants used in RIGA was 0.1. The mutation ratio used for noisy

environments was 0.05.

In VMEA the memory size varied between 10 and 50 individuals. But the total of individuals in the two

populations could not surpass 120. The age limit for the individuals in memory was set to G/2, where G is

the total number of generations.

For each experiment of an algorithm, were executed 30 runs and the number of environmental changes

was 100 with r =10 (1000 generations), 40 with r =50 (2000 generations) and 20 with r=100 and 200 (2000

and 4000 generations, respectively). To compare the algorithms we stored the best-of-generation fitness

every generation.

The overall performance used to compare the algorithms was the best-of-generation fitness averaged over

30 independent runs, executed with the same random seeds:

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

7

 
 











G

i

N

j
ijbestF

NG
Foverall

1 1

11
 (7)

G=number of generations, N=number of runs.

5.3 Experimental results

The experimental results carried out to assess the efficiency of our algorithm shows that VMEA

outperformed, most of the times, the other two approaches. The statistical results comparing the algorithms

are reported in tables 1 and 2. We used paired one-tailed t-test at a 0.01 level of significance. The notation

used in tables 1 and 2, to compare each pair of algorithms is „+”, “-“, “++” or “--“, when the first algorithm is

better than, worse than, significantly better than, or significantly worse than the second algorithm. Fig. 3 and

4 plots the average of the best-of-generation fitness obtained in the knapsack and in onemax problem,

respectively.

 CYCLIC CYCLIC WITH NOISE NON CYCLIC

Statistical significance r,  0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd

VMEA Cx - RIGA

10

++ ++ ++ ++ ++ -- ++ ++ ++ -- ++ - -- ++ --

VMEA Cj - RIGA ++ ++ ++ ++ ++ -- ++ ++ ++ -- ++ -- -- ++ --

VMEA Cx - MEGA ++ ++ ++ ++ ++ + ++ ++ ++ ++ ++ + ++ ++ ++

VMEA Cj - MEGA ++ ++ ++ ++ ++ + ++ ++ ++ - ++ -- -- ++ ++

VMEA Cj - VMEA Cx ++ ++ ++ ++ ++ - - ++ ++ - ++ -- -- ++ --

VMEA Cx - RIGA

50

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++

VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ - ++ ++

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - VMEA Cx ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ - -- ++ ++

VMEA Cx - RIGA

100

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - VMEA Cx ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ -- ++ ++

VMEA Cx - RIGA

200

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - VMEA Cx ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++

Table 1. The t-test results of comparing the different algorithms (knapsack problem).

 CYCLIC CYCLIC WITH NOISE NON CYCLIC

Statistical significance r,  0.1 0.2 0.5 1 rnd 0.1 0.2 0.5 1 rnd 0.1 0.2 0.5 1 rnd

VMEA Cx - RIGA

10

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ +

VMEA Cj - RIGA ++ ++ ++ ++ ++ -- -- -- -- -- -- -- -- ++ --

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - MEGA ++ ++ ++ ++ ++ -- -- -- -- -- -- -- -- ++ --

VMEA Cj - VMEA Cx -- -- -- -- -- -- -- -- -- -- -- -- -- ++ --

VMEA Cx - RIGA

50

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ -- -- ++ --

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - MEGA -- ++ ++ ++ -- -- -- -- -- -- -- -- -- ++ --

VMEA Cj - VMEA Cx -- -- ++ ++ -- -- -- -- -- -- -- -- -- ++ --

VMEA Cx - RIGA

100

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ -- ++ ++

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - MEGA -- ++ ++ ++ -- -- -- -- - -- -- -- -- ++ --

VMEA Cj - VMEA Cx -- -- ++ ++ -- -- -- -- -- -- -- -- -- ++ --

VMEA Cx - RIGA

200

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - RIGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cx - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

VMEA Cj - MEGA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ - -- ++ -

VMEA Cj - VMEA Cx ++ ++ ++ ++ ++ -- -- -- -- -- ++ -- -- + --

Table 2. The t-test results of comparing the different algorithms (onemax problem).

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

8

In cyclic environments, our approach obtained the best solutions. As expected, RIGA had the worst

performance, obviously because it doesn‟t use any memory mechanism.

Comparing VMEA and MEGA, we can conclude that the mechanism we introduced performs very well is

cyclic environments. When the ratio is 1, the memory allows the algorithm to continue evolving when a

change occurs. Also, conjugation shows best performance in cyclic environment obtaining almost all the

times the best results.

Decreasing the ratio of change, the effect of memory is not so visible. In fact, both memory algorithms,

VMEA and MEGA, need some time to readapt when a change happens. This is because with small changes

in the XOR mask, when a repeated state reappears memory has already lost the useful information previously

stored.

For cyclic with noise and random environments the results were in general very poor. The four algorithms

didn‟t achieve high results as in the case of cyclic environments. Nevertheless, VMEA obtained, in most

cases, the best results, as we can see in tables 1 and 2.

C yc lic , r=10

1760

1770

1780

1790

1800

1810

1820

1830

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

C yc lic , r=5 0

1770

1780

1790

1800

1810

1820

1830

1840

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

C yc lic , r=10 0

1780

1790

1800

1810

1820

1830

1840

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

C yc lic , r=2 0 0

1780

1790

1800

1810

1820

1830

1840

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

C yc lic with no is e , r=10

1770

1775

1780

1785

1790

1795

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

C yc lic with no is e , r=5 0

1780

1785

1790

1795

1800

1805

1810

1815

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

C yc lic with no is e , r=10 0

1785

1790

1795

1800

1805

1810

1815

1820

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

C yc lic with no is e , r=2 0 0

1785

1790

1795

1800

1805

1810

1815

1820

1825

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

R a ndo m , r=10

1740

1750

1760

1770

1780

1790

1800

1810

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

R a ndo m , r=5 0

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

R a ndo m , r=10 0

1770

1780

1790

1800

1810

1820

1830

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

R a ndo m , r=2 0 0

1770

1780

1790

1800

1810

1820

1830

1840

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

Fig. 3. Global results for the knapsack problem.

In cyclic with noise environments, algorithms behave in similar way: after a change they need some time

to readapt and find a best solution. Memory improves the algorithm (VMEA-Cx achieves, in general, the

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

9

highest scores), but its effect is not as obvious as in cyclic environment. Fig. 5 shows the evolutionary

behavior of the algorithms in cyclic environments for =1, 0.5, 0.2 and 0.1, with r=10 and r=200, in the

knapsack problem. Fig. 6 show equivalent results in the onemax problem..

The VMEA algorithm combined with the conjugation operator performed better in the knapsack problem.

In fact, VMEA-Cj was, normally, the best algorithm. The same was not observed in the onemax problem. In

these cases, VMEA-Cj performed better in cyclic environments and with larger change periods.

c yc lic , r=10

120

140

160

180

200

220

240

260

280

300

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

c yc lic , r=5 0

200

220

240

260

280

300

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

c yc lic , r=10 0

220

230

240

250

260

270

280

290

300

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

c yc lic , r=2 0 0

240

250

260

270

280

290

300

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

c yc lic with no is e , r=10

120

140

160

180

200

220

240

260

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

c yc lic with no is e , r=5 0

220

230

240

250

260

270

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

c yc lic with no is e , r=10 0

240

245

250

255

260

265

270

275

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

c yc lic with no is e , r=2 0 0

240

245

250

255

260

265

270

275

280

285

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

rando m, r=10

120

140

160

180

200

220

240

0.1 0.2 0.5 1 rnd

RIGA

MEGA

VMEA Cx

VMEA Cj

rando m, r=50

150

170

190

210

230

250

270

290

0.1 0.2 0.5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

rando m, r=100

2 0 0

2 10

2 2 0

2 3 0

2 4 0

2 50

2 6 0

2 70

2 8 0

2 9 0

0 .1 0 .2 0 .5 1 rnd

RIGA

MEGA
VMEA Cx

VMEA Cj

rando m, r=200

220

230

240

250

260

270

280

290

0.1 0.2 0.5 1 rnd

RIGA

MEGA

VMEA Cx

VMEA Cj

Fig. 4. Global results for the onemax problem

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

10

C yc lic - r = 10 - c ha ng e ra t io = 1

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1 80 159 238 317 396 475 554 633 712 791 870 949

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyc lic - r = 10 - c hange ratio = 0.5

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1 80 159 238 317 396 475 554 633 712 791 870 949

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyc lic - r = 10 - c hange ratio = 0.2

1740

1750

1760

1770

1780

1790

1800

1810

1820

1 80 159 238 317 396 475 554 633 712 791 870 949

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyc lic - r = 10 - c hange ratio = 0.1

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197

RIGA

MEGA

VMEA Cx

VMEA Cj

C yc lic - r = 2 0 0 - c ha ng e ra t io = 1

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1 344 687 1030 1373 1716 2059 2402 2745 3088 3431 3774

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyc lic - r = 200 - c hange ratio = 0.5

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1 342 683 1024 1365 1706 2047 2388 2729 3070 3411 3752

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyc lic - r = 200 - c hange ratio = 0.2

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1 344 687 1030 1373 1716 2059 2402 2745 3088 3431 3774

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyc lic - r = 200 - c hange ratio = 0.1

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1 346 691 1036 1381 1726 2071 2416 2761 3106 3451 3796

RIGA

MEGA

VMEA Cx

VMEA Cj

Fig. 5. Dynamic behavior of the algorithms in cyclic environments, for the knapsack problem

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

11

Cyclic - r = 10, change ratio = 1

200

210

220

230

240

250

260

270

280

290

300

1 78 155 232 309 386 463 540 617 694 771 848 925

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyclic - r = 10, change ratio = 0.5

190

200

210

220

230

240

250

260

270

280

290

1 77 153 229 305 381 457 533 609 685 761 837 913 989

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyclic - r = 10, change ratio = 0.2

180

190

200

210

220

230

240

250

260

270

1 77 153 229 305 381 457 533 609 685 761 837 913 989

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyclic - r = 200, change ratio = 1

200

210

220

230

240

250

260

270

280

290

300

1 333 665 997 1329 1661 1993 2325 2657 2989 3321 3653 3985

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyclic - r = 200, change ratio = 0.5

230

240

250

260

270

280

290

300

1 331 661 991 1321 1651 1981 2311 2641 2971 3301 3631 3961

RIGA

MEGA
VMEA Cx

VMEA Cj

Cyclic - r = 200, change ratio = 0.2

230

240

250

260

270

280

290

300

1 166 331 496 661 826 991 1156 1321 1486 1651 1816 1981

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyclic - r = 10, change ratio = 0.1

150

170

190

210

230

250

270

1 79 157 235 313 391 469 547 625 703 781 859 937

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyclic - r = 200, change ratio = 0.1

220

230

240

250

260

270

280

290

300

1 333 665 997 1329 1661 1993 2325 2657 2989 3321 3653 3985

RIGA

MEGA

VMEA Cx

VMEA Cj

Fig. 6. Dynamic behavior of the algorithms in cyclic environments, for the onemax problem

In random environments, with high ratio changes (=1), VMEA achieved very good results. The memory

allows the algorithm to continuously improve its performance. This good performance is not as good as we

decrease the change ratio. The new environment is slightly different from previous one, but repeated states

appear later on and so memory has already lost the related information. Fig. 7 and 8 show some results

obtained in random environments in both studied problems.

For random change ratio ( = rnd) we observed a degradation of the results. In this case, RIGA and the

other two memory-based algorithms perform in a very similar way: after a change in the environment the

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

12

best-of generation fall for lower values and it is required some time to the algorithms start evolving again.

Even so, VMEA, typically arise the best marks.

Cyc lic with no is e - r = 10 - c hange ratio = 0.1

1740

1750

1760

1770

1780

1790

1800

1810

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyc lic with no is e - r = 200 - c hange ratio = 0.1

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1 172 343 514 685 856 1027 1198 1369 1540 1711 1882

RIGA

MEGA

VMEA Cx

VMEA Cj

Rando m - r = 10 - c hange ratio = 0.1

1700

1720

1740

1760

1780

1800

1820

1 80 159 238 317 396 475 554 633 712 791 870 949

RIGA

MEGA

VMEA Cx

VMEA Cj

Rando m - r = 200 - c hange ratio = 0.1

1700

1720

1740

1760

1780

1800

1820

1840

1 343 685 1027 1369 1711 2053 2395 2737 3079 3421 3763

RIGA

MEGA

VMEA Cx

VMEA Cj

Fig. 7. Dynamic behavior of the algorithms in cyclic with noise and random environments (knapsack).

Cyclic with noise- r = 10, change ratio = 1

150

170

190

210

230

250

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

RIGA

MEGA

VMEA Cx

VMEA Cj

Cyclic with noise- r = 200, change ratio = 1

190

210

230

250

270

290

1 137 273 409 545 681 817 953 1089 1225 1361 1497 1633 1769 1905

RIGA

MEGA

VMEA Cx

VMEA Cj

Random- r = 10, change ratio = 1

100

120

140

160

180

200

220

240

260

280

300

1 77 153 229 305 381 457 533 609 685 761 837 913 989

RIGA

MEGA

VMEA Cx

VMEA Cj

Random- r = 200, change ratio = 1

90

140

190

240

290

1 329 657 985 1313 1641 1969 2297 2625 2953 3281 3609 3937

RIGA

MEGA

VMEA Cx

VMEA Cj

Fig. 8. Dynamic behavior of the algorithms in cyclic with noise and random environments (onemax).

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

13

5.4 Memory and population sizes

The restrictions we impose when we increase the size of the memory and search populations imply that

memory tends to grow until its maximum is achieved and so population its „penalized‟ because we ran out of

resources. This happens because, when the established limits are attained, we only increase the population

size when there is room for at least one more individual and this is possible only if some individuals of the

memory were cleaned. After the maximum value for the memory is reached, the process of deleting

individuals with same genotype from memory allows an increase in the population size. Fig. 9 shows a

representative graphic of the evolution of the populations‟ size.

Evolution of population and memory size

0

50

100

1 136 271 406 541 676 811 946 1081 1216 1351 1486 1621 1756 1891

generations

a
v

e
r
a

g
e
 o

f
p

o
p

u
la

ti
o

n
's

 s
iz

e

Pop. Size

Mem. Size

Total

Fig. 9. Evolution of the population‟s and memory‟s size.

6 Conclusions

In this paper we proposed an EA with memory of variable size to deal with dynamic environments.

Additionally, we introduced a different biological operator to test its efficiency in diversity‟s promotion. The

investigated algorithm, called VMEA, was tested and compared with other approaches in different dynamic

environments: cyclic, cyclic with noise and random. From the obtained results we can conclude that VMEA

is very efficient. The best results were observed in cyclic environments: the greater is the change ratio the

better the performance. For small change ratios, besides the change is not so severe, there are more different

states reappearing in the environment. This happens because memory discards to soon the information of the

environments that reappear later. In the presence of the noise the solutions found were the worst and, just like

before, as we increase the value of  the time needed for the EA to react after a change, also increases. The

same conclusions can be drawn for random environments.

We can also conclude that the combination of the variable memory scheme and the conjugation operator

increases the performance of the algorithm, mainly in cyclic environments.

Finally, we must stress that for the implemented and compared algorithms, VMEA in general achieved the

best results.

Currently we are introducing some modifications in VMEA in order to improve its performance in noisy

and random environments. We are also testing a different type of aging and an alternative process of

controlling the sizes of memory and population. Other memory-based algorithms, proposed by other authors

are being implemented to use in the future as peer algorithms.

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

14

References

1. Branke, J.: Memory Enhanced Evolutionary Algorithms for Changing Optimization Problems.

Proceedings of the Congress of Evolutionary Computation (CEC 1999). IEEE, pp. 1875-1882, 1999.

2. Branke J.: Evolutionary Optimization in Dynamic Environments. Norwell MA: Kluwer, 2001.

3. Branke, J., Kaußler T., Schmidt, C. Schmeck, H.: A Multi-Population Approach to Dynamic

Optimization Problems. Adaptive Computing in Design and Manufacture (ACDM 2000), pp. 299-308,

Springer, 2000.

4. Cobb, H.: An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms

Having Continuous, Time-Dependent Non-Stationary Environments. Technical Report AIC-90-001, 1990.

5. Collingwood, E., Corne, D., Ross, P.: Useful Diversity via Multiploidy. Proceedings of the AISB

Workshop on Evolutionary Computation, 1996.

6. De Falco, I., Iazzetta, A., Tarantino, E., Della Cioppa, A.: On Biologically Inspired Mutations: The

Translocation. Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference

(GECCO' 2000), pp. 70-77, Las Vegas, USA, 8-12 July 2000.

7. Goldberg, D. E., Smith, R. E.: Nonstationary Function Optimization using Genetic Algorithms with

Dominance and Diploidy. In J. J. Grefenstette (ed.), Proceedings of the Second International Conference

on Genetic Algorithms, pp. 59-68. Laurence Erlbaum Associates, 1987.

8. Grefenstette, J. J: Genetic Algorithms for Changing Environments. Proceedings of Parallel Problem

Solving from Nature 2, pp. 137-144, North-Holland, 1992.

9. Hadad, B., Eick, C.: Supporting Poliploidy in Genetic Algorithms using Dominance Vectors. In P.

Angeline, R. G. Reynolds, J. R. McDonnell and R. Eberhart (eds.) Proceedings of the Sixth International

Conference on Evolutionary Programming, vol. 1213 of LNCS. Springer, 1997.

10.Harvey, I.: The Microbial Genetic Algorithm. Unpublished, 1996.

11.Liles, W., De Jong, K.: The Usefulness of Tag Bits in Changing Environments. Proceedings of the

Congress on Evolutionary Computation (CEC 99), pp. 2054-2060, IEEE 1999.

12.Louis, S., Xu, Z.: Genetic Algorithms for Open Shop Scheduling and Re-Scheduling. Proceedings of

Conference on Computers and their Applications. 1996.

13.Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd Edition Springer-

Verlag, 1999.

14.Morrison R. W., De Jong, K.: Triggered Hypermutation Revisited. Proceedings of the Congress on

Evolutionary Computation (CEC99), pp. 1025-1032, IEEE 1999.

15.Ng, K. P., Wong, K. C.: A New Diploid Scheme and Dominance Change Mechanism for Non-stationary

Function Optimization. Proceedings of the Sixth International Conference on Genetic Algorithms, pp.

159-166. Morgan Kaufmann, 1995.

16.Ramsey, C. L., Greffenstette, J. J.: Case-based Initialization of Genetic Algorithms. In S. Forrest (ed.),

Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 84-91. Morgan Kaufmann,

1993.

17.Russell, P. J.: Genetics. 5th edition, Addison-Wesley, 1998.

18.Ryan, C.: The Degree of Oneness. Proceedings of the ECAI Workshop on Genetic Algorithms. Springer-

Verlag 1996.

19.Sima Uyar, A., Emre Harmanci, A.: A New Population Based Adaptive Domination Change Mechanism

for Diploid Genetic Algorithms in Dynamic Environments. Soft Computing, 9: 803-814, 2005.

20.Simões, A., Costa, E.: Transposition: A Biologically Inspired Mechanism to Use with Genetic

Algorithms. Proceedings of the Fourth International Conference on Neural Networks and Genetic

Algorithms (ICANNGA'99), pp. 612- 19. Springer-Verlag 1999.

21.Simões, A., Costa, E.: On Biologically Inspired Genetic Operators: Transformation in the Standard

Genetic Algorithm. Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2001.

pp. 584-591, San Francisco, USA, 7-11 July, CA: Morgan Kaufmann Publishers, 2001.

22.Simões, A., Costa, E.: A Comparative Study Using Genetic Algorithms to Deal with Dynamic

Environments. Proceedings of the Sixth International Conference on Neural Networks and Genetic

Algorithms (ICANNGA'03), pp. 203-209, Roanne, France, 23-25 April, Springer, 2003.

23.Simões, A., Costa, E.: An Immune System-Based Genetic Algorithm to Deal with Dynamic

Environments: Diversity and Memory. Proceedings of the Sixth International Conference on Neural

Networks and Genetic Algorithms (ICANNGA'03), pp. 168-174, Roanne, France, 23-25 April, Springer,

2003.

24.Smith, P.: Conjugation: A Bacterially Inspired Form of Genetic. Late Breaking Papers at the Genetic

Programming 1996 Conference, Stanford University July 28-31, 1996.

Variable-size Memory Evolutionary Algorithm to Deal with Dynamic Environments: an empirical study

15

25.Smith, P.: Finding Hard Satisfiability Problems using Bacterial Conjugation. AISB Workshop on

Evolutionary Computing, pp. 236 – 244, University of Sussex, April 2006.

26.Trojanowski, S., Michalewicz, Z.: Searching for Optima in Non-Stationary Environments. Proceedings of

the Congress on Evolutionary Computation (CEC99), pp. 1843-1850, IEEE 1999.

27.Wineberg, M., Oppacher, F.: Enhancing GA‟s Ability to Cope with Dynamic Environments Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO' 2000), pp. 3-10, Las Vegas, USA, 8-

12 July, San Francisco, CA: Morgan Kaufmann, 2000.

28.Yang, S.: A Comparative Study of Immune System Based Genetic Algorithms in Dynamic Environments.

Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1377-1384, Washington, 2006.

29.Yang, S.: Associative Memory Scheme for Genetic Algorithms in Dynamic Environments. Proceedings of

the EvoWorkshops 2006, LNCS 3097, pp. 788-799, Springer-Verlag, 2006.

30.Yang, S.: Experimental Study on Population-Based Incremental Learning Algorithms for Dynamic

Optimization problems. Soft Computing, 9 (11), pp. 815-834, 2005.

31.Yang, S.: Memory-Based Immigrants for Genetic Algorithms in Dynamic Environments. Proceedings of

the Genetic and Evolutionary Computation Conference, 2005.

32.Yang, S.: Non-Stationary Problem Optimization Using Primal-Dual Genetic Algorithm. Proceedings of

the Congress on Evolutionary Computation (CEC 2003), vol. 3, pp. 2246-2253, IEEE, 2003

