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Abstract.  One of the approaches used in Evolutionary 
Algorithms (EAs) for problems in which the 
environment changes from time to time is to use 
techniques that preserve the diversity in population. We 
have tested and compared several algorithms that try to 
keep the population as diverse as possible. One of those 
approaches applies a new biologically inspired genetic 
operator called transformation, previously used with 
success in static optimization problems. We tested two 
EAs using transformation and two other classical 
approaches: random immigrants and hypermutation. 
The comparative study was made using the dynamic 0/1 
Knapsack optimization problem. Depending on the 
characteristics of the dynamic changes, the best results 
were obtained with transformation or with 
hypermutation. 
 

1 Introduction 
Evolutionary Algorithms (EAs) are often used to solve 
problems involving a stationary environment and so, 
the fitness function does not change over the time. 
When the environment changes over time, resulting in 
modifications of the fitness function from one cycle to 
another, we say that we are in the presence of a 
dynamic environment. 
Traditional EAs are not suitable to solve problems 
facing a dynamic environment, because the population 
quickly converges to an optimum and when changes do 
occur, it is very difficult to readapt the solutions to the 
new conditions. In general, this is a consequence of the 
lost of the population’s diversity. 
Several approaches have been proposed to deal with 
dynamic environments: approaches based on using an 
explicit memory ([12], [11], [10],[2]), approaches based 
on promoting diversity ([8], [4], [15]), or hybrid 
approaches combining these two aspects.  
Solutions that appeal to an explicit memory, does not 
seem to be the best approach in cases where we can not 
anticipate the dynamics of the changes (for instance, 
non-periodic changes). 
In this work we present a comparative study, using 
three different approaches, all based on promoting 
diversity in the population, to solve the dynamic 0/1 
Knapsack problem (0/1 KP) proposed by [6].  
In particular, we will test the effectiveness of these 
approaches using the technique of the introduction of 
random immigrants [8], the application of 
hypermutation [3] and the introduction of a biologically 
inspired genetic operator called transformation 
proposed by [14].  

In this paper we will use two forms of transformation: 
the original proposal, based on the application of 
random parameters, and the enhanced version, proposed 
by [16] that uses a set of optimized parameter setting 
obtained by an extensive empirical study. 
This paper is organized in the following manner. First, 
in section 2, we briefly explain the transformation 
mechanism. We will describe its biological functioning 
and the proposed computational implementation. 
Section 3, details the characteristics of the experimental 
environment. In section 4, we report the results using 
the three approaches. Finally, we present the main 
conclusions of the work. 
 
2 Transformation 
 

2.1 Biological transformation 

Transformation is a process that modify certain bacteria 
(and occasionally other cells as well) which, when grow 
in the presence of killed cells, take up foreign DNA 
from that cells and acquire characters encoded by it 
[13]. 
 
2.2 Previous work on computational transformation 

We incorporate transformation into the standard genetic 
algorithm as a new genetic operator that replaces 
crossover. This modified GA  is briefly described in 
Figure 1. The foreign DNA fragments, consisting of 
binary strings of different lengths, will form a gene 
segment pool and will be used to transform the 
individuals of the population. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  The GA using Transformation 

 
The GA starts with an initial population of individuals 
and an initial pool of gene segments, both created at 
random. In each generation, we select individuals to be 
transformed and we modify them using the gene 
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segments in the segment pool. After that, the segment 
pool is changed, using the old population to create part 
of the new segments with the remaining being created 
at random. The segments that each individual will take 
up from the "surrounding environment" will proceed, 
mostly, from the individuals existing in the previous 
generation. In the used experimental setup, we changed 
the segment pool every generation.   
After selecting individuals to a mating pool, we use the 
transformation mechanism to produce new individuals. 
In this case, there is no sexual reproduction among the 
individuals of the population. Each individual will 
generate a new one through the process of 
transformation. We can consider this process a form of 
asexual reproduction.  
To transform an individual we execute the following 
steps: we select a segment from the segment pool and 
we randomly choose a point of transformation in the 
selected individual. The segment is incorporated in the 
genome of the individual, replacing the genes after the 
transformation point, previously selected. This 
corresponds to the biological process where the gene 
segments when integrated in the recipient's cell DNA, 
replace some genes in its chromosome. For more details 
about transformation see [14]. 
 
2.3 The basic version of Transformation-Based 
Genetic Algorithm (TGA) 

The first application of transformation used a set of 
parameters chosen without any particular criterion. The 
gene segment lengths were always defined randomly, 
the mutation rate was set to 0.1%, the transformation 
rate was 70% and the replacement rate, i.e., the 
percentage of individuals of the previous generation 
that contributes for the update of the gene segment pool 
at the present generation, was set to 70%. 
The GA using this primary form of transformation will 
be referred as Transformation-based Genetic Algorithm 
(TGA) and was used in the domains of function 
optimization and combinatorial optimization (static 0/1 
KP and dynamic 0/1 KP). Besides the choice of the 
parameters has been done without any previous study, 
the obtained results were very promising. In fact, in the 
domain of function optimization, the TGA achieved 
much better results than the Standard GA (SGA) using 
the classical crossover operators.  
One of the main conclusions of these studies was the 
ability of transformation to preserve the diversity in the 
population during the entire course of computation.  
One of the main drawbacks of EA to solve dynamic 
problems is the fact of, as they converge for the 
optimum, the population’s diversity is lost and the 
algorithm cannot continue exploring different areas of 
the search space. So, the use of transformation in non-
stationary problems, seem to be a good idea. We used 
the TGA in the dynamic 0/1 KP but the obtained results 
were not compared with another approaches. The 
results obtained were very promising and are reported 
in [15]. 
 
 

2.4 The enhanced version of Transformation-Based 
Genetic Algorithm (ETGA) 

Analyzing the results obtained by the TGA, it was 
obvious that if the values of the parameters were 
adjusted carefully, the algorithm performance could be 
improved. In order to conclude about those intuitions, 
we carried out an extensive parametric study to obtain 
the correct choice of parameters when using 
transformation in the GA [16]. 
In that study we analyzed four parameters: the gene 
segment length, the replacement rate, and the mutation 
and transformation rates.  
The main conclusion was that, the random choice for 
the length of the segments that was made in the TGA 
deteriorated its performance in a very expressive 
manner. We fixed the gene segment length in values 
from 5 to a maximum depending on the chromosome 
length and it was clear that as we increase the segment 
length the results became worst. In fact, larger segments 
introduced a great degree of disruption. 
The choice for the replacement rate also influenced the 
obtained solutions. For this parameter, in the case of 
function optimization, the best choice was a value 
superior to 60%, in the case of the 0/1 KP, the best 
choice was a value inferior to 50%. 
Analyzing the effects of mutation, we concluded that 
when using transformation, no mutation in necessary. In 
fact, using mutation, even with a small rate, the results 
become worst. 
Finally, the transformation rate must be chosen in the 
interval 50% to 100%. 
The GA using this improved version of transformation 
will be denoted as Enhanced Transformation–based 
Genetic Algorithm (ETGA). 
Table 1 reports, for each problem domain, the intervals 
of each parameters and the best choice in the case of the 
instances tested. 
 

Table 1.  Parameter Choice when using Transformation 

Problem Parameters Interval Best 
choice 

Seg. length [5, 15] 5 

Replac. rate [70%, 100%] 90% 

Mut. rate [0%, 1%] 0% 
Function 

optimization 

Transf. rate [50%, 100%] 90% 

Seg. length [5, 10] 5 

Replac. rate [0%, 50%] 40% 

Mut. rate [0%, 1%] 0% 
Static 0/1 KP 

Transf. rate [50%, 100%] 90% 

 
3 Experimental Setup 
In this section we will explain the characteristics of the 
dynamic 0/1 KP (DKP), the characteristics of the four 
algorithms and the performance measures used to 
compare the studied approaches. 



3.1 The Zero/One knapsack problem 

The well-known single-objective 0/1 knapsack problem 
is defined as follows: given a set of n items, each with a 
weight W[i] and a profit P[i], with i = 1, ..., n, the goal 
is to determine which items to include in the knapsack 
so that the total weight is less than some given limit (C) 
and the total profit is as large as possible. 
More formally, given a set of weights W[i], profits P[i] 
(i= 1 ... n) and capacity C, the task is to find a binary 
vector x = {x[1], ...,x[n]}, such that: 
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is maximum. 
The knapsack problem is an example of an integer 
linear problem that has NP-hard complexity. 
In the classical 0/1 knapsack problem, the capacity of 
the bag is kept constant during the entire run. In the 
DKP the weight limit can change over time between 
different values. 
 

3.2 The 0/1 dynamic knapsack problem 

We used as a test function a 17-object 0/1 knapsack 
problem with oscillating weight constraint, proposed by 
[6]. The vectors of values and weights used for the 
knapsack problem are exactly the same as that used by 
the authors. The penalty function for the infeasible 
solutions is defined by: Pen=K(∆W)2, where ∆W is the 
amount which the solution exceeds the weight 
constraint and K=20. A solution is considered infeasible 
if the sum of the weights of the items exceeds the 
knapsack capacity.  
Goldberg and Smith used the DKP to compare the 
performance of a haploid GA and a diploid GA with 
fixed dominance map and a diploid GA with a triallelic 
dominance map. In [7] it is referred that their 
experimentation used variation of the knapsack capacity 
between two different values every 15 generations.  
In this work we enlarged the number of case studies: we 
used three types of changes in the capacity of the 
knapsack: periodic changes between two values 
(C1=104 and C2=60) and between three values (C1=60, 
C2=104 and C3=80) and non-periodic changes between 
3 different capacities (C1=60, C2=80 and C3=104). In 
each of the periodic experiments we started with a total 
capacity C1 and after half a cycle the constraint was 
switched to C2. When using 3 values, after a complete 
cycle the capacity is changed to the third value C3. 
Each trial allowed 10 cycles with cycle lengths of 30, 
100, 200 and 300 generations.  
When the changes in the environment are non-periodic 
we run the modified GA during 2000 generations and 
selected randomly several moments of change. In these 
moments the capacity of the knapsack was altered to a 
different value chosen among the same three values 
used in the periodic situation:  60, 80 and 104.  The 

moments when a change occurred and the new chosen 
knapsack capacity were randomly generated at the 
beginning of the first run and kept constant for all trials. 
 
3.3 The parameters of the algorithms 

In order to compare the efficiency of the GA using 
transformation we used two well known techniques also 
based on promoting diversity in the population: the 
Triggered Hypermutation GA (HMGA) and the 
Random Immigrants GA (RIGA). Cobb and 
Grefenstette proposed those techniques and already 
used them for problems dealing with dynamic 
environments. 
The GA with hypermutation uses a baseline mutation 
rate (usually very low) when the algorithm is stable and 
increases the mutation rate (to a high value) whenever 
there is a degradation in the performance of the time-
averaged best performance [3]. We implemented this 
mechanism with a baseline mutation rate of 0.1% and 
whenever degradation is observed we increased the 
mutation rate to 10%, 20% or 30%. The best results 
were achieved by a hypermutation rate of 10%. 
The Random Immigrants mechanism replaces a fraction 
of a SGA’s population each generation, as determined 
by the replacement rate, with randomly generated 
values. This mechanism views the GA’s population as 
always having a small flux of immigrants that wander 
in and out of the population from one generation to the 
next. This strategy effectively concentrates mutation in 
a subpopulation while maintaining a traditionally low 
(i.e., 0.001) mutation rate in the remainder of the 
population [8]. We tested the Random Immigrants GA 
with a replacement rate of 10%, 20% and 30%. The 
best results were achieved with the value 10%. 
Both HMGA and RIGA were run with one-point 
crossover with a probability of 70%. 
The TGA used the parameters proposed in the original 
work [14]: mutation rate of 0.1%, transformation rate 
equal to 70%, replacement rate of 70% and the gene 
segment lengths were defined randomly. 
The ETGA was run with the set of parameters obtained 
by the empirical study presented by [16]. The chosen 
values were: no mutation rate, transformation rate equal 
to 90%, replacement rate of 40% and gene segment 
length of size 5. 
All the algorithms used population of size 100 
individuals and were repeated 30 times. The results 
reported in the next section are the average values of 
the 30 runs. 
 
3.4 Performance measures 

In order to evaluate the performance of the four 
approaches solving the dynamic 0/1 KP, we used two 
well known measures, usually employed in non-
stationary problems. Those measures are the accuracy 
and the adaptability. They are based on a measure 
proposed by De Jong [5], the off-line performance, but 
evaluate the difference between the value of the current 
best individual and the optimum value, instead of 
evaluating just the value of the best individual. 



0

10

20

30

40

50
60

70

80

90

100

1 63 12
5

18
7

24
9

31
1

37
3

43
5

49
7

55
9

62
1

68
3

74
5

80
7

86
9

93
1

99
3

Generations

Fi
tn

es
s

TGA
ETGA
HMGA
RIGA

0,00

0,50

1,00

1,50

2,00

2,50

3,00

Acc Acc Acc Acc

Cycle=30 Cycle=100 Cycle=200 Cycle=300

A
cc

ur
ac

y
TGA
ETGA
HM 10%
RI 10%

Accuracy (Acc) is the difference between the value of 
the current best individual in the population of “just 
before change” generation and the optimum value 
averaged over the entire cycle. Accuracy measures the 
capacity to recover to the new optimum before a new 
modification occurs. 
Adaptability (Ada) is the difference between the value 
of the current best individual of each generation and the 
optimum value averaged over the entire cycle. 
Adaptability measures the speed of the recovery.  
The smaller measured values for accuracy and 
adaptability the better results. If the accuracy reaches a 
zero value it means that the algorithm found the 
optimum every time before a change occurs. If 
adaptability is equal to zero it means that the best 
individual in the population was at the optimum for all 
generations, i.e., the optimum was never lost by the 
algorithm. 
These two measures can be mathematically defined by: 
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where: 
K –   Number of changes during the run; 
r – Number of generations between two consecutive 
changes; 
Erri,j – Difference between the value of the current best 
individual in the population of jth generation after the 
last change (j ∈[0, r-1]) and the optimum value for the 
fitness after the ith change (i ∈[0, K-1]). 
 
4 Results 
In this section we report the results obtained with the 
four studied approaches. 
 
4.1 Periodic changes between two values 

Changing the capacity of the knapsack between two 
values, all the algorithms detected the changes, but the 
readaptation of each one to the new solutions were not 
quite the same. Figure 2 shows the behavior of the four 
algorithms in the case of cycle length equal to 100 
(changes every 50 generations). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Performance of the Algorithms with Cycle Length = 
100 in the DKP with Periodic Changes between Two Values 

The cycle length had major influence in the obtained 
results. Table 2 and Figure 3 show the accuracy 
measured in the four approaches. As we can see, TGA 
obtained very poor performance that improves as the 
cycle length is increased. ETGA obtained the best 
accuracy for larger cycle lengths and HMGA, behave 
better in situation where the changes were more abrupt, 
especially when the modifications occur every 15 
generations.  
 

Table 2. Accuracy Obtained in Experiments with Periodic 
Changes between Two Different Values 

  TGA ETGA HMGA RIGA 
Cycle = 30 5.43 2.20 1.25 1.78 
Cycle = 100 2.34 0.29 0.23 0.59 
Cycle = 200 1.23 0.05 0.23 0.50 
Cycle = 300 0.84 0.02 0.23 0.45 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Accuracy solving the Dynamic 0/1 KP with Periodic 
Changes between Two Values 

 
Concerning the adaptability of the algorithms, the 
HMGA, in this particular case of changes between two 
values, had better performance. This means that the 
HMGA had faster adaptation to the new optimum 
value, every time a change was observed. Table 3 and 
Figure 4 report the results. 

Table 3. Adaptability Obtained in Experiments with Periodic 
Changes between Two Different Values 

  TGA ETGA HMGA RIGA 
Cycle = 30 8.22 5.01 3.26 4.37 
Cycle = 100 4.67 2.35 0.98 2.58 
Cycle = 200 3.22 1.11 0.61 1.68 
Cycle = 300 2.49 0.73 0.52 1.27 
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Fig. 4. Adaptability solving the Dynamic 0/1 KP with 
Periodic Changes between Two Values 

 
4.2 Periodic changes between three values 

The performance of the algorithms when the changes 
were between three different values was slightly 
different from the previous case, particularly in the 
adaptability. Figure 5 shows the behavior of the four 
algorithms with cycles of length 100. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Performance of the Algorithms with Cycle Length = 
100 in the DKP with Periodic Changes between Three Values 

 
Concerning the accuracy, the results were similar to the 
previous case; with changes more abrupt, the HMGA 
had better accuracy, but with larger cycles, the ETGA 
had better performance in the accuracy. Table 4 and 
Figure 6 show the obtained results for the accuracy 
measure. 

 

Table 4. Accuracy Obtained in Experiments with Periodic 
Changes between Three Different Values 

 TGA ETGA HMGA RIGA 
Cycle = 30 5.27 1.45 0.70 1.08 
Cycle = 100 2.53 0.18 0.36 0.22 
Cycle = 200 1.27 0.02 0.42 0.15 
Cycle = 300 0.78 0.01 0.49 0.22 

 
 
 

Table 5. Adaptability Obtained in Experiments with Periodic 
Changes between Three Different Values 

  TGA ETGA HMGA RIGA 
Cycle=30 7.63 3.53 1.84 2.74 
Cycle=100 4.59 1.30 2.18 1.16 
Cycle=200 3.10 0.61 1.39 0.65 
Cycle=300 2.40 0.42 1.35 0.58 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Accuracy solving the Dynamic 0/1 KP with Periodic 
Changes between Three Values 

 
Analyzing the adaptability of the algorithms, in this 
case, ETGA obtained better accuracy than HMGA with 
larger cycle lengths. With cycles of size 30, HMGA 
achieved better accuracy, just like in the case of 
changes between two values. 
The TGA and RIGA were, once again the worst 
algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Adaptability solving the Dynamic 0/1 KP with 
Periodic Changes between Three Values 

In order to understand why HMGA with larger cycles 
had worst performance than ETGA we measured the 
population’s diversity during the entire computation 
process. As Figure 8 illustrates, with cycles of 300 
generations, when the end of each cycle is reached, the 
population’s diversity in the HMGA achieves very low 
values. This may be the reason for the high values of 
accuracy measured.  On the other hand, ETGA can 
preserve the population’s diversity at higher levels, and 
consequently, the algorithm’s accuracy was better. 
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Fig. 8. Population’s Diversity using HMGA and ETGA with 
Cycle Length = 300 

 
4.3 Non-periodic changes between three values 

The third type of change that we tested was non-
periodic changes between three different values for the 
knapsack. 
Figure 9 shows the graphical behavior of the four 
algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Performance of the Algorithms in the DKP with Non-
Periodic Changes between Three Values 

 
In this case, HMGA obtained the best results for 
accuracy and adaptability. ETGA had a accuracy values 
close to HMGA, but the measure adaptability was 
lower. Table 6 and Figure 10 show the obtained values. 
 

Table 6. Accuracy and Adaptability Obtained in Experiments 
with Non-Periodic Changes between Three Different Values 

 TGA ETGA HMGA RIGA 
Accuracy 2.76 0.77 0.54 0.93 
Adaptability 4.88 2.02 1.13 2.22 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Accuracy and Adaptability solving the Dynamic 0/1 
KP with Non-periodic changes between Three Values 

 
5 Conclusions 
In this paper we compared the performance of three 
approaches based on promoting diversity in the 
population solving a classical non-stationary problem. 
One of the approaches was proposed by us and consists 
in the use of a new biologically inspired genetic 
operator called transformation, instead of crossover. A 
first form of transformation had already been used in 
dynamic and stationary problems (TGA). In this paper 
we also used an enhanced version of transformation 
resulting from the assessment of the used parameter 
setting (ETGA).  
The study compared the performance of the GA using 
the two forms of transformation with two other wee 
known techniques based on the preservation of 
diversity: the triggered Hypermutation GA (HMGA) 
and the Random Immigrants GA (RIGA). 
We used two measures to analyze the efficiency of the 
algorithms: accuracy and adaptability. 
The results showed that making periodic changes with 
larger cycles, ETGA performed better than the other 
algorithms. Using smaller cycles, HMGA was the best 
choice. Observing the population’s diversity we could 
see that with cycle lengths of 300, the HMGA at the 
end of each cycle achieves very low values of diversity. 
This may be the reason for the measured values. 
Using the DKP with non-periodic changes, the HMGA 
was the best approach, but ETGA achieved very close 
results. RIGA had weak performance, but TGA was the 
worst of all. 
We can also conclude that the new approach based on 
transformation is a good candidate to be used in 
situations where the environment is dynamic, 
particularly in cases where the cycle length is greater 
than 30. 
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