
1. Generate Initial Population

 Generate Initial Gene Segment Pool

2. DO

 2.1. Evaluate Population

 2.2. Select Individuals

 2.3. Transform Individuals

 2.4. Replace Population with New Individuals

 2.5. Create New Gene Segment Pool

WHILE (NOT Stop_Condition)

A Comparative Study Using Genetic Algorithms to Deal with Dynamic
Environments

Anabela Simões1,2, Ernesto Costa2
1 Dept. of Informatics and Systems Engineering, Coimbra Polytechnic, Quinta da Nora, 3030 Coimbra, Portugal

2 Centre for Informatics and Systems of the Univ. of Coimbra, Pinhal de Marrocos, 3030 Coimbra, Portugal
E-mail: abs@isec.pt; ernesto@dei.uc.pt

Abstract. One of the approaches used in Evolutionary
Algorithms (EAs) for problems in which the
environment changes from time to time is to use
techniques that preserve the diversity in population. We
have tested and compared several algorithms that try to
keep the population as diverse as possible. One of those
approaches applies a new biologically inspired genetic
operator called transformation, previously used with
success in static optimization problems. We tested two
EAs using transformation and two other classical
approaches: random immigrants and hypermutation.
The comparative study was made using the dynamic 0/1
Knapsack optimization problem. Depending on the
characteristics of the dynamic changes, the best results
were obtained with transformation or with
hypermutation.

1 Introduction
Evolutionary Algorithms (EAs) are often used to solve
problems involving a stationary environment and so,
the fitness function does not change over the time.
When the environment changes over time, resulting in
modifications of the fitness function from one cycle to
another, we say that we are in the presence of a
dynamic environment.
Traditional EAs are not suitable to solve problems
facing a dynamic environment, because the population
quickly converges to an optimum and when changes do
occur, it is very difficult to readapt the solutions to the
new conditions. In general, this is a consequence of the
lost of the population’s diversity.
Several approaches have been proposed to deal with
dynamic environments: approaches based on using an
explicit memory ([12], [11], [10],[2]), approaches based
on promoting diversity ([8], [4], [15]), or hybrid
approaches combining these two aspects.
Solutions that appeal to an explicit memory, does not
seem to be the best approach in cases where we can not
anticipate the dynamics of the changes (for instance,
non-periodic changes).
In this work we present a comparative study, using
three different approaches, all based on promoting
diversity in the population, to solve the dynamic 0/1
Knapsack problem (0/1 KP) proposed by [6].
In particular, we will test the effectiveness of these
approaches using the technique of the introduction of
random immigrants [8], the application of
hypermutation [3] and the introduction of a biologically
inspired genetic operator called transformation
proposed by [14].

In this paper we will use two forms of transformation:
the original proposal, based on the application of
random parameters, and the enhanced version, proposed
by [16] that uses a set of optimized parameter setting
obtained by an extensive empirical study.
This paper is organized in the following manner. First,
in section 2, we briefly explain the transformation
mechanism. We will describe its biological functioning
and the proposed computational implementation.
Section 3, details the characteristics of the experimental
environment. In section 4, we report the results using
the three approaches. Finally, we present the main
conclusions of the work.

2 Transformation

2.1 Biological transformation

Transformation is a process that modify certain bacteria
(and occasionally other cells as well) which, when grow
in the presence of killed cells, take up foreign DNA
from that cells and acquire characters encoded by it
[13].

2.2 Previous work on computational transformation

We incorporate transformation into the standard genetic
algorithm as a new genetic operator that replaces
crossover. This modified GA is briefly described in
Figure 1. The foreign DNA fragments, consisting of
binary strings of different lengths, will form a gene
segment pool and will be used to transform the
individuals of the population.

Fig. 1. The GA using Transformation

The GA starts with an initial population of individuals
and an initial pool of gene segments, both created at
random. In each generation, we select individuals to be
transformed and we modify them using the gene

In David W. Pearson, Nigel C. Steele, Rudolf Albrecht (eds.), Proceedings of the Sixth
International Conference on Neural Networks and Genetic Algorithms (ICANNGA'03),
pp. 203-209, Roanne, France, 23-25 April, Springer, 2003.

segments in the segment pool. After that, the segment
pool is changed, using the old population to create part
of the new segments with the remaining being created
at random. The segments that each individual will take
up from the "surrounding environment" will proceed,
mostly, from the individuals existing in the previous
generation. In the used experimental setup, we changed
the segment pool every generation.
After selecting individuals to a mating pool, we use the
transformation mechanism to produce new individuals.
In this case, there is no sexual reproduction among the
individuals of the population. Each individual will
generate a new one through the process of
transformation. We can consider this process a form of
asexual reproduction.
To transform an individual we execute the following
steps: we select a segment from the segment pool and
we randomly choose a point of transformation in the
selected individual. The segment is incorporated in the
genome of the individual, replacing the genes after the
transformation point, previously selected. This
corresponds to the biological process where the gene
segments when integrated in the recipient's cell DNA,
replace some genes in its chromosome. For more details
about transformation see [14].

2.3 The basic version of Transformation-Based
Genetic Algorithm (TGA)

The first application of transformation used a set of
parameters chosen without any particular criterion. The
gene segment lengths were always defined randomly,
the mutation rate was set to 0.1%, the transformation
rate was 70% and the replacement rate, i.e., the
percentage of individuals of the previous generation
that contributes for the update of the gene segment pool
at the present generation, was set to 70%.
The GA using this primary form of transformation will
be referred as Transformation-based Genetic Algorithm
(TGA) and was used in the domains of function
optimization and combinatorial optimization (static 0/1
KP and dynamic 0/1 KP). Besides the choice of the
parameters has been done without any previous study,
the obtained results were very promising. In fact, in the
domain of function optimization, the TGA achieved
much better results than the Standard GA (SGA) using
the classical crossover operators.
One of the main conclusions of these studies was the
ability of transformation to preserve the diversity in the
population during the entire course of computation.
One of the main drawbacks of EA to solve dynamic
problems is the fact of, as they converge for the
optimum, the population’s diversity is lost and the
algorithm cannot continue exploring different areas of
the search space. So, the use of transformation in non-
stationary problems, seem to be a good idea. We used
the TGA in the dynamic 0/1 KP but the obtained results
were not compared with another approaches. The
results obtained were very promising and are reported
in [15].

2.4 The enhanced version of Transformation-Based
Genetic Algorithm (ETGA)

Analyzing the results obtained by the TGA, it was
obvious that if the values of the parameters were
adjusted carefully, the algorithm performance could be
improved. In order to conclude about those intuitions,
we carried out an extensive parametric study to obtain
the correct choice of parameters when using
transformation in the GA [16].
In that study we analyzed four parameters: the gene
segment length, the replacement rate, and the mutation
and transformation rates.
The main conclusion was that, the random choice for
the length of the segments that was made in the TGA
deteriorated its performance in a very expressive
manner. We fixed the gene segment length in values
from 5 to a maximum depending on the chromosome
length and it was clear that as we increase the segment
length the results became worst. In fact, larger segments
introduced a great degree of disruption.
The choice for the replacement rate also influenced the
obtained solutions. For this parameter, in the case of
function optimization, the best choice was a value
superior to 60%, in the case of the 0/1 KP, the best
choice was a value inferior to 50%.
Analyzing the effects of mutation, we concluded that
when using transformation, no mutation in necessary. In
fact, using mutation, even with a small rate, the results
become worst.
Finally, the transformation rate must be chosen in the
interval 50% to 100%.
The GA using this improved version of transformation
will be denoted as Enhanced Transformation–based
Genetic Algorithm (ETGA).
Table 1 reports, for each problem domain, the intervals
of each parameters and the best choice in the case of the
instances tested.

Table 1. Parameter Choice when using Transformation

Problem Parameters Interval Best
choice

Seg. length [5, 15] 5

Replac. rate [70%, 100%] 90%

Mut. rate [0%, 1%] 0%
Function

optimization

Transf. rate [50%, 100%] 90%

Seg. length [5, 10] 5

Replac. rate [0%, 50%] 40%

Mut. rate [0%, 1%] 0%
Static 0/1 KP

Transf. rate [50%, 100%] 90%

3 Experimental Setup
In this section we will explain the characteristics of the
dynamic 0/1 KP (DKP), the characteristics of the four
algorithms and the performance measures used to
compare the studied approaches.

3.1 The Zero/One knapsack problem

The well-known single-objective 0/1 knapsack problem
is defined as follows: given a set of n items, each with a
weight W[i] and a profit P[i], with i = 1, ..., n, the goal
is to determine which items to include in the knapsack
so that the total weight is less than some given limit (C)
and the total profit is as large as possible.
More formally, given a set of weights W[i], profits P[i]
(i= 1 ... n) and capacity C, the task is to find a binary
vector x = {x[1], ...,x[n]}, such that:

 [] [] CiWix
n

i
≤∑

=

.
1

and for which

() [] []iPixx
n

i
.

1
∑

=

=ρ

is maximum.
The knapsack problem is an example of an integer
linear problem that has NP-hard complexity.
In the classical 0/1 knapsack problem, the capacity of
the bag is kept constant during the entire run. In the
DKP the weight limit can change over time between
different values.

3.2 The 0/1 dynamic knapsack problem

We used as a test function a 17-object 0/1 knapsack
problem with oscillating weight constraint, proposed by
[6]. The vectors of values and weights used for the
knapsack problem are exactly the same as that used by
the authors. The penalty function for the infeasible
solutions is defined by: Pen=K(∆W)2, where ∆W is the
amount which the solution exceeds the weight
constraint and K=20. A solution is considered infeasible
if the sum of the weights of the items exceeds the
knapsack capacity.
Goldberg and Smith used the DKP to compare the
performance of a haploid GA and a diploid GA with
fixed dominance map and a diploid GA with a triallelic
dominance map. In [7] it is referred that their
experimentation used variation of the knapsack capacity
between two different values every 15 generations.
In this work we enlarged the number of case studies: we
used three types of changes in the capacity of the
knapsack: periodic changes between two values
(C1=104 and C2=60) and between three values (C1=60,
C2=104 and C3=80) and non-periodic changes between
3 different capacities (C1=60, C2=80 and C3=104). In
each of the periodic experiments we started with a total
capacity C1 and after half a cycle the constraint was
switched to C2. When using 3 values, after a complete
cycle the capacity is changed to the third value C3.
Each trial allowed 10 cycles with cycle lengths of 30,
100, 200 and 300 generations.
When the changes in the environment are non-periodic
we run the modified GA during 2000 generations and
selected randomly several moments of change. In these
moments the capacity of the knapsack was altered to a
different value chosen among the same three values
used in the periodic situation: 60, 80 and 104. The

moments when a change occurred and the new chosen
knapsack capacity were randomly generated at the
beginning of the first run and kept constant for all trials.

3.3 The parameters of the algorithms

In order to compare the efficiency of the GA using
transformation we used two well known techniques also
based on promoting diversity in the population: the
Triggered Hypermutation GA (HMGA) and the
Random Immigrants GA (RIGA). Cobb and
Grefenstette proposed those techniques and already
used them for problems dealing with dynamic
environments.
The GA with hypermutation uses a baseline mutation
rate (usually very low) when the algorithm is stable and
increases the mutation rate (to a high value) whenever
there is a degradation in the performance of the time-
averaged best performance [3]. We implemented this
mechanism with a baseline mutation rate of 0.1% and
whenever degradation is observed we increased the
mutation rate to 10%, 20% or 30%. The best results
were achieved by a hypermutation rate of 10%.
The Random Immigrants mechanism replaces a fraction
of a SGA’s population each generation, as determined
by the replacement rate, with randomly generated
values. This mechanism views the GA’s population as
always having a small flux of immigrants that wander
in and out of the population from one generation to the
next. This strategy effectively concentrates mutation in
a subpopulation while maintaining a traditionally low
(i.e., 0.001) mutation rate in the remainder of the
population [8]. We tested the Random Immigrants GA
with a replacement rate of 10%, 20% and 30%. The
best results were achieved with the value 10%.
Both HMGA and RIGA were run with one-point
crossover with a probability of 70%.
The TGA used the parameters proposed in the original
work [14]: mutation rate of 0.1%, transformation rate
equal to 70%, replacement rate of 70% and the gene
segment lengths were defined randomly.
The ETGA was run with the set of parameters obtained
by the empirical study presented by [16]. The chosen
values were: no mutation rate, transformation rate equal
to 90%, replacement rate of 40% and gene segment
length of size 5.
All the algorithms used population of size 100
individuals and were repeated 30 times. The results
reported in the next section are the average values of
the 30 runs.

3.4 Performance measures

In order to evaluate the performance of the four
approaches solving the dynamic 0/1 KP, we used two
well known measures, usually employed in non-
stationary problems. Those measures are the accuracy
and the adaptability. They are based on a measure
proposed by De Jong [5], the off-line performance, but
evaluate the difference between the value of the current
best individual and the optimum value, instead of
evaluating just the value of the best individual.

0

10

20

30

40

50
60

70

80

90

100

1 63 12
5

18
7

24
9

31
1

37
3

43
5

49
7

55
9

62
1

68
3

74
5

80
7

86
9

93
1

99
3

Generations

Fi
tn

es
s

TGA
ETGA
HMGA
RIGA

0,00

0,50

1,00

1,50

2,00

2,50

3,00

Acc Acc Acc Acc

Cycle=30 Cycle=100 Cycle=200 Cycle=300

A
cc

ur
ac

y
TGA
ETGA
HM 10%
RI 10%

Accuracy (Acc) is the difference between the value of
the current best individual in the population of “just
before change” generation and the optimum value
averaged over the entire cycle. Accuracy measures the
capacity to recover to the new optimum before a new
modification occurs.
Adaptability (Ada) is the difference between the value
of the current best individual of each generation and the
optimum value averaged over the entire cycle.
Adaptability measures the speed of the recovery.
The smaller measured values for accuracy and
adaptability the better results. If the accuracy reaches a
zero value it means that the algorithm found the
optimum every time before a change occurs. If
adaptability is equal to zero it means that the best
individual in the population was at the optimum for all
generations, i.e., the optimum was never lost by the
algorithm.
These two measures can be mathematically defined by:

∑
=

−=
K

i
niErr

K
Acc

1
1,

1
; ∑ ∑

=

−

=
⎥
⎦

⎤
⎢
⎣

⎡
=

K

i

r

j
jiErr

rK
Ada

1

1

0
,

11

where:
K – Number of changes during the run;
r – Number of generations between two consecutive
changes;
Erri,j – Difference between the value of the current best
individual in the population of jth generation after the
last change (j ∈[0, r-1]) and the optimum value for the
fitness after the ith change (i ∈[0, K-1]).

4 Results
In this section we report the results obtained with the
four studied approaches.

4.1 Periodic changes between two values

Changing the capacity of the knapsack between two
values, all the algorithms detected the changes, but the
readaptation of each one to the new solutions were not
quite the same. Figure 2 shows the behavior of the four
algorithms in the case of cycle length equal to 100
(changes every 50 generations).

Fig. 2. Performance of the Algorithms with Cycle Length =
100 in the DKP with Periodic Changes between Two Values

The cycle length had major influence in the obtained
results. Table 2 and Figure 3 show the accuracy
measured in the four approaches. As we can see, TGA
obtained very poor performance that improves as the
cycle length is increased. ETGA obtained the best
accuracy for larger cycle lengths and HMGA, behave
better in situation where the changes were more abrupt,
especially when the modifications occur every 15
generations.

Table 2. Accuracy Obtained in Experiments with Periodic
Changes between Two Different Values

 TGA ETGA HMGA RIGA
Cycle = 30 5.43 2.20 1.25 1.78
Cycle = 100 2.34 0.29 0.23 0.59
Cycle = 200 1.23 0.05 0.23 0.50
Cycle = 300 0.84 0.02 0.23 0.45

Fig. 3. Accuracy solving the Dynamic 0/1 KP with Periodic
Changes between Two Values

Concerning the adaptability of the algorithms, the
HMGA, in this particular case of changes between two
values, had better performance. This means that the
HMGA had faster adaptation to the new optimum
value, every time a change was observed. Table 3 and
Figure 4 report the results.

Table 3. Adaptability Obtained in Experiments with Periodic
Changes between Two Different Values

 TGA ETGA HMGA RIGA
Cycle = 30 8.22 5.01 3.26 4.37
Cycle = 100 4.67 2.35 0.98 2.58
Cycle = 200 3.22 1.11 0.61 1.68
Cycle = 300 2.49 0.73 0.52 1.27

0,00

1,00

2,00

3,00

4,00

5,00

6,00

Ada Ada Ada Ada

Cycle=30 Cycle=100 Cycle=200 Cycle=300

A
da

pt
ab

ili
ty

TGA
ETGA
HM 10%
RI 10%

0

10

20

30

40

50

60

70

80

90

100

1 62 12
3

18
4

24
5

30
6

36
7

42
8

48
9

55
0

61
1

67
2

73
3

79
4

85
5

91
6

97
7

Generations

Fi
tn

es
s

TGA
ETGA
HMGA
RIGA

0,00

0,50

1,00

1,50

2,00

2,50

3,00

Acc Acc Acc Acc

Cycle=30 Cycle=100 Cycle=200 Cycle=300

A
cc

ur
ac

y

TGA
ETGA
HM 10%
RI 10%

0,00

1,00

2,00

3,00

4,00

5,00

6,00

Ada Ada Ada Ada

Cycle=30 Cycle=100 Cycle=200 Cycle=300

A
da

pt
ab

ili
ty

TGA
ETGA
HM 10%
RI 10%

Fig. 4. Adaptability solving the Dynamic 0/1 KP with
Periodic Changes between Two Values

4.2 Periodic changes between three values

The performance of the algorithms when the changes
were between three different values was slightly
different from the previous case, particularly in the
adaptability. Figure 5 shows the behavior of the four
algorithms with cycles of length 100.

Fig. 5. Performance of the Algorithms with Cycle Length =
100 in the DKP with Periodic Changes between Three Values

Concerning the accuracy, the results were similar to the
previous case; with changes more abrupt, the HMGA
had better accuracy, but with larger cycles, the ETGA
had better performance in the accuracy. Table 4 and
Figure 6 show the obtained results for the accuracy
measure.

Table 4. Accuracy Obtained in Experiments with Periodic
Changes between Three Different Values

 TGA ETGA HMGA RIGA
Cycle = 30 5.27 1.45 0.70 1.08
Cycle = 100 2.53 0.18 0.36 0.22
Cycle = 200 1.27 0.02 0.42 0.15
Cycle = 300 0.78 0.01 0.49 0.22

Table 5. Adaptability Obtained in Experiments with Periodic
Changes between Three Different Values

 TGA ETGA HMGA RIGA
Cycle=30 7.63 3.53 1.84 2.74
Cycle=100 4.59 1.30 2.18 1.16
Cycle=200 3.10 0.61 1.39 0.65
Cycle=300 2.40 0.42 1.35 0.58

Fig. 6. Accuracy solving the Dynamic 0/1 KP with Periodic
Changes between Three Values

Analyzing the adaptability of the algorithms, in this
case, ETGA obtained better accuracy than HMGA with
larger cycle lengths. With cycles of size 30, HMGA
achieved better accuracy, just like in the case of
changes between two values.
The TGA and RIGA were, once again the worst
algorithms.

Fig. 7. Adaptability solving the Dynamic 0/1 KP with
Periodic Changes between Three Values

In order to understand why HMGA with larger cycles
had worst performance than ETGA we measured the
population’s diversity during the entire computation
process. As Figure 8 illustrates, with cycles of 300
generations, when the end of each cycle is reached, the
population’s diversity in the HMGA achieves very low
values. This may be the reason for the high values of
accuracy measured. On the other hand, ETGA can
preserve the population’s diversity at higher levels, and
consequently, the algorithm’s accuracy was better.

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

0,45
0,5

1

19
5

38
9

58
3

77
7

97
1

11
65

13
59

15
53

17
47

19
41

21
35

23
29

25
23

27
17

29
11

Generations

D
iv

er
si

ty
HMGA
ETGA

0
10
20
30
40
50
60
70
80
90

100

1

12
7

25
3

37
9

50
5

63
1

75
7

88
3

10
09

11
35

12
61

13
87

15
13

16
39

17
65

18
91

Generations

Fi
tn

es
s

TGA
ETGA
HMGA
RIGA

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

Acc Ada

Pe
rf

or
m

an
ce

 M
ea

su
re

s

TGA
ETGA
HM 10%
RI 10%

Fig. 8. Population’s Diversity using HMGA and ETGA with
Cycle Length = 300

4.3 Non-periodic changes between three values

The third type of change that we tested was non-
periodic changes between three different values for the
knapsack.
Figure 9 shows the graphical behavior of the four
algorithms.

Fig. 9. Performance of the Algorithms in the DKP with Non-
Periodic Changes between Three Values

In this case, HMGA obtained the best results for
accuracy and adaptability. ETGA had a accuracy values
close to HMGA, but the measure adaptability was
lower. Table 6 and Figure 10 show the obtained values.

Table 6. Accuracy and Adaptability Obtained in Experiments
with Non-Periodic Changes between Three Different Values

 TGA ETGA HMGA RIGA
Accuracy 2.76 0.77 0.54 0.93
Adaptability 4.88 2.02 1.13 2.22

Fig. 10. Accuracy and Adaptability solving the Dynamic 0/1
KP with Non-periodic changes between Three Values

5 Conclusions
In this paper we compared the performance of three
approaches based on promoting diversity in the
population solving a classical non-stationary problem.
One of the approaches was proposed by us and consists
in the use of a new biologically inspired genetic
operator called transformation, instead of crossover. A
first form of transformation had already been used in
dynamic and stationary problems (TGA). In this paper
we also used an enhanced version of transformation
resulting from the assessment of the used parameter
setting (ETGA).
The study compared the performance of the GA using
the two forms of transformation with two other wee
known techniques based on the preservation of
diversity: the triggered Hypermutation GA (HMGA)
and the Random Immigrants GA (RIGA).
We used two measures to analyze the efficiency of the
algorithms: accuracy and adaptability.
The results showed that making periodic changes with
larger cycles, ETGA performed better than the other
algorithms. Using smaller cycles, HMGA was the best
choice. Observing the population’s diversity we could
see that with cycle lengths of 300, the HMGA at the
end of each cycle achieves very low values of diversity.
This may be the reason for the measured values.
Using the DKP with non-periodic changes, the HMGA
was the best approach, but ETGA achieved very close
results. RIGA had weak performance, but TGA was the
worst of all.
We can also conclude that the new approach based on
transformation is a good candidate to be used in
situations where the environment is dynamic,
particularly in cases where the cycle length is greater
than 30.

Acknowledgements
This work was partially financed by the Portuguese
Ministry of Science and Technology under the Program
POSI.

References
[1] J. Branke (1999). Evolutionary Algorithms for
Dynamic Optimization Problems - A Survey. Bericht
387, Februar 1999, AIFB, Universität Karlsruhe.

[2] J. Branke (1999). Memory
EnhancedEvolutionary Algorithm for Changing
Optimization Problems. In Proceedings of the 1999
Congress on Evolutionary Computation, pp. 1875-1881,
IEEE, 1999.

[3] H. Cobb (1990). An Investigation into the Use
of Hypermutation as an Adaptive Operator in Genetic
Algorithms Having Continuous, Time-Dependent
Nonstationary Environments. Technical Report AIC-
90-001, 1990.

[4] H. Cobb, J. J. Grefenstette (1993). Genetic
Algorithms for Tracking Changing Environments. In
Proceedings of the Fifth International Conference on
Genetic Algorithms, pp. 523-530. Morgan Kaufmann,
1993.

[5] K. A. De Jong (1975). Analysis of the
Behavior of a Class of Genetic Adaptive Systems.
Ph.D. Dissertation, Department of Computer and
Communication Science, University of Michigan, 1975.

[6] D. E. Goldberg and R. E. Smith (1987).
Nonstationary Function Optimization using Genetic
Algorithms with Dominance and Diploidy. In J. J.
Grefenstette (ed.), Proceedings of the Second
International Conference on Genetic Algorithms, pp.
59-68. Laurence Erlbaum Associates, 1987.

[7] D. E. Goldberg (1989). Genetic Algorithms in
Search, Optimization and Machine Learning. Addison-
Wesley Publishing Company, Inc.

[8] J. J. Grefenstette (1992). Genetic Algorithms
for Changing Environments. In R. Maenner, B.
Manderick (eds.), Parallel. Problem Solving from
Nature 2, pp. 137-144. North Holland, 1992.

[9] J. J. Grefenstette, C. L. Ramsey (1992) An
Approach to Anytime Learning. In D. Sleeman and P.
Edwards (eds.), Proceedings of the Ninth International
Conference on Machine Learning, pp. 189-195. Morgan
Kaufmann, 1992.

[10] B. Hadad, C. Eick (1997). Supporting
Poliploidy in Genetic Algorithms using Dominance
Vectors. In P. Angeline, R. G. Reynolds, J. R.
McDonnell and R. Eberhart (eds.) Proceedings of the
Sixth International Conference on Evolutionary
programming, vol. 1213 of LNCS. Springer, 1997.

[11] K. P. Ng and K. C. Wong (1995). A New
Diploid Scheme and Dominance Change Mechanism
for Non-stationary Function Optimization. In
Proceedings of the Sixth International Conference on
Genetic Algorithms, pp. 159-166. Morgan Kaufmann,
1995.

[12] C. L. Ramsey and J. J. Grefenstette (1993).
Case-based Initialization of Genetic Algorithms. In S.
Forrest (ed.), Proceedings of the Fifth International

Conference on Genetic Algorithms, pp. 84-91. Morgan
Kaufmann, 1993.

[13] P. J. Russell (1998). Genetics. 5th edition,
Addison-Wesley.

[14] A. Simões and E. Costa (2001). Using
Biological Inspiration to Deal with Dynamic
Environments. Proceedings of the Seventh International
Conference on Soft-Computing (MENDEL’2001),
Brno, Czech Republic, June 2001.

[15] A. Simões and E. Costa (2001). On
Biologically Inspired Genetic Operators:
Transformation in the Standard Genetic Algorithm.
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’2001), San
Francisco, USA, July 2001.

[16] A. Simões and E. Costa (2003). Improving the
Genetic Algorithm's Performance when using
Transformation. In the Proceedings of
ICANNGA’2003.

