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Abstract. Transformation is a biologically inspired 
genetic operator that, when incorporated in the standard 
Genetic Algorithm can promote diversity in the 
population. Previous work using this genetic operator in 
the domain of function optimization and combinatorial 
optimization showed that the premature convergence of 
the population is avoided. Furthermore, the solutions 
obtained were, in general, superior to the solutions 
achieved by the GA with standard 1-point, 2-point and 
uniform crossover. In this paper we present an 
extensive empirical study carried to determine the best 
parameter setting to use with transformation in order to 
enhance the GA’s performance. These parameters 
include the gene segment length, the replacement rate 
(percentage of individuals of the previous population 
used to update the gene segment pool), and the 
mutation and transformation rates. 
 
1 Introduction 
One of the key aspects related with the performance of 
Evolutionary Algorithms (EA) is the diversity of the 
evolved population. Loss of diversity may imply the 
premature convergence of the EA to local optima. The 
solutions converge to a region of the search space and 
the EA cannot continue exploring other promising 
areas. It is also true that a homogeneous population is 
less adapted to dynamic changes in the environment. 
In EA, the diversity of a population is mostly achieved 
by the application of the genetic operators. The 
traditional genetic operators used in EA are crossover 
and mutation. Crossover is used to explore different 
promising areas of the search space, allowing the 
convergence to the optima (exploration). Mutation is 
used to “shake” the GA avoiding eventual traps in local 
optima (exploitation) [1]. Nevertheless, the premature 
convergence isn’t always avoided with the application 
of these mechanisms. For instance, when faced with 
problems involving a dynamic environment, the 
traditional EAs aren’t suitable to solve them. The 
population converges to the desired optimum of the 
problem, but when this optimum changes by some 
reason, the EA has troubles in readapting to the new 
solution.  
In order to promote diversity in the individuals of the 
population other mechanisms have been used. Recently, 
Simões and Costa proposed a biologically inspired 
genetic operator called transformation that promotes 
diversity and avoids premature convergence [5]. The 
mechanism mimics the biological process and consists 

in the capacity of the individuals to absorb fragments of 
DNA from the environment. These gene segments are 
then reintegrated in the individuals’ genome. The 
proposed mechanism was tested with several classes of 
problems, namely function optimization, the static and 
dynamic 0/1 knapsack problem ([5], [6]). The results 
showed that this new genetic operator preserves the 
diversity in the population during all the generations 
and the EA with transformation achieved, in general, 
better solutions than the standard GA (SGA). 
Nevertheless, the implementation of transformation 
used a parameter setting chosen based on some 
preliminary empirical studies. For instance, the choice 
of the gene segment length was always random. In this 
paper we report the results of an extensive empirical 
study that allows the user to choose the proper 
parameter setting in order to enhance the GA’s 
performance when using transformation. The studied 
parameters are the gene segment length, the percentage 
of gene segments that are updated using the genetic 
information of the individuals of previous population 
(replacement rate), and the mutation and transformation 
rates. 
The remaining paper is organized in the following 
manner. In section 2, we briefly explain the biological 
and computational functioning of the transformation 
mechanism. Section 3, briefly refers to previous work 
about transformation. In section 4, we detail the 
characteristics of the experimental study, including the 
test problems, the parameters and the experimental 
plan. Section 5 shows the results and states the main 
conclusions regarding the correct choice of the 
parameters. Finally, we present the relevant conclusions 
of the work.  

2 Transformation 
In nature, some bacteria can absorb fragments of DNA 
from the surrounding environment and reintegrate this 
DNA in its genetic material. These bacteria are called 
competent and the reintegration of this DNA fragments 
may confer some evolutionary advantages to them. The 
DNA fragments or gene segments proceed mostly from 
dead bacteria [3]. 
Simões and Costa proposed a computational 
implementation of the transformation mechanism and 
used it as the main genetic operator in the EA, instead 
of crossover [5]. 
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At the beginning of the EA a population of individuals 
and a gene segment pool are created randomly. Then, 
using a roulette-wheel selection method some 
individuals are chosen to be transformed. Those 
individuals form the “mating” pool. The transformation 
was applied with a fixed probability of 70% and works 
as follows: select one individual from the “mating” pool 
and a gene segment from the gene segment pool. It is 
also chosen randomly a transformation point in the 
selected individual. The genes of the gene segment 
replace the genes in the selected individual, after the 
transformation point. After that, the gene pool is 
updated using the genetic information of the individuals 
of the previous population. These individuals are used 
to create 70% of the new segments, being the remaining 
created at random. These percentages were fixed to all 
the executed experiments. Furthermore, the length of 
each segment was also randomly chosen. The GA 
modified with this new genetic operator will be referred 
as Transformed-based GA (TGA) 
Figure 1 describes the mechanism. For more details see 
[5] 

3 Previous work 
The genetic operator was tested in two domains: 
function optimization and combinatorial optimization. 
The chosen functions were four well-known functions: 
Ackley, Griewangk, Rastrigin and Schwefel and the 0/1 
Knapsack problem (0/1 KP) for combinatorial 
optimization. The goals were to minimize the four 
functions (which minimum value is zero) and to 
maximize the value of the objects selected to a 
knapsack of limited capacity. Several instances of the 
0/1 KP were implemented, namely with different 
number of items: 50, 100, 250 and 500 ([2]). 
We compared the quality of the solutions found with 
transformation against the traditional crossover 
operators: 1-point, 2-point and uniform crossover. The 
obtained results are summarized in the tables 1 and 2 
([5]). 
In Table 1 we show the results of the function 
minimization problems. As we can see transformation 
allowed the GA to achieve much better results. The 
principal conclusion to support these results was the 
great diversity that transformation introduces in the 
population avoiding its convergence, and allowing the 
evolution during a long period.  

Nevertheless, either the GA or the TGA were able to 
achieve the optimum solution. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

Fig. 1. Computational Transformation 

 
In Table 2 we show the results for the 0/1 KP. In this 
case the Uniform Crossover was the genetic operator 
that achieved higher performance. 
In order to enhance the transformation performance and 
achieve better solutions, in particular in the 0/1 KP 
problem, we performed an extensive parametric study 
to observe the influence that parameters, such as the 
gene segment’s length, the transformation rate, 
mutation rate or replacement rate, could have in the 
obtained results. 
The parametric study will be detailed in the next 
section. 
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Begin 
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2. S(t)=Generate initial gene segment pool 
3. While (NOT stop_condition) 
    a. Evaluate P(t) 
    b. Select individuals from P(t) 
    c. P’(t)=Transform individuals 
    d. P’’(t)=Mutate new individuals 
    e. Update S(t) using segments from individuals from  
        P(t) and new random segments 
    f. Replace P(t) with P’’(t) 

End 



Table 1. Results obtained by a SGA (using 1-point, 2-point and Uniform Crossover) and the GA using Transformation in the 
function optimization domain 

    Genetic Operator 
    One-point Crossover Two-point Crossover Uniform Crossover Transformation 
 Nº evals 50000 100000 200000 50000 100000 200000 50000 100000 200000 50000 100000 200000

Rastrigin 23.464 16.502 11.599 23.164 15.879 10.739 31.079 22.791 16.676 38.401 18.828 6.540
Griewangk 0.006 0.001 0.001 0.004 0.002 0.001 0.007 0.004 0.003 0.010 0.003 0.001
Schwefel 23.611 2.565 0.409 36.140 13.178 5.484 53.705 11.166 0.521 36.212 0.475 0.077

Fu
nc

tio
n 

Ackley 2.921 1.034 0.278 2.699 0.922 0.119 2.946 1.416 0.429 3.128 0.300 0.002

Table 2. Results obtained by a SGA (using 1-point, 2-point and Uniform Crossover) and the GA using Transformation solving the 
0/1 Knapsack Problem 

 Genetic Operator 
  One-point Crossover Two-point Crossover Uniform Crossover Transformation 
 P. Size→ 50 100 200 50 100 200 50 100 200 20 50 100 200 

50 207.17 195.20 185.40 206.87 199.13 187.77 207.20 199.80 189.13 197.30 197.80 197.23 207.17
100 447.93 410.03 373.67 449.63 415.93 381.73 453.07 402.90 377.67 413.00 408.40 409.70 447.93
250 976.40 844.33 780.93 980.93 862.43 785.27 981.40 824.33 774.93 838.50 834.87 835.17 976.40

N
º o

f I
te

m
s 

500 1914.43 1671.53 1535.50 1936.87 1696.20 1537.03 1955.30 1622.27 1533.30 1666.20 1669.07 1661.03 1914.43
 

4 Experimental setting 
The GA was implemented with roulette-wheel selection 
with elite of size 2 and population size of 200 
individuals in the minimization of the functions and 
with population of size 50 and 100 in the maximization 
of the 0/1 KP. Instead of the classical crossover 
operator we used transformation. The remaining 
parameters were change to study their influence in the 
GA’s performance when using this mechanism. 
We started analyzing the effect of the gene segment 
length in both problem domains. The length of the 
chromosome differs from problem to problem, and so 
the variation of the segment length was dependent on 
that.  
In previous work the length of each segment was 
always chosen in a random way. So, we could have in 
the segment pool segments with several lengths. In this 
study, we fixed all the remaining parameters and 
changed the gene segment size from 5 to a maximum 
value depending on the chromosome length, but the 
segment was fixed for each experiment. The variation 
of this value was made in jumps of five units, i.e, 5, 10, 
15, … until the maximum allowed value. All the 
experiments were repeated over 30 runs.  
Table 3 shows the chromosome length for each problem 
and the interval of variation for the gene segment’s 
length.   
As referred before, the replacement rate is the 
percentage of individuals of the previous generation 

that contribute for the modification of the gene segment 
pool at each generation. 

Table 3. Interval of variation for the gene segment length 

Problem Chromosome 
Length 

Interval of 
variation for 

the gene 
segment 
length 

Ackley’s Function 480 [5, 125] 
Griewangk’s Func. 160 [5, 125] 
Rastrigin’s Func. 280 [5, 125]  
Schwefel’s Func. 160 [5, 125] 
0/1 KP – 50 Items 50 [5, 50] 
0/1 KP – 100 Items 100 [5, 100] 
0/1 KP – 250 Items 250 [5,125] 
0/1 KP –500 Items 500 [5,125] 

 
In our original work we used 70% of the individuals of 
the previous population to update the gene segment 
pool at each generation. In order to determine the 
influence of this parameter, we changed the 
replacement rate from 0% to 100%, in jumps of 5 units.   
The third parameter to be analyzed was the mutation 
rate. We changed this rate among six values: 0%, 1%, 
5%, 10%, 15% and 20%. Our previous work used 0.1% 
of mutation rate. 
Finally, we altered the transformation rate from 0% to 
100% in jumps of 10 units. 



5 Results 
This section will present some of the results obtained. 
We will show representative graphics obtained in the 
function optimization domain and in the 0/1 KP. To 
illustrate the results obtained in the function 
optimization domain we choose the Ackley’s test 
function. For the 0/1 KP we show the results achieved 
with 100 items. 

5.1 Segment length 
The variation of this parameter had great influence in 
the obtained results. Smaller sizes allowed, always, 
better results. Figure 2 shows the variation of the best 
solutions found minimizing the Ackley’s test function. 
The gene segment’s length varied from 5 to 125. As we 
can see, segments of length equal to 5, 10 and 15 were 
the best choice for this parameter.  
Figure 3, shows the results obtained in the 
maximization of the 0/1 KP, with 100 items. Once 
more, smaller segments allowed best results. In this 
case, segments of length 5 or 10 were the appropriated 
choice. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Influence of the Gene Segment’s Length in the Best 
Solution Found (maximization of the 0/1 KP – 100 items) 

 
In order to explain these results we measure the 
diversity of the population using a standard measure 
defined by: 
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where L is the length of the chromosome, P, the 
population size, pi, the ith individual in the population 
and HD the hamming distance. 
Figures 4 and 5 illustrate how the diversity of the 
population evolved during the entire process, using 
gene segments of length 5 and  125 for the Ackley’s 
function and 5 and 100 for the 0/1 KP, respectively.

 

 

Fig. 2. Influence of the Gene Segment’s Length in the Best 
Solution Found (minimization of Ackley’s test function) 

 
The main reason for the degradation of the results using 
larger segments appears to be the disruption introduced 
in the population. As we can see, smaller segments can 
also preserve the diversity of the population, but the 
levels are not as high as in the case of larger segments. 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig 4. Population’s Diversity using Gene segments of size 5 
and 125 (Ackley’s Function) 
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Fig. 5.  Population’s Diversity using Gene segments of size 5 
and 100 (0/1 KP – 100 items) 

5.2 Replacement rate 
The replacement rate was changed from 0% (all the 
gene segments are created at random) to 100% (all the 
segments proceed from individuals of previous 
generations). The results obtained in the two domains 
were quite different: when minimizing the test 
functions, replacement rates superior to 70% allowed 
the best results. In the 0/1 KP, the best solutions were 
found when using replacement rates inferior to 60%. 
Figures 6 and 7 show the behavior of the GA 
minimizing the Ackley’s test function and maximizing 
the 0/1 KP, respectively. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Influence of the Replacement Rate in the Best Solution 
Found (minimization of Ackley’s test function) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 7.  Influence of the Replacement Rate in the Best 
Solution Found (maximization of the 0/1 KP – 100 items) 

 

5.3 Mutation rate  
The mutation rate was changed from 0% to 20% (0%, 
1%, 5%, 10%, 15% and 20%).  In both problems 
mutation rate equal to 0% or 1% allowed the GA to 
achieve the best performances. As we increase the 
mutation rate, the results become worst. Figures 8 and 9 
show the results. 
The observed results can be understand if we analyze 
the population’s diversity when using 0% and 20% of 
mutation rate. If we observe figures 10 and 11 we can 
see that with 20% mutation, the diversity in the 
population is very high and consequently it was 
introduced a great degree of disruption. Transformation 
without any mutation was able to maintain the 
population’s diversity within a reasonable value and 
lead the GA to the best solutions. 
 
  
 
 
 
 
 
 
 
 

 

Fig. 8.  Influence of the Mutation Rate in the Best Solution 
Found (minimization of Ackley’s test function) 
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Fig. 9.  Influence of the Mutation Rate in the Best Solution 
Found (maximization of the 0/1 KP – 100 items) 

 
 
 
 
 
 
 
 
 

Fig. 10. Population’s Diversity using Mutation rate = 0% and 
20% (Ackley’s Function) 

 
 
 
 
 
 
 
 
 

Fig. 11.  Population’s Diversity using Mutation rate = 0% and 
20% (0/1 KP – 100 items) 

5.4 Transformation rate  
Transformation rate was changed from 0% to 100%. It 
is obvious that a rate equal to 0% didn’t allow the 
evolution towards the global optimum, because no 
mutation was used. The best choice for this parameter, 
for both problems was a value superior to 60%.  

Figures 12 and 13 show the influence of the 
transformation rate in the minimization of Ackley’s 
function and in the maximization of the 0/1 KP with 
100 items.  
The transformation rate that leads the GA to the 
minimum values of the functions was 90%. In the case 
of the 0/1 KP, for all the instances, values of 90% or 
100% of transformation rate allowed the GA to achieve 
the best solutions. 
 
 
 
 
 
  
 
 
 
 

Fig. 12. Influence of the Transformation Rate in the Best 
Solution Found (Ackley’s test function) 

 
 
 
 
 
 
 
 
 

Fig. 13.  Influence of the Transformation Rate in the Best 
Solution Found (maximization of the 0/1 KP – 100 items) 

5.5 Global influence of the parameters 
After the study we can conclude that the choice of 
parameters is an important aspect when using 
transformation in the GA. All the parameters influenced 
the results in an expressive manner. 
We run the GA with a new set of parameters and we 
compared the obtained results with the solutions found 
by the GA with the initial parameter setting. Table 4 
reports the results for the function optimization domain. 
As we can see, choosing the appropriate values for the 
parameters the quality of the results was significantly 
increased. 
Table 5 shows the results obtained maximizing the 0/1 
KP. 
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Table 4. Comparing Previous Results with the Results 
Obtained with the Appropriate Parameter Setting (Function 

Optimization) 

Parametric Study Random Choice of Parameters 
Segment length=5 Segment length=random 
Replacement Rate=90% Replacement Rate=90% 
Transformation Rate= 70% Transformation Rate= 70% 
Mutation Rate=0.0% Mutation Rate=0.1% 

Nº evals-> 50000 100000 200000 Nº evals-> 50000 100000 200000

Ackley 2.678 0.044 0.002 Ackley 3.128 0.300 0.002

Griewangk 0.001 0.000 0.000 Griewangk 0.010 0.003 0.001

Rastrigin 8.290 0.821 0.001 Rastrigin 38.401 18.828 6.540

Schwefel 0.147 0.031 0.008 Schwefel 36.212 0.475 0.077

 
As we can see, choosing the GA parameters with some 
criteria, the results obtained in the minimization of the 
four test functions were quite better than the results 
achieved in our initial work, where the parameters were 
chosen based only in a small set of experiments. 

Table 5. Comparing Previous Results with the Results 
Obtained with the Appropriate Parameter Setting (0/1 KP) 

Parametric Study Random Choice of Parameters 

Segment length=5 Segment length=random 
Replacement Rate=50% Replacement Rate=90% 
Transf. Rate= 90% Transf. Rate= 70% 
Mutation Rate=0.0% Mutation Rate=0.1% 

Pop size-> 50 100 Pop size-> 50 100 
50 items 204.60 204.90 50 items 197.30 197.80
100 items 442.50 444.47 100 items 413.00 408.40
250 items 955.20 954.60 250 items 838.50 834.87
500 items 1926.87 1910.00 500 items 1666.20 1669.07

 
In the 0/1 KP problem, the results were also improved. 
If we compare the new results with the ones obtained 
by the TGA, we can see that choosing the correct values 
for the parameters, the GA was able to reach higher 
values. 

6 Conclusions 
We used a new biologically inspired genetic operator 
called transformation in the GA in two different 
problem domains: function optimization and 
combinatorial optimization.  
Previous work using this genetic operator showed that it 
is capable of preserve the population diversity during 
the entire evolutionary process. Nevertheless, the 
choice of the parameters to run the GA with 
transformation was always made without any strongly 
supported criteria. 
In this paper we performed a parametric study to 
enhance the GA’s performance when using 
transformation. In this study we varied four parameters: 

the gene segment length, the replacement rate, the 
mutation rate and the transformation rate. The results 
showed that the choice of these parameters influenced 
the results. In fact, using an appropriated parameter 
setting the GA achieved much better solutions than the 
ones obtained with the first set of parameters. 
All the parameters had great influence in the obtained 
results. 
As we increase the size of the segments the results 
become worst. Studies involving the population’s 
diversity indicate that larger segments introduce more 
disruption in the individuals of the population. 
Concerning the mutation rate, values of 0% allowed the 
ETGA to achieve the best solutions. In fact, the 
algorithm is able of continue evolving only with the 
application of transformation, and no mutation is 
necessary. 
The replacement rate, i.e., the percentage of individuals 
that contribute in the generation of the gene segment 
pool of the next generation, must be chose in the 
appropriated interval: in the minimization of the test 
functions, replacement rates superior to 80% were the 
correct choice: in the maximization of the 0/1 KP, the 
appropriate choice was a value between 50% to 100%. 
The correct choice for the transformation rate was a 
value in the interval 60% to 100%. 
Combining all those parameters and choosing the 
correct values we obtained better results than the ones 
achieved previously by the TGA. 
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