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Abstract 
Maintaining the genetic diversity in populations is an important issue when dealing with dynamic environments. 
In this paper we use a modified Genetic Algorithm (GA) to solve the 0/1 Dynamic Knapsack Problem (DKP). 
The proposed GA uses a biologically inspired genetic operator instead of the classical crossover operator. The 
proposed genetic operator is capable of maintaining the genetic variation in the population at very high levels. 
The modified GA is able of reacting very rapidly to the modifications, even without mutation. 
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1  Introduction 
The great majority of evolutionary approaches are based on static environments. However, many real-world 
problems deal with dynamic environments and thus it is important to find algorithms capable of continuously 
adapting the solution to the changes in that environment. 
The main drawback of the classical Evolutionary Algorithms (EA) seems to be the fact that, as they converge to 
the optimum, the population's diversity is lost and the algorithm cannot continue to explore different areas of the 
search space. In order to allow EA to react to changes in the environment, several approaches have been tested. 
Part of these approaches tries to maintain genetic diversity in the population [2], [5], [6]; other approaches keep 
some sort of memory of previous situations that the algorithms solved in the past [7], [8], [9]. 
In this paper we use a GA modified by the introduction of a biologically inspired genetic operator to solve the 
traditional dynamic 0/1 knapsack problem.  The genetic operator is known as transformation and proved to be a 
powerful alternative to crossover in static optimization problems [11]. Previous studies showed that the genetic 
variation of the individuals in the population is maintained very high when using this mechanism. Using the 
same modified GA in a dynamic problem, we obtained results that show that it is capable of reacting to changes 
in the environment.  
This paper is organized in the following manner. First, in section 2, we discuss the application of an EA to 
dynamic optimization problems. In section 3, we introduce the transformation mechanism. We will describe its 
biological functioning and the proposed computational implementation. Section 4, details the characteristics of 
the experimental environment. In section 5, we report the results using the proposed mechanism. Finally, we 
present the main conclusions of the work. 
 
2  Dynamic Environments 
Dynamic problems can be divided in several categories according to the type of changes that occur during the 
time. The changes can be classified with respect to aspects such as the frequencies, severity or predictability of 
the change [1].  
As referred before, the main limitation of the standard EA to deal with dynamic problems is the lost of diversity 
in the population, as they converge to the optimum. In order to overwhelm this limitation, several evolutionary 
approaches have been tried: restart mechanisms, adaptive mutation and addition of memory. 
The reinitialization of the EA to react to changes in the conditions of the problem is a simple approach to 
maintain genetic diversity in the population. This solution was tested, for instance, in [6]. Adapting the mutation 
rate according to the behavior of the EA is a very common strategy. In general, whenever a change occurs, the 
mutation rate is increased to help the population to react to the new conditions. The increasing of the mutation 
rate is often referred as hypermutation. This approach was adopted in [2] and [5]. 
Another studied solution to deal with dynamic landscapes is the incorporation of memory in the algorithm. The 
memory can be provided implicitly by using redundant representations (diploidy, tetraploidy) [7], [8], or 
explicitly by adding an extra-memory that can be updated or retrieved according to the conditions of the problem 
[12]. 
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3  Transformation 
 
3.1. Biological Transformation 
Usually, transformation consists in the transfer of small pieces of extra cellular DNA between organisms. These 
strains of DNA, or gene segments, are extracted from the environment and added to recipient cells [10]. After 
that, there are two possibilities, failure or success, known technically as restriction and recombination. 
Restriction is the destruction of the incoming foreign DNA, since those bacteria assume that foreign DNA is 
more likely to come from an enemy, such as a virus. In this case, transformation fails. Recombination is the 
physical incorporation of some of the incoming DNA into the bacterial chromosome. If this happens, genes from 
the assimilated segment replace some of the host cell’s genetic information and bacteria are permanently 
transformed.  Once integrated in the chromosome, the DNA segment is able to survive. 
 
3.2 Computational Transformation 
The DNA fragments to incorporate in the individuals of the population are generated at the beginning of the 
process. This DNA fragments consist in binary strings of different lengths and will form the gene segment pool. 
We incorporate transformation into a new genetic operator that replaces crossover. First, we select the 
individuals to be transformed using the roulette-wheel selection method and these individuals are changed with a 
fixed probability. Part of the gene segment pool is changed every generation, using genetic information of the 
individuals of the population. This modified GA will be referred as Transformation-based GA (TGA) and it is 
described in Figure 1.  
 
 
 
 
 
 
 
 
 

 
 

Figure 1: The GA Modified with Transformation 
 
The GA starts with an initial population of individuals and an initial pool of gene segments, both created at 
random. In each generation, we select individuals to be transformed and we modify them using the gene 
segments in the segment pool. After that, the segment pool is changed, using the old population to create part of 
the new segments with the remaining being created at random. The segments that each individual will take up 
from the "surrounding environment" will proceed, mostly, from the individuals existing in the previous 
generation. In the used experimental setup, we changed the segment pool every generation. The modifications 
were made replacing 70% of the segments with new ones, created from the individuals of the old population. 
The remaining 30% were created at random.  The size of the gene segments is also chosen in a random manner.   
After selecting individuals to a mating pool, we use the transformation mechanism to produce new individuals. 
In this case, there is no sexual reproduction among the individuals of the population. Each individual will 
generate a new one through the process of transformation. We can consider this process a form of asexual 
reproduction.  
To transform an individual we execute the following steps: we select a segment from the segment pool and we 
randomly choose a point of transformation in the selected individual. The segment is incorporated in the genome 
of the individual, replacing the genes after the transformation point, previously selected. Obviously, the 
chromosome is seen as a circle. Proceeding this way the chromosome length is kept constant. This corresponds 
to the biological process where the gene segments when integrated in the recipient's cell DNA, replace some 
genes in its chromosome. For more details about transformation see [11]. 
 
4 The Experimental Environment  
We compared the transformation operator with other techniques in a GA for the dynamic 0/1 Knapsack Problem 
[3], [7], [8].  
 
4.1   The 0/1 Knapsack Problem 
The well-known single-objective 0/1 knapsack problem is defined as follows: given a set of n items, each with a 
weight W[i] and a profit P[i], with i = 1, ..., n, the goal is to determine the number of each item to include in the 
knapsack so that the total weight is less than some given limit (C) and the total profit is as large as possible. 
More formally, given a set of weights W[i], profits P[i] (i= 1 ... n) and capacity C, the task is to find a binary 
vector x = {x[1], ...,x[n]}, such that: 

 

1. Generate Initial Population 
    Generate Initial Gene Segment Pool 
2. DO 
    2.1. Evaluate Population 
    2.2. Select Individuals 
    2.3. Transform Individuals 
    2.4. Replace Population with New Individuals 
    2.5. Create New Gene Segment Pool 
WHILE (NOT Stop_Condition) 



          and for which   is maximum. 
 
The knapsack problem is an example of an integer linear problem that has NP-hard complexity. 
In the classical 0/1 knapsack problem, the capacity of the bag is kept constant during the entire run. In the DKP 
the weight limit can change over time between different values. 
 
4.2   Dynamic 0/1 Knapsack Problem 
We used as a test function a 17-object 0/1 knapsack problem with oscillating weight constraint, proposed by [3]. 
The vectors of values and weights used for the knapsack problem are exactly the same as that used by the 
authors. The penalty function for the infeasible solutions is defined by: Pen=K(∆W)2, where ∆W is the amount 
which the solution exceeds the weight constraint and K=20. A solution is considered infeasible if the sum of the 
weights of the items exceeds the knapsack capacity.  
Goldberg and Smith used the DKP to compare the performance of a haploid GA and a diploid GA with fixed 
dominance map and a diploid GA with a triallelic dominance map [3]. In [4] it is referred that their 
experimentation used variation of the knapsack capacity between two different values every 15 generations.  
The DKP, as described before, was also used to compare poliploidy and diplody by [7] and [8]. In section 5.4 we 
will compare the results obtained by the different approaches. 
In this work we enlarged the number of case studies: we used three types of changes in the capacity of the 
knapsack: periodic changes between two values (C1=104 and C2=60) and between three values (C1=60, C2=104 
and C3=80) and non-periodic changes between 3 different capacities (C1=60, C2=80 and C3=104). In each of 
the periodic experiments we started with a total capacity C1 and after half a cycle the constraint was switched to 
C2. When using 3 values, after a complete cycle the capacity is changed to the third value C3. Each trial allowed 
10 cycles with cycle lengths of 30, 100, 200 and 300 generations.  
When using a non-periodic dynamic environment we run the modified GA during 2000 generations and selected 
randomly several moments of change. In these moments the capacity of the knapsack was altered to a different 
value chosen among the same three values used in the periodic situation:  60, 80 and 104.  The moments when a 
change occurred and the new chosen knapsack capacity were randomly generated at the beginning of the first run 
and kept constant for all trials. 
 
4.3  Parameters of the GA 
In the case of periodic changes, the total generations were, 300, 1000, 2000 and 3000, depending on the cycle 
length. In order to analyze the effect of the population size we used the GA with 50 and 150 individuals. The 
mutation rate was also changed between the following values: 0%, 0.1%, 1% and 10%. We were also interested 
in observing the behavior of the transformation mechanism solving the DKP with non-periodic changes. 
Therefore, we executed experiments using a population of 150 individuals and mutation rate equal to 0.1%. In 
this case the GA run over 2000 generations. 
In both cases, periodic and non-periodic, we used roulette wheel with an elite of 2 individuals and the percentage 
of success for the transformation mechanism was 70%. Each experiment was run 25 times and the reported 
results are the averaged values obtained in the 25 runs. 
 
5 The Results 
5.1 Periodic Changes Between 2 Values 
When switching the knapsack capacity between two different values (60 and 104), the TGA recognized this 
modification and was able to adapt to the new solution. Using cycle length equal to 30 generations, in some 
cycles, the TGA couldn't find the best solution because the time to evolve is very small. But increasing the cycle 
length to 100, 200 or 300, the GA achieved better performances of adaptation.   
Figures 2 to 5 show some of the results. The solid gray line represents the ideal solution, the dashed line 
represents the solutions found when using 150 individuals in the population and the solid black line corresponds 
to 50 individuals. Due to lack of space we only show the results for mutation rates equal to 0 and 10%, but for 
the other values, the results were very close. We only illustrate the results for cycles of 30 and 300 generations. 
The main observation concerning the cycle length is that, with larger cycles, the TGA can always find the new 
best solution every time a change occurs. With cycles of 30 generations, in some cases, the GA can’t reach the 
new solution, because the time to evolve isn’t enough. 
As the figures illustrate, the population size and the mutation rate don't influence the result in a significant 
manner. The results with 150 individuals are slightly better to the ones obtained with 50 individuals.  
 
5.2 Periodic Changes Between 3 Values 
Using three different values for the limit weight of the knapsack (60, 80 and 104), the TGA behave similarly to 
the previous case. With smaller cycle lengths the system recognizes the changes but is some cycles, the time is 
not enough to have a complete adaptation to the new conditions. Increasing the length of the cycles, the GA can 
found the new solution when the capacity of the knapsack changes. Figures 6 to 9 show the results obtained by 
the GA implemented with transformation and using different cycle lengths: 30 and 300 generations and mutation 

[ ] [ ] ,.
1

CiWixn

i
≤∑ =

( ) [ ] [ ]iP.ixx n

1i∑ =
=ρ



rates of 0% and 10%. Once again the GA using populations with 50 or 150 individuals achieved very similar 
results. The mutation rate didn't allow any visible improvement. 
    
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Dynamic Knapsack with Cycle Length=30, 
Mutation Rate = 0% 

Figure 3: Dynamic Knapsack with Cycle Length=30, 
Mutation Rate = 10%

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Cycle Length=300, Mutation Rate = 0% 
 

Figure 5: Cycle Length=300, Mutation Rate = 10%
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: Cycle Length=30, Mutation Rate = 0% 

 
 

Figure 7: Length=30, Mutation Rate = 10% 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Cycle Length=300, Mutation Rate = 0% Figure 9: Cycle Length=300, Mutation Rate = 10%
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Figure 10: Non-Periodic Dynamic Knapsack 
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Figure 11: Fitness of the population (best and average) 

 

5.3 Non-Periodic Changes Between 3 Values 
The traditional DKP oscillates between two or three different values of capacity, but this change is usually 
periodic. To see if the behavior of the transformation GA in a non-periodic changing environment we randomly 
selected several points to change the capacity of the knapsack and the new capacity was also changed randomly 
between three different values. The generation of the points where the capacity changes was made with some 
restrictions in order to generate cycles of different lengths. 
Figure 10 shows the performance of the GA using transformation. The solid line represents the ideal solution and 
the dashed line the behavior of the TGA with 150 individuals. As we can see the GA was always able to track 
the changes in the environment, independently of the cycle length. These results stress the idea that 
transformation can keep the population’s diversity and so, it’s a good mechanism to use in dynamic 
environments. 
 
5.4 Comparing the Results with other Approaches 
We can only compare part of our results with the results achieved by [3], [7] and [8], since that they didn’t 
perform all the experimentations we made with transformation. 
Obviously, when comparing the results with the standard haploid GA, our results are always better.  
Goldberg and Smith tested their approach using cycle lengths equal to 30. The results obtained by the 
transformed based GA in the DKP with cycles of 30 generations were similar to the results achieved by [3] using 
dominance. When comparing our results with their results using the triallelic scheme, transformation behave 
slightly worse. It would be interesting to see how their approach behaves with larger cycle lengths and using 
non-periodic changes. 
Hadad et al. (1997) used the DKP to test a polyploid approach. Their experimentation used only periodic 
changes between two different capacity values and different cycle lengths (30, 80 and 300). We can only 
compare our results to the results they achieved in the diploid GA, since that they don’t report the solutions 
found using tetraploid organisms. The results obtained by transformation using cycles of 30 generations were 
slightly inferior, and using cycles of 300 generations, our results were similar to their results. The authors used a 
mutation rate of 1% but don’t study the influence of changing this probability. 
Ng et al. (1995) proposed a new diploid scheme with dominance and use the DKP to study the performance of 
the algorithm. Their study used cycle lengths of 30, 80 and 300 and they also analyzed the influence of the 
mutation rate in the performance of the diploid GA. Comparing the results using cycles of 30 generations, the 
solutions achieved by transformation are better than the results they obtained with lower mutation rates (0.1% 
and 1%) and are similar to their results using a high mutation rate (5%).  The diploid GA needs mutation to 
preserves population’s diversity. In our case, as we saw before, the mutation has no influence in the results 
obtained by transformation.  Ng et al. also used cycles of 300 generations, but they only run the GA over two 
cycles.  In their graphics we can see that the performance of the diploid GA decreases in the second cycle. It 
would be interesting to see the GA behavior using more cycles. The results achieved by transformation were 
better than their results using mutation rates equal to 0.1%, 1% or 5%. 
 
5.5 Population's Diversity 
In order to see the population's diversity generated by the proposed mechanism we analyzed the average fitness 
of the population for the non-periodic situation. As Figure 11 states, the best solution tracks the optimum in 
every change. However, the fitness average of the population is very low and distant from the optimum. This 
shows that, as the GA converges to the optimum, several regions of the search space continue to be explored 
because the population's diversity isn't lost. 
 



 

6 Conclusions 
The biologically inspired genetic operator referred as transformation and already studied by us in static 
environments was used to solve two types of dynamic knapsack problems: periodic changes (between two and 
three different limit capacities) and non-periodic changes among three different capacities.  
The proposed algorithm it is always able to detect the modifications and readapt to the new solutions. The 
experimental study focused three different aspects: the cycle length, the population size and the mutation rate. 
The results show that the GA implemented with transformation was able to detect the changes in the 
environment in all the situations. However, with cycle length equal to 30 generations (the changes occur every 
15 generations) the system had no enough time to readapt completely to the new solution. With larger cycle 
lengths (100, 200 an 300) the adaptation of the solutions to the new conditions was significantly better. 
Concerning the population size, the results were very similar using populations with 50 or 150 individuals. 
Increasing the mutation rate from 0, 0.1%, 1% and 10%, the results are almost the same. We couldn't observe 
any influence of the mutation rate in the adaptation of the GA.  
Using non-periodic changes among three different capacities, the GA once again detected all the modifications 
and found the new solutions. 
Analyzing the average fitness of the population we observed that the diversity in population is always very high 
and we are trying to understand if this is the main reason for the observed results. Besides, in order to achieve 
faster adaptations of the GA when a change occurs, we are implementing some modifications in the way the 
gene segment pool is updated, namely using a large set of the previous generations to modify the gene segment 
pool, instead of using only the previous population. 
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