
An Evolutionary Approach to the Zero/One Knapsack Problem: Testing
Ideas from Biology

Anabela Simões1,2, Ernesto Costa2
1 Instituto Superior de Engenharia de Coimbra, Quinta da Nora, 3030 Coimbra, Portugal

2 Centro de Informática e Sistemas da Universidade de Coimbra, Pinhal de Marrocos, 3030 Coimbra, Portugal
E-mail: abs@sun.isec.pt; ernesto@dei.uc.pt

Abstract
The transposition mechanism, widely studied in previous
publications, showed that when used instead of the standard
crossover operators, allows the genetic algorithm to achieve
better solutions. Nevertheless, all the studies made
concerning this mechanism always focused the domain of
function optimization. In this paper, we present an empirical
study that compares the performances of the transposition-
based GA and the classical GA solving the 0/1 knapsack
problem. The obtained results show that, just like in the
domain of function optimization, transposition is always
superior to crossover.

1 Introduction
Genetic Algorithms (GA) are a search paradigm that
applies ideas from evolutionary biology (crossover,
mutation, natural selection) in order to deal with
intractable search spaces [5]. The basic iteration cycle
of a GA proceeds on a population of individuals, each
of which represents a search point in the space of
potential solutions of a given optimization problem [2].
The standard GA starts with an initial population of
individuals created at random. Then, this population
evolves through time by a string manipulation process
based in three genetic operators: reproduction,
crossover and mutation. The power and success of GA
is mostly achieved by the diversity of the individuals of
a population. In the classical GA, diversity is
maintained through the genetic operators crossover and
mutation.
In nature, genetic diversity is caused and maintained by
several mechanisms besides crossover and mutation.
Some of those mechanisms are inversion, transduction,
transformation, conjugation, transposition and
translocation [3].
Several authors have already used some biologically
inspired mechanisms besides crossover and mutation in
evolutionary approaches. For instance, inversion [5],
conjugation [4],[11], transduction [7], translocation [1]
and transposition [8] were already used as the main
genetic operators in the GA.
The goal of this paper is to enlarge the domain of
application of the transposition mechanism, using it to
solve different types of the 0/1 knapsack problem. The
empirical study will focus the GA efficiency solving

the 0/1 knapsack problem, first using the classical
crossover operators and then, several variants of the
transposition mechanism. The obtained results show
that, in all the studied situations, transposition allows
the GA to reach better solutions.
This paper is organized in the following manner. First,
in section 2, we explain how transposition works in
nature and we summarize previous work related to the
transposition mechanism. In section 3, we introduce the
0/1 knapsack problem. Section 4 describes the
characteristics of the experimental environment. In
section 5, we present a summary of the obtained results
using transposition and crossover. Finally, we present
the relevant conclusions of the work.

2 Transposition

2.1 Biological Transposition

Transposition is characterized by the presence of
mobile genetic units inside the genome, moving
themselves to new locations or duplicating and
inserting themselves elsewhere. These mobile units are
called transposons [3]. The movement of the
transposons (also known as jumping genes) can take
place in the same chromosome or to a different one. In
order to a transposable element to transpose as a
discrete entity, it is necessary for its ends to be
recognized. Therefore, transposons within a
chromosome are flanked by identical or inverse
sequences, some of which are actually part of the
transposon.
The point into which the transposon is inserted requires
no homology with the point where the transposon was
excised. This is in evident contrast to classical
recombination, and consequently, transposition is
sometimes referred to as illegitimate recombination.

2.2 Computational Transposition

Previous publications studied three different variants of
the transposition mechanism, all inspired in the
biological process.
The first form of computational transposition was
called simple transposition. After the selection of two

In V. Kurková, N. Steele, R. Neruda, M. Kárný (eds), Proceedings of the Fifth
International Conference on Neural Networks and Genetic Algorithms
(ICANNGA'01), pp. 236-239, Prague, Czech Republic, 22-25 April, Springer,
2001.

parents for mating, the transposon is formed in one of
them. The insertion point is searched in the second
parent and the same amount of genetic material is
exchanged between the two chromosomes [8].
In order to come closer to the biological mechanism,
we proposed a new form of transposition: tournament-
based transposition. The two selected parents become
competitors in a tournament and the transposon will be
searched in the winner chromosome. The insertion
point will be located in the loser parent. Only this
individual will be changed: the transposon is inserted,
replacing the same number of bits after the insertion
point [9].
In nature, the transposition mechanism can also occur
in the same chromosome. Based on this principle, we
introduced the asexual form of transposition, where all
the process operates in the same individual [10].

3 The 0/1 Knapsack Problem
The well-known single-objective 0/1 knapsack problem
(KP) is defined as follows: given a set of items (n),
each with a weight W[i] and a profit P[i], with i=1,..,n.
The goal is to determine the number of each item to
include in the knapsack so that the total weight is less
than some given limit (C) and the total profit is as large
as possible.

4 Empirical Study
In our empirical analysis, we implemented the KP
varying some parameters as suggested in [6]. We used
several instances for the KP, taking in consideration
several aspects such as, the algorithm used for
evaluation of the individuals, the number of items, the
correlation between the weights and the profits and the
capacity of the knapsack. All those aspects will be
detailed in the next sections. We will also refer to the
parameters of the genetic algorithm used to solve the
problem.

4.1 Algorithms Used in the Individual's Evaluation

We used two types of algorithms in the evaluation of
the individuals (x) of the population: algorithms based
on penalty functions (Ap[i]) and algorithms based on
repair methods (Ar[i]), where i is the index of a
particular algorithm in each class [6].
Using algorithms based on penalty methods, a binary
vector of length n represents a solution x for the
problem each element of x can be 0 or 1. If x[i]=1 then
the item i was selected for the knapsack. The fitness
f(x) for each binary string is determined as:

The penalty function Pen(x) is zero to all feasible
solutions and greater than zero otherwise.
There are many possibilities for assigning the penalty
value. We consider three cases where the growth of the
penalty function is logarithmic, linear and quadratic
[6].
When using algorithms based on repair methods, the
evaluation of the binary string x is determined as:

where x'[i] is the repaired version of the original
chromosome x. We used two different repair methods
to obtain x':
Ar[1] (random repair): the item to be removed from the
knapsack is selected at random.
Ar[2] (greedy repair): all the items in the knapsack are
ordered in the decreasing order of their profit to weight
ratios. The deleted item is the last one.
Another aspect to consider in the repair-based
algorithms is the percentage of repaired chromosomes
to be replaced in the original population. Such
replacement rate may vary between 0% and 100%. In
our experiments, we used two replacement rates 100%
(replace all) and 5%. We chose the 5% rate to test the
5% rule proposed by Orvosh et al. [6].

4.2 Parameters Used in the Evaluation Algorithms

For each algorithm previously described, the empirical
study analyzed the influence of the variation of several
parameters such as the number of items in the
knapsack, the relation between weights and profits and
the capacity of the knapsack. In the following sections,
we will detail how these parameters were changed in
the experiments.
Concerning the number of items, we used three
different values: n=100, n=250 and n=500.
Since the difficulty of the problem is affected by the
correlation between profits and weights, we considered
three different ways of randomly generate those
vectors:
Uncorrelated: both vectors W[i] and P[i] are generated
at random, using a uniform distribution.
W[i]=(uniformly) rand ([1..v]); P[i]=(uniformly) rand
([1..v]).
Weakly correlated: vector W[i] is created at random,
but P[i] is created with some correlation with W[i].
W[i]= (uniformly) rand ([1..v]); P[i]=W[i]+
(uniformly) rand ([-r..r]).
Strongly correlated: W[i]=(uniformly) rand ([1..v]);
P[i]=W[i] + r.
The values used for the parameters v and r were v=10
and r=5 (see [6]).

[] [] ()xxx PeniP.i)(f n

1i
−=∑ =

() [] []iP.if n

1i∑ =
= x'x

(1)

(2)

We used two types of capacity for the knapsack:
restrictive knapsack capacity: C1 = 2.v and average
knapsack capacity: .

4.3 Parameters of the Genetic Algorithm

We implemented the standard GA as described in [2].
The GA used, each time, a different genetic operator:
1-point crossover, 2-point crossover, uniform
crossover, simple transposition, tournament-based
transposition and asexual transposition. The population
consisted in 100 binary strings. We used roulette-wheel
as the selection method and an elitism rate of 10%.
Mutation and transposition/crossover rates were fixed
in 5% and 65%, respectively. The number of
generations was 1000. Each experiment was repeated
25 times. When using transposition, the used flanking
sequence length was always computed through the
appropriated heuristic proposed in previous work [10].

5 The Results
Our empirical study was very extensive, but due to lack
of space we will present the results obtained using the
penalty algorithm Ap[1] and the repair method Ar[1].
To measure the performance of the different algorithms
we used the best solution found within the 1000
generations. The results synthesized in the following
tables are mean values of the 25 experiments. The best
solutions are marked in bold. The genetic operators
used in the tables are identified by Cx1, Cx2, CxU, AT,
ST and TT for 1-point, 2-point, uniform crossover,
asexual, simple and tournament-based transposition,
respectively.

5.1 Results Obtained Using the Ap[1] Algorithm

Using the penalty-based algorithms, when the capacity
of the knapsack was Restrictive (C1), no valid solutions
were found by the GA. Using the Average capacity
(C2), the GA using tournament-transposition achieved
better results in all the situations. Concerning the
remaining genetic operators, the other forms of
transposition were always better than the crossover
operators. The only exception was uniform crossover
that had similar performances to asexual transposition
in some particular cases. The main observation is that
the results are influenced by the correlation of the data
set. As we increase this correlation, the obtained results
become more similar.
Table 1 shows the obtained results using the penalty
algorithm Ap[1]. Using the penalty algorithms Ap[2]
and Ap[3] the transposition-based GA had similar
behavior.

Table 1. Results Using the Penalty Algorithm Ap[1]

Correl. Items Capac. Genetic Operator

 Cx1 Cx2 CxU AT ST TT

 100 C2 478 500 518 518 534 562
Uncorr 250 C2 1159 1258 1237 1356 1276 1401

 500 C2 2291 2332 2440 2460 2480 2606

 100 C2 584 622 636 668 641 681
Weak 250 C2 1481 1524 1539 1549 1555 1587

 500 C2 2819 2802 2817 2878 2822 2887

 100 C2 1023 1028 1012 1051 1055 1055
Strong 250 C2 2471 2491 2485 2523 2573 2578

 500 C2 4654 4654 4656 4659 4663 4770

5.2 Results Obtained Using Ar[1] Algorithm

With this algorithm, we implemented two strategies
(replace-all and replace 5%) but we will present the
results achieved using the "replace-all" strategy. We
choose to present these results, because they are
inferior to those obtained with the replace 5% strategy
(for the transposition mechanism). Using the Ar[1]
algorithms, once again, transposition achieved better
solutions. In particular, the tournament-based and
simple transposition were the mechanisms that
performed better. Table 2 synthesizes the achieved
results.

Table 2. Results Using the Repair Algorithm Ar[1] and the
"replace-all" Strategy

Correl. Itens Capac. Genetic Operator

 Cx1 Cx2 CxU AT ST TT

 100 C1 516 524 524 524 525 524
 C2 341 372 377 385 395 395

Uncorr 250 C1 1343 1347 1348 1350 1353 1352
 C2 860 931 896 943 981 981

 500 C1 2511 2518 2515 2539 2540 2541
 C2 1860 1873 1869 1882 1880 1883

 100 C1 633 633 633 634 634 635
 C2 351 358 344 376 392 386

Weak 250 C1 1557 1559 1560 1560 1563 1564
 C2 930 950 955 967 966 973

 500 C1 2878 2885 2884 2776 2892 2907

 C2 1899 1907 1879 1917 1972 1939

 100 C1 1030 1033 1037 1039 1039 1041
 C2 549 548 558 570 573 578

Strong 250 C1 2346 2527 2531 2538 2539 2540
 C2 1400 1407 1416 1417 1422 1428

 500 C1 4438 4835 4839 4860 4846 4895
 C2 2829 2843 2809 2843 2857 2861

[]∑ =
= n

1i2 iW5.0C

5.3 Using Smaller Population with Transposition

Previous work in the function optimization domain
showed that, with 50 individuals, transposition always
outperformed the standard crossover operators with 50,
100 and 200 individuals. In order to conclude about the
influence of the population size solving the 0/1 KP, we
executed some experiments using the three
transposition mechanisms with only 50 individuals.
These experiments focused the penalty algorithms with
100 items in the knapsack. Once again, transposition
with smaller populations allowed the GA to achieve, in
general, better solutions than when using crossover.
Table 3 reports the obtained results.

Table 3. Results using Transposition with 50 Individuals

Genetic Operator

Cx1 Cx2 CxU AT ST TT

Correl.

Penalty alg.

Nº Items
Pop = 100 Pop = 50

Uncorr Ap[1] 100 478 500 518 516 521 536

Weak Ap[1] 100 584 622 636 636 637 651

Strong Ap[1] 100 1023 1028 1012 1030 1029 1046

Uncorr Ap[2] 100 349 358 359 366 360 408

Weak Ap[2] 100 340 343 351 366 360 378

Strong Ap[2] 100 556 557 558 558 559 559

Uncorr Ap[3] 100 357 354 354 371 344 379

Weak Ap[3] 100 346 346 347 347 348 350

Strong Ap[3] 100 559 560 559 560 562 562

6 Conclusions
The goal of this paper was to use a biologically inspired
genetic operator called transposition (already tested in
the function optimization domain) in a different
domain. The select problem was the 0/1 KP, several
types of knapsacks were implemented and different
genetic operators were used to solve it: the standard
crossover operators (1-point, 2-point and uniform) and
several variants of the transposition mechanism
(asexual, simple and transposition-based).
The obtained results showed that, in all the
implemented algorithms, the transposition mechanisms
allowed the GA to achieve higher performances. We
also reduced the size of the population for 50
individuals when using transposition and, even so, the
GA obtained better results than when using crossover
with 100 individuals. Those results reinforce our
conviction that transposition is a powerful genetic
operator alternative to crossover.

Acknowledgements
This work was partially financed by the Portuguese
Ministry of Science and Technology under the Program
Praxis XXI and by Coimbra Polytechnic.

References
[1] De Falco, I., Iazzetta, A., Tarantino, E., Della Cioppa, A.:
On Biologically Inspired Mutations: The Translocation. In
Late Breaking Papers at the 2000 Genetic and Evolutionary
Computation Conference (GECCO’2000), pp. 70-77, Las
Vegas, USA, 8-12 July 2000.

[2] Goldberg, D. E.: Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Publishing Company, Inc, 1989.

[3] Gould, J. L., Keeton, W. T.: Biological Science. W. W.
Norton & Company 1996.

[4] Harvey, I.: The Microbial Genetic Algorithm. Submitted
as a Letter to Evolutionary Computation. MIT Press, 1996.

[5] Holland, J. H.: Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to
Biology, Control and Artificial Intelligence. 1st MIT Press
edition, MIT Press 1992.

[6] Michalewicz, Z.: Genetic Algorithms + Data Structures =
Evolution Programs. 3rd Edition Springer-Verlag 1999.

[7] Nawa, N., Furuhashi, T., Hashiyama, T., Uchikawa, Y.: A
Study of the Discovery of Relevant Fuzzy Rules Using
Pseudo-Bacterial Genetic Algorithm. IEEE Transactions on
Industrial Electronics, 1999.

[8] Simões, A., Costa, E.: Transposition: A Biologically
Inspired Mechanism to Use with Genetic Algorithms. In the
Proceedings of the Fourth International Conference on Neural
Networks and Genetic Algorithms (ICANNGA'99), pp. 612-
619. Springer-Verlag 1999.

[9] Simões, A., Costa, E.: Transposition versus Crossover: An
Empirical Study. Banzhaf, W., Daida, J., Eiben, A. E.,
Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E.
(eds.), Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO'99), pp. 612-619,
Orlando, Florida USA, CA: Morgan Kaufmann 1999.

[10] Simões, A., Costa, E.: Using Genetic Algorithms with
Asexual Transposition. In D. Whitley, D. Goldberg, E.
Cantú-Paz, L. Spector, I. Parmee, H. Beyer. (eds.),
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO'2000), pp. 323-330, Las Vegas, USA,
CA: Morgan Kaufmann 2000.

[11] Smith, P.: Conjugation - A Bacterially Inspired Form of
Genetic Recombination. In Late Breaking Papers of the First
International Conference on Genetic Programming. Stanford
University, California, 1996.

