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Abstract 
The transposition mechanism, widely studied in previous 
publications, showed that when used instead of the standard 
crossover operators, allows the genetic algorithm to achieve 
better solutions. Nevertheless, all the studies made 
concerning this mechanism always focused the domain of 
function optimization. In this paper, we present an empirical 
study that compares the performances of the transposition-
based GA and the classical GA solving the 0/1 knapsack 
problem.  The obtained results show that, just like in the 
domain of function optimization, transposition is always 
superior to crossover. 

1  Introduction 
Genetic Algorithms (GA) are a search paradigm that 
applies ideas from evolutionary biology (crossover, 
mutation, natural selection) in order to deal with 
intractable search spaces [5]. The basic iteration cycle 
of a GA proceeds on a population of individuals, each 
of which represents a search point in the space of 
potential solutions of a given optimization problem [2].  
The standard GA starts with an initial population of 
individuals created at random. Then, this population 
evolves through time by a string manipulation process 
based in three genetic operators: reproduction, 
crossover and mutation. The power and success of GA 
is mostly achieved by the diversity of the individuals of 
a population. In the classical GA, diversity is 
maintained through the genetic operators crossover and 
mutation.  
In nature, genetic diversity is caused and maintained by 
several mechanisms besides crossover and mutation. 
Some of those mechanisms are inversion, transduction, 
transformation, conjugation, transposition and 
translocation [3]. 
Several authors have already used some biologically 
inspired mechanisms besides crossover and mutation in 
evolutionary approaches. For instance, inversion [5], 
conjugation [4],[11], transduction [7], translocation [1] 
and transposition [8] were already used as the main 
genetic operators in the GA.  
The goal of this paper is to enlarge the domain of 
application of the transposition mechanism, using it to 
solve different types of the 0/1 knapsack problem. The 
empirical study will focus the GA efficiency solving 

the 0/1 knapsack problem, first using the classical 
crossover operators and then, several variants of the 
transposition mechanism. The obtained results show 
that, in all the studied situations, transposition allows 
the GA to reach better solutions. 
This paper is organized in the following manner. First, 
in section 2, we explain how transposition works in 
nature and we summarize previous work related to the 
transposition mechanism. In section 3, we introduce the 
0/1 knapsack problem. Section 4 describes the 
characteristics of the experimental environment. In 
section 5, we present a summary of the obtained results 
using transposition and crossover.  Finally, we present 
the relevant conclusions of the work. 

2  Transposition 

2.1  Biological Transposition 

Transposition is characterized by the presence of 
mobile genetic units inside the genome, moving 
themselves to new locations or duplicating and 
inserting themselves elsewhere. These mobile units are 
called transposons [3]. The movement of the 
transposons (also known as jumping genes) can take 
place in the same chromosome or to a different one. In 
order to a transposable element to transpose as a 
discrete entity, it is necessary for its ends to be 
recognized. Therefore, transposons within a 
chromosome are flanked by identical or inverse 
sequences, some of which are actually part of the 
transposon. 
The point into which the transposon is inserted requires 
no homology with the point where the transposon was 
excised. This is in evident contrast to classical 
recombination, and consequently, transposition is 
sometimes referred to as illegitimate recombination. 

2.2  Computational Transposition 

Previous publications studied three different variants of 
the transposition mechanism, all inspired in the 
biological process.  
The first form of computational transposition was 
called simple transposition. After the selection of two 
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parents for mating, the transposon is formed in one of 
them. The insertion point is searched in the second 
parent and the same amount of genetic material is 
exchanged between the two chromosomes [8]. 
In order to come closer to the biological mechanism, 
we proposed a new form of transposition: tournament-
based transposition. The two selected parents become 
competitors in a tournament and the transposon will be 
searched in the winner chromosome. The insertion 
point will be located in the loser parent. Only this 
individual will be changed: the transposon is inserted, 
replacing the same number of bits after the insertion 
point [9].  
In nature, the transposition mechanism can also occur 
in the same chromosome. Based on this principle, we 
introduced the asexual form of transposition, where all 
the process operates in the same individual [10].  

3  The 0/1 Knapsack Problem 
The well-known single-objective 0/1 knapsack problem 
(KP) is defined as follows: given a set of items (n), 
each with a weight W[i] and a profit P[i], with i=1,..,n. 
The goal is to determine the number of each item to 
include in the knapsack so that the total weight is less 
than some given limit (C) and the total profit is as large 
as possible. 

4  Empirical Study 
In our empirical analysis, we implemented the KP 
varying some parameters as suggested in [6]. We used 
several instances for the KP, taking in consideration 
several aspects such as, the algorithm used for 
evaluation of the individuals, the number of items, the 
correlation between the weights and the profits and the 
capacity of the knapsack. All those aspects will be 
detailed in the next sections. We will also refer to the 
parameters of the genetic algorithm used to solve the 
problem. 

4.1 Algorithms Used in the Individual's Evaluation 

We used two types of algorithms in the evaluation of 
the individuals (x) of the population: algorithms based 
on penalty functions (Ap[i]) and algorithms based on 
repair methods (Ar[i]), where i is the index of a 
particular algorithm in each class  [6]. 
Using algorithms based on penalty methods, a binary 
vector of length n represents a solution x for the 
problem each element of x can be 0 or 1. If x[i]=1 then 
the item i was selected for the knapsack.  The fitness 
f(x) for each binary string is determined as: 
 
 

The penalty function Pen(x) is zero to all feasible 
solutions and greater than zero otherwise. 
There are many possibilities for assigning the penalty 
value. We consider three cases where the growth of the 
penalty function is logarithmic, linear and quadratic 
[6]. 
When using algorithms based on repair methods, the 
evaluation of the binary string x is determined as: 
 
 
where x'[i] is the repaired version of the original 
chromosome x. We used two different repair methods 
to obtain x': 
Ar[1] (random repair): the item to be removed from the 
knapsack is selected at random. 
Ar[2] (greedy repair): all the items in the knapsack are 
ordered in  the decreasing order of their profit to weight 
ratios. The deleted item is the last one. 
Another aspect to consider in the repair-based 
algorithms is the percentage of repaired chromosomes 
to be replaced in the original population. Such 
replacement rate may vary between 0% and 100%. In 
our experiments, we used two replacement rates 100% 
(replace all) and 5%. We chose the 5% rate to test the 
5% rule proposed by Orvosh et al. [6]. 

4.2  Parameters Used in the Evaluation Algorithms 

For each algorithm previously described, the empirical 
study analyzed the influence of the variation of several 
parameters such as the number of items in the 
knapsack, the relation between weights and profits and 
the capacity of the knapsack. In the following sections, 
we will detail how these parameters were changed in 
the experiments. 
Concerning the number of items, we used three 
different values: n=100, n=250 and n=500. 
Since the difficulty of the problem is affected by the 
correlation between profits and weights, we considered 
three different ways of randomly generate those 
vectors: 
Uncorrelated: both vectors W[i] and P[i] are generated 
at random, using a uniform distribution. 
W[i]=(uniformly) rand ([1..v]); P[i]=(uniformly) rand 
([1..v]).  
Weakly correlated:  vector W[i] is created at random, 
but P[i] is created with some correlation with W[i]. 
W[i]= (uniformly) rand ([1..v]); P[i]=W[i]+ 
(uniformly) rand ([-r..r]). 
Strongly correlated: W[i]=(uniformly) rand ([1..v]); 
P[i]=W[i] + r. 
The values used for the parameters v and r were v=10 
and r=5 (see [6]). 
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We used two types of capacity for the knapsack: 
restrictive knapsack capacity:  C1 = 2.v and average 
knapsack capacity:                            . 

4.3  Parameters of the Genetic Algorithm 

We implemented the standard GA as described in [2]. 
The GA used, each time, a different genetic operator: 
1-point crossover, 2-point crossover, uniform 
crossover, simple transposition, tournament-based 
transposition and asexual transposition. The population 
consisted in 100 binary strings. We used roulette-wheel 
as the selection method and an elitism rate of 10%. 
Mutation and transposition/crossover rates were fixed 
in 5% and 65%, respectively. The number of 
generations was 1000. Each experiment was repeated 
25 times. When using transposition, the used flanking 
sequence length was always computed through the 
appropriated heuristic proposed in previous work [10]. 

5  The Results 
Our empirical study was very extensive, but due to lack 
of space we will present the results obtained using the 
penalty algorithm Ap[1] and the repair method Ar[1]. 
To measure the performance of the different algorithms 
we used the best solution found within the 1000 
generations. The results synthesized in the following 
tables are mean values of the 25 experiments. The best 
solutions are marked in bold. The genetic operators 
used in the tables are identified by Cx1, Cx2, CxU, AT, 
ST and TT for 1-point, 2-point, uniform crossover, 
asexual, simple and tournament-based transposition, 
respectively.  

5.1 Results Obtained Using the Ap[1] Algorithm 

Using the penalty-based algorithms, when the capacity 
of the knapsack was Restrictive (C1), no valid solutions 
were found by the GA. Using the Average capacity 
(C2), the GA using tournament-transposition achieved 
better results in all the situations. Concerning the 
remaining genetic operators, the other forms of 
transposition were always better than the crossover 
operators.  The only exception was uniform crossover 
that had similar performances to asexual transposition 
in some particular cases. The main observation is that 
the results are influenced by the correlation of the data 
set. As we increase this correlation, the obtained results 
become more similar. 
Table 1 shows the obtained results using the penalty 
algorithm Ap[1]. Using the penalty algorithms Ap[2] 
and Ap[3] the transposition-based GA had similar 
behavior.  

Table 1. Results Using the Penalty Algorithm Ap[1] 
 

Correl. Items Capac. Genetic Operator 

   Cx1 Cx2 CxU AT ST TT 

 100 C2 478 500 518 518 534 562 
Uncorr 250 C2 1159 1258 1237 1356 1276 1401

 500 C2 2291 2332 2440 2460 2480 2606

 100 C2 584 622 636 668 641 681 
Weak 250 C2 1481 1524 1539 1549 1555 1587

 500 C2 2819 2802 2817 2878 2822 2887

 100 C2 1023 1028 1012 1051 1055 1055
Strong 250 C2 2471 2491 2485 2523 2573 2578

 500 C2 4654 4654 4656 4659 4663 4770

5.2 Results Obtained Using Ar[1] Algorithm 

With this algorithm, we implemented two strategies 
(replace-all and replace 5%) but we will present the 
results achieved using the "replace-all" strategy. We 
choose to present these results, because they are 
inferior to those obtained with the replace 5% strategy 
(for the transposition mechanism). Using the Ar[1] 
algorithms, once again, transposition achieved better 
solutions. In particular, the tournament-based and 
simple transposition were the mechanisms that 
performed better. Table 2 synthesizes the achieved 
results. 

Table 2. Results Using the Repair Algorithm Ar[1] and the 
"replace-all" Strategy 

Correl. Itens Capac. Genetic Operator 

   Cx1 Cx2 CxU AT ST TT 

 100 C1 516 524 524 524 525 524 
  C2 341 372 377 385 395 395 

Uncorr 250 C1 1343 1347 1348 1350 1353 1352
  C2 860 931 896 943 981 981 

 500 C1 2511 2518 2515 2539 2540 2541
  C2 1860 1873 1869 1882 1880 1883

 100 C1 633 633 633 634 634 635 
  C2 351 358 344 376 392 386 

Weak 250 C1 1557 1559 1560 1560 1563 1564
  C2 930 950 955 967 966 973 

 500 C1 2878 2885 2884 2776 2892 2907

  C2 1899 1907 1879 1917 1972 1939

 100 C1 1030 1033 1037 1039 1039 1041
  C2 549 548 558 570 573 578 

Strong 250 C1 2346 2527 2531 2538 2539 2540
  C2 1400 1407 1416 1417 1422 1428

 500 C1 4438 4835 4839 4860 4846 4895
  C2 2829 2843 2809 2843 2857 2861
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5.3 Using Smaller Population with Transposition 

Previous work in the function optimization domain 
showed that, with 50 individuals, transposition always 
outperformed the standard crossover operators with 50, 
100 and 200 individuals. In order to conclude about the 
influence of the population size solving the 0/1 KP, we 
executed some experiments using the three 
transposition mechanisms with only 50 individuals.  
These experiments focused the penalty algorithms with 
100 items in the knapsack. Once again, transposition 
with smaller populations allowed the GA to achieve, in 
general, better solutions than when using crossover. 
Table 3 reports the obtained results. 

Table 3. Results using Transposition with 50 Individuals 

Genetic Operator 

Cx1 Cx2 CxU AT ST TT 

 
 

Correl. 

 
 

Penalty alg. 

 
 

Nº Items 
Pop = 100 Pop = 50 

Uncorr Ap[1] 100 478 500 518 516 521 536

Weak Ap[1] 100 584 622 636 636 637 651

Strong Ap[1] 100 1023 1028 1012 1030 1029 1046

Uncorr Ap[2] 100 349 358 359 366 360 408

Weak Ap[2] 100 340 343 351 366 360 378

Strong Ap[2] 100 556 557 558 558 559 559

Uncorr Ap[3] 100 357 354 354 371 344 379

Weak Ap[3] 100 346 346 347 347 348 350

Strong Ap[3] 100 559 560 559 560 562 562

 

6 Conclusions 
The goal of this paper was to use a biologically inspired 
genetic operator called transposition (already tested in 
the function optimization domain) in a different 
domain. The select problem was the 0/1 KP, several 
types of knapsacks were implemented and different 
genetic operators were used to solve it: the standard 
crossover operators (1-point, 2-point and uniform) and 
several variants of the transposition mechanism 
(asexual, simple and transposition-based).  
The obtained results showed that, in all the 
implemented algorithms, the transposition mechanisms 
allowed the GA to achieve higher performances. We 
also reduced the size of the population for 50 
individuals when using transposition and, even so, the 
GA obtained better results than when using crossover 
with 100 individuals. Those results reinforce our 
conviction that transposition is a powerful genetic 
operator alternative to crossover.  
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