Using Genetic Algorithms with Asexual Transposition

Anabela Simões

Centre for Informatics and Systems of the University of Coimbra, Polo II - Pinhal de Marrocos 3030 Coimbra - Portugal abs@eden.dei.uc.pt phone: +351 239 790000 Centre for Informatics and Systems of the University of Coimbra, Polo II - Pinhal de Marrocos 3030 Coimbra - Portugal ernesto@dei.uc.pt phone: +351 239 790000

Ernesto Costa

Abstract

Traditional Genetic Algorithms (GA) use crossover and mutation as the main genetic operators to achieve population diversity. Previous work using a biologically inspired genetic operator called transposition, allowed the GA to reach better solutions by replacing the traditional crossover operators. In this paper we extend that work to the case of asexual reproduction. The GA efficiency was compared when using asexual transposition and the classical crossover operators. The results obtained show that asexual transposition still allowed the modified GA to achieve higher performances.

1 INTRODUCTION

Genetic diversity is essential for the evolutionary process. When using genetic algorithms, a population evolves through the application of two main genetic operators: mutation and crossover. These operators allow changes in the individuals, creating evolutionary advantages in some of them. The fittest individuals are more likely to be selected allowing the evolution of the population to the best solution (Goldberg 1989).

In nature, genetic diversity is caused and maintained by several mechanisms besides crossover and mutation. Some of those mechanisms are: inversion, transduction, transformation, conjugation, transposition and translocation (Gould et al. 1996).

Some researchers highlighted the importance of these latest discoveries of molecular biology. Mitchell (1996), Mitchell et al. (1994) and Banzhaf et al. (1998) stress

that it would be important to analyze if some of the mechanisms of rearranging genetic material present in the biological systems, when implemented and used with a GA, improve its performance.

Several authors have already used some biologically inspired mechanisms besides crossover and mutation in genetic approaches. For instance, inversion (Holland 1992), conjugation (Harvey 1996; Smith 1996a; Smith 1996b), transduction (Furuhashi et al. 1994; Nawa et al. 1997; Nawa et al. 1998; Nawa et al. 1999), translocation (Oates et al. 1999; Voss et al. 1999) and transposition (Simões et al. 1999a; Simões et al. 1999b, Simões et al. 1999c, Simões 1999) were already used as the main genetic operators in the GA.

In this paper we will introduce an extension to our previous work with the transposition mechanism. This new proposal will be referred to as asexual transposition. Transposition consists in the presence of genetic mobile units called transposons, capable of relocating themselves, or transposing, onto the chromosome and subsequently jumping into new zones of the same or a different chromosome. In asexual transposition the movement of the transposon will occur in the same chromosome.

We will compare the performance of the GA in the domain of function optimization applying a standard test suite with either crossover or asexual transposition. In the studied domain the GA used binary representation. Nevertheless, transposition mechanism can be used with other kind of representations, such as vectors of real numbers or tree-based data structures and in other domains as well.

This paper is organized in the following manner. First, in section 2, we summarize our previous work related to the transposition mechanism. In section 3, we describe how transposition works in nature and how the previous versions were implemented. In section 4, we present the computational form of asexual transposition. Section 5 describes the characteristics of the experimental environment. In section 6, we make an exhaustive comparison of the results obtained with asexual

transposition, 1-point, 2-point and uniform crossover. Finally we present the relevant conclusions of the work.

2 PREVIOUS RELATED WORK

Simões et al. presented a new biologically inspired genetic mechanism, called transposition, as an alternative to crossover (Simões et al. 1999a). In a preliminary work, using a GA as a function optimizer, with a single test function, very promising results were obtained. Such work compared the GA performance when using 1-point, 2-point, uniform crossover or a simple form of transposition. Transposition allowed the GA to reach better results than crossover, even with smaller populations. Later, this preliminary work was enlarged to a test bed containing eighteen test functions and an extensive comparative study showed that, if the right parameters were chosen, transposition always performed better than crossover. Moreover, the authors introduced a new form of transposition, inspired in Harvey's work, called tournament-based transposition, which also proved to be a good substitute to crossover (Simões et al. 1999b). For a detailed description of this work see Simões (1999).

Both mechanisms used sexual reproduction, i.e., two individuals were selected for mating and the transposition mechanism occurs between these individuals. In simple transposition the exchange of the genetic mobile unit is made in a random manner between the two strings. In tournament-based transposition the best individual will give the genetic material to the worst one.

3 TRANSPOSITION

In this section we will explain how transposition works in nature and how it was implemented in the proposals based in sexual reproduction.

3.1 BIOLOGICAL TRANSPOSITION

As referred before, transposition is characterized by the presence of mobile genetic units inside the genome, moving themselves to new locations or duplicating and inserting themselves elsewhere. These mobile units are called transposons (Gould et al. 1996; Russell 1998).

Transposons (also known as jumping genes) can be formed by one or several genes or just a control unit. The movement can take place in the same chromosome or to a different one.

Transposition was first discovered by Barbara McClintock in the 50's (when the DNA structure was not yet completely understood). She proved that certain phenomena present in living beings exposed to UV

radiation could not be the result of the normal recombination and mutation processes. She found that certain genetic elements in corn occasionally move producing kernels with unusual colors that could not have resulted from crossover or mutation. Transposons were for a long time considered as some sort of abnormality. but in 1983, when she was awarded the Nobel Prize, many such transposons had been discovered and their possible role in evolution was beginning to be recognized. For instance, the genetic alterations caused by transposons are responsible for the growth of cancer in humans and for the resistance to antibiotics in bacteria (Gould et al. 1996; Russell 1998). In order to a transposable element to transpose as a discrete entity it is necessary for its ends to recognized. Therefore, transposons within a chromosome are flanked by identical or inverse repeated sequences, some of which are actually part of the transposon. See Figure 1 bellow.

When the transposon moves to another zone of the genome one of the flanking sequences goes with it.

The insertion point can be chosen at random, but there are transposons that show a regional preference when inserting into the same gene. Other method can be a correspondence in the new position with the flanking sequence.

INVERSE FLANKING SEQUENCES

NNNNNATTGA (Transposon) AGTTANNNNNN

IDENTICAL FLANKING SEQUENCES

NNNNNATTGA (Transposon) ATTGANNNNNN

Figure 1: Inverse and Equal Flanking Sequences

The point into which the transposon is inserted requires no homology with the point where the transposon was excised. This is in evident contrast to classical recombination, where relatively long sequences of DNA must share homology to permit a recombination event to occur (same cut point(s)). Consequently, transposition is sometimes referred to as illegitimate recombination.

3.2 SIMPLE TRANSPOSITION

The first form of computational transposition proposed by Simões et al. (1999a) was directly inspired in biology. After the selection of two parents for mating, the transposon is formed in one of them. The insertion point is found in the second parent. According to this point, the same amount of genetic material is exchanged between the two chromosomes. The transposon is recognized by the presence of equal or inverse flanking sequences with a

fixed length. The insertion point is searched in the second chromosome and is chosen when a sequence of genes equal or inverse to the flanking sequence is found. The insertion point will be the first gene after that sequence. After that, the movement of the transposon occurs. Since it was used fixed size chromosomes, the same amount of genetic material is exchanged between the two selected parents. Figure 2 shows how simple transposition works. The detailed functioning of transposition is described in (Simões et al. 1999a).

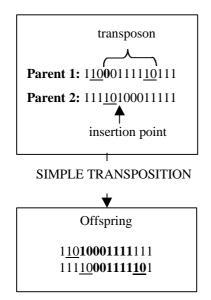


Figure 2: Simple Transposition

3.3 TOURNAMENT-BASED TRANSPOSITION

In order to come closer to the biological mechanism, the authors proposed a new form of transposition: tournament-based transposition.

The two selected parents become competitors in a tournament of size two. The transposon will be searched in the winner chromosome and the insertion point will be located in the loser parent. Only this individual will be altered by inserting the transposon, which replaces the same number of bits after the insertion point. Figure 3 shows this mechanism.

4 ASEXUAL TRANSPOSITION

As stated before, in nature the transposition mechanism can occur also in the same chromosome. Previous work, described above, explored two forms of transposition always involving two different chromosomes (sexual reproduction).

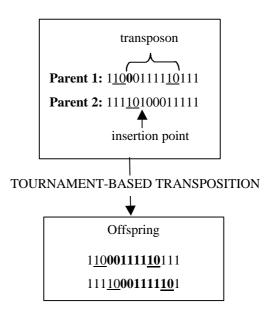


Figure 3: Tournament-based Transposition

4.1 ASEXUAL TRANSPOSITION FUNCTIONING

Our work will focus in a new proposal based in asexual reproduction. The basic functioning of the mechanism will be maintained: the way of building the transposon and finding the insertion point is kept. The main difference will be that all the process will operate in the same individual. After selecting one individual for reproduction, the asexual transposition will be applied. Figure 4 synthesizes the complete process of asexual transposition.

The flanking sequence length (FSL) is previously determined and maintained in all experiments. After selecting the first parent, the beginning of the transposon will be randomly selected (gene T). According to the flanking sequence length, the FSL bits before the gene T make the first flanking sequence. The search of the second flanking sequence begins after gene T and stops when an equal or inverse sequence is found. The transposon is constituted by the genes enclosed by gene T and the last gene of the second flanking sequence.

The insertion point is searched in the same chromosome and this process starts in the first bit after the second flanking sequence. The insertion point is defined when a equal or inverse sequence of bits is found in the chromosome. Notice that the chromosome is viewed as having a circular form. Therefore, after reaching the end of the chromosome the search continues in its first bit. When the insertion point is found, the transposon excises from its original position and will integrate in the insertion point.

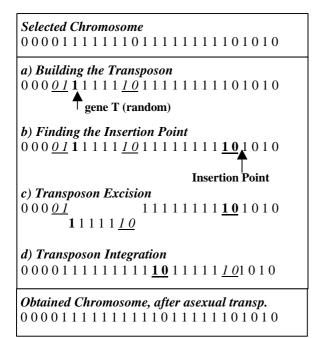


Figure 4: Asexual Transposition

4.2 ASEXUAL TRANSPOSITION IN THE GA

The asexual transposition mechanism will replace the standard crossover operator. The basic structure of the classical GA is kept with the integration of this new genetic operator. Figure 5 illustrates the modified GA in pseudo-code.

GA_WITH_ASEXUAL_TRANSPOSITION

BEGIN

- 1. Generate Initial Population
- 2. **DO**
 - 2.1. Evaluate Population
 - 2.2. Select Individuals to Reproduce
 - 2.3. **FOR** Each Selected Individual
 - 2.3.1. Reproduce with Asexual

Transposition

- 2.3.2. Mutate the Obtained Individual
- 2.4. Replace Old Population

WHILE (NUM_GENER. < FIXED NUMBER)

3. Return Best Result

END

Figure 5: Using the GA with Asexual Transposition

After the selection of the best individuals, all of them will be, with some probability, subjected to the transposition mechanism. The new obtained individuals can be mutated depending on the mutation rate. After that, the population is replaced by the new generated individuals.

5 THE EXPERIMENTAL ENVIRONMENT

5.1 CASE STUDY

The performance of asexual transposition was studied in the function optimization domain. We using a test suite containing seven functions (see appendix), characterized as continuous/ discontinuous, unimodal/multimodal, high/low/scalable, dimensional, stochastic/deterministic, quadratic/non-quadratic and convex/non-convex. These functions are a well known benchmark for genetic approaches (De Jong 1975; Michalewicz 1999; Whitley et al. 1995) and were selected in order to cover such a large set of characteristics.

Since the GA was used as a function optimizer, we chose roulette wheel with elitism as the selection method, in order to keep track of the best solution found (De Jong 1993).

5.2 THE GENETIC ALGORITHM'S PARAMETERS

The GA was first implemented with crossover (1-point. 2-point and uniform) and then with asexual transposition. We executed experiments to study the effect of the population size in the GA efficiency. Therefore, the population size varied between 50, 100 and 200 individuals, either for asexual transposition or crossover. The elite size was 20% of the complete population. The mutation and crossover/asexual transposition rate used was 0.01 and 0.7, respectively.

An important parameter to the achieved results, when applying the asexual transposition mechanism, is the flanking sequences length. In our experiments we used flanking sequences size from 1 to 10, 15 or 20, depending on the chromosome length. In order to understand the role of this parameter, in each set of experiments the flanking sequence size was kept constant. We will refer to the obtained conclusions about the role of the flanking sequence length in next section.

All the tests were run over 500 or 1000 generations, depending on the test function. Ten runs of each experiment involving 1-point, 2-point and uniform crossover and asexual transposition were executed.

Table 1 summarizes all the executed tests for each function of the test suite.

Table 1: Summary of all the Experiments

Mechanism	Population	Flanking Sequence
	50	-
1-Point Crossover	100	-
	200	=
	50	=
2-Point Crossover	100	=
	200	=
	50	=
Uniform Crossover	100	=
	200	=
	50	1 to Maximum
		(10, 15 or 20)
Asexual	100	1 to Maximum
Transposition		(10, 15 or 20)
	200	1 to Maximum
		(10, 15 or 20)

5.3 EVALUATION MEASURE

We used the De Jong's off-line measure to compare GA efficiency when applied crossover or transposition (De Jong 1975). This measure is defined by:

$$X_{e}^{*}(g) = \frac{1}{T} * \sum_{t=1}^{T} f_{e}^{*}(t)$$
 (Eq. 1)

Were $f_e^* = best \{f_e(1), f_e(2), ..., f_e(n)\}$ and **T** is the number of runs. This means that off-line measure is the average of the best individuals in each generation. Due to the total of ten trials, the average of the tens runs was evaluated.

6 THE RESULTS

The results obtained with the seven studied functions were very similar. In all the cases asexual transposition allowed the GA to achieve better solutions than the standard crossover operators. To illustrate in detail the GA performance, we will present the results obtained in the maximization of Schwefel's test function, which is representative of all the test suite. First, we will show the comparative analysis of the results obtained with asexual transposition and one point crossover, two point and uniform crossover, for the Schwefel's function. The solutions obtained when using asexual transposition refer to populations size of 50 individuals, since that, with 100 and 200 strings, the results were always much better.

After these detailed analysis, in section 6.5, we will report the best solutions found in all the test functions, using populations of 200 individuals.

6.1 THE ROLE OF THE FLANKING SEQUENCE LENGTH

The GA performance using the asexual transposition is dependent on the flanking sequence size. Only certain sequence lengths allow good results. For instance, the obtained results for the Schwefel's test function with flanking sequence length equal to 4 (worst result) and 10 (best result) were quite different. Figure 6 shows the different results.

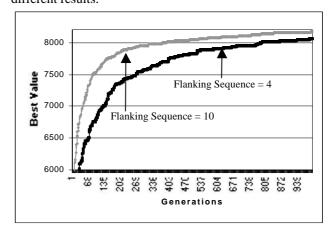


Figure 6: The Importance of the Flanking Sequence Length

Therefore, in order to obtain higher performances is important to determine the "best" sequence length before execute the GA. Since we made an exhaustive study of this parameter (from 1 to a maximum value) we could reach a set of heuristics that can be used too compute the best value for the flanking sequence length for each function. These heuristics, obtained with our experiments, can obviously be generalized to other situations.

Table 2 shows the sequence length which allowed the GA to find the best solutions. The heuristics, given in the last column, show that the flanking sequence size is directly dependent on the chromosome length used to codify each test function.

Table 2: Relation Between the Best Flanking Sequence Length and the Chromosome Size

Test Function.	Chrom. Length (CL)	Best Sequence Length	Heuristic
F1	24	2, 3	10 % CL + 1
F4	33	3, 4	10 % CL + 1
F2	50	5, 6	10 % CL + 1
F7	200	10, 11	5% CL + 1
F5	210	11, 12	5% CL + 1
F3	240	12, 13	5% CL + 1
F6	280	14, 15	5% CL + 1

When larger strings are used to codify the problem (functions F3, F5, F6 and F7) the sequence lengths that allowed the GA to reach the best solutions are 5% of the chromosome length plus one. In the remainder cases, when smaller binary strings are employed, the best flanking sequence lengths are 10% of the chromosome length plus one.

6.2 COMPARING ASEXUAL TRANSPOSITION WITH ONE-POINT CROSSOVER

In this section we will show the results obtained with the GA using asexual transposition (using the appropriate flanking sequence length) and 1-point crossover.

Figure 7 shows that asexual transposition with only 50 individuals allowed the GA to reach higher solutions than one point crossover with 50, 100 or 200 individuals. Using larger populations (100 and 200 individuals), the obtained results were even better.

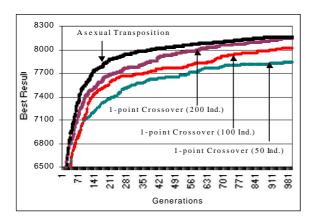


Figure 7: Comparing Asexual Transposition (50 Individuals) with 1-point Crossover (50, 100, 200 Individuals)

6.3 COMPARING ASEXUAL TRANSPOSITION WITH TWO-POINT CROSSOVER

The results concerning to the GA using two point crossover are very similar to the previous case. In fact, asexual transposition with only 50 individual outperformed the solutions reached by the GA using 2-point crossover with 50, 100 and 200 individuals. Asexual transposition used with larger populations lead the GA to better solutions and faster convergence. Figure 8 shows the obtained results.

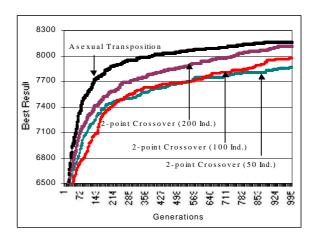


Figure 8: Comparing Asexual Transposition (50 Individuals) with 2-point Crossover (50, 100, 200 Individuals)

6.4 COMPARING ASEXUAL TRANSPOSITION WITH UNIFORM CROSSOVER

Just like before, asexual transposition lead the GA to better solutions than uniform crossover. With only 50 individual the results obtained by the proposed mechanism outperformed the results achieved by uniform crossover with 50, 100 and 200 binary strings in the population.

Figure 9 illustrates the achieved results.

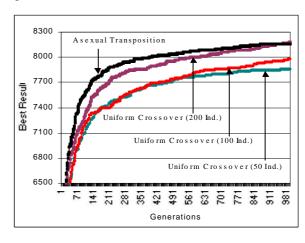


Figure 9: Comparing Asexual Transposition (50 Individuals) with Uniform Crossover (50, 100, 200 Individuals)

6.5 GLOBAL VIEW OF THE OBTAINED RESULTS

The last three sections showed the obtained results using one function, representative of the test suite. In the remaining functions, asexual transposition, also allowed the GA to obtain better results than the traditional crossover operators. The results reported in Table 3 are the mean values of 10 runs of the best solution found for each test function.

Table 3: Best Solution Found (average of 10 runs) in all the Test Functions

Function	Cross 1	Cross 2	Cross U	Asexual T
F1	3902,65	3903,47	3903,11	3903,60
F2	24	24	25	25
F3	1133,00	1124,73	1134,32	1266,50
F4	37,23	37,81	37,66	39,00
F5	5278,04	5385,49	5400,31	6313,10
F6	780,53	757,01	749,58	796,00
F7	8153,43	8116,80	8178,39	8275,40

As mentioned before, the modified GA implemented with the asexual transposition mechanism, always achieved best solutions than when using the standard crossover operators.

7 CONCLUSIONS

In this paper we proposed a new way for using the transposition mechanism involving asexual reproduction. The GA was executed as function optimizer and its efficiency was compared when using the classical crossover operators and when applying the asexual transposition as the main recombination mechanism. For both cases we compared the GA performance with a test suite containing seven test functions.

The process employed to evaluate the GA performance was off-line measure. Some parameters, such as the population size and the flanking sequences length were changed.

Comparing the results with crossover we realized that, just like in the sexual forms of transposition studied before, asexual transposition is always better than crossover.

Furthermore, even with smaller populations the GA using asexual transposition can obtain much better results than crossover with larger populations.

Analyzing the populations obtained with asexual transposition we can see that even in smaller populations

the diversity is maintained in higher levels when comparing with similar populations obtained with the crossover operator. No conclusive study was already made concerning this issue, but it seems that this diversity, created and kept by the asexual transposition mechanism, is responsible for the best solutions we obtained.

Acknowledgements

This work was partially financed by the Portuguese Ministry of Science and Technology under the Program Praxis XXI.

Appendix

F1: De Jong's Test Function F2 (Rosenbrock's Saddle)

$$F(x_1, x_2) = 100 * (x^2 x_2)^2 + (1 - x_1)$$

F2: De Jong's Test Function F3 (Step Function)

$$F_2(x) = \sum_{i=1}^{5} integer(x_i)$$

F3: De Jong's Test Function F4 (Gaussian Quartic)

$$F(x) = \sum_{i=1}^{30} ix_i^4 + Gauss(0,1)$$

F4: Michalewicz's Function

$$F_4(x1, x2) = 21.5 + x1.sin(4Px1) + x2.sin(20Px2)$$

F5: Griewangk's Function

$$F_5(x) = I + \sum_{i=1}^{n} \left[\frac{x_i^2}{4000} \right] - \prod_{i=1}^{n} \left[\cos \left(\frac{x_i}{\sqrt{i}} \right) \right]$$
with $n = 10$

F6: Rastrigin's Function

$$F_6(x) = n * A + \sum_{i=1}^{n} \left[x_i^2 - A * \cos(2Px_i) \right]$$
with $n = 20, A = 10$

F7: Schwefel's (Sine Root) Function

$$F_7(x) = V * n + \sum_{i=1}^{n} \left[-x_i * sin(\sqrt{|xi|}) \right]$$

with $n = 10, V = 418,9829$

References

- W. Banzhaf, P. Nordin, R. E. Keller, F. D. Francone (1998). *Genetic Programming An Introduction On the Automatic Evolution of Computer Programs and its Applications*. Morgan Kaufmann
- K. A. De Jong (1975). Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. Dissertation, Department of Computer and Communication Science, University of Michigan.
- K. A. De Jong (1993). Genetic Algorithms Are NOT Function Optimizers. In L. Darrell Whitley (ed.), *Foundations of Genetic Algorithms* 2, 5-17. CA: Morgan Kaufmann
- T. Furuhashi, K. Nakaoka and Y. Uchikawa (1994). A New Approach to Genetic Based Machine Learning and an Efficient Finding of Fuzzy Rule. In T. Furuhashi (ed.), *Proceedings of the 1994 IEEE/Nagoya-University World Wisepersons Workshop.* Lecture Notes in Artificial Intelligence, vol. 1011, 173-189. Springer-Verlag.
- D. E. Goldberg (1989). *Genetic Algorithms in Search*, *Optimization and Machine Learning*. Addison-Wesley Publishing Company, Inc.
- J. L. Gould and W. T. Keeton (1996). *Biological Science*. W. W. Norton & Company.
- I. Harvey (1996). The Microbial Genetic Algorithm. Submitted to *Evolutionary Computation*. MIT Press.
- J. H. Holland (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. 1st MIT Press edition, MIT Press.
- Z. Michalewicz (1999). *Genetic Algorithms + Data Structures = Evolution Programs*. 3rd Edition Springer-Verlag.
- M. Mitchell and S. Forrest (1994). Genetic Algorithms and Artificial Life. *Artificial Life* **1**(3):267-289.
- M. Mitchell (1996). An Introduction to Genetic Algorithms. MIT Press.
- N. Nawa, T. Hashiyama, T. Furuhashi and Y. Uchikawa (1997). A Study on Fuzzy Rules Using Pseudo-Bacterial Genetic Algorithm with Adaptive Operator. *Proceedings of the IEEE International Conference on Evolutionary Computation*, 589-593. IEEE Press.
- N. Nawa and T. Furuhashi (1998). Bacterial Evolutionary for Fuzzy System Design. *Proceedings of the 1998 IEEE International Conference on Systems, Man and Cybernetics*. IEEE Press.
- N. Nawa, T. Furuhashi, T. Hashiyama and Y. Uchikawa (1999). A Study of the Discovery of Relevant Fuzzy Rules Using Pseudo-Bacterial Genetic Algorithm. *IEEE Transactions on Industrial Electronics*.

- M. Oates, D. Corne, R. Loader (1999). Skewed Crossover and the Dynamic Distributed Database Problem, In the *Proceedings of the Fourth Int. Conference on Neural Networks and Genetic Algorithms*, pp. 280-287. Springer-Verlag.
- P. J. Russell (1998). *Genetics*. 5th edition, Addison-Wesley.
- A. Simões and E. Costa (1999a). Transposition: A Biologically Inspired Mechanism to Use with Genetic Algorithms. In the *Proceedings of the Fourth International Conference on Neural Networks and Genetic Algorithms (ICANNGA'99)*, pp. 612-619. Springer-Verlag
- A. Simões and E. Costa (1999b). Transposition versus Crossover: An Empirical Study. Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E. (eds.), *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'99)*, pp. 612-619, Orlando, Florida USA, CA: Morgan Kaufmann.
- A. Simões and E. Costa (1999c). Enhancing Transposition Performance. *Proceedings of the 1999 Congress on Evolutionary Computation (CEC'99)*, pp. 1434-1441. Piscataway, NJ: IEEE Press.
- A. Simões (1999). *Transposition: A Biologically Inspired Mechanism and its Integration in the Classical Genetic Algorithm*. M.Sc. Dissertation Thesis (in Portuguese), University of Coimbra.
- P. Smith (1996a). Finding Hard Satisfiability Problems Using Bacterial Conjugation. Presented at *the AISB96 Workshop on Evolutionary Computing*. University of Sussex.
- P. Smith (1996b). Conjugation A Bacterially Inspired Form of Genetic Recombination. *In Late Breaking Papers of the First International Conference on Genetic Programming*. Stanford University, California.
- M. Voss and C. Foley (1999). Evolutionary Algorithm For Structural Optimization, Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E. (eds.), *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'99)*, pp. 678-685, Orlando, Florida USA, CA: Morgan Kaufmann.
- D. Whitley, K. Mathias, S. Rana and J. Dzubera (1995). Building Better Test Functions. In L. J. Eshelman (ed.), *Proceedings of the Sixth International Conference on Genetic Algorithms*, 239-246. CA: Morgan Kaufmann.
- T. Yoshikawa, T. Furuhashi and Y. Uchikawa (1997). Knowledge Acquisition of Fuzzy Control Rules for Mobile Robots Using DNA Coding Method and Pseudo-Bacterial Genetic Algorithm. *Proceedings of the First Asia-Pacific Conference on Simulated Evolution and Learning*. Lecture Notes in Artificial Intelligence, vol. 1285, 126-135. Springer-Verlag.