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Abstract

Genetic algorithms are biological inspired search procedures
that have been used to solve different hard problems. They
are based on the neo-Darwinian ideas of natural selection
and reproduction. Since Holland  proposals back in 1975,
two main genetic operators, crossover and mutation,  have
been explored with success. Nevertheless, in nature there
exist  much more mechanisms for genetic recombination
based in phenomena like gene insertion, duplication or
movement. The goal of this paper is to study one of these
mechanism, called transposition. Transposition is a context-
sensitive operator that promotes the movement intra or inter
chromosomes. In this preliminary work we empirically
study the performance of the genetic algorithm where the
traditional crossover operator was substituted by
transposition. The results are very promising but must be
confirmed by a more extensive empirical  study and the
correspondent theoretical justification.

1    Introduction

Genetic Algorithms (GA's) are a search paradigm that
applies ideas from evolutionary biology (crossover,
mutation, natural selection) in order to deal with
intractable search spaces. The power and success of
GA's is mostly achieved by the diversity of the
individuals of a population which evolve, in parallel,
following the principle of "the survival of the fittest".
In the standard GA the diversity of the individuals is
obtained and maintained using the genetic operators
crossover and mutation which allow the GA to find
more promising solutions and avoid premature
convergence to a local maximum [7].
In order to find the most efficient ways of using GA's,
many researchers have carried out extensive studies to
understand  several aspects such as the role of types of
selection, space representation and how to apply the
genetic operators. Several studies were made
concerning the genetic operators crossover and
mutation. For instance, Schaffer and Eshelman
empirically compared mutation and crossover and
concluded  that mutation alone is not always sufficient.

Spears and De Jong analyse the role of crossover and
mutation in terms of disruption theory, trying to
understand the power of the two operators [14]. Later,
De Jong and Spears in [3] present a formal study of the
role of multipoint crossover in GA, in order to analyse
their recombination potential and exploratory power.
Their work provides a better understanding of when
and how to use n-point and uniform crossover.  Spears
in [15] proposes an adaptive GA which decides
between 2-point and uniform crossover as it runs. He
concludes that this adaptive mechanism works well
especially with larger populations.
Although the classical GA uses  these two main
genetic operators to achieve population diversity, in
nature the diversity of the species genetic material is
obtained by several mechanisms which involve gene
insertion, duplication or movement.  With this respect,
Mitchell and Forrest point out the importance of study
other "mechanisms for rearranging genetic material
(e.g., jumping genes, gene deletion and duplication,
introns and exons)" to know if any of these is
significant algorithmically [10].
Some authors proposed other biological inspired
genetic operators besides crossover and mutation.
Harvey and Smith suggest alternative genetic operators
inspired in a bacterial form of recombination  called
conjugation [6], [12], [13]. This process involves the
uni-directional transfer of genetic material by direct
cellular contact between a donor bacterial cell and a
recipient cell. Harvey  suggests a type of  conjugation
based on tournament selection [6]. Parents are selected
on a random basis,  the two parents "fight" in a
tournament. The winner of the tournament becomes
the donor and the loser the recipient of the genetic
material. Smith uses conjugation as a method of
genetic recombination to solve hard satisfiability
problems [12]. He constructed a simple model using a
GA operating directly the phenotype (the satisfiability
expressions) and using mutation operator. A random
population is created and placed in a 15x15 matrix.
The individuals are allowed to move in the matrix and
to conjugate genetic material if placed in adjacent
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positions. Later, Smith proposes a simple conjugation
operator involving two individuals randomly chosen
[13]. Both authors achieved good results using those
substitute genetic operators.
In this paper we will introduce a genetic operator
alternative to crossover, inspired in real biology. This
mechanism is known as transposition and consists in
the presence of genetic mobile units called
transposons, that are capable of relocating themselves,
or transposing, onto the chromosome and subsequently
jumping into new zones of the same or other
chromosome.
We will compare the performance of the GA in finding
an optimal solution to a given function using either
crossover and transposition followed by mutation.

This paper is organised in the following manner. First,
in section 2, we introduce the classical way to use the
traditional GA. In section 3,  we describe how
transposition works in nature and discuss how we
implement it. In section 4, we present our case study
and we make an exhaustive comparison of the results
obtained with transposition, 1-point, 2-point and
uniform crossover. Finally we conclude with a
discussion and direction for future research in this
area.

2    The Classical Genetic Algorithm

The mechanics of a simple GA is very simple,
involving nothing more complex than copying strings
and swapping partial strings [4].  It starts with an
initial population of individuals created at random.
Then, this population is evolved through time by a
string manipulation process based in three genetic
operators: reproduction, crossover and mutation (see
Figure 1).

Fig. 1. - The classical GA

Reproduction is a process in which individuals are
copied to a mating pool according to their fitness.
Individuals with higher fitness have higher probability
of generate offspring in next generation. The
"goodness" of a solution is measured by the fitness

function and is typically defined with the respect to the
current population.  This operator mimics the natural
selection process in which the fittest individuals are
determined by their ability to survive predators,
sickness and other obstacles.
After reproduction, crossover may proceed in two
steps. First, members of the individuals in the mating
pool are selected and mated at random. Second, each
pair of strings is crossed-over, exchanging genetic
material between them. There are several types of
crossover operator, but the general idea of all of them
is to swap genetic material between two strings. For
instance, in 1-point crossover, a cut point is chosen at
random and the genes are swapped according the cut
point (see Figure 2):

Fig. 2. Crossover operator

The power of the GA is mostly due to crossover. It is
the most important operator to the GA. Diversity is
indispensable to evolution. The populations diversity is
obtained and maintained by crossover. which allows
the GA to find better solutions in the search space [9].
The offspring generated by reproduction  and
crossover can be affected by mutation. The effect of
this operator is to change the value of a single gene
(see Figure 3). Although mutation plays a secondary
role in the operation of the GA, it is needed to avoid
premature convergence of the GA to a local optima.
Mutation is applied with a low rate and has the ability
to "shake" the GA enabling it to continue evolving.

Fig. 3. Mutation operator

1. Generate population
2. Do

2.1. Evaluate population
2.2. Reproduction (Select parents)
2.3. Crossover
2.4. Mutation
2.5. Substitute old population

Until (DONE)

Parent I                 11000111011 | 100

Parent II               10000000110 | 111

Crossover

Offspring I  11000111011 | 111

Offspring II  10000000110 | 100

Offspring N    11101000011100

Mutation

Offspring N  (mutated)
11101000010100



3    Transposition

In nature the genetic diversity of the individuals is
preserved by several mechanisms that involve
operations like gene insertion, duplication or
movement. In each one of these categories there are
several processes that in one way or another produce
changes in the genome of the species enabling the
genetic diversity , so important to the evolutionary
process.  For instance we can find phenomenon like
transformation, transduction, conjugation,
retroinsertion, etc. (involving gene insertion); break
and fusion, unequal recombination, transposition, etc
(involving either gene duplication or gene movement).
Table 1  shows the categorisation of these mechanisms
[5], [11].
In this paper we explore one of these mechanisms, the
transposition.

Table 1. Biological mechanisms of changing genetic
material

Mechanism Possible Consequences

Transformation
New genes from a dead cell imported
from surrounding  medium
incorporated into chromosome of
bacterium.

Transduction
New genes accidentally picked up from
previous host and imported into cell by
a virus.

Conjugation
Genetic material from a donor bacteria
is transferred to a recipient cell.

Lysogenic
Insertion

Novel genes of temperate phage
inserted into host genome.

Retroviral
Insertion

cDNA copy of novel genes of retrovirus
inserted into host genome.

Intron Insertion
Excised introns inserted into genome,
mainly at exon-exon junctions in cDNA
insertions.

Retroinsertion
cDNA copies of transcribed host DNA
incorporated into genome providing
duplicate copies of genes.

Breakage and
Fusion

Part of one chromosome breaks off and
fuses to the end of another during
gamete formation; some gametes may
obtain duplicate copies of genes on the
broken fragment.

Unequal
crossing over

Chromosomes may be misaligned
during the crossover process; some
gametes may obtain duplicate copies of
some genes.

Transposition
Chromosomal DNA moved with
genome, or both duplicated and moved.

3.1    Biological Transposition

Transposition characterises itself by the presence of
mobile genetic units that move about in the genome,
either removing themselves to new locations or by
duplicating themselves for insertion elsewhere. These
mobile units are called transposons.
Transposons (also known as jumping genes) can be
formed by one or several genes or just a control unit,
and can move in several ways, none of which is fully
understand: some transposons move from one site on
the chromosome to a new point of the same or to the
other chromosome; others leave a copy behind, still
others remain fixed but dispatch copies to other sites.
In some cases, the transposon, before inserting in the
target position, duplicates itself and the seek for
another insertion point continues in the same way (see
Figure 4).

Fig. 4. Transposition mechanism

Transposition was first discovered by Barbara
McClintock in the 50's (when the DNA structure was
not completely understood). She proved that certain

EXCISION

Flanking
sequences Transposon

Target sequence equal or
inverse to flanking sequence

INTEGRATION



phenomena present in living beings exposed to UV
radiation could not be the result of the normal
recombination and mutation processes. She found that
in corn certain genetic elements occasionally  move
producing kernels with unusual colours that could not
have resulted from crossover or mutation. Transposons
were for a long time considered as some sort of
abnormality, but in 1983 when she was awarded with
the Nobel Prize, many such transposons had been
discovered and their possible role in evolution was
beginning to be recognised. For instance, the genetic
alterations caused by transposons are responsible for
the growth of cancers in human or the resistance to
antibiotics in bacteria [5], [11].
In order for a transposable element to transpose as a
discrete entity it is necessary for its ends to be
recognised. So, transposons within a chromosome are
flanked by identical or inverse repeated sequences,
some of which are actually part of transposon  (see
Figure 5).

Fig. 5. Inverse or equal flanking sequences

When the transposon moves to another zone of the
genome one of the sequences goes with it. The
insertion point can be chosen at random, but there are
transposons that show a regional preference when
inserting into the same gene. Other method can be a
correspondence (identical or inverse) in the new
position with  the flanking sequences. The last method
is described in Figure 6.

Fig. 6.  Building the transposon and finding the insertion
point

The sequence in into which the transposon is inserted
requires no homology with the transposon. This is in
marked contrast to classical recombination, where
relatively long sequences of DNA must share
homology to permit a recombination event to occur
(same cut point(s)). As a consequence, transposition is
sometimes referred to as illegitimate recombination.

3.2    Computational Transposition

We implemented the transposition mechanism
following the inspiration from biology. After selecting
two parents for mating we look for the transposon in
one of them. The insertion point will be found in the
second parent. The same amount of genetic material is
exchanged between the two chromosomes according to
the found insertion point.
Now, we are going to describe how the transposon will
be formed, how it will move in the genome, how to
define the insertion point, how to define the flanking
sequences length and how the integration in the new
position will take place.
Our case study uses chromosomes of  fixed size.
Suppose  this size is CL (Chromosome Length). The
transposition method will work as follow (see Figure
7):

• FSL is the length for the flanking sequences;
• Choose at random a gene (gene T) between 0

and CL, from  which we will build the
transposon;

• The FSL genes immediately before gene T  will
form the first flanking sequence;

• The second flanking sequence can be identical or
inverse to the first one;

• Look in the chromosome, from bit T, for a
possible second flanking sequence;

• The transposon will be formed with all the genes
between gene T and the last gene of the second
flanking sequence;

• The second flanking sequence always moves
with the transposon.

Fig. 7.  Computational transposition: building the transposon

Inverse Flanking Sequences
NNNNNATTGA (Transposon) AGTTANNNNNN

Identical Flanking Sequences
NNNNNATTGA (Transposon) ATTGANNNNNN

Chromosome 1 - Build the transposon
NNNNNATTGA (Transposon) AGTTANNNNNN

Chromosome 2 - Find the insertion point
NN AGTTA NNNNNN ATTGA NNNNN ATTGA
NN

Possible insertion points
1110101010001100001101100111

Transposon

Gene T,
randomly selected

Sequence identical
to the first one

FSL=3
CL=30



We will look in the second parent for a sequence of
bits equal or inverse to the flanking sequences. The
insertion point will be the first gene after that
sequence. After finding the insertion point the same
number of genes, equal to the transposon length, will
be exchanged between the two parents.

All the process is exemplified in Figure 8.

Fig. 8. Computational transposition

Some particular cases can occur:
• The search of the second flanking sequence is

made between gene T+1 through the end of the
chromosome. If no sequence is found the search
starts at the beginning of the chromosome. In a
limit situation the sequence found will be the
first one. In this case there will be no
transposition.

• If there is no equal or inverse sequence in the
target chromosome, the insertion point is defined
randomly.

4  A Case Study: Transposition versus
Crossover

To study the performance of transposition we will
compare it with the standard mechanism of crossover.
We will use the function [8]:

f(x1, x2) = 21.5 + x1.sin(4Πx1)+x2.sin(20Πx2)      (1)

where   and

The optimal solution is 38.87
This function has some interesting aspects as can be
seen in Figure 9.

Fig. 9.  Michalewicz's  test function

x1 and x2 domains length are, respectively, 15.1 and
1.7. We assume a four decimal cases precision. So, we
need 18 bits to represent x1 and 15 bits to represent x2.
The chromosome length is 33.
In all experiments we used roulette wheel with elitism
as the selection method. The elite size is 20%
population size. Mutation rate used is 0.01 and
crossover/transposition rate is 0.7. We made
experiments involving 1-point, 2-point and uniform
crossover. In each crossover type we used population
size of 50, 100 and 200 individuals. Transposition was
tested with flanking sequences from 1 to 10 bits and,
in each case, we used populations of 50, 100 and 200
specimens. We run each experiment 10 times. All the
tests were run over 1000 generations. The results
analysed are the average of best individual fitness
obtained in the ten trials made with each experiment.
First we will analyse transposition results alone,
showing how the flanking sequences length can
influence the performance of the GA.
Then, we will show the results obtained with
transposition, 1-point crossover, 2-point crossover and
uniform crossover. We will compare results obtained
with transposition and with each one of the crossover
methods to get a clear idea of the performance of the
genetic operators used.

4.1    Transposition Performance

We analysed the results obtained with the mechanism
of transposition using flanking sequences with lengths

N = Transposon's Length = 10+3 = 13

Parent I -           1110101010001100001101100111

Parent II -          1110010111111001010001000100

Offspring I -       1110101011111100101000100111
Offspring II -     1110010100011000011011000100

Sequence identical to the flanking
sequence. The insertion point is the

first gene after that sequence.

The same amount (N) of
genes to exchange with

parent I

Transposon

1.1210.3 ≤≤− x 8.521.4 ≤≤ x



from 1 to 10 bits. In each case, we use populations
with 50, 100 and 200 individuals.
Observing the average of the results got in the 10
simulations we conclude two main aspects:
1. With larger populations the results are better.
2. In general, with larger flanking sequences the

performance of the transposition becomes worst.
(see Figure 10).

Fig. 10.  The GA's performance changing sequence length

The first conclusion seems obvious.
The second one must be justified by the fact that if the
flanking sequence length is greater, then the
transposon length  will be bigger. Thus, in most cases
the transposition mechanism won't work because the
second flanking sequence is never found. In practice,
with bigger sequences the rate of transposition will
decrease. Table 2 shows the average results of the
transposon size achieved in all simulations executed
with the flanking sequences from 1 to 10 bits. We also
show the percentage of times that the transposon had
the same size of the chromosome, i.e., no transposition
occurred.

Table 2.  Variation of the transposon length, increasing the
size of  flanking sequences.

Sequence
length

Average of
transposon

length

Transposon
length = 33

(%)
1 3 0%

2 6 6%

3 9 13%

4 15 19%

5 19 27%

6 22 33%

7 25 38%

8 27 49%

9 28 68%

10 29 73%

As we can see that, with larger sequences, the amount
of genetic material exchanged is bigger. Besides this, it
is harder to find the second flanking sequence so, the
percentage of no occurring transposition is very high.
This could lead to a loss of the population diversity
and, subsequently, to the worst results achieved.

4.2    Transposition versus 1-point Crossover

In all the simulations made with transposition (with
populations size of 50, 100, 200 individuals and with
flanking sequence length from 1 to 10) the results
outperformed the results obtained with 1-point
crossover with the same populations size.
An interesting result is that, using transposition, in
most cases, with a population of 50 individuals the
results were much better than 1-point crossover using
50, 100 or 200 individuals.
Only in the worst results of transposition (sequences
length of 9 and 10 bits) this is not true. But in these
cases, transposition with a population of 50 individual
outperforms 1-point crossover with 50 and 100
individuals. In all the other experiments a population
of 50 individual got better results than 1-point
crossover with 50, 100 or 200 individuals.
Transposition using 100 or 200 individuals,
indifferently of the flanking sequence length, is always
better than 1-point crossover with 50, 100 and 200
individuals in population.
For instance, in Figure 11, we show the results
obtained with transposition (flanking sequence length
of 4 bits, 50 individuals) and with 1-point crossover
(using 50, 100 and 200 individuals). We can see that
with a smaller population, transposition gets much
better results. In Figure 12, we present the worst
results obtained with transposition using 50
individuals (flanking sequence length = 10). As we
can see the results are better than 1-point crossover
with 50 and 100 population size.

4.3    Transposition versus 2-point Crossover

The results obtained with transposition and 2-point
crossover were very close.  We still observe the same
characteristics observed with 1-point crossover, i.e. ,
better results with transposition using smaller
populations, but the results are not so obvious.  We
observed that transposition with a population size of
50 individuals rarely gets the same results of 2-point
crossover with 200 individuals, but frequently gets
better results than 2-point crossover with 50 or 100
individuals (except when the performance of
transposition is worst). With populations size of 100
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and 200 specimens, transposition is often better than
2-point crossover with the same population size.
To illustrate these results we show, in Figure 13, the
best values obtained with transposition using 50
individuals (sequence length = 4) and, in Figure 14,
the worst ones (sequence length =10).

Fig. 11. - Transposition, 50 individuals, sequence length =
4; comparing results with 1-point crossover, 50, 100 and 200

individuals.

Fig. 12. - Transposition, 50 individuals, sequence length =
10; comparing results with 1-point crossover, 50, 100 and

200 individuals.

4.4    Transposition versus Uniform Crossover

Comparing the results achieved with transposition and
uniform crossover we can get the same conclusions. In
the best results transposition with smaller populations
(50 individuals) exceed  uniform crossover using 50,
100 or 200 individuals. If we analyse the worst results
for transposition we conclude that with a population
size of 50 individuals,  the results are better than the
ones achieved by uniform crossover with population of
50 and 100 individuals, but not enough to the results
got with 200 individuals.

We show these results in Figures 15 and 16.

Fig. 13. - Transposition, 50 individuals, sequence length =
4; comparing results with 2-point crossover, 50, 100 and 200

individuals.

Fig. 14. - Transposition, 50 individuals, sequence length =
10; comparing results with 2-point crossover, 50, 100 and

200 individuals.

Fig. 15.  - Transposition, 50 individuals, sequence length =
4; comparing results with uniform crossover, 50, 100 and

200 individuals.
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Fig. 16. - Transposition, 50 individuals, sequence length =
10; comparing results with uniform crossover, 50, 100 and

200 individuals.

Transposition using populations of 100 and 200
specimens most of the time overtake uniform crossover
results using the same populations size.
If we compare transposition and 1-point crossover
performances we can conclude that transposition, with
a population size of 50 individuals, exceed 1-point
crossover results for populations size of either 50, 100
or 200 individuals in all situations except the one
presented in Figure 11.
Comparing transposition with 2-point and uniform
crossover performances we observe that, for the same
population size, then transposition results always
exceed 2-point and uniform crossover results.
However, in 2-point crossover the results were much
closer to transposition results than in uniform
crossover, we can say that, for both cases, if we choose
with some care the flanking sequences length we can
obtain better results using transposition with smaller
populations than 2-point crossover and uniform
crossover.

5    Conclusions and Future Work

In this paper we presented a new biological-inspired
genetic operator, alternative to the traditional
crossover. This genetic operator is called transposition.
We used both transposition and crossover (1-point, 2-
point and uniform) to solve the same function
optimisation problem. We analysed the average results
of the best individuals in all the experiments made,
changing parameters such as the population size and
the flanking sequences length.
We conclude that transposition performance is related
with the flanking sequences size: bigger sequences

implies worst results due to a loss of diversity.
Comparing the results with crossover we saw that
transposition is always better than traditional crossover
when using the same populations size, and in most
cases with smaller populations we can get better results
with transposition.
Besides the good results obtained with this new genetic
operator we intend to make more empirical work,
namely, study  the implications of changing other
parameters besides population size and sequence
length, for instance the crossover and mutation rates.
An exhaustive study will be made using other selection
methods such as tournament selection and roulette
wheel without elitism. We will extend our work to
other functions. For instance, some preliminary work
already done with the five De Jong Test Bed functions
[2], was very promising but need to be completed in
order to make well supported conclusions.
Also, we will extend our work to other domains than
function optimisation, namely, applications which use
based-order genetic operators.  It will be important to
make the correspondent theoretical justification.
We will also analyse another version of transposition
for problems using variable length chromosomes and
follow the  suggestion made by [1] and see how this
operator can be used in genetic programming.
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