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Abstract

Traditional Genetic Algorithms (GA) use crossover and
mutation as the main genetic operators to achieve
population diversity. Previous work using a
biologically inspired genetic operator called
transposition, allowed the GA to reach better solutions
by replacing the traditional crossover operators. In this
paper we extend that work to the case of asexual
reproduction. The GA efficiency was compared when
using asexual transposition and the traditional
crossover operators. The results obtained show that
asexual transposition still allowed the modified GA to
achieve higher performances.

1 Introduction

Genetic diversity is essential for the evolutionary
process. When using genetic algorithms, a population
evolves through the application of two main genetic
operators: mutation and crossover. These operators
allow changes in the individuals, creating evolutionary
advantages in some of them. The fittest individuals are
more likely to be selected by the used  selection method
allowing the evolution of the population to the best
solution [5].
In nature genetic diversity is caused and maintained by
several mechanisms besides crossover and mutation.
Some of those mechanisms are: inversion, transduction,
transformation, conjugation, transposition and
translocation [6].
Some researchers highlighted the importance of these
latest discoveries of molecular biology. Mitchell et al.
and Banzhaf et al. stress  that it would be important to
analyze if some of the mechanisms of rearranging
genetic material present in the biological systems, when
implemented and used with a GA, improve its
performance [10], [11], [1].
Several authors have already used some biologically
inspired mechanisms besides crossover and mutation in
genetic approaches. For instance, inversion [8],
conjugation [7], [21],[22], transduction [4], [12], [13],
[14], translocation [15], [23]  and transposition [17],

[18], [19], [20] were already used as the main genetic
operators in the GA.
In this paper we will introduce an extension to our
previous work with the transposition mechanism. This
new proposal will be referred to as asexual
transposition. Transposition consists in the presence of
genetic mobile units called transposons, capable of
relocating themselves, or transposing, onto the
chromosome and subsequently jumping into new zones
of the same or a different chromosome. In asexual
transposition the movement of the transposon will
occur in the same chromosome.
We will compare the performance of the GA in the
domain of function optimization using a standard test
suite with either crossover or asexual transposition.
This paper is organized in the following manner. First,
in section 2, we summarize our previous work related
to the transposition mechanism. In section 3,  we
describe how transposition works in nature and how the
previous versions were implemented. In section 4, we
present the computational form of asexual
transposition. Section 5 describes the characteristics of
the experimental environment. In section 6, we make
an exhaustive comparison of the results obtained with
asexual transposition, 1-point, 2-point and uniform
crossover. Finally we present the relevant conclusions
of the work.

2 Previous Related Work

Simões et al. presented  a new biologically inspired
genetic mechanism, called transposition, as an
alternative to crossover [17]. In a preliminary work,
using a GA as a function optimizer, with a single test
function,  very promising results were obtained.  Such
work compared the GA performance when using 1-
point, 2-point, uniform crossover or a simple form of
transposition. Transposition allowed the GA to reach
better results than crossover, even with smaller
populations. Later, this preliminary work was enlarged
to a test bed containing eighteen test functions and an
extensive comparative study showed that, if the right
parameters were chosen, transposition always
performed better than crossover. Moreover, the authors
introduced a new form of transposition, inspired in
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Harvey’s work, called tournament-based transposition,
which also proved to be a good substitute to crossover
[18]. For a detailed description of this work see [20].
Both mechanisms used sexual reproduction, i.e., two
individuals were selected for mating and the
transposition mechanism occurs between these
individuals. In simple transposition the exchange of the
genetic mobile unit is made in a random manner
between the two strings. In tournament-based
transposition the best individual will give the genetic
material to the worst one. In the next section we will
explain how these two mechanisms were implemented.

3 Transposition

In this section we will explain how transposition works
in nature and how it was implemented in the proposals
based in sexual reproduction.

3.1 Biological Transposition

Transposition is characterized by the presence of
mobile genetic units inside the genome, moving
themselves to new locations or duplicating and
inserting themselves elsewhere. These mobile units are
called transposons [6], [16].
Transposons (also known as jumping genes) can be
formed by one or several genes or just a control unit.
The movement can take place in the same chromosome
or to a different one.
Transposition was first discovered by Barbara
McClintock in the 50's (when the DNA structure was
not yet completely understood). She proved that certain
phenomena present in living beings exposed to UV
radiation could not be the result of the normal
recombination and mutation processes. She found that
certain genetic elements in corn occasionally  move
producing kernels with unusual colors that could not
have resulted from crossover or mutation. Transposons
were for a long time considered as some sort of
abnormality, but in 1983, when she was awarded the
Nobel Prize, many such transposons had been
discovered and their possible role in evolution was
beginning to be recognized. For instance, the genetic
alterations caused by transposons are responsible for
the growth of cancer in humans and for the resistance
to antibiotics in bacteria  [6], [16]. In order to a
transposable element to transpose as a discrete entity it
is necessary for its ends to be recognized. Therefore,
transposons within a chromosome are flanked by
identical or inverse repeated sequences, some of which
are actually part of the transposon.  See Figure 1
bellow.

When the transposon moves to another zone of the
genome one of the flanking sequences goes with it.
The insertion point can be chosen at random, but there
are transposons that show a regional preference when
inserting into the same gene. Other method can be a
correspondence in the new position with  the flanking
sequence.

Fig. 1.  Inverse and Equal Flanking Sequences

The point into which the transposon is inserted requires
no homology with the point where the transposon was
excised. This is in evident contrast to classical
recombination, where relatively long sequences of
DNA must share homology to permit a recombination
event to occur (same cut point(s)). Consequently,
transposition is sometimes referred to as illegitimate
recombination.

3.2 Simple Transposition

The first form of computational transposition proposed
by Simões et al was directly inspired in biology [17].
After the selection of two parents for mating, the
transposon is formed in one of them. The insertion
point is found in the second parent. According to this
point, the same amount of genetic material is
exchanged between the two chromosomes. The
transposon is recognized by the presence of equal or
inverse flanking sequences with a fixed length. The
insertion point is searched in the second chromosome
and is chosen when a sequence of bits equal or inverse
to the flanking sequence is found. The insertion point
will be the first gene after that sequence. After that, the
movement of the transposon occurs. Since it was used
fixed size chromosomes, the same amount of genetic
material is exchanged between the two selected parents.
Figure 2 shows how simple transposition works. The
detailed  functioning of  transposition is described in
[17]

3.3 Tournament-based Transposition

In order to come closer to the biological mechanism,
the authors proposed a new form of transposition:
tournament-based transposition.
The two selected parents become competitors in a
tournament of size two. The transposon will be

INVERSE FLANKING SEQUENCES

NNNNNATTGA (Transposon) AGTTANNNNNN

IDENTICAL FLANKING SEQUENCES

NNNNNATTGA (Transposon) ATTGANNNNNN
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Parent 1:    11000111010111

Parent 2:    11110100011111

transposon

Insertion point

Offspring
11000111010111
11110001110111

Tournament-based transposition

Parent 1:    11000111010111

Parent 2:    11110100011111

transposon

Insertion point

Offspring
11010001110111
11110001110111

Simple  Transposition

searched in the winner chromosome and the insertion
point will be located in the loser parent. Only this
individual will be altered by inserting  the transposon,
which replaces the same number of bits after the
insertion point.  Figure 3 shows this mechanism

Fig. 2.  Simple Transposition

Fig. 3.  Tournament-based Transposition

4 Asexual Transposition

As stated before, in nature the transposition mechanism
can occur also in the same chromosome. Previous
work, described above, explored two forms of
transposition always involving two different
chromosomes (sexual reproduction). Our work will
focus in a new proposal based in asexual reproduction.
The basic functioning of the mechanism will be

maintained: the way of building the transposon and
finding the insertion point is kept.  The main difference
will be that all the process will operate in the same
individual. After selecting one individual for
reproduction, the asexual transposition will be applied.
Figure 4 synthesizes the complete process of asexual
transposition.

Fig. 4.  Asexual Transposition

The flanking sequence length (FSL) is previously
determined and maintained in all experiments. After
selecting the first parent, the beginning of the
transposon will be randomly selected (gene T).
According to the flanking sequence length, the FSL
bits before the gene T make the first flanking sequence.
The search of the second flanking sequence begins after
gene T and stops when an equal or inverse sequence is
found. The transposon is constituted by the genes
enclosed by gene T and the last gene of the second
flanking sequence.
The insertion point is searched in the same
chromosome and this process starts in the first bit after
the  second flanking sequence. The insertion point is
defined when a equal or inverse sequence of bits is
found in the chromosome. Notice that the chromosome
is viewed as having a circular form. Therefore, after
reaching the end of the chromosome the search
continues in the first bit of the chromosome. When the
insertion point is found, the transposon excises from its
original position and will integrate in the insertion
point. This process is repeated a number of times equal
to the  new individuals we want to find (depending on
the population size and the elite size).

a) Building the Transposon
0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0

b) Finding the Insertion Point
0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0

c) Transposon Excision
0 0 0 0 1                      1 1 1 1 1 1 1 1 1 0 1 0 1 0
              1 1 1 1 1 1 0

d) Transposon Integration
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 01 0 1 0

gene T (random)

Insertion Point

Selected Chromosome
0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0

Obtained Chromosome, after asexual transp.
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 01 0 1 0
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5 The Experimental Environment

The performance of asexual transposition was studied
using a test suite containing seven functions (see
appendix), characterized as continuous/ discontinuous,
unimodal/multimodal, high/low/scalable, dimensional,
stochastic/deterministic, quadratic/non-quadratic and
convex/non-convex. These functions are a well known
benchmark for genetic approaches [2], [9], [24] and
were selected in order to cover such a large set of
characteristics.
Since the GA was used as a function optimizer, we
chose roulette wheel with elitism as the selection
method, in order to keep track of the best solution
found [3].
The GA was first implemented with crossover (1-point.
2-point and uniform) and then with asexual
transposition. The population size varied between 50,
100 and 200 individuals, either for asexual
transposition or crossover. The elite size was 20% of
the complete population. The mutation and
crossover/asexual transposition rate used was 0.01 and
0.7, respectively.  Ten runs of each experiment
involving 1-point, 2-point and uniform crossover were
executed.
Asexual transposition was tested with flanking
sequences from 1 to 10, 15 or 20, depending on the
chromosome length. All the tests were run over 500 or
1000 generations, depending on the test function.
We used the De Jong's off-line measure to compare GA
efficiency when applied crossover or transposition [2].
This measure is defined by:

Were f e
 * = best {fe(1), fe(2), ..., fe(n)} and T is the

number of runs. This means that off-line measure is the
average of the best individuals in each generation. Due
to the total of ten trials, the average of  the tens runs
was evaluated.

6 The Results

The results obtained with the seven studied functions
were very similar. In all the cases asexual transposition
allowed the GA to achieve better solutions. To
illustrate these results we chose Schwefel's test
function, which is representative of all the test suite.
We will show the comparative analysis of the results
obtained with asexual transposition and  one point
crossover, two point and uniform crossover. The
solutions obtained when using asexual transposition
refer to populations size of 50 individuals, since that,

with 100 and 200 strings, the results were always much
better.

6.1 The Role of the Flanking Sequence Length

The GA performance  using the asexual transposition is
dependent on the flanking sequence size. Only certain
sequence lengths allow good results. Table 1 shows the
sequence length which allowed the GA to find the best
solutions. The heuristics given in the last column show
that the flanking sequence size is directly dependent on
the chromosome length used to codify each test
function.

Table 1. Relation Between the Best Flanking Sequence
Length and the Chromosome Size

Test
Func.

Chrom.
Length (CL)

Best Seq
Length

Heuristic

F1 24 2, 3 10 % CL + 1
F4 33 3, 4 10 % CL + 1
F2 50 5, 6 10 % CL + 1
F7 200 10, 11 5% CL + 1
F5 210 11, 12 5% CL + 1
F3 240 12, 13 5% CL + 1
F6 280 14, 15 5% CL + 1

When larger strings are used to codify the problem
(functions F3, F5, F6 and F7) the sequence lengths that
allowed the GA to reach the best solutions are 5% of
the chromosome length plus one. In the remainder
cases, when smaller binary strings are employed, the
best flanking sequences lengths are 10% of the
chromosome length plus one.

6.2 Comparing Asexual Transposition with One-
Point Crossover

In this section we will show the results obtained with
the GA using asexual transposition (using the
appropriate flanking sequence length) and 1-point
crossover.
 Figure 5 shows that asexual transposition with only 50
individuals allowed the GA to reach higher solutions
than one point crossover with 50, 100 or 200
individuals. Using larger populations (100 and 200
strings), the obtained results were even better.

6.3 Comparing Asexual Transposition with Two-
Point Crossover

The results concerning to the GA using two point
crossover are very similar to the previous case. In fact,
asexual transposition with only 50 individual
outperformed the solutions reached by the GA using 2-
point crossover with 50, 100 and 200 individuals.
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Asexual transposition used with larger populations lead
the GA to better solutions and faster convergence.
Figure 6 shows the obtained results.

Fig. 5.  Comparing Asexual Transposition (50
Individuals) with 1-point Crossover (50, 100, 200

Individuals)

Fig. 6.  Comparing Asexual Transposition (50
Individuals) with 2-point Crossover (50, 100, 200

Individuals)

6.4 Comparing Asexual Transposition with
Uniform Crossover

Just like before, asexual transposition lead the GA to
better solutions than uniform crossover. With only 50
individual the results obtained by the proposed
mechanism  outperformed the results achieved by
uniform crossover with 50, 100 and 200  binary strings
in the population.

Figure 7 illustrates the achieved results.

Fig. 7.  Comparing Asexual Transposition (50
Individuals) with Uniform Crossover (50, 100, 200

Individuals)

7 Conclusions

In this paper we proposed a new way for using the
transposition mechanism involving asexual
reproduction. The GA was executed as function
optimizer and its efficiency was compared when using
the classical crossover operators and when applying
the asexual transposition as the main recombination
mechanism. For both cases we compared the GA
performance with a test suite containing seven test
functions.
The process employed to evaluate the GA performance
was off-line measure. Some parameters, such as the
population size and the flanking sequences length were
changed.
Comparing the results with crossover we realized that,
just like in the sexual forms of  transposition studied
before, asexual transposition is always better than
crossover.
Furthermore, even with smaller populations the GA
using asexual transposition can obtain much better
results than crossover with larger populations.
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9 Appendix

F1: De Jong's Test Function F2 (Rosenbrock’s Saddle)

F2: De Jong's Test Function F3 (Step Function)

F3: De Jong's Test Function F4 (Gaussian Quartic)

F4: Michalewicz's Function

F5: Griewangk’s Function

F6: Rastrigin’s Function

F7: Schwefel’s (Sine Root) Function
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