
Towards End-User Driven Power Saving
Control in Android devices

Vitor Bernardo1, Bruno Correia1, Marilia Curado1, and Torsten Braun2

1 Center for Informatics and Systems, University of Coimbra, Coimbra, Portugal
{vmbern,bcorreia,marilia}@dei.uc.pt

2 Institute for Computer Science and Applied Mathematics,
University of Bern, Bern, Switzerland

braun@iam.unibe.ch

Abstract. During the last decade mobile communications increasingly
became part of people’s daily routine. Such usage raises new challenges
regarding devices’ battery lifetime management when using most popu-
lar wireless access technologies, such as IEEE 802.11. This paper investi-
gates the energy/delay trade-off of using an end-user driven power saving
approach, when compared with the standard IEEE 802.11 power saving
algorithms. The assessment was conducted in a real testbed using an An-
droid mobile phone and high-precision energy measurement hardware.
The results show clear energy benefits of employing user-driven power
saving techniques, when compared with other standard approaches.

Keywords: Energy Efficiency, Power Saving, IEEE 802.11, Android,
Testbed

1 Introduction

Nowadays, wirelessly connected mobile devices are present almost everywhere
at any time. Apart from other available wireless technologies, IEEE 802.11 [1]
seems to be the de-facto standard for wireless communications, being supported
in millions of devices. Although several mobile devices have Internet access
through mobile operator networks, performance limitations on the support of
highly demanding multimedia applications enabled novel and hybrid communi-
cation paradigms (e.g. offloading) where IEEE 802.11 plays an important role
[2].

In this context, energy consumption issues of battery-supported devices need
to be addressed. In particular, since the Android [3] platform is responsible for a
large part of the mobile device market growth, IEEE 802.11 energy management
mechanisms in this platform should be carefully investigated.

This work studies and compares, using a real testbed, the most popular
IEEE 802.11 power saving techniques implemented on the Android platform.
Additionally, an Android framework for Extending Power Saving control to End-
users (EXPoSE) is proposed, aiming at improving the devices’ energy efficiency
by considering end-users demands.

The rest of this paper is structured as follows: Section 2 introduces the tech-
nology background and discusses the most significant related work. An overview
of the Android platform architecture, followed by the presentation of the EX-
PoSE framework is given in Section 3. Section 4 describes the evaluation testbed
and discusses the obtained results. Finally, Section 5 presents the conclusions.

2 Related Work

This section presents the background concerning the standard power saving
mechanisms of the IEEE 802.11 standard, followed by the discussion of the
most relevant literature concerning IEEE 802.11 energy efficiency mechanisms
in mobile devices.

The main goal of mobile device energy management is to keep as long as
possible the network interface in a low energy consumption state, usually called
sleep mode. Unlike in awake mode, a mobile device in sleep mode can not receive
or transmit data. The most popular power saving mechanism for IEEE 802.11
network interfaces is the Power Save Mode (PSM) [1], usually referred to as
Legacy-PSM. When operating in Legacy-PSM, all the transmitted data to a
certain device in sleep mode is queued at the Access Point (AP). Later, after
being notified via Beacon messages (usually sent every 100 ms) the device must
wake-up to perform pending data polling (sending a PS-Poll message for each
pending frame). As this mechanism is usually associated with higher delays [4],
the last generation of mobile devices addressed the problem by implementing an
adaptive mechanism to switch faster between awake and sleep modes, commonly
named Adaptive-PSM. In Android, the Adaptive-PSM implementation switches
between awake and sleep modes depending on the network traffic, allowing the
IEEE 802.11 interface to stay awake only when there is traffic.

The Adaptive-PSM implementation in Android devices does not consider
traffic type and importance when switching between awake and sleep modes,
leading to several unnecessary switches to awake mode. Trying to overcome
this limitation, Pyles et al. [5] proposed the Smart Adaptive PSM (SAPSM).
SAPSM’s main goal is to avoid that low priority applications switch the inter-
face to awake, which results in energy savings for this type of applications, while
the high priority ones still have good performance. The application priority is
given based on the statistical information collected in the device using the pro-
posed Application Priority Manager service. Although the authors argue that
such approach might have benefits for non-technical users, it does not allow the
application or the end-user to fully control the decision process. Furthermore, if
a continuous media application is classified as high priority, the SAPSM mech-
anism will not be able to go back into sleep mode.

An extension to the common Android’s Adaptive-PSM, aiming at improving
the VoIP energy efficiency, was proposed by Pyles et al. The silence prediction
based WiFi energy adaptation mechanism [6], SiFi, manages the device energy
states according to the VoIP application characteristics. The proposed mecha-
nism predicts the silence periods in the VoIP call and uses this information to
keep the wireless interface in sleep mode for a longer time. The results show 40%

of energy savings, while keeping high voice quality. However, this approach is
limited to VoIP applications, and the energy savings are closely related with the
existence of silence periods.

A framework to reduce energy consumption of video streaming has been pro-
posed by Csernai and Guly [7], aiming to dynamically adjust the awake interval
according to the estimated video quality. The proposed mechanism was imple-
mented in Android, but no accurate energy consumption study on the mobile
equipment has been performed. An optimized power save algorithm for continu-
ous media applications (OPAMA) was proposed by Bernardo et al. [8]. Although
the OPAMA algorithm takes the end-user feedback into the process, it is limited
by the AP configurations. The results show that OPAMA can save up to 44% of
energy when compared with Legacy-PSM, but no real testbed validations have
been performed. Korhonen and Wang [9] also proposed a mechanism to reduce
energy consumption of multimedia streaming for UDP based applications. The
mechanism dynamically adapts the burst intervals by analyzing network conges-
tion. Despite of energy savings by sending the data into bursts, this proposal
does not allow that the power control is driven by the end-users.

Ding et al. [10] introduce Percy, a mechanism that aims at reducing the
energy consumption while keeping a low transfer delay for Web 2.0 flows. To
achieve this goal a local proxy behind the AP was implemented. Energy savings
are possible, since the device can go back into sleep mode when the proxy is
queuing data to it. The assessment conducted in a mobile testbed shows energy
savings between 44 and 67%. Nevertheless, as in other proxy-based approaches
(e.g., [11]) the deployment of the solution is hard, since it requires changes in the
access points. Additionally, these approaches do not consider end-users feedback.

To the best of our knowledge, this work advances the current state of the art
by specifying an Android-based framework, which allows power saving mecha-
nisms to be controlled by end-users. Such tool enables the possibility of including
end-users and/or application preferences within the IEEE 802.11 interface power
saving management.

3 EXPoSE: an Android framework for Extending Power
Saving control to End-users

This section discusses the Android platform internal design in Section 3.1, fol-
lowed by the presentation of the EXPoSE framework in Section 3.2.

3.1 Android overview and motivation

Android [3] is an open source operating system (OS), based on Linux, which
is being widely used in mobile devices. As Android OS is mainly used in mo-
bile devices, the battery management is a critical issue to be addressed. Recent
studies [12] have shown that wireless interfaces of mobile devices represent a
non-negligible part of the total energy consumed. Therefore, aiming at saving

Applications

Settings

WiFi Info

WiFi Manager

WiFi
Configuration ...

Android
Framework API

WiFi
Service WiFi Service

WiFi Native

WiFi State
Machine

WiFi
Monitor

android_net_wifi_Wifi.cppwifi.cwpa_ctrl.c

wpa_supplicant

IEEE 802.11 Driver

Binder

JNI

CTRL_INTERFACE_SOCKET

U
se

r S
pa

ce
Ke

rn
el

Sp

ac
e

An
dr

oi
d

N
at

iv
e

Fig. 1: Architecture of IEEE 802.11 in Android. (Based on [13])

energy, it is important to perform a proper management of the Android IEEE
802.11 interface. Figure 1 illustrates the Android IEEE 802.11 architecture.

To manage the configurations of the IEEE 802.11 interface (WiFi) applica-
tions must interact with the “WiFi Manager”, which handles the communication
with “WiFi Service”. “WiFi Service” controls WiFi related communication be-
tween end-user and kernel spaces, being responsible for managing (“WiFi State
Machine”) and translating (“WiFi Native”) all the requests. “WiFi Native” in-
terfaces with the WiFi library, available as Android native code, through Java
Native Interface (JNI). Finally, all the lower level calls to the IEEE 802.11 driver
are performed through “wpa supplicant”.

Although the IEEE 802.11 architecture of Android is clear and well defined, it
does not expose any IEEE 802.11 sleep related feature in the “Application Frame-
work API” nor in the “WiFi Service”. Therefore, the defined architecture does
not allow the management of the IEEE 802.11 sleep functions at higher-layers
(e.g., application). This paper addresses this issue by proposing enhancements
to the current IEEE 802.11 architecture in Android, allowing power saving to
be controlled by end-users, as described in the next section.

3.2 EXPoSE design

This section presents the Android framework for Extending Power Saving control
to End-users (EXPoSE) design.

Figure 2 illustrates the architecture of the EXPoSE framework. The EXPoSE
framework was implemented as an Android service (EXPoSE Service), plus a
lower level control module included in the Android kernel. This module allows

Application EXPoSEService

expose_service.c

Android Service

Binder

JNI

IEEE 802.11
Driver

Kernel End-Point
Listener Kernel End-Point

Android Kernel

EXPoSE Framework System Call

U
se

r S
pa

ce
Ke

rn
el

 S
pa

ce

Fig. 2: EXPoSE framework architecture.

the IEEE 802.11 power saving functions to be exposed to higher level layers,
enabling better control of power states.

To enable generic communication with the IEEE 802.11 driver, the developed
Android kernel module is composed of two distinct components: the “Kernel
End-Point” and the “Kernel End-Point Listener”. The communication between
the kernel end-point and the driver is performed through the proposed kernel
end-point listener. Such abstraction plays an important role concerning energy
efficiency, since, although the listener is always active, it is waiting in a semaphore
and does not perform any additional processing (with extra energy costs).

Concerning the communication with the applications, the EXPoSE service
can be configured in two distinct ways:

– Pattern-based: allows the application to configure the awake/sleep pattern
over time. For instance, an application can specify that it must be awake for
a certain period, α milliseconds, and it must be in sleep mode for a period
of β milliseconds;

– Maximum Allow Delay (MAD) definition: enables the application to
indicate that a maximum delay of γ milliseconds will be allowed. The control
of the awake/sleep pattern over time will be performed by the EXPoSE
service, taking into account the delay bound restriction.

To use the pattern-based approach, an application should indicate, at least, three
distinct values. The first value is a flag to indicate if the specified pattern should
be repeated over time. Such flag should be followed by two parameters, α and β,
respectively, the awake and sleep periods in milliseconds. When using the MAD
approach the application should only indicate a single value, γ, representing the
maximum allowed delay in milliseconds.

As default Android Adaptive-PSM, the EXPoSE service also performs regular
switching between sleep and awake modes. However, unlike Adaptive-PSM, the
power modes switches are not based on the traffic load, but rather on application
or end-users requirements. To change the IEEE 802.11 network interface to sleep
mode for a certain period, EXPoSE changes the power mode on the IEEE 802.11

driver, forcing a NULL data frame with the Power Management flag enabled to
be sent to the AP. Such action informs the AP that incoming data for that station
should be queued, as in Legacy-PSM. Once the defined sleep period expires, the
EXPoSE forces the interface to go back into awake mode and a NULL data frame
to the AP with Power Management flag set to 0 is sent, allowing the queued data
to be transmitted without any polling message.

The “EXPoSE service” interacts with the IEEE 802.11 driver through the
“Kernel End-Point” by sending the time in milliseconds that the IEEE 802.11
network interface must be in sleep mode. Once the configured time expires,
the “Kernel End-Point Listener” puts the interface back into awake mode. This
scheme minimizes the interactions between user and kernel spaces, leading to a
higher system level performance.

4 Experimental Evaluation

This section describes the experimental assessment performed in the testbed.
Section 4.1 describes the evaluation goals, followed by the testbed presentation
in Section 4.2. Finally, in Section 4.3, the results obtained in the testbed are
presented and discussed.

4.1 Objectives

The experimental evaluation has two main goals. First, it aims to study the
standard IEEE 802.11 power saving schemes, implemented in Android, in the
presence of continuous media applications. The study includes the analysis of
both energy efficiency and network-level performance metrics (e.g. delay) and
the assessment of different application design options (e.g. packet size).

The second goal is to evaluate the EXPoSE approach effectiveness and to
compare its performance with standard mechanisms.

4.2 Testbed setup

This subsection presents the IEEE 802.11 testbed and the energy measurement
methodology to assess energy consumption of mobile phones.

Figure 3 illustrates the IEEE 802.11 and energy measurement testbed. Figure
3a depicts the IEEE 802.11 architecture, and the energy measurement compo-
nents are detailed in Figure 3b.

The “Mobile Node” used in this setup was a LG P990 mobile phone, running
Android 4.2.2 and the “Access Point” was a Cisco Linksys E4200. The machines
in the Core Network (“Server”, “NTP Server”, and “DNS+DHCP” entities) were
virtualized and run in a HP ProLiant DL320 G5p server. Besides the “Mobile
Node”, all the other machines were running Debian 7.0. All the traffic generated
in the following tests has “Server” as source and “Mobile Node” as destination.
Traffic generation was performed using the D-ITG version 2.8.1 [14].

IEEE 802.11

Access Network

Access Point
IEEE 802.11

Mobile Node
(Mobile Phone)

Core Network

DNS + DHCP

ServerNTP Server

(a) IEEE 802.11 architecture.

534 , 891.1 mA

Digital Multimeter

US
B

ca
bl

e

DC

Controller
Machine

4.2v

DC Power Supply

Mobile Phone
 +

 -

Battery
connectors

(b) Energy measurement setup.

Fig. 3: IEEE 802.11 and energy measurement testbed

The mobile phone energy consumption assessment was addressed by extend-
ing a high-precision methodology [15] to support mobile devices. Figure 3b de-
picts the employed energy assessment testbed. The “Digital Multimeter” is a
Rigol DM3061 unit, and supports up to 50.000 samples per second. This high-
precision tool ensures the correct measurement of mobile phone energy con-
sumption, since it will be possible to measure all the slight energy variations.
The multimeter is managed by the “Controller Machine”, which is a central
control point for all the energy-related measurements. The communication be-
tween the “Control Machine” and the “Digital Multimeter” is performed using
the Standard Commands for Programmable Instruments syntax (IEEE 488.2).

Rice et al. [16] were one of the first to explore the energy consumption in
mobile phones. They proposed a methodology where a plastic battery holder
replaces the battery, allowing the battery drop to be measured by using a high-
precision measurement resistor in series between the holder cables and the bat-
tery. Although the accuracy behind this approach might be enough to measure
mobile phone energy consumption, it still depends on the battery discharging
pattern. Therefore, in the methodology used in this paper, an external “DC
Power Supply” was employed. Nevertheless, as the mobile phone is expecting
to receive battery status information via the smart battery system, the external
power supply can not be directly used. The solution used in the measurements
presented in this paper was to employ a specific voltage to allow the RT9524
unit of LG P990 (unit that controls the phone charging process) to be changed
to “Factory Mode”. This mode allows to supply the system using an external
power supply and without connecting a battery.

The energy consumption of the IEEE 802.11 interface described in the next
subsections is given by the difference between the mobile phone total energy
consumption and the baseline energy consumption with the device operating
in airplane mode (all radios off) with the display brightness at 100%. Each

performed test has a duration of 60 seconds, and all the results presented include
20 distinct runs using with a confidence interval of 95%.

4.3 Results

This section discusses the obtained results regarding the No-PSM, Legacy-PSM
and Adaptive-PSM performance when receiving data from a continuous media
application, compared with the EXPoSE approach.

Impact of packet size: This section discusses the impact of the packet size in
energy consumption of the three power saving approaches in study, namely No-
PSM, Legacy-PSM and Adaptive-PSM. The data was sent with a fixed trans-
mission rate of 100 packets per second. The packet size ranges from 200 to
1400 bytes. Figure 4 depicts the total energy consumed by the IEEE 802.11 in-
terface (in Joule) during 60 s by each power saving algorithm, according to the
employed packet size in bytes (x-axis).

 0

 5

 10

 15

 20

 25

 30

200 600 1000 1400

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
[J

ou
le

]

Packet Size [bytes]

No PSM
Legacy PSM
Adaptive PSM

Fig. 4: Total energy consumed by the IEEE 802.11 interface with different packet
sizes.

The obtained results depict the Adaptive-PSM limitations in the presence of
continuous media applications. Since in these applications there will be always
data being transmitted from the core network to the mobile phone, the Adaptive-
PSM algorithm does not have enough opportunities to sleep. Furthermore, due
to the energy costs of multiple transitions between awake and sleep modes, this
dynamic approach might consume more energy than No-PSM. When employing
the Legacy-PSM the energy savings are between 18% and 21% compared to
No-PSM and Adaptive-PSM schemes, respectively.

Concerning the relationship between packet size and energy consumption, it
is possible to see that the packet size has a negligible impact on the total energy
consumed. Such results highlight the energy benefits of using larger packets,
since the energy cost per transmitted byte will be much lower.

Besides the energy consumption behavior, the impact of power saving algo-
rithms on application performance should also be considered. Figure 5 shows
a boxplot representing the one way delay, in milliseconds, for all the packets
transmitted using the different algorithms. Figure 5a depicts the delay for all
the algorithms, while the Figure 5b zooms the same data only for No-PSM and
Adaptive-PSM schemes.

 0

 100

 200

 300

 400

 500

200 600 1000 1400

D
el

ay
 [m

illi
se

co
nd

s]

Packet Size [bytes]

No PSM
Legacy PSM
Adaptive PSM

(a) One way delay for all algorithm

 0

 10

 20

 30

 40

 50

200 600 1000 1400
D

el
ay

 [m
illi

se
co

nd
s]

Packet Size [bytes]

No PSM
Adaptive PSM

(b) One way delay for No-PSM and
Adaptive-PSM

Fig. 5: One way delay for different packet sizes.

Legacy-PSM introduces considerably more delay, when compared to No-PSM
and Adaptive-PSM. The mean delay (second quartile) obtained for the Legacy-
PSM is around 125 ms, while for No-PSM and Adaptive-PSM the mean delay
is between 7 and 9 ms. Additionally, the No-PSM and Adaptive-PSM maximum
delay never exceeds 14 ms and the Legacy-PSM has delays up to 400 ms. Again,
the packet size does not reveal any impact on the results.

These results show that the energy savings (between 18% and 21%) obtained
with the Legacy-PSM do not establish a good energy / performance trade-off,
since there is a high impact on the application delay. Due to the polling phase,
Legacy-PSM also generates packet loss, but always lower than 0.2%. Further-
more, the impact of packet size on the energy consumption is almost absent.
Concerning the application design, the depicted data showed that using larger
packets is highly preferable to improve overall energy consumption.

Impact of transmission rate: This section investigates the impact of the
transmission rate on total energy consumption of No-PSM, Legacy-PSM and
Adaptive-PSM. In this evaluation the packet size was fixed to 1000 bytes, with
the transmission rate varying between 50 and 250 packets per second. Figure
6 presents the total energy consumed by the IEEE 802.11 interface (in Joules)
during 60 s with the different transmission rates (x-axis).

The results show that in both No-PSM and Adaptive-PSM it is possible to
establish a linear relationship between the energy consumption over time and
the transmission rate. When using Legacy-PSM, the energy consumption also

 0

 5

 10

 15

 20

 25

 30

50 100 150 160 170 180 190 200 210 220 230 240 250

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
[J

ou
le

]

Packet Rate [Packets/Second]

No PSM
Legacy PSM
Adaptive PSM

Fig. 6: Total energy consumed by the IEEE 802.11 interface with distinct trans-
mission rates.

increases with transmission rates, but only for rates up to 180 packets per sec-
ond. With transmission rates above 180 packets per second, Legacy-PSM energy
consumption is almost constant. Furthermore, Legacy-PSM only outperforms
No-PSM and Adaptive-PSM for the lowest studied transmission rates.

Thus, in order to properly investigate the Legacy-PSM behavior, the one
way delay and packet loss metrics were analyzed. No packet loss was detected
with the No-PSM and the Adaptive-PSM schemes, and the mean delay ranges
between 7 and 9 ms. The maximum delay observed was always lower than 14 ms.
The boxplot depicting the delay and the packet loss rate for the Legacy-PSM are
illustrated, respectively, in Figures 7a and 7b.

 0
 250
 500

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

50 100 150 160 170 180 190 200 210 220 230 240 250

D
el

ay
 [m

illi
se

co
nd

s]

Packet Rate [packets/second]

Legacy PSM 0
 250
 500

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

50 100 150 160 170 180 190 200 210 220 230 240 250

D
el

ay
 [m

illi
se

co
nd

s]

Packet Rate [packets/second]

Legacy PSM

(a) One way delay

 0

 5

 10

 15

 20

 25

 30

50 100 150 160 170 180 190 200 210 220 230 240 250

Pa
ck

et
 L

os
s

[%
]

Packet Rate [packets/second]

Legacy PSM

(b) Packet loss rate

Fig. 7: One way delay and loss rate for Legacy-PSM with distinct transmission
rates.

The Quality of Service attained using Legacy-PSM is strongly affected by
the transmission rate, as depicted by the mean delay for rates greater or equal
than 160 packets per second. Apart from the unacceptable delay, Legacy-PSM
also affects application performance by introducing a non negligible packet loss
for rates above or equal to 190 packets per second. Such behavior is related to
the Legacy-PSM protocol design, where the device must send one PS-Poll to
the access point to request each pending frame [4]. The long delays resulting
from the protocol polling mechanism also explain the depicted packet loss, since
various packets are dropped in the access point queues due to time constraint
violation.

In short, when analyzing the behavior of Legacy-PSM and Adaptive-PSM
it is possible to conclude that they are not able to establish a proper energy /
performance trade-off for continuous media applications. Legacy-PSM strongly
affects the application performance, whereas the Adaptive-PSM can keep the
application requirements, but without achieving significant energy savings.

EXPoSE pattern-based sleep approach: This section explores the employ-
ment of EXPoSE using the pattern-based sleep approach configured by the appli-
cation, as described in Section 3.2. All the results presented next were performed
using a fixed packet size of 1000 bytes with a constant transmission rate of 200
packets per second. This configuration was selected, since it represents a sce-
nario where the Legacy-PSM performance is already worse than both No-PSM
and Adaptive-PSM (see Figure 7).

As the goal of this assessment is to study the EXPoSE impact on the energy
consumption and network performance, 9 distinct sleep patterns were selected
as illustrated in Table 1. Apart from the parameters required to configure the
EXPoSE pattern-based solution, the table also depicts a constant, κ, associated
with each test. This constant allows to establish a relationship between the
configured periods, that means AwakePeriod = κ× SleepPeriod.

Table 1: EXPoSE pattern-based configurations
Test ID T1 T2 T3 T4 T5 T6 T7 T8 T9
Loop Flag 1 1 1 1 1 1 1 1 1
SleepPeriod (ms) 30 30 30 60 60 60 120 120 120
AwakePeriod (ms) 90 30 10 120 60 20 360 120 40

κ 3 1 1/3 3 1 1/3 3 1 1/3

Figure 8a shows the EXPoSE pattern-based solution energy savings com-
pared to Adaptive-PSM for the different configurations.

As expected, the results show a direct relationship between the energy savings
and the total time in sleep mode. Even for the scenarios with κ=3, where the
total time in sleep mode is 25%, the energy savings are up to 17.93% for the
scenario with a sleep period equal to 120 ms. When reducing the awake period,
an improvement in energy savings can be observed. With κ=1, where the awake

 0

 10

 20

 30

 40

 50

30 60 120

Pe
rc

en
ta

ge
 o

f E
ne

rg
y

Sa
ve

d
[%

]

Sleep Period [milliseconds]

k = 3 [AwakePeriod = 3 x SleepPeriod]

5.03

14.95

17.93

k = 1 [AwakePeriod = SleepPeriod]

12.74

22.92

26.90

k = 1/3 [AwakePeriod = 1/3 x SleepPeriod]

23.45

39.24

44.00

(a) Energy savings compared with Adaptive-
PSM

 0

 50

 100

 150

 200

 250

30 60 120

D
el

ay
 [m

illi
se

co
nd

s]

Sleep Period [milliseconds]

k = 3 [AwakePeriod = 3 x SleepPeriod]
k = 1 [AwakePeriod = SleepPeriod]
k = 1/3 [AwakePeriod = 1/3 x SleepPeriod]

(b) One way delay

Fig. 8: Energy savings and one way delay for EXPoSE pattern-based approach.

and sleep periods are equal, the savings are up to 26.90%. If the awake period
is reduced to 1/3 of the sleep period (i.e., κ=1/3) energy savings are 23.45%,
39.24% and 44.00% for configured sleep periods of 30, 60 and 120 ms, respectively.

The delay results, depicted in Figure 8b, show that EXPoSE impact on the
delay is not negligible, such as with for Adaptive-PSM. For a similar scenario
(with a rate of 200 packets per second and using packet size of 1000 bytes) the
Legacy-PSM mean delay is around 4 s, with a maximum delay higher than 7 s.
Moreover, packet loss with EXPoSE pattern-based approach was always lower
than 0.02%, against 6.00% with Legacy-PSM.

In the studied scenarios, the EXPoSE pattern-based approach shows mean
delays bellow 100 ms, enabling the possibility to be employed with continuous
media application, as for instance, video streaming.

EXPoSE maximum allowed delay approach: This section studies the EX-
PoSE maximum allowed delay approach. In this evaluation, two applications
were selected: one with a maximum allowed delay equal to 100 ms, and another
allowing delays up to 200 ms. Both applications were emulated using a transmis-
sion rate of 200 packets per second, with packets of 1000 bytes length.

The main objective of EXPoSE’s maximum allowed delay approach is to
keep the application quality of service requirements within specified bounds.
Therefore, this section investigates the minimum awake period required to not
exceed the defined maximum allowed delay. As defined in the EXPoSE maxi-
mum allowed delay mechanism, the sleep period will be equal to the configured
maximum allowed delay.

Figure 9a shows the energy savings percentage compared with the Adaptive-
PSM algorithm on the y-axis, while the x-axis depicts the tested awake periods,
ranging from 50 ms to 500 ms. The one way delay for the same assessment is
illustrated in Figure 9b.

 0

 10

 20

 30

 40

 50

 60

50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f E
ne

rg
y

Sa
ve

d
[%

]

Awake interval [ms]

Maximum Allowed Delay = 100ms

38.50
36.05

20.86

16.65
14.13 13.77

11.64
8.85 8.47

6.76

Maximum Allowed Delay = 200ms54.44
52.91

46.55

39.95

35.60

30.91

27.23
24.83 23.53

20.04

(a) Energy savings compared with Adaptive-
PSM

 0

 50

 100

 150

 200

 250

 300

 350

 400

50 100 150 200 250 300 350 400 450 500

D
el

ay
 [m

illi
se

co
nd

s]

Awake Interval [milliseconds]

Maximum Allowed Delay = 100ms
Maximum Allowed Delay = 200ms

(b) One way delay

Fig. 9: Energy savings and delay for EXPoSE maximum allowed delay scenarios.

The results show that to keep the application delay within the defined bounds,
the awake period should be defined as 300 ms and 450 ms for maximum allowed
delays of 100 ms and 200 ms, respectively. Energy savings for the lowest maxi-
mum allowed delay are 13.77% and 24.83% when the application supports delays
up to 200 ms. Nonetheless, if the application allows that only 75% of the packets
(boxplot third quartile) arrive within the configured limits, it is enough to be
awake during 50 ms and the energy savings for 100 ms and 200 ms maximum
allowed delay are 38.50% and 54.44%, respectively.

5 Conclusions

The fast growth of mobile devices deployment created new demands concerning
the energy efficiency of the IEEE 802.11 network interfaces, which is one of
the core access technologies supporting the communication of those devices. As
Android is one of the most used platforms in portable equipment, the IEEE
802.11 power saving mechanisms in this system should be scrutinized.

Besides investigating the performance of IEEE 802.11 power saving tech-
niques available in Android, this paper proposes an Android framework for Ex-
tending Power Saving control to End-users (EXPoSE), which enables an end-
user and application based control of the IEEE 802.11 network interface power
management. The achieved results showed that EXPoSE approaches, namely
the pattern-based and the maximum allowed delay, are more energy efficient
than both Legacy-PSM and Adaptive-PSM schemes. Depending on the scenar-
ios and applications requirements, the EXPoSE energy savings can go up to
24.83% without violating the application delay constraints. Moreover, if some
additional delay is acceptable (e.g., only 75% of the packets arriving on time),
the energy savings can be more than 50%.

Furthermore, the obtained results depicted the EXPoSE capabilities to im-
prove continuous media applications energy efficiency, which is not well sup-
ported by Legacy-PSM and Adaptive-PSM strategies.

Acknowledgments

This work was partially supported by the COST Action IC0906, as well as by
the iCIS project (CENTRO-07-ST24-FEDER-002003), co-financed by QREN, in
the scope of the Mais Centro Program and European Union’s FEDER. The first
author was also supported by the Portuguese National Foundation for Science
and Technology (FCT) through a Doctoral Grant (SFRH/BD/66181/2009).

References

1. IEEE: IEEE std 802.11-2012 (revision of ieee std 802.11-2007). (2012) 1–2793
2. Costa-Pérez, X., Festag, A., Kolbe, H.J., Quittek, J., Schmid, S., Stiemerling, M.,

Swetina, J., van der Veen, H.: Latest trends in telecommunication standards.
SIGCOMM Comput. Commun. Rev. 43(2) (April 2013) 64–71

3. Android Open Source Project: Android open-soruce software stack (2014)
4. Tsao, S.L., Huang, C.H.: A survey of energy efficient MAC protocols for IEEE

802.11 {WLAN}. Computer Communications 34(1) (2011) 54 – 67
5. Pyles, A.J., Qi, X., Zhou, G., Keally, M., Liu, X.: SAPSM: smart adaptive 802.11

PSM for smartphones. In: Proceedings of the 2012 ACM Conference on Ubiquitous
Computing. UbiComp ’12, New York, NY, USA, ACM (2012) 1120

6. Pyles, A.J., Ren, Z., Zhou, G., Liu, X.: Sifi: Exploiting voip silence for wifi energy
savings insmart phones. In: Proceedings of the 13th International Conference on
Ubiquitous Computing. UbiComp ’11, New York, NY, USA, ACM (2011) 325–334

7. Csernai, M., Gulyas, A.: Wireless adapter sleep scheduling based on video qoe:
How to improve battery life when watching streaming video? In: ICCCN 2011.
(July 2011) 1–6

8. Bernardo, V., Curado, M., Braun, T.: An IEEE 802.11 energy efficient mecha-
nism for continuous media applications. Sustainable Computing: Informatics and
Systems (2014)

9. Korhonen, J., Wang, Y.: Power-efficient streaming for mobile terminals. In: Pro-
ceedings of the International Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video. NOSSDAV ’05, ACM (2005) 39–44

10. Ding, N., Pathak, A., Koutsonikolas, D., Shepard, C., Hu, Y., Zhong, L.: Realizing
the full potential of psm using proxying. In: INFOCOM, 2012 Proceedings IEEE.
(March 2012) 2821–2825

11. Dogar, F.R., Steenkiste, P., Papagiannaki, K.: Catnap: Exploiting high bandwidth
wireless interfaces to save energy for mobile devices. In: Proceedings of the 8th
International Conference on Mobile Systems, Applications, and Services. MobiSys
’10, New York, NY, USA, ACM (2010) 107–122

12. Cui, Y., Ma, X., Wang, H., Stojmenovic, I., Liu, J.: A survey of energy efficient
wireless transmission and modeling in mobile cloud computing. Mobile Networks
and Applications 18(1) (2013) 148–155

13. Amuhong: IEEE 802.11 architecture in Android. (2014)
14. Botta, A., Dainotti, A., Pescapè, A.: A tool for the generation of realistic network

workload for emerging networking scenarios. Computer Networks 56(15) (2012)
15. Bernardo, V., Curado, M., Staub, T., Braun, T.: Towards energy consumption

measurement in a cloud computing wireless testbed. In: International Symposium
on Network Cloud Computing and Applications (NCCA). (2011) 91–98

16. Rice, A., Hay, S.: Measuring mobile phone energy consumption for 802.11 wireless
networking. Pervasive Mob. Comput. 6(6) (December 2010) 593606

