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Abstract—Cough can be defined as a forced expulsive onrush,
normally against a closed glottis, producing a characteristic
sound. It can be an indicator of many respiratory diseases, and
its counting and classification is an important aspect. We propose
a method on internal sound signal to automatically identify,
count and (partly) qualify cough sounds. Our approach relies
on explosive phase detection, because of its acoustic and spectral
distinctive characteristics, and its potential for accurate onset
detection of cough sounds. The features analyzed, related with
tonality, pitch, timbre and frequency, prove to be very relevant
in our explosive phase detection approach. Our results show a
recall value of 86.6% and a precision value of 84.3%, for a wide
testing population with and without respiratory perturbations.
The internal sound analysis reveals advantageous in external
noise reduction, therefore internal sounds are highlighted and
better characterized.

I. INTRODUCTION

Counting and classifying cough sounds automatically for am-
bulatory monitoring (long-time and continuous) has proven to
be an important problem, with several challenges to address.
As a common and clinic descriptive symptom of many res-
piratory diseases[1-4], cough has been vastly explored by the
scientific community as a diagnosis marker. In some conditions
like pulmonary fibrosis, lung cancer and chronic obstructive
pulmonary disease (COPD), the daily life quality depends on
the assessment, monitoring and control of chronic cough.

We propose a method for automatic cough detection based
on internal sounds analysis, aiming to not only count cough
sounds but also to characterize the event by intensity and pat-
tern. For that, we use an explosive phase detection approach,
analyzing 50 individuals, which produced 411 voluntary cough
epochs (continuous coughing sounds without a 2-s pause),
383.4 s of speech, 24.55 s of laughing and 26 throat clear
events, captured by a digital stethoscope.

The paper is organized as follow: The physiology of cough
and past attempts to count and classify cough sounds are
presented in Section II; Section III describes the experimental
setup; the methodology developed is outlined in Section IV,
the main results are introduced and discussed in Section V,
and the relevant conclusions are presented in Section VI.

II. PHYSIOLOGY AND RELATED WORK

The European Respiratory Society (ERS) suggests the
definition of cough as a forced expulsive onrush, normally
against a closed glottis, producing a characteristic sound, that
literature has consistently cloven in three main patterns[5,6].
First, the explosive phase, characterized by an initial burst

of sound emerges that in the moment of glottal opening. It
provides information about bronchus, inasmuch that the high
frequency sound yields in the vibrations produced by the
forced air flux in the airway and the bronchial narrowing
places. Then, the intermediate phase, steady-state flow with
the glottis wide open. It reflects the status of trachea, and
the presence of sputum add a characteristic high frequency
component to the sound, and is directly related with the
duration of this phase. Finally, the voiced phase, where glottis
narrows again, with the vocal cords approaching each other.
This third phase may not take place, but the occurrence
probability in voluntary cough is about 50% higher than in
a spontaneous event[7]. Some other definitions add to this 3
main phases the starting inspiration effort phase and the final
expiration time next to voiced phase, as glottis recover to the
rest diameter[8]. We did not consider these extra phases, since
the three main phases are spectrally more relevant, and show
regularity in energy distributed in different frequency bands[9].

Fig. 1: A typical single cough sound. The darkened area corresponds
to explosive phase, followed by the intermediate silence-like phase
and the voiced phase, with a slight presentation of the harmonics

Yet, a more careful description of the cough is needed for an
accurate classification of each event. We define cough epoch
as a time interval with continuous coughing sounds without
a 2-s pause. According to the ERS, this definition is valid
in clinical terms[10]. For classifying the event, three other
characteristics of the cough sound provide important clinical
information: the intensity of the event, given by both peak
intensity and overall energy released; the pattern of coughing,
since either single coughs or fits of coughing serve different



mechanical purposes; and the acoustic properties, which may
identify the presence of sputum and wheeze.

Identifying, quantifying and classifying cough has proven
to be difficult, not only because of cough variety of phases,
patterns and adjustment to pathologies with chronic cough,
but also because the aim is to perform ambulatory long term
monitoring, which by hand can become a time-consuming
and arduous task. There have been attempts to achieve a
consensual and reliable system for monitoring cough, with
experiments based on both voluntary and pathologic events.
Some approaches from the past used audio signals either
alone or combined with others[11], [12], but they only enabled
to manually spot the cough sounds. Recently, other research
works tried to automate the recognition and counting of
cough sounds. In [13] and [14], audio signal is coupled with
data from different sources, such as: contact microphone,
ECG, accelerometers, respiratory inductance plethysmography,
among others. However, the acquisition of these signals is
difficult to perform in continuous ambulatory settings.

Other attempts mainly use only ambient audio signal. The
use of Hidden Markov Models (HMM) to detect cough
signals as keyword spotting in continuous audio recordings
exhibit promising results[15], although some authors deem that
coughs should not be treated as speech, since their acoustic
differing characteristics need to be fully considered in the
design of algorithms[9]. The best results are also achieved
with some manual expert annotation of some cough segments
for each person for model tailoring.

Other publications use probabilistic neural networks
(PNNs), achieving good results[16]. The key idea was to
focus only on the detection of explosive phase of cough.
The intermediate phase had proven to be very similar to a
forced expiration[17], or in some healthy sputum-free subjects
cases to a silence phase, inasmuch the voiced phase may
not occur and resembles to a speech sound, while explosive
phase is characteristic of the beginning of any cough event
and possibly more nonspecific among individuals. Despite
this, Drugman et al.[16] did not validate this assumption by
manually note the explosive phase, and approached it by the
first 60 ms of the total cough event, which is not accurate,
since explosive phase length in audio signal could vary from
29.6 ms to 54.6 ms[8]. Additionally, they experiment voluntary
cough from only healthy subjects. The Hull Automatic Cough
Counter (HACC)[18], uses an event detection logic based on
adaptable thresholding. The spectral coefficients are calculated
for detected event candidates, which are then classified into
cough and non-cough sounds by the use of PNNs. Tests
performed only in smoking subjects achieved good results.

The VitaloJAK system uses a contact microphone placed
on chest wall, but likewise needs an initial input of voluntary
coughs by the subject. In [19], this system was adapted to a
physiological approach tailoring. Subjects perform voluntary
coughs, which are recorded, from set lung volumes. The same
author concludes in [20] that much of the variability in cough
sounds within an individual can be explained by the lung
volume from which the cough occurs. Acoustic parameters

extracted from these voluntary coughs can be then used to
interrogate a 24-h sound recording and pick out spontaneous
cough sounds. The system obtains a sensitive cough detection
in pathologic cough.

Despite those, ERS Committee currently defend that there
are at the moment no standardized methods for recording
cough nor adequately validated, commercially available, and
clinically acceptable cough monitors[10].

III. EXPERIMENTAL SETUP

We performed 200 recordings from 36 individuals without
any respiratory perturbation (without respiratory perturbations
group - WPG) and from 14 individuals with respiratory per-
turbations (respiratory perturbations group - RPG). For each
individual four recordings with 15 s each were saved for future
processing. In the group with respiratory perturbations we
could find smokers (n=1) and pathologies like asthma (n=3),
bronchitis (n=1), rhinitis (n=1) or simple colds (n=8). The total
set of individuals obtained a mean of 33.26±14.73 years old,
mean body mass index (BMI) of 26.06±4.24 kg/m2, being
26 males and 24 females. The recording system consisted in
a digital stethoscope (3M Littmann, model 3200, St. Paul,
Minnesota, USA) with a sampling frequency of 4000 Hz,
and the sound signal was acquired on the posterior inferior
lobe site of right lung, with individuals seated in a normal
hospital room, without any external sound cancellation. In each
recording, the person was asked to produce a single cough,
a peal of two or more coughs, and around 5 s of one of the
following events: speech, laughter and throat clears. The order
of these events was randomly and not proportionally varied
for each one of the four recordings. The final total audio
data consisted of a 50 individual’s recordings of 1 minute,
containing 411 single cough or peal events, 383.4 s of speech,
24.55 s of laughing and 26 throat clears.

All the audio data were analyzed by an observer, using
Audacity v2.0.5 in order to obtain the annotation of explosive
phases. The annotations were implemented by listening to the
audio to detect the cough sound and then by observing the
spectrum signal for onset and offset adjustments.

IV. METHODS

We developed an algorithm based on the waveform, spectral
and prosody related features. The signal was splitted into
50 ms frames, for which the features were computed us-
ing the open-source Matlab toolboxes MIRtoolbox[21] and
VOICEBOX[22]. To minimize the inherent errors of parallax
on the annotation, it was considered that a frame was part of
a given event if more than half of the frame belonged to the
noted event.

Our implementation was performed in Matlab. After feature
selection, we applied the K-Nearest Neighbors (KNN) pattern
recognition algorithm to discriminate between sound frames
with and without cough. KNN is a simple and non-parametric
approach that is known to be a good choice when data dis-
tribution is unknown, or difficult to determine. The algorithm
determines the class of a given pattern based on a distance
metrics (usually Euclidean), and on the class of surrounding



neighbors patterns. More precisely, the algorithm finds the
closest k neighbors by using the chosen distance metrics and
the class of a given pattern will be the class of the majority of
its neighbors. In this way, the unique training parameters are
the distance metrics and the number of neighbors (k). Here,
the best k value was selected by considering, iteratively, odd
numbers in the range of 3 to 15, for the total set of ranked
features. After fixation of the best k, the optimal number of
features was determined experimentally by using a simple
forward feature selection approach that consists on adding
one feature at a time based on their relevance, and stopping
when the maximization of the results is obtained. Feature
relevance or ranking were performed using WEKA v3.6, and
the Relief[23] algorithm. A total of 79 features were analyzed
and ranked for training and testing the developed methodology.

Before classification, the set of features is rearranged
by Principal Component Analysis method, which uses an
orthogonal transformation to convert the set with possibly
correlated features into a set of values linearly uncorrelated
called principal components, using a 90% value of covariance.
The results were then post-processed, merging the detected
explosive phase events spaced less than 2 s, an approximation
of cough epochs as we defined later. By this approximation,
only the last intermediate and voicing phases of last cough
sound of each cough epoch will be missed, and so, for the
purpose of counting, those will be equivalent to the number of
cough epochs. The precision and recall metrics were obtained,
frame by frame and by this approximated cough epochs. The
mean and standard deviation of onset and offset flaw and the
mean peak energy of the signal in the approximated cough
epochs were also computed. These procedures were performed
for all data, and then repeated for the WPG individuals and
for the RPG individuals.

V. RESULTS AND DISCUSSION

We performed tests in the whole dataset (WPG+RPG), and for
the WPG and RPG groups alone. As we can see in Table I,
for all of the testing groups, the Relief algorithm ranked as the
most relevant feature the one obtained with mirkey function
of MIRtoolbox, which relates with tonality and gives a broad
estimation of tonal center positions and their respective clarity.
This feature prove to be very relevant in our explosive phase
detection approach. It shows that explosive phases of cough
have a tonal center distinct from the tonal center of all other
sounds tested, i.e., the tonic elements (which tend to assert
their dominance over all others) in explosive phases seem to
be distinctive. The ranking for WPG and RPG groups was the
same up to the first 11 features. This reveals the relevance
of these features for the problem, and also the proximity
between the groups. The next features in this groups are by
order of importance related with frequency, timbre and spectral
analysis. Evo gives an estimate distance between the Fast
Fourier Transform of the signal in each successive frames,
mfcc4 corresponds to the value of the fourth Mel Frequency
Cepstral Coefficient and midi is the mean of the conversion
of Fast Fourier Transform of the signal to midi scale of semi-

TABLE I: Feature Ranking for testing groups up to the fouth feature.
This features resulted from functions from MIRtoolbox.

Feature Ranking
1st 2nd 3rd 4th

WPG+RPG key evo nofilterbank midi
WPG key evo mfcc4 midi
RPG key evo mfcc4 midi

tones. For the RPG+WPG group, one new feature appeared.
Nofilterbank is related with pitch analysis and calculate the
mean of the best pitch of the the discretized note events of
the signal data, for no filterbank configuration. Our sound
signal reveals flexibility in characterization, with several areas
of sound analysis contributing for the identification of the
explosive phase.

The results for the testing groups are present in Tables
II, III and IV. The achieved measures of onset and offset
(mean and STD) reveal some difficulties to pinpoint the
initial and final instants of the cough events detected. It can
be assumed that the major contribution for this values comes
from deviations in detection of the fits of cough approximated
events, since those have much longer duration than explosive
phases alone. Therefore, in the detection of fits, if one or
more explosive phases from the beginning or the ending miss
the detection, the flaw is in the order of more than a 3-phase
cough sound duration, around 350.7 seconds[8]. The onset
vagueness should represent the expected imperfection of the
detection. However, the higher values of STD for the onset
suggest that the flaw in missed detections of first explosive
phase of peal events is balanced with prior detections, which
can be justified by detections in the initial forced expiration
before the first explosive phase. The higher values in mean
offset suggest difficulties in the detection of last explosive
phases of peal events, which can be understood by the gradual
decrease in the intensity of the signal in explosive phases
during the peal event, leading to missed detections in the
end of peals. The high value of STD in offset insinuate that
this missed detections are also balanced with late detections,
which can be caused by detections in intermediate and
voicing phases of the last 3-phase cough sound of each peal
event. All this values suggest that the windowing of events
should be improved.



TABLE II: Results obtained for WPG+RPG analysis, with optimized
k=11 and set of 8 ranked features

Value
Recall frame by frame 42.4%

Precision frame by frame 65.1%
Recall by approx. cough epochs 86.6%

Precision by approx. cough epochs 84.3%
Onset error (mean) 17.3 ms
Onset error (STD) 318.9 ms
Offset error (mean) 83.1 ms
Offset error (STD) 194.3 ms

Recall (fits of cough) 59.6%
Precision (fits of cough) 91.2%

Mean peak energy approx. cough epochs 0.5561 a.u.

TABLE III: Results obtained for WPG analysis, with optimized k=11
and set of 12 ranked features

Value
Recall frame by frame 42.6%

Precision frame by frame 65.6%
Recall by approx. cough epochs 84.6%

Precision by approx. cough epochs 83.1%
Onset error (mean) 50.2 ms
Onset error (STD) 284.6 ms
Offset error (mean) 232.8 ms
Offset error (STD) 222.8 ms

Recall (fits of cough) 57.7%
Precision (fits of cough) 90.7%

Mean peak energy approx. cough epochs 0.5161 a.u.

TABLE IV: Results obtained for RPG analysis, with optimized k=7
and set of 19 ranked features

Value
Recall frame by frame 43.1%

Precision frame by frame 60.9%
Recall by approx. cough epochs 89.5%

Precision by approx. cough epochs 81.3%
Onset error (mean) 26.0 ms
Onset error (STD) 164.0 ms
Offset error (mean) 82.8 ms
Offset error (STD) 123.4 ms

Recall (fits of cough) 62.0%
Precision (fits of cough) 86.0%

Mean peak energy approx. cough epochs 0.8174 a.u.

TABLE V: Comparative results of the tests performed

Recall Precision
WPG+RPG 86.6% 84.3%

WPG 84.6% 83.1%
RPG 89.5% 81.3%

Recall and precision metrics were also calculated for the
number of cough hits detected in fits of cough. This values
represent the capability of discriminate how many explosive
phases we can detect in a multiple event, providing important
information about the pattern of coughing. However, recall
values are slightly low.

The energy metrics intended to give a rough estimation
of the energy peak intensity of the cough sounds, one of
the three characteristics of the cough sound which provide
important clinical information. Its relevance is evidenced in
the differences of the values for the WPG and RPG groups.
The mean peak energy of the signal in the approximated cough
epochs detected is substantially higher in RPG group, which is
due to a louder cough sound, with high frequencies resulting
probably from presence of sputum or wheeze.

The overall results of recall and precision metrics, present
in Table V, for the approximated cough epochs detection are
similar for the three testing groups, revealing flexibility and
applicability of this approach. Notice that achieved results
were originated from analyzing concise sets of features,
not being necessary large loads of data and computation,
something important in continuous monitoring for battery
saving. Our results are comparable to mentioned works
above, although they were not obtained on the same database.
Drugman et al.[16], with the similar explosive phase detection
approach, obtained specificity and recall of 88%, for audio
signal analysis in voluntary protocols performed by only 20
healthy subjects. They also applied the same method to the
signal of a contact microphone over trachea and over thorax,
achieving both specificity and recall of 71%. In [13] the signal
of a contact microphone placed on the throat is compared
to other signal analysis in voluntary protocols for counting
cough, performed using 32 healthy subjects, and results also
fall short of expectations when compared with audio signal,
but they do not use the explosive phase detection approach. To
the best of our knowledge, no other works tried the internal
sound signal alone for automatic cough counting. However,
this signal solves one of the disadvantages of the commonly
used audio signal, referred in [13] - the external ambient
noise. In internal sound, only the subject’s internal acts can
confuse the classification. A fully automated cough-counting
industrial device, like the VitaloJAK system, seems to support
this, since when experimented in 10 subjects with respiratory
perturbations achieved a recall of 97.5% and a specificity of
97.7%[20].



Our acquisition protocol was more focused in coughing and
speech since it is ethically a requirement to eliminate speech
content from acquired audio signals for medical applications..
Furthermore, we advocate that throat clears noisy enough for
trigger the classifier are not so bad when counted, as an
important respiratory event too.

For classification of the cough sound, the acoustic properties
were not analyzed, because the method identified only the
first explosive phase, while this characteristics are important
to analyze in intermediate and voiced phase, for sputum
and wheeze prediction, among other important clinical in-
formation. This can be solved with a future improvement in
post-processing of identified explosive phases, by methods to
identify the characteristic intermediate phase in presence of
sputum or finding speech related moments in a neighborhood
of the explosive phase. A promising solution could be the
classification integrating various events such as speech, throat
clears, laughter and sneezes, as well as cough itself, since
internal sound seems to characterize those more minutely and
with less ambiguity than audio sound. The use of inputs for
tailoring parameters by each subject can also improve the
efficiency, with the drawback of loss of autonomy. Future
work on this method involves trying other classifiers, testing
in ambulatory data and the use of new features.

VI. CONCLUSION

Our results refute the idea that internal sound signal anal-
ysis provide no significant performances when compared
with audio signal analysis, for automatic cough detection.
Moreover, internal sound demonstrates advantages in one of
principal challenges of audio signal analysis, the external-to-
subject noise. As important implication, we have a signifi-
cant reduction on the captured sound and external speech,
relevant in ethic terms. Besides, the subject internal events
like cough, speech, laughs, throat clears, forced expirations,
etc. seem to be better characterized by this signal. Here,
some features related with tonality, pitch, timbre and spectral
analysis reveal themselves very descriptive. The internal sound
analysis through a contact microphone gathers attention for
applications in new generation of smart clothing, seeming to
be less inconvenient and less intrusive than a lapel microphone.

The explosive phase detection approach reveals very
promising for counting cough, showing flexibility between
subjects with different respiratory perturbations and mitigating
the inherent difficulty of the variety of patterns in cough.
Improvements are needed in post-processing methods to iden-
tify intermediate and voiced phase, and thereby obtain the
complete cough sound, which can then be analyzed in terms
of acoustic properties for better assessing.
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