
Empirical Analysis of Tabu Search for the
Lexicographic Optimization of the Examination

Timetabling Problem

Luis Paquete and Thomas Stützle

Intellektik,Technische Universität Darmstadt,
Alexanderstr. 10, 64283 Darmstadt, Germany�

lpaquete,tom � @intellektik.informatik.tu-darmstadt.de
www.intellektik.informatik.tu-darmstadt.de/

�
˜lpaquete,˜tom �

1 The Examination Timetabling Problem

An examination timetable of an educational institution is a mapping �������
	 , where
E is a set of examinations and T is a set of time slots. The Examination Timetabling
Problem ETP �����	����� is the problem of finding an optimal mapping ����������� , where
� is the set of all possible mappings from � to 	 , such that, given an cost function
� �!�"�$#&% , �'�(� ���)� �+*,�'�(�-�)�./�&�0� . Other formulations also include the assignment
of rooms.

The cost function is usually related to the number of violations of several types of
constraints. Since most real life problems are over-constrained, one possibility to attack
this problem is to order the constraints in a hierarchy according to their importance to
the institution.

In the simplest case, one can distinguish between hard and soft constraints. While
the former are required to hold for any feasible solution, the latter express a solution’s
quality by their degree of violation. A typical hard constraint is to forbid a tempo-
ral overlap of a pair of examinations for a same student. Typical examples of a soft
constraint is a minimum temporal distance between a pair of examinations for a same
student or precedence between examinations (see [2] for an extensive list of possible
constraints found in real life problems).

These constraint types have to be taken into account when solving the problem by a
stochastic search algorithm, and several possibilities have been proposed to accommo-
date them. One approach is to assign each objective �21 a weight 341 that expresses the
importance of the 5 -th objective and then to minimize

�'�(�-�76
89
1;:=<
3>1?�@1��A�B� (1)

which corresponds to the weighted sum of the objectives � 1 [5]. By defining violations
of constraints as objectives to be minimized, such a formulation can be used to attack
the ETP. In this case, the highest weight is assigned to the objective related to the satis-
faction of the hard constraints. However, this approach is only useful if the user is able
to express his preferences by setting weights.

2

If setting explicit weights is not possible, a way out can be a priority order of con-
straints given by the user. This approach is commonly known as lexicographic optimiza-
tion [13] or multi-phase approach [14, 15]. Like in the previous approach it is assumed
that the user is able to express his preferences in a hierarchical way, in which the hard
constraints are assigned the highest priority ranks. Finally, in the case of lack of prefer-
ence information given a priori, the ETP should be regarded as a typical multiobjective
problem with the goal of finding Pareto solutions [1, 11].

In this study our interest lies in the lexicographic formulation of the Examination
Timetabling Problem and its solution by a Tabu Search algorithm, which is described
in the next section.

2 Tabu Search Implementation

When adapting a local search algorithm to a lexicographic optimization problem, a
question arises about how to direct the search process, given the priority order infor-
mation on the objectives. We considered two distinct strategies, Lex-tie and Lex-seq.
The former compares solutions by the objective function value of the higher priority
objective, and in case of a tie, the solutions are compared using the next lower priority
objective. The Lex-seq strategy consists in finding sequentially regions of the search
space which satisfy the constraints associated with the decreasing priority order of ob-
jectives, that is, first a solution satisfying all highest priority constraint is sought, next a
solution satisfying all second priority constraints is sought, etc., subject to the fact that
no constraints of a higher priority level are violated anymore. It should be stressed that
solving the first objective corresponds to solving a Graph Coloring Problem (GCP). We
can also consider this approach as an algorithm in which constraints are incrementally
added during the search process.

Due to the similarity with the GCP [3], we adapted a Tabu Search algorithm that
gave good results for several hard GCP instances [8, 12]. The algorithm uses a 1-opt
neighborhood that at each step changes the time slot assignment of exactly one exam-
ination. At each step, all pairs of examinations and time slots �����2 � � are considered
and a move is applied that maximally reduces the number of constraint violations. The
neighborhood size is reduced by considering moves that only affect examinations that
are currently involved in a violation of the constraints considered by the Lex-tie and
Lex-seq strategies.

Since the Tabu Search needs a tabu list of forbidden moves to prevent cycling, its
length must be defined. In our case, we defined it by #����	��
�� ��� ������ , where � is
the number of constraint violations according to the strategy chosen: all constraints
in case of Lex-tie, and only the constraints associated to the objective currently being
minimized, in case of Lex-seq. #����	��
�� ��� � is random integer between � and � .

Similar speed-up techniques for the neighborhood evaluation as proposed in [6] are
used: By defining � objectives, the implementation defines a three-dimensional table of
size ����� ������� 	�� where each entry � ��� 1��� � � �@� stores the effect on the 5 -th constraint
level incurred by changing the time slot of examination ! to time slot " . Each time a
move is performed, only the part of each table that is affected by the move is updated.
In Lex-tie, the initialization has complexity # ���$�%� �&� '��%� 	�� � , and each update has a

3

worst case complexity of # ������� ��� ��� 	 � � . In Lex-seq, when the 5 -th objective reaches
null cost, the ��5 � � -st dimension of the table corresponding to the following objective
is initialized, which has a complexity # � � �&� ' � � 	 � � . When 5 objectives are solved, each
update has a complexity of # � � 5 � � ��� �&� � � 	�� � . Thus, the initialization and the update
only consider the current objective to be minimized and the ones already optimized.

3 Experimental Results

3.1 Average and Peak Performance

To compare the Lex-tie and Lex-seq strategies, we used benchmark instances available
at ftp://ftp.mie.utoronto.ca/pub/carter/testprob. These benchmark instances are real life
Examination Timetabling Problems that have already been used in [2, 4, 7, 15]. A hard
constraint corresponding to no temporal overlapping between a pair of examinations
of the same student was considered. The number of violations of this constraint was
defined as the highest priority objective to minimize.

Analogously to [4], the soft constraints were defined according to the temporal dis-
tance between the same pair of examinations. The minimum temporal distance allowed
was 6 time slots. Every pair with lower value was considered as a constraint violation.
Following [10], the same values for penalizing these violations according to the tem-
poral distance between the two assignments were used. Thus, a lower priority objective
was formulated as a weighted sum of the violations of these constraints.

In some preliminary experiments, we first identified good parameter settings for the
Tabu Search algorithm. We found that good performance was achieved in most of the
instances by the setting of � 6 � � and � �����>��> �
	 ���� . For reference, also � 6 �

was
considered. Table 1 presents the best results obtained by the proposed algorithm, after
running 25 experiments with 100000 iterations for each instance and for each � . The
number of time slots for each instance was the same as in [7]. The Avg column presents
the average cost function value of the lowest priority objective divided by the number
of students as proposed in [4]. These averages only refer to the runs that satisfied the
hard constraints. The number of successful runs, that is those that satisfied all hard
constraints, is presented in the column Suc. The Min column presents the minimum
objective value found in the successful runs. The best average results considering the
maximum number of successful runs and minimum values found for each instance and
for each approach, are represented in bold face.

The results seem to reveal that the best value for � increases with the size of the
instance in case of the Lex-seq. It is also possible to observe the similarity in the cost
function value of the two approaches for small instances, provided a good setting for �
is used. However, for large instances, the performance differences are enormous. The
results of Lex-tie indicate less efficiency with instances with more than 300 examina-
tions. The Lex-seq performed better in most of the instances when considering different
values for � , meaning that it is less sensitive to this parameter.

Table 2 compares our results with the ones obtained by Gaspero and Schaerf [7],
and Carter et al. [4] when considering peak performance. The former presented a Tabu
Search algorithm with a weighted sum approach with shifting penalties to prevent local

4

Table 1. Experimental results

Lex-tie Lex-seq
Instances Exams Time slots � Suc Avg Min Suc Avg Min
HEC-S-92 80 18 1 25 12.0 11.2 25 12.4 11.7

4 25 12.7 12.2 25 13.0 12.5
8 25 13.6 12.4 25 13.1 12.0

12 9 13.8 12.7 25 13.0 11.9
16 6 13.6 12.1 25 13.2 12.2

STA-F-83 138 13 1 23 163.7 159.3 0 - -
4 25 159.3 158.1 1 161.9 161.9
8 25 161.5 158.7 25 168.7 161.3

12 18 162.2 159.2 25 169.4 161.9
16 17 162.4 159.0 25 169.8 161.2

YOR-F-83 180 21 1 22 41.5 40.0 25 41.7 38.9
4 13 44.2 41.7 25 43.8 41.3
8 5 44.3 42.0 25 44.2 42.6

12 0 - - 25 44.7 41.9
16 0 - - 25 44.7 41.1

UTE-S-92 184 10 1 5 30.8 29.0 25 31.5 29.6
4 25 29.4 27.8 25 30.5 28.7
8 18 31.2 29.1 25 31.3 28.9

12 20 31.3 28.5 25 31.6 28.8
16 20 31.4 29.6 25 32.0 29.1

EAR-F-83 189 24 1 0 - - 6 48.6 46.0
4 17 42.0 38.9 12 44.3 40.5
8 0 - - 15 47.1 44.4

12 0 - - 19 45.8 42.9
16 0 - - 23 45.8 42.5

TRE-S-92 261 23 1 0 - - 25 10.8 10.0
4 6 9.9 9.6 25 10.2 9.3
8 20 10.3 9.8 25 10.4 9.7

12 0 0 0 25 10.5 9.6
16 0 0 0 25 10.7 10.1

LSE-F-91 381 18 1 0 - - 4 16.1 14.7
4 0 - - 14 14.5 13.2
8 0 - - 20 14.9 13.4

12 1 13.7 13.7 21 15.5 14.2
16 0 - - 24 15.5 14.3

KFU-S-93 461 20 1 0 - - 8 19.1 17.9
4 0 - - 22 18.6 16.7
8 0 - - 25 18.3 16.5

12 0 - - 25 18.3 16.9
16 0 - - 25 18.6 16.9

5

Table 2. Comparison of results

Lex-tie Lex-seq [7] [4]
Instances Avg(suc) Min Avg(suc) Min Avg Min Min
HEC-S-92 12.0 (25) 11.2 12.4 (25) 11.7 12.6 12.4 10.8
STA-F-83 159.3 (25) 158.1 168.7 (25) 161.2 166.8 160.8 161.5
YOR-F-83 41.5 (22) 40.0 41.7 (25) 38.9 42.1 41.0 41.7
UTE-S-92 29.4 (25) 27.8 30.5 (25) 28.7 31.3 29.0 25.8
EAR-F-83 42.0 (17) 38.9 45.8 (23) 40.5 46.7 45.7 36.4
TRE-S-92 9.9 (20) 9.6 10.2 (25) 9.3 10.5 10.0 9.6
LSE-F-91 13.7 (1) 13.7 15.5 (24) 13.2 15.9 15.5 10.5
KFU-S-93 - (0) - 18.3 (25) 16.5 19.5 18.0 14.0

optima. The size of the tabu list was defined randomly in a certain interval during the
search. Carter et al. used a combination of a backtracking strategy with a saturation
degree sorting heuristic. The average cost function values obtained by our approaches
were lower than ones in [7]. The minimum objective value obtained was lower than in
[4, 7] for three instances.

3.2 Run-time Distributions

To understand the reason for such large differences in the results obtained for some
instances, we analyzed the algorithm behavior during the minimization of the higher
priority objective, since both approaches deal with it in a different way. One reasonable
way is to compute Run-Time Distributions (RTDs) as proposed in [9], which give the
empirical probability of finding a solution (satisfaction of the hard constraints) as a
function of the run-time (number of iterations).

Figures 1, 2 and 3 show the RTDs obtained for several values of � by both ap-
proaches for the instances UTE-S-92, TRE-S-92 and EAR-F-83, respectively. One ob-
servation is the dependence of the Lex-tie performance on the difficulty in satisfying
the hard constraints. For the instances where the Lex-seq approach satisfies the hard
constraints very quickly (in this case the RTDs are positioned mainly to the left with
high success rates), that is on instances UTE-S-92 and TRE-S-92, also Lex-tie can do
so with similar performance. However, if the Lex-seq approach has some difficulty in
satisfying the hard constraints (RTDs skewed to the right), Lex-tie presents much worse
performance. It should be stressed that, even with a general worse performance re-
garding the satisfaction of hard constraints, Lex-tie was able to obtain better average
performance considering the minimization of the soft constraints in case it could sat-
isfy the hard constraints (e.g., comparing average performance and RTDs on instance
EAR-F-83). However, this observation seems to be limited to small instances.

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

em
pi

ric
al

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

No. of Iterations

1
4
8

12
16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

em
pi

ric
al

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

No. of Iterations

1
4
8

12
16

Fig. 1. RTDs of Lex-tie (left) and Lex-seq (right) on UTE-S-92 with ��� ���������
	����������� �

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

em
pi

ric
al

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

No. of Iterations

4
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

em
pi

ric
al

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

No. of Iterations

1
4
8

12
16

Fig. 2. RTDs of Lex-tie (left) and Lex-seq (right) on TRE-S-92 with ��� ���������
	����������� �

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

em
pi

ric
al

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

No. of Iterations

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

em
pi

ric
al

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

No. of Iterations

1
4
8

12
16

Fig. 3. RTDs of Lex-tie (left) and Lex-seq (right) on EAR-F-83 with ��� ����������	����������� �

4 Conclusions

Two main conclusions can be drawn from the two strategies. Firstly, the level of diversi-
fication given by � must increase with the size of the instance in the Lex-seq approach.

7

Secondly, the Lex-tie strategy presents a strong performance deterioration as the hard
constraints become more difficult to satisfy. However, the good results obtained by Lex-
tie for some instances show that a promising future approach could be combining both
strategies by switching between them during the run of the algorithm.

Acknowledgments We would like to thank Marco Chiarandini for valuable discussions on
the topic of this research. This work was supported by the “Metaheuristics Network”, a Re-
search Training Network funded by the Improving Human Potential programme of the CEC,
grant HPRN-CT-1999-00106. The information provided is the sole responsibility of the authors
and does not reflect the Community’s opinion. The Community is not responsible for any use that
might be made of data appearing in this publication.

References

1. E. Burke, T. Bykov, and S. Petrovic. A multicriteria approach to examination timetabling.
In E. Burke and W. Erben, editors, The Practice and Theory of Automated Timetabling III,
Lecture Notes in Computer Science 2079, pages 118–131. Springer-Verlag, 2001.

2. E. Burke, D. Elliman, P. Ford, and R.Weare. Examination timetabling in british universi-
ties - a survey. In E. Burke and P. Ross, editors, The Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science 1153, pages 76–90. Springer-Verlag, 1996.

3. M. Carter. A survey of practical applications of examination timetabling problem algorithms.
Operations Research, 34:193–202, 1986.

4. M. Carter, G. Laporte, and S. Lee. Examination timetabling: Algorithms strategies and ap-
plications. Journal of Operations Research Society, 74:373–383, 1996.

5. D. Corne, H.-L. Fang, and C. Mellis. Solving the modular exam scheduling problem with
genetic algorithm. Technical Report 622, Department of Artificial Intelligence, University
of Edinburgh, 1993.

6. C. Fleurent and J. Ferland. Genetic and hybrid algorithms for graph coloring. Annals of
Operations Research, 63:437–464, 1996.

7. L. Gaspero and A. Schaerf. Tabu search tecnhiques for the examination timetabling. In
E. Burke and W. Erben, editors, The Practice and Theory of Automated Timetabling III,
Lecture Notes in Computer Science 2079, pages 104–117. Springer-Verlag, 2001.

8. J. Hao and R. Dorne. Empirical studies of heuristic local search for constraint solving.
In Proceedings of Constraint Programming (CP-96), Lecture Notes in Computer Science,
pages 194–208. Springer-Verlag, 1996.

9. H.H. Hoos and T. Stützle. Evaluating Las Vegas algorithms, pitfalls and remedies. In Pro-
ceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI-98),
pages 238–245, 1998.

10. G. Laporte and S. Desroches. Examination timetabling by computer. Computers & Opera-
tions Research, 11:361–372, 1984.

11. L. Paquete and C. Fonseca. A study of examination timetabling with multiobjective evolu-
tionary algorithm. In Proceedings of the 4th Metaheuristics International Conference (MIC
2001), pages 149–154, 2001.

12. L. Paquete and T. Stützle. Experimental investigation of iterated local search for coloring
graphs. In S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and G. Raidl, editors, Applica-
tions of Evolutionary Computing - EvoWorkshops 2002, Lecture Notes in Computer Science
2279, pages 122–131. Springer-Verlag, 2002.

13. R. Steuer. Multiple Criteria Optimization: Theory, Computation and Application. John
Wiley & Sons, 1986.

8

14. J. Thompson and K. Dowsland. Variants of simulated annealing for the examination
timetabling problem. In G. Laporte and L. Hosman, editors, Annals of Operations Research,
volume 63, pages 105–128. Baltzer Science Publishers, 1996.

15. G. White and B. Xie. Examination timetabling and tabu search with longer-term memory.
In E. Burke and W. Erben, editors, The Practice and Theory of Automated Timetabling III,
Lecture Notes in Computer Science 2079, pages 85–103. Springer-Verlag, 2001.

