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1. INTRODUCTION
The performance assessment of stochastic local search

(SLS) algorithms for multi-objective optimization problems
is an active research topic [2, 4, 8, 11, 16]. The most chal-
lenging situation arises when comparing algorithms whose
primary goal is to obtain the set of Pareto optimal solutions.
A feasible solution is Pareto optimal if it is not dominated
by any other feasible solution. A solution dominates another
one if the former is not worse in any objective value than the
latter and strictly better in at least one objective. Obtain-
ing the Pareto optimal set is often impractical, and therefore
multi-objective algorithms aim to produce a good approxi-
mation to it in the form of a nondominated set, that is, a set
of mutually nondominated solutions. Evaluating the perfor-
mance of multi-objective algorithms involves comparing the
quality of the nondominated sets produced.

The dominance criterion straightforwardly extends to the
comparison of nondominated sets [16]. Given two differ-
ent nondominated sets, the former is better than the latter,
if every solution in the latter is dominated by or equal to
at least one solution in the former. Stricter and weaker
dominance relations among nondominated sets may be de-
fined [16]. Nonetheless, for high-performing algorithms, fre-
quently neither set is better than the other, and hence, these
sets are incomparable according to Pareto optimality.
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Scalar quality measures were introduced to evaluate the
quality of incomparable sets. Unary and binary quality mea-
sures [8, 16] assign a single scalar value to each nondomi-
nated set (or pair of nondominated sets). This value aims
to measure a desirable property of nondominated sets. Prop-
erties widely acknowledged to be desirable are closeness to
the Pareto optimal set, a wide spread of solutions in the
objective space (as opposed to solutions clustered in a small
region), and an even distribution of solutions in the objective
space (as opposed to many small clusters of solutions).

The choice of quality measures introduces a strong bias be-
cause different measures may lead to different conclusions.
Even restricting to a single measure, the interpretation of
the results is difficult due to the inherent simplification in-
troduced by summarising a multidimensional set into a sin-
gle scalar value. A common approach is to assume that the
quality measure is the evaluation criterion desired by the
decision maker, and declare the best algorithm the one that
obtains the best average value of a certain quality indica-
tor, knowing in advance that this conclusion would change
if different quality indicators were used. The use of multiple
quality indicators may complicate rather than simplify the
assessment, since the conclusions obtained by the quality
indicators may disagree.

A fundamentally different approach to the quality assess-
ment of multi-objective SLS algorithms derives from the
concept of attainment function [6]. The attainment func-
tion extends the scalar concepts of mean and variance to
random sets. The attainment function theory may com-
pletely characterize the statistical distribution of solutions in
the objective space in terms of location, spread and mutual
dependence [4]. Moreover, statistical testing and inference
are possible [4, 5, 14, 15]. However, the use of attainment
functions is still rather limited in practice. We present here
two practical applications of the first-order attainment func-
tion [11] for analysing the output of SLS algorithms for bi-
objective optimization problems. Programs implementing
the techniques presented here are also available [12]. Later,
we discuss what would be necessary to extend this work for
more than two objectives and for other types of analysis.

2. EMPIRICAL ATTAINMENT FUNCTION
The (first-order) attainment function [6] assigns a real

value in [0, 1] to each point in the objective space Rd. This
value describes the probability of a random set attaining
(dominating or being equal to) that particular point in the
objective space. The output of a multi-objective SLS algo-
rithm for a particular problem instance may be characterized
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Figure 1: Ten independent outcomes obtained by
an SLS algorithm applied to an instance of a bi-
objective optimization problem.

as an attainment function. The attainment function corre-
sponding to an algorithm is typically unknown, however, we
can derive an empirical estimation of the attainment func-
tion from the outputs of several independent runs of an SLS
algorithm. In the case of bi-objective optimization prob-
lems, the empirical attainment function (EAF) is fast to
compute, and its graphical representation provides more in-
tuitive information about the distribution of the output of
an algorithm than unary (or binary) quality indicators.

3. PLOT OF ATTAINMENT SURFACES
The notion of attainment surface [2] predates the formal

definition of the attainment function, but attainment sur-
faces are better defined in terms of the latter. Therefore,
we define the k%-attainment surface as the lower bound-
ary of the region in the objective space with a value of the
attainment function of at least k/100. The empirical k%-
attainment surface is the line delimiting the objective space
attained by at least k percent of the runs of an SLS algo-
rithm. This definition is an extension of the k/100 percentile
of the empirical frequency distribution to the multi-objective
case. We can define the median attainment surface as the
boundary of the objective space attained by 50 percent of
the runs. In a similar way, we define the best and worst at-
tainment surfaces as the boundaries of the objective space
attained by at least one run and by all runs, respectively.

Figure 1 displays the output of ten runs of an SLS al-
gorithm on a bi-objective problem. Points belonging to the
same set are represented by the same symbol and color. This
kind of plots appears often in the literature to illustrate the
output of a multi-objective SLS algorithm. However, it is
difficult for the reader to assess the expected output of a sin-
gle run, and it becomes more difficult with higher number
of runs and points. Comparisons against a reference set or
between multiple algorithms only complicate further the in-
terpretation of an already crowded plot. For these reasons,
researchers often decide to display only one “representative
example”of the output sets, which is often arbitrarily chosen
from all the runs.

Attainment surfaces, on the other hand, are a convenient
way to summarise the outputs of several runs. Figure 2
shows the best, median and worst attainment surfaces cal-
culated from the data in Fig. 1. The location of the median
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Figure 2: Best, median and worst attainment sur-
faces for the data described in Fig. 1.

attainment surface gives an idea of the likely location of the
output of a single run of the algorithm, whereas the dis-
tance between the worst and best attainment surfaces gives
an indication of the variability of the results. As in the
single-objective case, more robust indicators of variability
are the first and third quartiles, which correspond to the
25%- and 75%-attainment surfaces. We argue that plots of
attainment surfaces improve on clarity and conciseness over
a direct plot of the output sets, while providing much more
information than scalar quality measures.

4. PLOT OF EAF DIFFERENCES
When comparing two algorithms, it is possible to plot

attainment surfaces side-by-side or within the same figure.
However, this forces the reader to assess the differences be-
tween the algorithms by examining the intersections between
the lines. A more convenient approach is to directly plot the
differences between the EAFs. A large difference between
the EAFs of two SLS algorithms at a certain point of the
objective space indicates a larger probability of attaining
this point with one algorithm than with the other.

We use the following method to compute the differences
between the EAFs of two algorithms. First, we compute the
EAF of the union of the output sets obtained by all runs of
both algorithms. Then, for each point in the objective space
where the value of the EAF changes, we count how many
runs of each algorithm attained that point. This allows us
to compute the value of the EAF of the first algorithm at
that point minus the value of the EAF of the second algo-
rithm. Finally, we plot side-by-side positive and negative
differences at the points we previously examined, encoding
the magnitude of the differences using shades of grey: the
darker a point, the larger is the difference [9, 10, 14].

Figure 3 illustrates the application of this method. The
two side-by-side plots in the top part of Fig. 3 give the EAFs
associated to two algorithms that were run 25 times with dif-
ferent random seeds on the same problem instance. Points in
the EAFs are assigned a gray level according to their prob-
ability. In addition, we plot four different attainment sur-
faces. The lower line on both plots connects the best set of
points attained over all runs of both algorithms (grand best
attainment surface), and the upper one the set of points
attained by any of the runs (grand worst attainment sur-
face). Any differences between the algorithms are contained
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Figure 3: Visualization of the EAFs associated to the outcomes of two algorithms (top) and the corresponding
differences between the EAFs (bottom left: differences in favour of Algorithm 1; bottom right: differences in
favour of Algorithm 2). In the top, the gray level encodes the value of the EAF. In the bottom, the gray
level encodes the magnitude of the observed difference.

within these two lines. The dashed line corresponds to the
median attainment surface of each algorithm, that is, the
lower boundary of the region where the EAF has value 0.5.

The bottom side-by-side plots of Fig. 3 show the location
of the differences between the EAFs of the two algorithms.
On the left, points denote positive differences between the
EAF of Algorithm 1 over the one of Algorithm 2, and on
the right the differences are in favor of Algorithm 2 over
Algorithm 1. We only show points where the difference be-
tween the EAFs is larger than 20 percent. The magnitude
of the differences is encoded in a grey scale given in the
legend of the plot. We plot also the same attainment sur-
faces as for the top plots to facilitate comparison. From
these plots, we can observe that Algorithm 2 performs bet-
ter at the extremes of the nondominated sets, whereas there
is a very small difference in favour of Algorithm 1 at the
center of the nondominated sets. This indicates that Algo-
rithm 2 is preferable to Algorithm 1, despite their outputs
being mostly incomparable in terms of dominance relation.

In addition, we know what, or more exactly where, is the
difference between the two algorithms and how strong this
difference is.

Such a fine-grained analysis would be impossible with
most scalar quality indicators. The examination of the EAF
differences reveals not only the magnitude of the differences
between algorithms, but also where these differences are lo-
cated in the objective space. Therefore, it is particularly
helpful to point out problems on attaining certain regions of
the objective space.

5. CONCLUSIONS AND OPEN QUESTIONS
FOR FUTURE RESEARCH

Together with previous work by Knowles [7] and Fonseca
et al. [4], this work describes earlier practical applications of
the attainment function theory for the performance assess-
ment of multi-objective SLS algorithms. We regularly use
the methods described here for our own research as com-



plementary tools to methods based on dominance relations
among sets and quality measures [1, 10].

Nevertheless, the presented methods have some limita-
tions. First, there are no publicly available algorithms for
computation of the EAF for more than two objectives; how-
ever, there is ongoing work and such an algorithm will be
available soon. Second, it is unclear what is the best practi-
cal way to make use of the information provided by the EAF
for more than two objectives. Visualizations in three dimen-
sions are possible [13], but cumbersome in non-interactive
two-dimensional plots. For more than three dimensions, spe-
cial methods would need to be developed to visualize the
information provided by the EAF. The method of parallel
coordinates has been used for plotting objective vectors in
problems with many objectives [3], and it is the only exist-
ing proposal for plotting the EAF in high dimensions [15].
Third, the EAF is computed on the output of the algorithm
for a single instance, and no method has been proposed so far
to summarise the results across several instances. Finally,
higher-order EAFs enable more complete performance anal-
ysis and statistical inference [4, 5]. However, to the best of
our knowledge, these techniques have not been applied in
any other practical study in the literature, besides its orig-
inal publication [4]. In summary, there are both theoretical
and practical challenges for the application of the EAF that
call for more research and widely available tools.
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