
Proc. of the VII ALIO/EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4 - 6, 2011

Efficient paths by local search

L. Paquete ∗ J.L. Santos † D.J. Vaz ∗

∗ CISUC, Department of Informatics Engineering, University of Coimbra
Pólo II, 3030-290 Coimbra

paquete@dei.uc.pt, dvaz@student.dei.uc.pt

† CMUC, Department of Mathematics, University of Coimbra
3001-454 Coimbra

zeluis@mat.uc.pt

ABSTRACT

In this article, we describe an experimental analysis on a given
property of connectedness of optimal paths for the multicriteria
shortest path problem. Moreover, we propose a local search that
explores this property and compare its performance with an exact
algorithm in terms of running time and number of optimal paths
found.

1. INTRODUCTION

Multicriteria shortest path problems arise in many applications.
For instance, GPS systems allow choosing different criteria such as
time or cost. However, there is no shortest path that optimizes all
criteria since the fastest path may not be the cheapest. For instance,
highways are fast but expensive since they are tolled, whereas na-
tional roads are free of charge but slow. Hence, one has to develop
algorithms that output a set of optimal paths representing the op-
timal trade-off between the several criteria, from which the user
chooses the most preferable.

This work describes a large experimental analysis to under-
stand the structure of the efficient paths that can be exploited from
an algorithmic point of view. In particular, we aim to know whether
those efficient paths are close to each other, according to a proper
definition of “closeness”. To know whether this holds for most of
the instances is highly relevant, since we could use this information
to develop even more effective algorithms [5]. Our experimental
results reported indicate that a large number of instances present
such property. Therefore, we propose a local search that explores
this property and compare it against an exact approach described
in the literature.

2. NOTATION AND DEFINITIONS

Let G be a network, G = (V,A) and w a mapping that defines each
arc’s weight, w : A 7→ ZQ. For the simplicity of notation, we will
say that a path is a sequence of arcs or nodes, depending of the
context. Let us also denote the set of feasible paths as P. The goal

D.J. Vaz acknowledges its grant BII-2009 from Fundação de Ciência
e Tecnologia.

of this problem is to find the efficient set of paths as follows

min
p∈P

f (p) :=

(
∑
a∈p

w1(a), . . . , ∑
a∈p

wQ(a)

)
(1)

The meaning of operator min is as follows: We say that a feasible
path p dominates another feasible path p′ if and only if f j(p) ≤
f j(p′) for j = 1, . . . ,Q, with at least one strict inequality. If there is
no feasible path that dominates p, then we say that p is an efficient
path. The set of all efficient paths is denoted by N E . The image
of the feasible set P forms a set of distinct points in the criterion
space. We say that a vector z is non-dominated if it is the image of
some efficient path p ∈N E . The set of all non-dominated vectors
is called the non-dominated set. In Eq. (1), operator min finds the
nondominated set.

A label correcting algorithm to solve this problem (or to find
the efficient set) is given by Paixão and Santos [4], which consists
of an adaptation of the algorithm given by Vincke [7]. Although
this algorithm finds the efficient set, it is too slow for large net-
works. In this work, we propose a new local search algorithm that
explores a given property of the efficient paths that may improve
the running time. We say that two paths, p1 and p2, are adjacent if
and only if, after removing the arcs in common, we obtain a single
cycle in the resulting undirected graph [3]. Also, we define the ad-
jacency graph G′, such that G′ has a vertex for each efficient path
p ∈N E and an edge between two vertices if and only if the cor-
responding paths are adjacent. The algorithm that is reported here
explores the connectedness of efficient paths, which is defined as
the connectedness of G′. Although it is not necessarily true that the
efficient set for a given network is connected [3], a large fraction
of networks may satisfy this condition. To the knowledge of the
authors, connectedness of the efficient set only holds for particular
cases of knapsack problems [1, 6].

3. CONNECTEDNESS ANALYSIS

In the experimental investigation mentioned above, we used bench-
mark instances described in the literature [4]. Those instances are
grouped in three categories according to their size: small, medium
and large. In each of the categories, there are 7 classes: RandomN:
Random network (randomly generated arc), with the number of
nodes varying, and having constant density and number of crite-
ria; RandomD: Random network with constant number of nodes

ALIO/EURO-1

Proc. of the VII ALIO/EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4 - 6, 2011

Algorithm 1 Local Search Algorithm
Input: Network G = (V,A), s, t ∈V .
Output: Set S.

T,S := /0
Let v : P 7→V
for each crit. q = 1, . . . ,Q do

a) Find Tq, the reversed shortest path tree with root t on crit. q.
b) Let p ∈ Tq be path from s to t.
c) Flag p as not visited.
d) v(p) := s
e) S := S∪ p

for each path p in S that is not visited do
a) Flag p as visited.
for each node i ∈ p from v(p) to t do

for each arc (i, j) ∈ A do
for each crit. q′ = 1, . . . ,Q do

a) Let p(s,i) be a path from node s to i and p(s,i) ⊆ p
b) Let r ∈ Tq′ be the path from node j to t in crit. q′

c) p′ := p(s,i)∪{(i, j)}∪ r
d) v(p′) := j
e) Flag p′ as not visited
f) S := Filter(S∪{p′})

and number of criteria, but varying density; RandomK: Random
network with constant number of nodes and density, but varying
the number of criteria; CompleteN: Complete network with con-
stant number of criteria, but varying number of nodes; CompleteK:
Complete network with constant number of nodes, but varying
number of criteria; GridN: Grid (square mesh) with constant num-
ber of criteria, but varying number of nodes; GridK: Grid (square
mesh) with constant number of nodes, but varying number of cri-
teria. Each group corresponds to 50 distinct instances. For each
class, there are 15-20 groups of 50 instances each. There are 19950
instances, from which 6600 are small, 6550 are medium and 6800
are large. For each of those instances, the weight of each arc for
each criterion is generated randomly according to an uniform dis-
tribution in the range of [1,1000].

We developed an algorithm for detecting connectedness for a
given set of efficient paths. This algorithm outputs the number
of connected components of the adjacency graph. For detecting
whether a given instance is connected according to the notion of
connectedness described in Section 2 we ran the algorithm for find-
ing the set of efficient paths as described by Paixão and Santos [4],
and then used this set as input to the algorithm described above to
determine if the set of efficient paths was connected. All the small
and medium instances, along with some large instances that have
been tested, were found to have the set of efficient paths connected.

4. LOCAL SEARCH ALGORITHM

The local search algorithm presented in this section generates can-
didate efficient paths that are neighbors with respect to the defi-
nition of adjacency given in Section 2. Note that the number of
efficient and neighbor paths can be exponentially large [2]. There-
fore, we focus on a subset of neighbors whose size only depends
linearly on the number of criteria, number of nodes and/or arcs.

The local search works as follows. First, all the shortest paths
from every node to the target and for each criterion are generated

●

●

●
●

●
●

●●

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns
 fo

un
d

0

20

40

60

80

100

Complete Grid Random

K N K N K N D

●●
●

●
●
●
●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●

●

●●

●
●

ra
tio

 o
f C

P
U

−
tim

e

1e−02

1e+00

1e+02

1e+04

Complete Grid Random

K N K N K N D

Figure 1: Percentage of efficient solutions found (top) and ratio of
CPU-time between label correcting and local search (bottom). The
ratio is shown in logarithmic scale. The white and grey boxplots
represent small and medium instances, respectively.

by using Dijkstra’s algorithm. Then, for each one of these shortest
paths, new paths are generated from a path p as follows: for each
node i of p from s to the target t, deviate from p at node i through
an arc (i, j) and then, for each criterion, follow the shortest path
that was previously computed from node j to the target. With this
procedure, further new candidates for efficient paths are generated.
The algorithm iterates over the procedure above for all paths that
are generated. To avoid generating repeated paths, at each new
path p′ generated from path p, the algorithm starts from the first
node in p′ where the detour occured. This node will be denoted
by v(p) and for the shortest path initially determined, we define
v(p) = s. We also denote a path that follows path p from node s to
node i by p(s,i). The resulting algorithm is shown in Algorithm 1.
The procedure Filter(S) in the final step removes the dominated
paths from set S At each iteration of the second loop, the algorithm
uses a LIFO strategy to choose the next path from S. In order to
define a stopping criterion, we use the following technique [5]:
The algorithm flags each new path found as not visited; the path
becomes visited when it is chosen to generate new paths. This
algorithm stops when all paths in S are flagged as visited.

Figure 1 presents the experimental results obtained by using
the local search algorithm as compared to the label correcting ap-
proach. The plot in the top gives a boxplot for the percentage
of efficient paths found by the local search algorithm for each in-
stance type and size. The plot in the bottom shows a boxplot for the
ratio of CPU-time between the label correcting approach and the
local search algorithm. The experimental results indicate that the
local search algorithm behaved well in Random and Complete in-

ALIO/EURO-2

Proc. of the VII ALIO/EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4 - 6, 2011

stances, where it finds over 80% of the efficient paths in RandomK
and RandomN instances and between 50% and 90% in the remain-
ing. For these classes of problems, the local search algorithm takes
less than one tenth of the run-time of the exact approach. Addition-
ally, in GridK instances, the local search finds more than 80% of
the efficient paths, but it is slower than the exact approach. Finally,
only a few portion of efficient paths was found by the local search
algorithm in GridN instances.

5. CONCLUDING REMARKS

In this article, we performed an experimental analysis of connect-
edness for the multicriteria shortest path problem. The positive
results obtained in this study suggest that local search algorithms
may be an effective approach. We propose a local search algorithm
that explores a stricter version of the neighborhood considered for
connectedness. From our point of view, the results obtained by our
approach were quite positive for most of the instance types, both
in terms of number of efficient paths found and running time.

This approach can even be improved in terms of solution qual-
ity, mainly for instances of type Grid with increasing size, by con-
sidering an extension of the neighborhood that is explored by our
approach. However, it is an open question whether it would still be
efficient in terms of running time as compared to exact algorithms
for this problem. As for instances of type Grid with increasing
number of objectives, a more efficient dominance check may im-
prove our approach. Finally, we remark that this local search ex-
ploration can be also applied for other problems defined over net-
works, such as the multicriteria minimum spanning tree problem.

6. REFERENCES

[1] J. Gorski, L. Paquete, F. Pedrosa, Greedy algorithms for a
class of knapsack problems with binary weights, Computers
& Operations Research, 2011, in press.

[2] P. Hansen, Bicriterion path problems, In G. Fandel and T. Gal
(Eds.), Multiple Criteria Decision Making Theory and Appli-
cation, LNEMS 177, Springer, pp. 109–127, 1979.

[3] M. Ehrgott, K. Klamroth, Connectedness of efficient solu-
tions in multiple criteria combinatorial optimization. Euro-
pean Journal of Operational Research, 97: 159–166, 1997.

[4] J.P. Paixão and J.L. Santos, Labelling methods for the gen-
eral case of the multiobjective shortest path problem - a com-
putational study. Working paper CMUC 07-42, University of
Coimbra, 2007.

[5] L. Paquete, T. Stützle, On local optima in multiobjective
combinatorial optimization problems. Annals of Operations
Research, 156(1): 83–97, 2007.

[6] F. Seipp, S. Ruzika, L. Paquete, On a cardinality constrained
multicriteria knapsack problem, Report in Wirtschaftsmathe-
matik Nr. 133/2011, University of Kaiserslautern. 2011.

[7] P. Vincke, Problémes multicritères, Cahiers du Centre
d’Etudes de Recherche Opérationelle 16, 425–436, 1974

ALIO/EURO-3

	1 Introduction
	2 Notation and Definitions
	3 Connectedness analysis
	4 Local Search Algorithm
	5 Concluding Remarks
	6 References

