
An algorithm for the car sequencing problem of

the ROADEF 2005 Challenge

Max Risler
max.risler@karlshof.de

Marco Chiarandini
Luis Paquete

Tommaso Schiavinotto
Thomas Stützle

{machud,lpaquete,schiavin,tom}@intellektik.informatik.tu-darmstadt.de

TU Darmstadt, Computer Science, Intellectics Group
Alexanderstr. 10, 64283 Darmstadt, Germany

November 30, 2004

1 Introduction

The algorithm we present for solving the Car Sequencing Problem as defined
in the Roadef Challenge 2005 consists of the following components. First, a
constructive heuristic is used to generate an initial sequence. Next, a local
search is applied to improve the solution quality. Because a simple local search
would stop in a local optimum as soon as no more improvements can be achieved
with any single local exchange, we apply metaheuristics to help the underlying
local search to escape from local optima and to find better solutions.

We implemented and tested about 10 different constructive heuristics. These
heuristics have the goal to create a sequence that serves as a good starting
point for the local search in a reasonable amount of time. Among the different
algorithms tested we finally selected two, each of which performs best on a
different type of problem instances. They are described in Section 2.

A local search is performed using a specific neighborhood structure, that is a
set of neighbors for each sequence. Among the different neighborhood structures
we tested, those which proved the most effective and which we use in the final
algorithm are:

- exchanging two vehicles in the sequence (exchange),

- moving a vehicle to a different position (insert),

- exchanging two batches of vehicles having the same color (batch exchange).

We experimented with many different metaheuristics [5] like Iterated Local
Search [4] and Iterated Greedy Search [6][1]. Our final algorithm described in

1

Section 5 is a hybrid method using Variable Neighborhood Search [2] which is
described in Section 3, and Simulated Annealing [7][3], which is described in
Section 4.

2 Creating initial solutions

In the following, we describe how the initial solution is created. The method
to create the initial solution should be fast so that there is still plenty of time
to improve the solution found by local search but is also should provide good
quality solutions in the first place.

The two methods we found to perform best are fairly simple approaches. The
first one is used for problem instances with highest priority to color changes
or for instances where the ratio constraints are easy in average according to
their utilization rate which is obtained from instance characteristics such as the
number of associated vehicles, the number of total vehicles, and the ratio of
the constraint. We use the second method for the problem instances where the
highest priority is given to ratio constraints.

2.1 Insertion method

Algorithm 1 Insertion method to create starting sequence π
π ← empty sequence
while |π| < n do

v ← random vehicle /∈ π
choose position x where inserting v in π leads to minimal increase of the
evaluation function value
π ← (π1, . . . , πx−1, v, πx, . . . , π|π|)

end while

In the insertion method we start from an empty sequence and then simply
insert vehicles one by one at the best possible position. This is done by first
computing for each position the resulting difference of the evaluation function
then choosing the position with the minimal value. Ties are broken favorising
the leftmost position. By using the evaluation function for comparing different
insertion points, we do not need to treat the three objectives separately. As the
evaluation function weights them differently the given priorities are respected
correctly.

2.2 Sequential method

This method is very similar to the insertion method. The sequence is created
by adding one vehicle after another but in this case the position for the next
vehicle is fixed at the end of the sequence and instead the vehicle which is added
is chosen according to the minimal evaluation function value.

Another difference to the insertion method is that for breaking ties in the
choice of the next vehicle we always take the vehicle which has the most ratio
constraints weighted by their difficulty associated. The idea is to sequence
difficult vehicles as soon as possible without producing constraint violations.

2

Algorithm 2 Sequential method to create starting sequence π
π ← empty sequence
for all vehicles v do

Mv ←
∑

r∈Rv
Mr %

Rv⊆R ratio constraints associated with vehicle v

Mr ratio constraint utilization rate r

end for
while |π| < n do

choose vehicle v for which appending v to π leads to minimal increase of
the evaluation function value, break ties in favor of highest Mv

π ← (π, v)
for all remaining vehicles v do

update Mv according to changed ratio constraint difficulties
end for

end while

To achieve this we use the utilization rates of the ratio constraints on each
vehicle. After adding each vehicle these utilization rates have to be updated to
reflect the correct ratio constraint difficulty for each of the remaining vehicles.

3 Variable Neighborhood Descent

Variable Neighborhood Descent(VND) is a metaheuristic which improves lo-
cal search result by systematically changing the neighborhood structure. The
neighborhood is changed repeatedly until the final solution is a local optimum
for all neighborhoods. To achieve this first an order is defined on the neighbor-
hood structures under consideration. Then, the first neighborhood structure for
which a solution is no longer a local optimum is selected and local search is per-
formed in this neighborhood until it stops. This is repeated until the solution
is a local optimum with respect to all neighborhood structures.

Our algorithm applies VND to improve the initial solution before Simulated
Annealing is performed as well as to improve specific solutions produced in
the run of Simulated Annealing. We use exchange, insert, and batch exchange
neighborhoods in that order. For the instances that have the least priority to
paint color changes we omit batch exchanges, since good solutions for these
instances tend to have relatively small batches of same-colored vehicles and
therefore the batch exchange local search would take much time with only little
effect.

4 Simulated Annealing

Simulated Annealing iteratively visits a sequence of neighboring solutions. In
constrast to an iterative improvement local search not only improving moves are
accepted, thus, making it possible to leave a local optimum. The neighborhood
structure used here is the exchange-neighborhood. Repeatedly a random pair
of vehicles is selected. If exchanging the two vehicles leads to an improvement
the move is accepted. A worsening move may be accepted with a probability

p(∆) = e−
∆
T ,

3

50000

100000

150000

200000

250000

300000

350000

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

ev
al

ua
tio

n
m

ar
k

iterations

0

20

40

60

80

100

120

140

160

180

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

te
m

pe
ra

tu
re

iterations

Figure 1: Profile of evaluation mark (left) and temperature (right) for
one representative run of the Simulated Annealing algorithm on instance
024 38 3 EP RAF ENP.

where ∆ is the evaluation function difference resulting from the exchange and
T is a control parameter called temperature. The temperature is decreased over
time. As a lower temperature results in a lower probability for accepting a wors-
ening move, after a while almost only improving moves will be accepted. When
the solution did not improve for a given number of iterations the temperature
is increased. This re-heating allows to escape from attractive local minimum
areas.

5 Final Algorithm

Algorithm 3 Final algorithm using Simulated Annealing and Variable Neigh-
borhood Search

create initial sequence π
perform variable neighborhood search on π
T ← initial temperature
while time limit not reached do

choose random 0 ≤ i < j < |π|
∆← evaluation function delta for exchanging πi and πj

if ∆ ≤ 0 or e−
∆
T > random[0, 1) then

π ← (π1, . . . , πi−1, πj , πi+1, . . . , πj−1, πi, πj+1, . . . , π|π|)
end if
update temperature T
if re-heating occured then

perform variable neighborhood search on π
end if
πbest ← best of π and πbest

end while

After running various experiments on different algorithms we decided on first
starting from the solution we obtain from the described constructive heuristic.
Next, one Variable Neighborhood Descent is run. Then Simulated Annealing is
performed until the time limit is reached. Before re-heating another Variable

4

Instances with easy-to-satisfy highest priority ratio constraints
instance results median
022 3 4 EP RAF ENP 3601 3400 3202 3300 3301 3301
025 38 1 EP ENP RAF 14178 16806 15682 13913 13803 14178
025 38 1 EP RAF ENP 25832 25922 25726 26020 25871 25871
064 38 2 EP RAF ENP ch1 13861 13761 14059 13860 13859 13860
064 38 2 EP RAF ENP ch2 2976 2976 2893 2893 2899 2899
064 ch2 s24 mar 17261 17261 17261 17261 17261 17261

average 12895

Instances with difficult-to-satisfy highest priority ratio constraints
instance results median
024 38 3 EP ENP RAF 42946 42221 41874 42031 42314 42221
024 38 3 EP RAF ENP 68259 71137 107853 88633 68435 71137
024 38 5 EP ENP RAF 46084 45898 46103 46042 45978 46042
024 38 5 EP RAF ENP 71007 70801 70797 90800 71130 71007
039 38 4 EP RAF ch1 145500 196000 144700 145100 165000 145500
048 39 1 EP ENP RAF 7080 7092 7020 7176 7373 7092
048 39 1 EP RAF ENP 19245 19256 19333 19347 18948 19256
048 ch2 s25 mar 8740 8640 8650 8542 8640 8640

average 51362

Instances with highest priority to paint changes
instance results median
022 3 4 RAF EP ENP 113904 113905 113904 114005 114005 113905
039 38 4 RAF EP ch1 699600 699900 699700 699800 701800 699800
039 ch1 s26 mar 853644 853643 853648 853647 853643 853644
064 38 2 RAF EP ENP ch1 673092 673090 673093 673090 673089 673090
064 38 2 RAF EP ENP ch2 306752 306752 306752 306752 306752 306752

average 529438

Table 1: Results obtained from 5 runs on each instance.

Neighborhood Descent is performed to ensure the solution is in a local optimum
for all neighborhood structures. The algorithm continues until the time limit is
reached and the best found solution is returned.

We implemented our algorithm in C++.

6 Analysis of experimental results

In order to tune the algorithm we had to find the values for several parameters,
like initial temperature, cooling rate, and number of non-improving iterations
before re-heating, etc.. This was done by running the algorithm with as many
different parameter combinations as possible, and comparing quality and vari-
ance of the solutions found in dependence of the parameter values. As a result,
we obtained three sets of parameter values, among which one gets selected de-
pending on instance characteristics like objective order and problem size.

5

The results in Table 1 were computed on an Athlon MP/1.2 Ghz/1 GByte
RAM machine running Suse Linux 7.3. Unfortunately we were not able to do
the runs on the same machine as specified for the challenge but we were able to
compare the runtime and therefore did the run with a time limit of 544 seconds
to match the difference in processing speed.

References

[1] J.C. Culberson. Iterated greedy graph coloring and the difficulty landscape.
Technical Report 92-07, Department of Computing Science, The University
of Alberta, Edmonton, Alberta, Canada, June 1992.

[2] P. Hansen and N. Mladenovic. Variable neighborhood search. In F. Glover
and G. Kochenberger, editors, Handbook of Metaheuristics., pages 145–184.
Kluwer Academic Publishers, Norwell, MA, 2002.

[3] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated
annealing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[4] H.R. Lourenco, O. Martin, and T. Stützle. Iterated local search. In F. Glover
and G. Kochenberger, editors, Handbook of Metaheuristics., pages 321–353.
Kluwer Academic Publishers, Norwell, MA, 2002.

[5] O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, J. Knowles,
M. Manfrin, M. Mastrolilli, L. Paquete, B. Paechter, and T. Stützle. A com-
parison of the performance of different metaheuristics on the timetabling
problem. In E. Burke and P.D. Causmaecker, editors, Practice and The-
ory of Automated Timetabling IV: 4th International Conference, PATAT
2002, Gent, Belgium, August 2002, Selected Revised Papers, volume 2740 of
Lecture Notes in Computer Science, pages 329–351. Springer-Verlag, Berlin
Heidelberg, 2003.

[6] R. Ruiz and T. Stützle. Iterated greedy for the permutation flow shop
problem. Manuscript, 2004.

[7] V. Černý. Thermodynamical approach to the travelling salesman problem:
an efficient simulation algorithm. Journal Of Optimization Theory And Ap-
plications, pages 41–51, 1985.

6

