Classification of Metaheuristics and
Design of Experiments for
the Analysis of Components

Tech. Rep. AIDA-01-05

Mauro Birattari, Luis Paquete,
Thomas Stutzle, and Klaus Varrentrapp

Intellektik
Darmstadt University of Technology
Darmstadt, Germany

November 2001

Abstract

This report discusses two different approaches to the description of meta-
heuristics. On one hand, we propose a number of different high-level cri-
teria according to which metaheuristics can be described and classified.
On the other hand, we discuss some method of design of experiments for
studying the contribution and the relative importance of the different com-
ponents of a metaheuristic. We maintain that, in order to be effective and
complete, an analysis of metaheuristics must take into account both levels.
In particular, such a two-fold investigation is necessary for coping with the
fact that all metaheuristics, though described as clearly defined methods
based on some intellectually appealing principles, when implemented in
practice, they always appear in some hybrid form. Accordingly, with an
high-level description, we wish to grasp the underlying principle, while by
adopting statistical techniques of design of experiments we wish to pon-
derate the contribution given to performance by each components in its
possible instantiations.

1 Introduction

We see two main approaches in the analysis of Metaheuristics. The firsts looks
at metaheuristics in their “pure state”. The second takes into account the fact



that realistic implementations of metaheuristics always include “dirty tricks”.

When we look at pure metaheuristics, a clear-cut classification is possible of
the underlying principles and mechanisms. In this empyrean, metaheuristics can
be easily disassembled into components, and alternative ways of reassembling
these components into possibly hybrid new metaheuristics can be devised.

The praxis of metaheuristics is somehow different. Real world implementa-
tions of metaheuristics usually exploit a large amount of heterogeneous ideas and
“tricks”. It can be argued that a successful metaheuristic is the one that lends
itself to hybridization and flexible adaptation that are easyly implementable. It
is fundamental therefore to provide guidelines for the description and the analysis
of real world implementations of metaheuristics. Sharp categories appears not
to be suited for such a description, and a language that gives an account of all
possible “tones of gray” seems to be needed.

We maintain that the two approaches, component-level and whole-level, are
both important: They play a different role and must be both present in an
analysis.

As far as the whole-level is concerned, an analysis of different metaheuristics
can be obtained through competitive tests over a class of instances that are
commonly considered in published material. Although this kind of analysis is
frequently performed, it cannot be considered as the only source of information
on the metaheuristics of interest. The limitations of competitive testing and the
associated risks are well known (Hooker, 1996). Nevertheless, this kind of analysis
is often justified on at least two different grounds. First, performance is typically
the criterion of primary importance when comparing metaheuristic. Second, this
analysis is easy to be performed and can provide initial clues on the behavior of
the different metaheuristics.

As an alternative to competitive testing, more systematic and “scientific”
testing methodology are available. In particular, practical and valuable infor-
mation can be extracted at the component-level through techniques of design of
experiments and statistical analysis.

To date, extensive testing of different metaheuristics implemented by the
Metaheuristics Network has been performed. Results are available for what con-
cerns QAP and MAX-SAT. Future analysis will aim at assessing the relative
contribution of the various components and possibly the role that components
play across different metaheuristics.

The rest of this report is structured as follow. Taking inspiration from Stiitzle
(1998), Section 2 proposes a high-level analysis of metaheuristics. Different cri-
teria of classification are presented and discussed.

Section 3 introduces some elements of design of experiments and gives a pre-
liminary description of a methodology to be applied to testing of metaheuristics.
Further, Section 3 provides some useful references to the relevant literature.



2 Classification of metaheuristics

A metaheuristic will be successful on a given optimization problem if it can
provide a balance between the exploitation of the accumulated search experience
and the exploration of the search space to identify regions with high quality
solutions in a problem specific, near optimal way. The main difference between
the existing metaheuristics concerns the particular way in which they try to
achieve this balance. The different metaheuristic approaches can be characterized
by different aspects concerning the search path they follow or how memory is
exploited. In this section, we discuss these aspects according to some general
criteria which may be used to classify the presented algorithms. For a more
formal classification of local search algorithms based on an abstract algorithmic
skeleton we refer to (Vaessens et al., 1995).

Trajectory methods vs. discontinuous methods An important distinction
between different metaheuristics is whether they follow one single search trajec-
tory corresponding to a closed walk on the neighborhood graph or whether larger
jumps in the neighborhood graph are allowed. Of the presented metaheuristics,
simulated annealing and tabu search are typical examples of trajectory methods.
These methods usually allow moves to worse solutions to be able to escape from
local minima. Also local search algorithms which perform more complex tran-
sitions which are composed of simpler moves may be interpreted as trajectory
methods. Such algorithms are, for example, variable depth search algorithms
like the Lin-Kernighan heuristic for the TSP (Lin and Kernighan, 1973) and al-
gorithms based on ejection chains (Glover, 1996). In ant colony optimization,
iterated local search, genetic algorithms, and grasp starting points for a subse-
quent local search are generated. This is done by constructing solutions with
ants, modifications to previously visited locally optimal solutions, applications of
genetic operators, and randomized greedy construction heuristics, respectively.
The generation of starting solutions corresponds to jumps in the search space;
these algorithms, in general, follow a discontinuous walk with respect to the
neighborhood graph used in the local search.

Population-based vs. single-point search Related to the distinction be-
tween trajectory methods and discontinuous walk methods is the use of a pop-
ulation of search points or the use of one single search point. In the latter case
only one single solution is manipulated at each iteration of the algorithm. Tabu
search, simulated annealing, iterated local search, and grasp are such single-point
search methods. On the contrary, in ACO algorithms and genetic algorithms, a
population of ants or individuals, respectively, is used. (Note that population-
based methods are typically discontinuous.) In ant colony optimization a colony
of ants is used to construct solutions guided by the pheromone trails and a heuris-



tic function and in genetic algorithms the population is modified using the genetic
operators. Using a population-based algorithm provides a convenient way for the
exploration of the search space. Yet, the final performance depends strongly on
the way the population is manipulated.

Memory usage vs. memoryless methods Another possible characteristic of
metaheuristics is the use of the search experience (memory, in the widest sense)
to influence the future search direction. Memory is explicitly used in tabu search.
Short term memory is used to forbid revisiting recently found solutions and to
avoid cycling, while long term memory is used for diversification and intensifica-
tion features. In ant colony optimization an indirect kind of adaptive memory
of previously visited solutions is kept via the pheromone trail matrix which is
used to influence the construction of new solutions. Also, the population of the
genetic algorithm could be interpreted as a kind of memory of the recent search
experience. Recently, the term adaptive memory programming (Taillard et al.,
1998) has been coined to refer to algorithms that use some kind of memory
and to identify common features among them. Also iterated local search, in a
widest sense could be classified as an adaptive memory programming algorithm,
although only very poor use of the recent search experience is made in ILS al-
gorithms like choosing the best solution found so far for the modification step.
On the contrary, simulated annealing and grasp do not use memory functions to
influence the future search direction and therefore are memoryless algorithms.

One vs. various neighborhood structures Most local search algorithms
are based on one single neighborhood structure which defines the type of allowed
moves. This is the case for simulated annealing and tabu search. Iterated local
search algorithms typically use at least two different neighborhood structures N/
and N'. The local search starts with neighborhood N until a local optimum is
reached and in such a situation a kick-move is applied to catapult the search to
another point. In fact, the kick-moves can be interpreted as moves in a secondary
neighborhood N'. For the subsequent local search again the primary neighbor-
hood N is used. Often, an appropriate strength of the kick-move is not known
or may depend on the search space region. Therefore, it may be advantageous
to choose several neighborhoods N, ..., N; of different size for the kick-moves.
Simple variable neighborhood search (VNS) introduces this idea by systemati-
cally changing the neighborhood (Mladenovié¢ and Hansen, 1997). The mutation
operator in genetic algorithms has the same effect as the kick-move in ILS and
therefore may also be interpreted as a change in the neighborhood during the
local search. Applications of the crossover operator have been interpreted as
moves in hyper-neighborhoods (Vaessens et al., 1995), in which a cluster of solu-
tions — in genetic algorithms these clusters are of size two — is used to generate
new solutions. On the other side, the solution construction process in ant colony



optimization and grasp is not based on a specific neighborhood structure. Never-
theless, one could interpret the construction process used in ACO and grasp as a
kind of local search, but this interpretation does not reflect the basic algorithmic
idea of these approaches.

Dynamic vs. static objective function Some algorithms modify the evalu-
ation of the single search states during the run of the algorithm. One particular
example, which has not been discussed before, is the breakout method (Morris,
1993) proposed for the solution of satisfiability and graph coloring problems. The
basic idea is to introduce penalties for the inclusion of certain solution attributes
which modify the objective function. Based on the breakout method, guided local
search (Voudouris and Tsang, 1995) has been proposed and applied to combina-
torial optimization problems like the TSP. Also tabu search may be interpreted
as using a dynamic objective function, as some points in the search space are
forbidden, corresponding to infinitely high objective function values. Yet, all the
other algorithms introduced so far use a static objective function.

Nature-inspired vs. non-nature inspiration A minor point for the classifi-
cation of metaheuristics is to take into account their original source of inspiration.
Many methods are actually inspired by naturally occurring phenomena. The al-
gorithmic approaches try to take advantage of these phenomena for the efficient
solution of combinatorial optimization problems. Among the presented methods,
ant colony optimization, simulated annealing, and genetic algorithms belong to
these nature-inspired algorithms. The others, tabu search, iterated local search,
and grasp have been inspired more by considerations on the efficient solution of
combinatorial problems.

In Table 1 we summarize the discussion of the various methods according to
these criteria. We do not claim that all implementations of these algorithms
correspond to this classification, but it rather gives an indication of the particular
characteristics of these methods in their “standard” use.

3 Statistical analysis of factors

3.1 Design of Experiments

Before going into the details of design of experiments, the terminology used in
this research field must be introduced. In particular, we need to associate the
terms used in design of experiments with concepts and objects encountered when
dealing with metaheuristics.

When refering to factors, we are actually talking about the high-level com-
ponents that fully characterize a metaheuristic. However, if we intend to study



Table 1: Summary of the characteristics discussed in this section. 1/ means that the
feature is present, 3 that this feature is partially present and — that the feature does
not appear.

Feature SA TS GA ACO ILS grasp GLS
Trajectory NV - - — v
Population - o/ Vv - - -
Memory - 4 3 Vv 3 - 4
Multiple neighborhoods | = = 3 - Vv - -
Dynamic f(z) - 3 - - - - Vv
Nature-inspired v 0 Vv - - -

also the behavior over different classes of instances of the same problem, where
each instance is defined by a unique combination of certain values of its features,
also these features can be defined as factors (Rardin and Uzsoy, 2001). For in-
stance, in a computational experiment dealing with the graph coloring problem,
the number of nodes and edge density, that is, features that fully characterize a
certain graph instance, are considered also as factors, since they can also influence
the behavior of the metaheuristic.

With the term levels we refer to the possible values or options that a given fac-
tor may take. Levels could represent parameters (length of tabu list, population
size) or methods (type of perturbation, mutation operator), or even combination
of these (length of tabu list of method robust tabu search). Factors are usually
run at only two levels: “high” and “low”. Although it is possible to observe the
effect of the factor, the results depend on what levels are chosen. To determine
whether an effect is linear or nonlinear, at least three levels should be included.

In the design of experiments, both randomization and blocking are relevant
aspects. By randomization we mean that all factors not explicitly controlled
should be set randomly to prevent systematic and personal bias (Dean and Voss,
1999). Considering the previous example, if we generate several graph instances
by randomly defining edge density and number of nodes, randomization strictly
says that different instances should be randomly chosen for the considered set of
combinations of high-level components of a metaheuristic.

One drawback of this design is that it increases the variance in the observed
data. In order to reduce such variability, a technique called blocking is often
adopted over the factors that are not of interest, called nuisance factors. Blocking
consists in dividing the observations into groups called blocks in such a way that
the observations in each block are collected under similar conditions (Dean and
Voss, 1999).

In experimental design of metaheuristics we can simply fix the nuisance factor
during the experiment, (although it could limit the conclusions to that particular



chosen level), or rather we can implement the blocking procedure by defining
levels for the nuisance factor and running a set of experiments for each level.
However, some adjustments must be considered in the factor analysis.

Most of the current approaches to experimental design use some kind of block-
ing (Lin, 1980; Hooker and Vinay, 1995; Paquete and Fonseca, 2001; Golden and
Stewart, 1985).

Specific types of experimental design can be well suited to computational
experiments where the nuisance factors are blocked and there is only one factor
under study. The goal of these designs is to study if the main factor is really
significant or not; in other terms, if there is a significant change in the response
of the several levels of this factor.

Latin Square experimental design uses only one important factor and two
nuisance factors. The experiment assume that two nuisance factors are divided
in a tabular grid with the property that each row and each column must run only
once with each level of the factor under study.

Graeco-Latin Squares can use three nuisance factors and Hyper-Graeco-Latin
Squares can use four. One advantage of these approaches is the reduction of the
number of runs. On the other hand, an obvious drawback is the need for the same
number of levels between main factor and the others nuisance factors, which is
not always possible when dealing with metaheuristics. In any case, even when
this could be possible, it would not match with the goal of our analyses.

Most of the research in optimization by means of metaheuristics deals with
several important factors and the need emerges of screening out the most im-
portant ones. This screening objective can be achieved by factorial design. In
this approach, all combination of all levels that all factors might take need to
be considered in the experiments. In Lin (1980) a factorial design is used when
two factors are considered (algorithm and problem type). A fixed number of ran-
dom problems is generated in each combination of two factors. Also in Hooker
and Vinay (1995), a factorial design is reported in the experimental study of
branching algorithms applied to satisfiability problems.

However, one serious drawback of factorial design is the explosive growing of
the number of experiments (McGeoch, 1996; Rardin and Uzsoy, 2001). There
are several alternatives which consider a reduced number of combinations, while
maintaining the orthogonality of the experiments matrix. Both fractional and
Taguchi methods can achieve this by assessing the same effects without running
all combinations. These methods need a carefully chosen subset of factors and
levels to avoid confounding main effects.

3.2 Factor Analysis

After obtaining the results of the experiments, the research must study the raw
data by appropriate statistical tools. Analysis of variance and non-parametric
tests, can help to check whether a factor has a significant effect on performance

7



when the remaining factors held constant at any given set of levels (Hooker,
1996). In most of the cases, when considering only the presence of two factors, a
two-way table of sample means could help in obtaining some insight about how
various factors affect the metaheuristic performance (Rardin and Uzsoy, 2001).

One way of analyzing main effects of the factors under study is the use of Anal-
ysis of Variance (ANOVA) (Rardin and Uzsoy, 2001). This statistical procedure
assumes that all nonrandom variation is due to differences in mean performance
among the several levels of the factors. Assumptions of normality and common
error variance are needed to perform this test.

In Hooker and Vinay (1995), multiple regression with dummy variables is
used. In this work, the authors consider problem types as an attribute that may
affect response variable. They further assume that there is no need to maintain
an equal number of problems of each type. These assumptions fit in multiple
regression analysis and apply to their own research, since they were dealing with
benchmarks.

Non-parametric tests can be used when one is not willing to assume normal-
ity. One such test is the permutation test, which only needs the assumption
of exchangeability of errors (Good, 1994). This test presents the advantage of
not restricting to normality, it is exact, and it allows for the selection of a test
statistic to match the alternatives of interest (Good, 1994). In Paquete and Fon-
seca (2001), for the study of main effects of several methods of a multi-objective
metaheuristic, Smirnov distance is used as a test statistic in a permutation test.
Reduction of variance and the number of permutations needed was obtained by
permuting the elements of the solutions between different levels of the factor of
interest, but within the same levels of the other existing factors, in randomization
restricted to matching blocks (Good, 1994). However, the computer overload of
such test is still highly intensive. Such drawback can be overcomed by approxi-
mated procedures based on Monte Carlo sampling.

3.3 Checking the Design of Experiments

Taking as example the checklist described in Dean and Voss (1999), it is possible
to define the following methodology to design computational experiments for
understanding the behavior of the metaheuristics in combinatorial optimization
problems.

Define objectives
Explicitly list all the precise questions to be addressed in the experiment.
As far as our research is concerned, the main goal is to study the effect
of including different components into the metaheuristic, and to study the
behavior of the metaheuristic under different values of its parameters. Other
objectives can be formulated, as the one related with screening (Xu et al.,
1998) to find the best set of parameters and methods by means of statistical



tests and experimental design.

Identify sources of variation

Identify the main factors and their corresponding levels. As discussed
above, factors correspond to the high-level methods present in the meta-
heuristic and its levels are the specific types or amounts of the factor that
will actually be used in the experiments. Choose carefully the experimen-
tal units which will be used in the experiments. The experiment units can
be defined as the instances that will be solved by each combination of the
levels of the existing factors and must be representative of the universe of
class of problems. Identify also the nuisance factors and in which way can
they be defined as blocking factors.

Choose combinations of levels of the factors
Can we have enough computational power to perform a full factorial de-
sign? If not, can we use a fractional factorial design? Obviously, these
questions depend on the number of factors and levels considered in the
previous stages.

Specify the experimental procedure

The units in which the measurements are to be made should be precisely
specified. For example, when applying metaheuristics to graph coloring
problems, the units could be considered as the number of iterations, number
of optimal coloring and /or CPU run-time. In TSP problems, the one that is
consider is the length of the tour obtained. Somehow, the units must reflect
the objective function of the formalization of the optimization problem. The
problem of when to collect data must be addressed, too: Data should be
gathered only at the end of iterations, or also at run-time with some specific
time interval?

Run a pilot experiment
In many ways, a pilot experiment can be of great help to define the final
experiment. Running a pilot experiment can give some insight in the possi-
ble problems that must be overcomed, as collecting data and time bounds
for each experiment. It can also help to redefine the levels of each factor
considered, and the number of observations needed.

Specify the model
The model needs to be specified, that indicates the relationship existing
between the response variable and the sources of variation that were pre-
viously identified. The techniques for factor analysis will depend of the
formulation of this model.

Outline the analysis
Define the statistical analysis to be considered. The statistical hypothesis



must be formulated and also the statistical tests. Can we assume normality
of the distributions? If not, do we have enough computation time for us-
ing permutation tests to determine the exact distributions? In the need of
multiple comparisons between data obtained from the experiments, what
procedure should be used to control the maximum probability of occur-
ring Type I error? These question are important to define the statistical
treatment.

Calculate the number of observation needed
Considering that stochastic algorithms, like metaheuristics, produce differ-
ent results at each run, a large enough number of observations must be
obtained in order to reduce the variability of data. However, a definite
method to derive this calculation does not exist. The pilot experiment can
be of great importance to define the number of observations needed.

Review the above decisions, revise if necessary
In an analogy to the software design, also here there is the need to restart
from the beginning a review and, if necessary, to revise the decisions taken.
Most of computational experiments with metaheuristics can take days or
weeks. A wrong decision in the design of experiments can cause several
delays and unpredictable results.

4 Conclusions and future work

This report starts from the consideration that a two-level analysis and descrip-
tion is fundamental for gaining a satisfactory insight into the behavior and the
characteristics of metaheuristics. Still, while a description of a metaheuristic as a
whole can be reasonably considered as achieved, much remains to be done at the
level of the analysis of components. Metaheuristics as a whole can be described
and classified according to different criteria, and can be tested and compare for
what their performance is concerned. At the level of an analysis of components,
the tools that seem appropriate for gathering and processing information, come
from the field of Design of Experiments. Future work will focus on the use of
such statistical techniques of experimental design. Beside using such techniques
for the analysis of metaheuristics, we will also consider the possibility of adopting
them as tools for tuning parameters and, more in general for finding the optimal
configuration of a metaheuristic.

Acknowledgments This work was supported by the Metaheuristics Network,
a Research Training Network funded by the Improving Human Potential Pro-
gramme of the CEC, grant HPRN-CT-1999-00106. The information provided is
the sole responsibility of the authors and does not reflect the Community’s opin-

10



ion. The Community is not responsible for any use that might be made of data
appearing in this publication.

References

Dean, A. and Voss, D. (1999). Design and Analysis of Algorithms. Springler-
Verlag, New York, NY, USA.

Glover, F. (1996). Ejection Chains, Reference Structures and Alternating Path
Methods for Traveling Salesman Problems. Discrete Applied Mathematics,
65:223-253.

Golden, B. L. and Stewart, W. R. (1985). Empirical analysis of heuristics. In
Lawler, E. L., editor, The Traveling Salesman Problem: A Guided Tour of
Combinatorial Optimization, pages 207-249. John Wiley & Sons, New York,
NY, USA.

Good, P. (1994). Permutation Test: A Practical Guide to Resampling Methods
for Testing Hypothesis. Springler-Verlag, New York, NY, USA.

Hooker, J. (1996). Testing heurists: We have it all wrong. Journal of Heuristics,
1:33-42.

Hooker, J. N. and Vinay, V. (1995). Branching rules for satisfiability. Journal of
Automated Reasoning, 15(3):359-383.

Lin, B. (1980). Controlled experimental design for statistical comparison of inte-
ger programming algorithms. Management Science, 25:1258-1271.

Lin, S. and Kernighan, B. (1973). An Effective Heuristic Algorithm for the
Travelling Salesman Problem. Operations Research, 21:498-516.

McGeoch, C. C. (1996). Towards an experimental method for algorithm simula-
tion. INFORMS Journal of Computing, 8(1):1-15.

Mladenovié, N. and Hansen, P. (1997). Variable Neighborhood Search. Computers
& Operations Research, 24:1097-1100.

Morris, P. (1993). The Breakout Method for Escaping from Local Minima. In
Proceedings of the 11th Conference on Artificial Intelligence, pages 40-45. MIT
press.

Paquete, L. and Fonseca, C. M. (2001). A study of multiobjective evolutionary
algorithms to the examination timetabling problem. In Proceddings of Meta-
heuristics International Conference (MIC’01).

11



Rardin, R. L. and Uzsoy, R. (2001). Experimental evaluation of heuristic opti-
mization algorithm: A tutorial. Journal of Heuristics, 7:261-304.

Stiitzle, T. (1998). Local Search Algorithms for Combinatorial Problems—
Analysis, Improvements, and New Applications. PhD thesis, Technische Uni-
versitdt Darmstadt, Darmstadt, Germany.

Taillard, E., Gambardella, L., Gendreau, M., and Potvin, J.-Y. (1998). Adaptive
Memory Programming: A Unified View of Metaheuristics. Technical Report
IDSTA-19-98, IDSIA, Lugano, Switzerland.

Vaessens, R., Aarts, E., and Lenstra, J. (1995). A Local Search Template (re-
vised version). Technical Report Memorandum COSOR 92-11, Department of
Mathematics and Computing Science, Eindhoven.

Voudouris, C. and Tsang, E. (1995). Guided Local Search. Technical Report
Technical Report CSM-247, Department of Computer Science, University of
Essex, England.

Xu, J., Chiu, S., and Glover, F. (1998). Fine-tuning a tabu search algorithm with
statistical tests. International Transactions in Operational Research, 5(3):233—
244.

12



