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Abstract

The application of evolutionary algorithms (EAs) in multiobjective
optimization is currently receiving growing interest from researchers
with various backgrounds. Most research in this area has understand-
ably concentrated on the selection stage of EAs, due to the need to
integrate vectorial performance measures with the inherently scalar
way in which EAs reward individual performance, i.e., number of off-
spring.

In this review, current multiobjective evolutionary approaches are
discussed, ranging from the conventional analytical aggregation of the
different objectives into a single function to a number of population-
based approaches and the more recent ranking schemes based on the
definition of Pareto-optimality. The sensitivity of different methods to
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objective scaling and/or possible concavities in the trade-off surface is
considered, and related to the (static) fitness landscapes such meth-
ods induce on the search space. From the discussion, directions for
future research in multiobjective fitness assignment and search strate-
gies are identified, including the incorporation of decision making in
the selection procedure, fitness sharing, and adaptive representations.

Keywords: evolutionary algorithms, multiobjective optimization, fitness
assignment, search strategies.
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1 Introduction

Many real world problems involve multiple measures of performance, or ob-
jectives, which should be optimized simultaneously. In certain cases, ob-
jective functions may be optimized separately from each other and insight
gained concerning the best that can be achieved in each performance di-
mension. However, suitable solutions to the overall problem can seldom be
found in this way. Optimal performance according to one objective, if such
an optimum exists, often implies unnacceptably low performance in one or
more of the other objective dimensions, creating the need for a compromise
to be reached. A suitable solution to such problems involving conflicting ob-
jectives should offer “acceptable”, though possibly sub-optimal in the single-
objective sense, performance in all objective dimensions, where “acceptable”
is a problem-dependent and ultimately subjective concept.

The simultaneous optimization of multiple, possibly competing, objec-
tive functions deviates from single function optimization in that it seldom
admits a single, perfect (or Utopian) solution. Instead, multiobjective op-
timization (MO) problems tend to be characterized by a family of alter-
natives which must be considered equivalent in the absence of information
concerning the relevance of each objective relative to the others. Multiple
solutions, or multimodality, arise even in the simplest non-trivial case of two
competing objectives, where both are unimodal and convex functions of the
decision variables. As the number of competing objectives increases and less
well-behaved objectives are considered, the problem of finding a satisfactory
compromise solution rapidly becomes increasingly complex.

Conventional optimization techniques, such as gradient-based and simplex-
based methods, and also less conventional ones, such as simulated annealing,
are difficult to extend to the true multiobjective case, because they were
not designed with multiple solutions in mind. In practice, multiobjective
problems have to be re-formulated as single-objective prior to optimization,
leading to the production of a single solution per run of the optimizer.

Evolutionary algorithms (EAs), however, have been recognized to be pos-
sibly well-suited to multiobjective optimization since early in their develop-
ment. Multiple individuals can search for multiple solutions in parallel, even-
tually taking advantage of any similarities available in the family of possible
solutions to the problem. The ability to handle complex problems, involv-
ing features such as discontinuities, multimodality, disjoint feasible spaces
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and noisy function evaluations, reinforces the potential effectiveness of EAs
in multiobjective search and optimization, which is perhaps a problem area
where Evolutionary Computation really distinguishes itself from its competi-
tors.

This paper reviews current evolutionary approaches to multiobjective op-
timization, discussing their similarities and differences. It also tries to iden-
tify some of the main issues raised by multiobjective optimization in the con-
text of evolutionary search, and how the methods discussed address them.
From the discussion, directions for future work in multiobjective evolutionary
algorithms are identified.

2 Evolutionary approaches to multiobjective

optimization

The family of solutions of a multiobjective optimization problem is composed
of all those elements of the search space which are such that the components
of the corresponding objective vectors cannot be all simultaneously improved.
This is known as the concept of Pareto optimality.

A more formal definition of Pareto optimality is as follows: consider,
without loss of generality, the minimization of the n components fk, k =
1, . . . , n, of a vector function f of a vector variable x in a universe U , where

f(x) = (f1(x), . . . , fn(x)) .

Then, a decision vector xu ∈ U is said to be Pareto-optimal if and only if
there is no xv ∈ U for which v = f(xv) = (v1, . . . , vn) dominates u = f(xu) =
(u1, . . . , un), i.e., there is no xv ∈ U such that

∀ i ∈ {1, . . . , n} , vi ≤ ui ∧ ∃ i ∈ {1, . . . , n} | vi < ui .

The set of all Pareto-optimal decision vectors is called the Pareto-optimal,
efficient, or admissible set of the problem. The corresponding set of objec-
tive vectors is called the non-dominated set. In practice, however, it is not
unusual for these terms to be used interchangeably to describe solutions of a
multiobjective optimization problem.

The notion of Pareto-optimality is only a first step towards the practical
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solution of a multiobjective problem, which usually involves the choice a
single compromise solution from the non-dominated set according to some
preference information.

2.1 Plain aggregating approaches

Because evolutionary algorithms require scalar fitness information to work
on, a scalarization of the objective vectors is always necessary. In most prob-
lems where no global criterion directly emerges from the problem formulation,
objectives are often artificially combined, or aggregated, into a scalar func-
tion according to some understanding of the problem, and the EA applied.
Many such approaches developed for use with conventional optimizers can
also be used with EAs.

Optimizing a combination of the objectives has the advantage of pro-
ducing a single compromise solution, requiring no further interaction with
the decision maker (DM). The problem is, if the optimal solution cannot be
accepted, either due to the function used excluding aspects of the problem
which were unknown prior to optimization or to an inappropriate setting of
the coefficients of the combining function, new runs of the optimizer may be
required until a suitable solution is found.

Several applications of evolutionary algorithms in the optimization of ag-
gregating functions have been reported in the literature. A number of authors
(Syswerda and Palmucci, 1991; Jakob et al., 1992; Jones et al., 1993) provide
examples of the use of the popular weighted sum approach. Using target
vector optimization, which consists of minimizing the distance in objective
space to a given goal vector, Wienke et al. (1992) report work on a problem in
atomic emission spectroscopy. Goal attainment (Gembicki, 1974), a related
technique which seeks to minimize the weighted difference between objec-
tive values and the corresponding goals, was used amongst other methods
by Wilson and Macleod (1993), who also monitored the population for non-
dominated solutions. The use of multiple attribute utility analysis (MAUA)
in conjunction with GAs has been suggested by Horn and Nafpliotis (1993),
but without experimental results.

Handling constraints with penalty functions (Davis and Steenstrup, 1987;
Goldberg, 1989) is yet another example of an additive aggregating function.
The fact that penalty functions are generally problem dependent and, as a
consequence, difficult to set (Richardson et al., 1989) has prompted the de-
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velopment of alternative approaches based on ranking (Powell and Skolnick,
1993).

2.2 Population-based non-Pareto approaches

Schaffer (1985, see also Schaffer and Grefenstette (1985)) was probably the
first to recognize the possibility of exploiting EA populations to treat non-
commensurable objectives separately and search for multiple non-dominated
solutions concurrently in a single EA run. In his approach, known as the
Vector Evaluated Genetic Algorithm (VEGA), appropriate fractions of the
next generation, or sub-populations, were selected from the whole of the old
generation according to each of the objectives, separately. Crossover and mu-
tation were applied as usual after shuffling all the sub-populations together.
Non-dominated individuals were identified by monitoring the population as
it evolved, but this information was not used by the VEGA itself.

Shuffling and merging all sub-populations corresponds, however, to aver-
aging the normalized fitness components associated with each of the objec-
tives. In fact, the expected total number of offspring produced by each par-
ent becomes the sum of the expected numbers of offspring produced by that
parent according to each objective. Since Schaffer used proportional fitness
assignment, these were in turn, proportional to the objectives themselves.
The resulting overall fitness corresponded, therefore, to a linear function of
the objectives where the weights depended on the distribution of the popu-
lation at each generation. This has previously been noted by Richardson et
al. (1989) and confirmed by Schaffer (1993). As a consequence, different
non-dominated individuals were generally assigned different fitness values, in
contrast with what the definition of non-dominance would suggest.

The linear combination of the objectives implicitly performed by VEGA
explains why the population tended to split into species particularly strong
in each of the objectives in the case of concave trade-off surfaces, a phe-
nomenon which Schaffer called speciation. In fact, points in concave regions
of a trade-off surface cannot be found by optimizing a linear combination of
the objectives, for any set of weights, as noted in (Fleming and Pashkevich,
1985).

Although VEGA, like the plain weighted-sum approach, is not well suited
to address problems with concave trade-off surfaces, the weighting scheme
it implicitly implements deserves closer attention. In VEGA, each objective
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is effectively weighted proportionally to the size of each sub-population and,
more importantly, proportionally to the inverse of the average fitness (in
terms of that objective) of the whole population at each generation.

By doing so, and assuming that sub-population sizes remain constant for
each objective, VEGA selection adaptively attempts to balance improvement
in the several objective dimensions, because more good-performers in one
objective cause the corresponding average performance to increase and that
objective’s weight to decrease accordingly. This is not unlike the way sharing
techniques (Goldberg and Richardson, 1987, see below) promote the balanced
exploitation of multiple optima in the search space. For the same reason,
VEGA can, at least in some cases, maintain different species for many more
generations than a GA optimizing a pure weighted sum of the same objectives
with fixed weights would, due to genetic drift (Goldberg and Segrest, 1987).
Unfortunately, the balance reached necessarily depends on the scaling of the
objectives.

Fourman (1985) also addressed multiple objectives in a non-aggregating
manner. Selection was performed by comparing pairs of individuals, each
pair according to one of the objectives. In a first version of the algorithm,
objectives were assigned different priorities by the user and individuals com-
pared according to the objective with the highest priority. If this resulted
in a tie, the objective with the second highest priority was used, and so on.
This is known as the lexicographic ordering (Ben-Tal, 1980).

A second version, reported to work surprisingly well, consisted of ran-
domly selecting the objective to be used in each comparison. Similarly to
VEGA, this corresponds to averaging fitness across fitness components, each
component being weighted by the probability of each objective being cho-
sen to decide each tournament. However, the use of pairwise comparisons
makes it essentially different from a linear combination of the objectives,
because scale information is ignored. As tournaments constitute stochastic
approximations to full ranking, the resulting fitness is closer to the ranking
of the population according to each objective separately, and the consequent
averaging of each individual’s ranks. Thus, the population may still see as
convex a trade-off surface actually concave, depending on its current distri-
bution and, of course, on the problem.

Kursawe (1991) formulated a multiobjective version of evolution strate-
gies (ESs). Once again, selection consisted of as many steps as there were
objectives. At each step, one objective was selected randomly (with replace-
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ment) according to a probability vector, and used to dictate the deletion of an
appropriate fraction of the current population. After selection, µ survivors
became the parents of the next generation.

While Kursawe’s implementation of multiobjective selection possesses a
number of similarities to both VEGA and Fourman’s second method, indi-
viduals in the extremes of the trade-off surface would appear to be likely to
be eliminated as soon as any objective at which they performed poorly was
selected to dictate deletion, whereas middling individuals seem to be more
likely to survive. However, since objectives stood a certain chance of not tak-
ing part in selection at each generation, it was possible for some specialists
to survive the deletion process and generate offspring, although they might
die immediately the generation after.

Kursawe (1991) notes that this deletion of individuals according to ran-
domly chosen objectives creates a non-stationary environment in which the
population, instead of converging, must try to adapt to constant change. As
hinted above, different choices of objectives could result in significant changes
in the cost landscape seen by the ES at each generation. Diploid individuals
(Goldberg and Smith, 1987) were used for their improved ability to adapt to
sudden environmental changes and, since the population was not expected
to converge, a picture of the trade-off surface was produced from the points
evaluated during the run.

Finally, and still based on the weighted sum approach, Hajela and Lin
(1992) exploited the explicit parallelism provided by a population-based
search by explicitly including the weights in the chromosome and promoting
their diversity in the population through fitness sharing. As a consequence,
one family of individuals evolved for each weight combination, concurrently.

2.3 Pareto-based approaches

The methods of Schaffer, Fourman, Kursawe, and Hajela and Lin, all attempt
to promote the generation of multiple non-dominated solutions, a goal at
which they reportedly achieved a reasonable degree of success. However, none
makes direct use of the actual definition of Pareto-optimality. At most, the
population is monitored for non-dominated solutions, as in Schaffer (1985)
and Kursawe (1991).

Pareto-based fitness assignment was first proposed by Goldberg (1989), as
a means of assigning equal probability of reproduction to all non-dominated

8



individuals in the population. The method consisted of assigning rank 1
to the non-dominated individuals and removing them from contention, then
finding a new set of non-dominated individuals, ranked 2, and so forth.

Fonseca and Fleming (1993) have proposed a slightly different scheme,
whereby an individual’s rank corresponds to the number of individuals in
the current population by which it is dominated. Non-dominated individ-
uals are, therefore, all assigned the same rank, while dominated ones are
penalized according to the population density in the corresponding region
of the trade-off surface. The algorithm proceeds by sorting the population
according to the multiobjective ranks previously determined. Fitness is as-
signed by interpolating, e.g., linearly, from the best to the worst individuals
in the population, and then averaging it between individuals with the same
multiobjective rank. Selection is performed with Baker’s (1987) Stochastic
Universal Sampling (SUS) algorithm. (Srinivas and Deb (1994) have im-
plemented a similar sorting and fitness assigment procedure, but based on
Goldberg’s version of Pareto-ranking.)

By combining Pareto dominance with partial preference information in
the form of a goal vector, they have also provided a means of evolving only a
given region of the trade-off surface. While the basic ranking scheme remains
unaltered, the now Pareto-like comparison of the individuals selectively ex-
cludes those objectives which already satisfy their goals. Specifying fully
unattainable goals causes objectives never to be excluded from comparison,
which corresponds to the original Pareto ranking. Changing the goal values
during the search alters the fitness landscape accordingly and allows the de-
cision maker to direct the population to zoom in on a particular region of
the trade-off surface.

Tournament selection based on Pareto dominance has also been proposed
by Horn and Nafpliotis (1993, see also Horn et al. (1994)). In addition to the
two individuals competing in each tournament, a number of other individuals
in the population was used to help determine whether the competitors were
dominated or not. In the case where both competitors were either dominated
or non-dominated, the result of the tournament was decided through sharing
(see below).

Cieniawski (1993) and Ritzel et al. (1994) have implemented tournament
selection based on Goldberg’s Pareto-ranking scheme. In their approach,
individual ranks were used to decide the winner of binary tournaments, which
is in fact a stochastic approximation to the full sorting of the population, as
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Figure 1: The concavity of the trade-off set is related to how the objectives
are scaled.

performed by Fonseca and Fleming (1993) and Srinivas and Deb (1994).
The convexity of the trade-off surface depends on how the objectives are

scaled. Non-linearly rescaling the objective values may convert a concave
surface into a convex one, and vice-versa, as illustrated in Figure 1. The
darker surface is the original, concave trade-off surface, corresponding to
plotting f1(x) against f2(x), where x denotes the vector of free variables.
The lighter surfaces correspond to plotting [f1(x)]α against [f2(x)]α, for α = 5
and α = 9, the latter being clearly convex. Nevertheless, all are formulations
of the same minimization problem which admit exactly the same solution set
in phenotypic space.

Since order is preserved by monotonic transformations such as these,
Pareto-ranking is blind to the convexity or the non-convexity of the trade-off
surface. This is not to say that Pareto-ranking always precludes speciation.
Speciation can still occur if certain regions of the trade-off are simply eas-
ier to find than others, but Pareto-ranking does eliminate sensitivity to the
possible non-convexity of the trade-off.

A second possible advantage of Pareto-ranking, is that, because it re-
wards good performance in any objective dimension regardless of the others,
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solutions which exhibit good performance in many, if not all, objective di-
mensions are more likely to be produced by recombination. This argument
also applies to an extent to the population-based methods described in the
previous subsection, although they do not necessarily treat all non-dominated
individuals equally. The argument assumes some degree of independence be-
tween objectives, and was already hinted at by Schaffer in his VEGA work,
and has been noted in more detail by Louis and Rawlins (1993). While
Pareto-based selection may help find Utopian solutions if they exist, that
is rarely the case in multiobjective optimization. Also, the assumption of
loosely coupled objectives is less likely to hold near the admissible region,
but the argument may still be valid in the initial stages of the search.

2.4 Niche induction techniques

Pareto-based ranking correctly assigns all non-dominated individuals the
same fitness, but that, on its own, does not guarantee that the Pareto set be
uniformly sampled. When presented with multiple equivalent optima, finite
populations tend to converge to only one of them, due to stochastic errors
in the selection process. This phenomenon, known as genetic drift (Gold-
berg and Segrest, 1987), has been observed in natural as well as in artificial
evolution, and can also occur in Pareto-based evolutionary optimization.

The additional use of fitness sharing (Goldberg and Richardson, 1987;
Deb and Goldberg, 1989) was proposed by Goldberg (1989) to prevent genetic
drift and to promote the sampling of the whole Pareto set by the population.
Fonseca and Fleming (1993) implemented fitness sharing in the objective
domain and provided theory for estimating the necessary niche sizes based
on the properties of the Pareto set. Horn and Nafpliotis (1993) also arrived
at a form of fitness sharing in the objective domain. In addition, they sug-
gested the use of a metric combining both the objective and the decision
variable domains, leading to what they called nested sharing. Cieniawski
(1993) performed sharing on a single objective dimension, that in which di-
versity appeared to be more important. Srinivas and Deb (1994) performed
sharing in the decision variable domain.

Although sharing has mainly been used together with Pareto ranking
(Fonseca and Fleming, 1993; Cieniawski, 1993; Srinivas and Deb, 1994) and
Pareto tournaments (Horn and Nafpliotis, 1993; Horn et al., 1994), it should
be noted that Hajela and Lin (1992) had already implemented a form of shar-
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ing to stabilize the population around given regions of the trade-off surface.
VEGA’s selection has also been noted earlier in this work to implement a
sort of sharing mechanism, well before “sharing” as such was introduced to
GAs by Goldberg and Richardson (1987).

The viability of mating is another aspect which becomes relevant as the
population distributes itself around multiple regions of optimality. Differ-
ent regions of the trade-off surface may generally have very different genetic
representations, which, to ensure viability, requires mating to happen only
locally (Goldberg, 1989). So far, mating restriction has only been imple-
mented based on the distance between individuals in the objective domain,
either directly, by Fonseca and Fleming (1993), or indirectly, by Hajela and
Lin (1992). Nevertheless, the use of mating restriction in multiobjective EAs
does not appear to be widespread.

Both sharing and mating restriction in the objective domain necessarily
combine objectives to produce a distance measure, which may appear to be in
contradiction with the philosophy behind Pareto-based selection. However,
the uniform sampling of the whole Pareto set is only a meaningful require-
ment for a given scaling of the objectives. Sharing in the phenotypic domain
abandons this requirement and replaces it by the uniform sampling of the
admissible set.

Sharing and Pareto-selection should, ideally, have orthogonal effects: while
Pareto-selection promotes improvement by exerting a scale-independent se-
lective pressure on the population in a direction normal to the trade-off sur-
face, sharing should attempt to balance the distribution of the population
along the front by applying a, possibly scale-dependent, selective pressure
tangentially to that surface.

Unfortunately, the possibility that sharing in the objective domain may,
by concentrating search effort in some regions of the trade-off surface, favour
improvement in those regions to the detriment of others, cannot be discarded.
Performing fitness sharing in decision variable space (Srinivas and Deb, 1994)
would provide a selection mechanism truly independent from objective scal-
ing, as long as guidelines for the setting of the sharing parameters in that
domain in the multiobjective case could be developed.

Fortunately, such guidelines may be already available, although outside
the EA community. In fact, if share count calculation in sharing is recognized
to be no more than a form of kernel density estimation (Silverman, 1986)
in n dimensions, well studied heuristics for the setting of the corresponding
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smoothing parameter (read niche size) can suddenly be used. More advanced
methods of density estimation, such as adaptive smoothing, also become
available. Since those heuristics are based on the dimensionality of the space
in which sharing is to be performed and on population statistics such as the
sample covariance matrix, but not on the function to be optimized (such
a function is outside the density estimation problem itself), they may well
provide a much more general approach to niche size setting than the current
one (Deb and Goldberg, 1989).

3 Discussion

The handling of multiple objectives strongly interacts with evolutionary com-
putation on many fronts, raising issues which can generally be accommodated
in one of two broad classes, fitness assignment and search strategies.

3.1 Fitness assignment

The extension of evolutionary algorithms to the multiple objective case has
mainly been concerned with multiobjective fitness assignment. According
to how much preference information is incorporated in the fitness function,
approaches range from complete preference information given, as when com-
bining objective functions directly or prioritizing them, to no preference in-
formation given, as with Pareto-based ranking, and include the case where
partial information is provided in order to restrict the search to only part of
the Pareto set. Progressive refinement of partial preferences is also possible
with EAs.

Independently of how much preference information is provided, the as-
signed fitness reflects a decision maker’s understanding of the quality, or
utility, of the points under assessment. Each selection step of an EA can be
seen as a decision making problem involving as many alternatives as there
are individuals in the population.

The fitness landscape associated with a multiobjective problem clearly
depends on the fitness assignment strategy used. Consider the simple bi-
objective problem of simultaneously minimizing

f1(x1, x2) = 1 − exp
(

−(x1 − 1)2 − (x2 + 1)2
)
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Figure 2: Surface plots of functions f1 and f2

f2(x1, x2) = 1 − exp
(

−(x1 + 1)2 − (x2 − 1)2
)

Surface plots of these two objectives are shown in Figure 2. Note that the
z-axis is inverted to facilitate the visualization. The corresponding trade-off
surface is the one shown earlier in Figure 1 for α = 1.

If individuals are ranked according to how many members of the popula-
tion outperform them (Fonseca and Fleming, 1993), the ranking of a large,
uniformly distributed population, normalized by the population size, can be
interpreted as an estimate of the fraction of the search space which outper-
forms each particular point considered. (Global optima should be ranked
zero.) This applies equally to single-objective ranking.

Plotting the normalized ranks against the decision variables, x1 and x2 in
this case, produces an anti-fitness, or cost, landscape, from which the actual
fitness landscape can be inferred. Clearly, as the population evolves, its dis-
tribution is no longer uniform and the cost landscape it induces will change
dynamically. Nevertheless, the “static” landscapes considered here do pro-
vide insight into the different selection mechanisms. Such surfaces may also
help explain the behaviour of EAs based on those selection mechanisms, but
they cannot be expected to be predictive of EA performance when considered
in isolation.

Static cost landscapes for the example above are shown in Figures 4 to 7,
corresponding to four different fitness assignment strategies based on ranking.
The cost landscape induced by ranking each objective separately is shown in
Figure 3.
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Figure 3: The cost landscapes defined by ranking each objective separately
(and contour plots of the corresponding objective functions)

Figure 4 illustrates the single-objective ranking of the sum of the two
objectives. The two peaks arise due to the problem exhibiting a concave
trade-off surface. More importantly, these peaks would remain present (but
would be no longer symmetric) if the objectives were weighted differently.

Although the surface in Figure 4 can only be seen as a (scaled) repre-
sentation of the cost landscape induced by VEGA-selection on a uniformly
distributed population (since, in this case, the average performance of the
population would be the same for both objectives, f1 and f2), it clearly il-
lustrates how trade-off surface concavities lead to peaks in the cost surface
obtained by linearly combining the objectives. Speciation in VEGA cor-
responds to the population distributing itself by these “persistent” peaks,
in a balanced way: objectives corresponding to highly populated peaks are
weighted less (as performance in terms of the corresponding objective in-
creases), causing the population to shift to other peaks until an equilibrium
is reached. As a result, genetic drift can be controlled, and different species
maintained on each peak in the long run.

In Figure 5, the average of the ranks computed according to each of the
two objectives is shown. In this case, a single peak is located towards the
middle of the Pareto-optimal set, and the concavity of the trade-off surface is
no longer apparent. Binary tournaments according to one objective drawn at
random, as in Fourman (1985), can be expected to define a similar landscape.

Figure 6 shows the cost landscape for the ranking of the maximum of
the two objectives: a simple case of goal programming. The single-peak is
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by ranking the sum of the objectives
(The contour plots are those of the
individual objective functions f1 and
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Figure 5: The cost landscape defined
by ranking objectives separately and
averaging the ranks

located on a non-smooth ridge, which makes direct gradient-based optimiza-
tion difficult. For this reason, alternative formulations are usually preferred
to this approach. For example, the goal attainment method as proposed
by Gembicki (1974) avoids the problem by introducing an auxiliary scalar
parameter λ and solving:

min
λ,x∈U

λ

subject to
fi − wiλ ≤ gi

where gi are goals for the design objectives fi, and wi ≥ 0 are weights which
must be specified beforehand by the designer.

Finally, in Figure 7, Pareto-ranking is used. Note how the Pareto-optimal
set defines a ridge-shaped plateau in the cost landscape. As desired, this
plateau includes all admissible solutions and, thus, all possible optima pro-
duced by any coordinatewise monotonic function of the objectives (Steuer,
1986), of which the methods in Figures 4 to 6 are just examples.
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by ranking the maximum of the two
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Figure 7: The cost landscape defined
by Pareto-ranking

3.2 Search strategies

The ridges defined in the fitness landscape by Pareto-ranking and/or mini-
max approaches may not be parallel to any of the decision variable axes, or
even follow a straight line. Although ridges, or equivalently, valleys, need not
occur in single-objective optimization (Mühlenbein and Schlierkamp-Voosen,
1993), they do appear in this context, and can certainly be expected in almost
any multiobjective problem.

Ridge-shaped plateaus raise two problems already encountered with other
types of multimodality. Firstly, genetic drift may lead to the poor sampling
of the solution set. Fitness sharing has proved useful in addressing this prob-
lem, although it requires that a good closeness measure be found. Secondly,
mating of well-performing individuals very different from one another may
not be viable, i.e., lead to the production of unfit offspring. Mating restric-
tion in the objective domain, or the absence of mating altogether, interprets
the individuals populating the Pareto-front as a continuum of species. It
seeks to reduce the formation of lethals by encouraging the formation of off-
spring similar to their parents, which means a less exploratory search. This
is the non-random mating strategy adopted by Hajela and Lin (1992) and
Fonseca and Fleming (1993).

The alternative interpretation of the Pareto-set as a genetically similar
and, therefore, reproductively viable family of points would require the search
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for a suitable genetic representation in addition to the solution itself, because
the location of the optima is not known prior to optimization. A fixed genetic
representation also produces a reproductively viable family of points, but it
does not necessarily correspond to the Pareto-set.

Ridges impose a second type of difficulty. Theoretical results by Wag-
ner (1988) show that, under biologically reasonable assumptions, the rate
of progression of unconstrained phenotypes on certain types of ridge-shaped
landscapes is bounded, in which case it decreases rapidly as the number of
decision variables increases. Fast progression cannot be achieved unless the
genetic operators tend to produce individuals which stay inside the corri-
dor. The self-adaptation of mutation variances and correlated mutations
(Bäck et al., 1991), as implemented in evolution strategies, addresses this
same problem, but has not yet been tried in Pareto-based search. Binary
mutation, as usually implemented in genetic algorithms, can be particularly
destructive if the ridge expresses a strong correlation between a large num-
ber of decision variables. The same applies to the discrete recombination
of decision variables, since it can only produce offspring at vertices of the
hypercube defined by the mating parents. Similarly, single and two-point
crossover of concatenated binary strings will change at most one or two de-
cision variables. Uniform crossover (Syswerda, 1989) and shuffle crossover
(Caruana et al., 1989) are less biased in this respect, in that the value of all
decision variables may be altered in a single recombination step.

Finally, multiobjective fitness landscapes become non-stationary once the
DM is allowed to interact with the search process and change the current
preferences, even if the objective functions themselves remain unchanged.
Diploidy has already revealed its importance in handling non-stationary en-
vironments (Goldberg and Smith, 1987). Other relevant work is the com-
bination of evolutionary and pure random search proposed by Grefenstette
(1992).

4 Future perspectives

As discussed in the previous section, the EA can be seen as a sequence of
decision making problems, each involving a finite number of alternatives.
Current decision making theory, therefore, can certainly provide many an-
swers on how to perform multiobjective selection in the context of EAs.
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On the other hand, progress in decision making has always been strongly
dependent on the power of the numerical techniques available to support it.
Certain decision models, although simple to formulate, do not necessarily lead
to numerically easy optimization problems (Dinkelbach, 1980). By easing the
numerical difficulties inherent to other optimization methods, evolutionary
algorithms open the way to the development of simpler, if not new, decision
making approaches.

A very attractive aspect of the multiobjective evolutionary approach is
the production of useful intermediate information which can be used by an
intelligent DM to refine preferences and terminate the search upon satisfac-
tion. In fact, the DM is not only asked to assess individual performance,
but also to adjust the current preferences in the search for a compromise
between the ideal and the possible in a limited amount of time. Goal set-
ting, for example, is itself the object of study (Shi and Yu, 1989). This is
an area where combinations of EAs and other learning paradigms may be
particularly appropriate.

As far as the search strategy is concerned, much work has certainly yet
to be done. In particular the emergence of niches in structured popula-
tions (Davidor, 1991) suggests the study of such models in the multiobjective
case. The development of adaptive representations capable of capturing and
exploiting directional trends in the fitness landscape, well advanced in the
context of ESs, and/or the corresponding operators, is another important
avenue for research. Combinations of genetic search and local optimization
resulting in either Lamarckian or developmental Baldwin learning (Gruau
and Whitley, 1993) may also provide a means of addressing the difficulties
imposed by ridge-shaped landscapes.

The question of which fitness assignment method is better remains largely
open, although Pareto-based methods seem more promising for their lack of
sensitivity to the possible concavity of the trade-off surface. In the few com-
parative studies of multiobjective EAs available to date (Wilson and Macleod,
1993; Cieniawski, 1993; Ritzel et al., 1994; Srinivas and Deb, 1994), VEGA
has understandably been a strong point of reference, but the comparison has
remained largely qualitative. No extensive, quantitative comparison of mul-
tiobjective EAs has been reported in the literature so far, which is, however,
hardly surprising. Ideally, the quality of every point of the trade-off surface
produced should be assessed, meaning that the performance of multiobjec-
tive EAs is itself a vector quantity. So, how should the trade-off surfaces
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produced by sets of runs of different EAs be compared, in a meaningful and,
preferably, statistically sound way? Should the scaling of the objectives affect
the comparison? These questions need yet to be answered.

In any case, the time may be right for EA users and implementors to
consider experimenting with some of the available multiobjective EA tech-
niques on their real-world problems, while not losing sight of any alternative
approaches. However, a cautionary word is due here. As noted indepen-
dently by Horn and Nafpliotis (1993) and Fonseca and Fleming (1993), pure
Pareto-EAs cannot be expected to perform well on problems involving many
competing objectives and may simply fail to produce satisfactory solutions
due to the large dimensionality and size of the trade-off surface. As the num-
ber of actually competing objectives increases, more and more of the search
space can be expected to conform to the definition of Pareto optimality, which
makes the “theoretical” problem of finding non-dominated solutions easier!
Unfortunately, in the total absence of preference information, the EA will
face the “impossible” task of finding a satisfactory compromise in the dark,
which can only occur by pure chance. It was the observation of this fact on
real-world, engineering problems that prompted Fonseca and Fleming (1993)
to combine preference articulation and Pareto-ranking.

Finally, a theory of multiobjective EAs is much needed, ideally incor-
porating single-objective EAs as a particular case. The study of the fitness
assigned to large populations as proposed in the previous section, but consid-
ering also non-uniform distributions for the population, may well prove useful
in understanding how different selection mechanisms work, and indeed, how
EAs based on them may behave, provided that the effect of mutation, recom-
bination, and any other operators used, on the distribution of the population
can be modelled as well.
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