
A Component-Based Approach for Integrating Mobile Agents
Into the Existing Web Infrastructure

Paulo Marques, Raul Fonseca, Paulo Simões, Luís Silva, João G. Silva
CISUC, University of Coimbra, Portugal

pmarques@dei.uc.pt

Abstract

Mobile agents provide a new abstraction for deploying
functionality over the existing internet infrastructure.
During the last two years, we have been working on a
project that tries to overcome some of the limitations
found in terms of programmability and usability of the
mobile agent paradigm in real applications. In the M&M
framework there are no agent platforms. Instead
applications become agent-enabled by using simple
JavaBeans components. In this paper we present an
architecture that allows currently available web servers to
become capable of sending and receiving agents in an
easy way. By using this approach, existing web
infrastructure can be maintained, while gaining a whole
new potential by being able to make use of agent
technology. Our approach involves wrapping the
components inside a Java servlet that can be included in
any web server supporting the Servlet Specification. This
servlet enables the servers to receive and send agents that
can query local information, and also enables the agents
to behave as servlets themselves.

We currently have used the framework with several
existing commercial web servers, inclusively having the
security mechanisms of the framework correctly running
and integrated with the security architecture of the server.

Keywords: Mobile agents, Web agents, Components

1 Introduction

Mobile agents are small threads of execution that are
able to migrate from machine to machine, performing
operations locally [1]. One very interesting application
area for mobile agents is internet computing. Mobile
agents provide a very attractive paradigm for this area.
The agents can be launched from a machine, navigate
from web-site to web-site, collecting information or
performing transactions, finally returning home with the
goods or results. This scenario is especially attractive
when we consider the proliferation of wireless mobile
devices that is currently taking place. A user can launch an
agent into the web, shutdown the device and reconnect
hours later, collecting the agent with the results. Some key
applications for agents in internet computing include:

• Information gathering agents, which collect
information from different web sites or distributed
databases, finally presenting it to its owner.

• Shopping agents, which look for the best deals for
their owners, perform commercial transactions, and
present the best results found, so that their owners can
make a decision.

• Management agents, which carry information into
selected web sites or databases and make sure that all
the distributed web-infrastructure is up-to-date.

• Monitor agents, which migrate into selected web sites
and monitor some information (like stock options),
warning the owners when certain events happen or
even performing some actions on those events.

Although mobile agents provide an attractive
conceptual framework for internet-based computing –
small threads migrating from server to server, performing
their functions, there are still many difficulties that must
be addressed. These difficulties are currently preventing
the widespread adoption of the technology. Some of the
key problems include: security, user and provider
psychological resistance, infrastructure integration,
interoperability and reliability.

1.1 Key Problems
Security. If one wants to deploy mobile agents into the
world-wide-web, security is a critical issue that must be
carefully considered [2,3]. There are many points to
examine when it comes to mobile agent security. Because
the agents are going to arrive at a host that probably
knows nothing about them, there must be mechanisms that
prevent the agents from damaging the host or access
information that they do not have permissions to. Also,
because the agents are going to execute in an open
environment, on machines that they may not known them
very well, they are extremely vulnerable to attacks from
those. The hosts can steal information from the agents;
make them perform actions they did not voluntarily
wanted to; or even misguide them into give false
information to other entities. Finally, the agents must be
protected from attacks of other agents running in the same
host.

Currently, the mechanisms needed for protecting the
hosts from the misbehaved agents and the agents from
attacks of other agents are well known [2, 4]. These
mechanisms are mostly based on proper authentication
and authorization. Even so, today there is a major
technical problem on protecting the hosts from the mobile
agents. Most mobile agent systems available today are
implemented in Java [5]. This is due to the fact that Java

already provides many mechanisms, like dynamic code
loading and object serialization, which allow an easy and
efficient implementation of the paradigm. And although
the Java 2 platform [6] has a fine-grained security model,
currently there is no feasible way of doing resource
control. Thus, it is not possible to make sure that an agent
will not perform a DoS attack on the server, by allocating
a huge amount of memory, by using all the available
network bandwidth or even by burning CPU cycles.

Protecting the agents from the hosts is technically very
difficult [7]. Because the agents are executing on a host,
the host has access to all the state and code of the agent.
Although there are some promising approaches for solving
this problem, like computation with encrypted functions
[8, 9] and code obfuscation [10], the problem is still far
from being solved.

Psychological Resistance. The term mobile agent, and
also the term mobile code have very strong negative
connotations. A user is afraid of installing an agent
platform that is able of receiving and executing code
without his permission. The first thing a user associates
with mobile agents is computer viruses, even though
mobile code is currently present in technologies like Java,
in particular in RMI and JINI. The main difference is that
in those technologies the user is shielded from the
existence of mobile code, while with the currently
available platforms, the mobile code and the agents are
widely visible to the user. This prevents the adoption of
the technology, even though it can bring added value. For
the interested reader, this subject is more extensively
discussed in [11].

It is not only the user that is resistant to install an agent
platform on his machine. The web host administrators
must also be convinced of the value of letting people send
agents into their machines. Besides being potentially
dangerous to let people run agents on the machines,
spending resources and opening the system to more
vulnerabilities, there is also the economical side of the
question. From the user point-of-view, it may be
interesting to have a comparison-shopping agent that
roams from host to host looking for the best deal, but for
the hosts providing shopping services, this may not be
desirable. This problem already happens with static
client/server comparison-shopping search engines, which
are constantly getting blocked.

Infrastructure Integration. Another relevant issue is
how a web site should integrate a mobile agent platform
into its infrastructure. Currently available systems follow
basically two approaches.

The first one involves installing an agent platform that
is completely unaware of the web server. The agents
migrate to and from the agent platform and interact with
the web server as if they were just normal clients, with the
difference that they are local. Although this approach is
appropriate for operations like querying information on

the host, or monitoring when certain changes happen, it
quite limits the functionality that can be implemented on
the agents. For instance, it is quite hard for the agents to
publish information on the site, or to extend the
functionality of the servers by migrating agents into them,
or even having the agents represented in a web page of the
server for their users to remotely interact with them.

The second available approach consists in developing
a custom-made web server that is also able to host agents.
The problem is that typically the web sites are already up
and running, and do not want to replace their existing
infrastructure. Also, typically these agent-enhanced web
servers do not have the robustness or scalability needed
for production-running sites. Thus, it would be quite
difficult for a web site to accept replacing its industrial-
strength web infrastructure for a technology that follows
one of the above approaches.

Interoperability. Another serious problem preventing the
adoption of the technology is interoperability. Currently
there are over seventy-two known implementations of
mobile agent platforms [5], and none is able of receiving
agents from another. Standards like MASIF [12] and FIPA
[13] only cover the interfaces needed for agent and system
management, not how to migrate an agent between
different systems. Thus, if a web host is going to support
an agent platform, which one should it support?
Supporting only one locks the number of potential clients
of the service. Supporting more than one means additional
costs, problems and vulnerabilities.

An approach like the one followed in [14], which
abstracts the common functionalities that exist in most
agent platforms into a middleware layer, allowing agents
from different systems to migrate into a common system,
helps to ease the problem. Nevertheless, this approach
does not allow the agents to take advantage of the more
advanced features of each platform.

Reliability. Another very important question is reliability.
If a user is going to send an agent into the web, many
things can go wrong that can make the agent to be lost. A
simple server crash may kill all the agents that are running
there. Even a routine operation like a server shutdown
may lead to the loss of the agents running on the server.

There are currently many mechanisms that can be
applied for ensuring that the agents do not get lost, like
persistent storage and fault-tolerance techniques [15].
Nevertheless, it is important to carefully consider the
reliability requirements when deploying an agent
infrastructure on the web.

1.2 Outlook
In our opinion, the mobile agent paradigm provides a

very good conceptual model for developing distributed
internet applications. Nevertheless, there are some very
important problems that must be addressed.

We believe that security, from the point of view of the
host, is solvable in the near future, depending mostly on
the adoption of basic resource control methods in the Java
platform. Protecting the agents from the hosts, it is a
complicated problem in the general case, but there are
approaches that can be used in web agents [16, 17]. These
approaches give some security guaranties for the agents
running on the web, by carefully considering the
requirements of those agents in the internet domain.

Regarding the resistance of the users on using mobile
agents, it is necessary to provide a stronger focus on the
applications that use agents, and not on the agents
themselves [11,18]. We believe that the user doesn’t even
need to be aware of the agents or the agent platforms.
What he needs to see and interact with are the
applications. On the other hand, convincing the web hosts
to introduce the technology into their sites is basically a
question of market, and maturation of the agent
technology. When the technology comes to a point where
the providers can be assured that there is no danger in
deploying such a framework on their infrastructure, they
will give such functionality to their users. This will allow
them to differentiate from the competition, providing a
better service to the customers.

Infrastructure integration, interoperability and
reliability are serious technical problems that must be
addressed. This is just part of maturing process of the
technology. In this paper we address the infrastructure
integration problem.

1.3 Our work
During the last two years, we have been working on a

project that tries to overcome some of the limitations
found in terms of programmability and usability of the
mobile agent paradigm [11]. In the M&M framework
there are no agent platforms. Instead applications become
agent-enabled by using simple JavaBeans components.
The applications can be developed using current object-
oriented approaches and become able of sending and
receiving agents by the drag-and-drop of binary software
components. In our approach the agents arrive and
departure directly from the applications, interacting with
them from the inside.

In this paper we discuss our experiences on integrating
the framework components into off-the-shelf web servers,
enabling them to receive and send agents. Our approach
involves wrapping the components inside a Java servlet
that can be included in any web server supporting the
Servlet Specification [19]. This servlet enables the servers
to receive and send agents that can query local
information, and also enables the agents to behave as
servlets themselves. We currently have experimented the
framework with several web servers, inclusively having
the security mechanisms of the framework correctly
running and integrated with the security architecture of the
server.

Thus, on this paper we are basically addressing the
infrastructure integration problem. Our approach does not
involve deploying a stand-alone agent server that is not
integrated with the web server, nor does it require a
specialized costume-made web server. We provide a
framework that is able of using existing web
infrastructures, giving them the capability of using agents
in their operation.

Our framework also provides a very strong security
model, with authentication and authorization mechanisms
that control incoming agents, and cryptographic primitives
that are useful to protect the integrity and confidentiality
of the agents. This is essential if an infrastructure is going
to be deployed on an open environment.

Finally, our framework also allows the user distrust on
mobile agents to be addressed. With our framework the
user does not even has to be aware that he is using mobile
agent technology. He only should be aware of the positive
results of using this technology.

Concerning this paper, one important point should be
made. We specifically tried to tell the complete story on
how this research was conducted. Our first approach, the
problems and limitations found, how they were solved,
and the lessons we learned from that. We believe that this
is more informative than simply giving the final
architecture without discussing the problems found while
trying to make a system work.

The rest of the paper is organized as follows. Section 2
gives an overview on the M&M framework. Section 3
explores our first approach. Section 4 discusses the final
architecture. Section 5 presents some performance results.
Section 6 analyses the related work. Section 7 concludes
the paper.

2 M&M Overview

The most distinctive characteristic in our approach is
that there are no agent platforms. Instead, agents arrive
and leave from the applications they are part of, not from
agent platforms. The applications become agent-enabled
by incorporating well-defined binary software components
[20] into their code. These components give the
applications the capability of sending, receiving and
interacting with mobile agents. The applications
themselves are developed using the current industry best-
practice software methods and become agent-enabled by
integrating the mobility components. We call this
approach ACMAS – Application Centric Mobile Agent
Systems ─ since the applications are central and mobile
agents are just a part of the system playing specific roles.
The consequences of ACMAS are as follows:

• It is not necessary to design the whole application
around agents. Agents are sent back to middleware, in
pair with other distributed programming technologies.

• Security is integrated with the application security
framework, rather than being completely generic.

• Agents interact directly with the applications from the
inside. This eliminates the need to setup interface
agents and configure/manage their security policies.

• There is no agent platform to install and maintain.
Although there are still distributed applications to
install and manage, this is much simpler than
managing a separate infrastructure shared by a large
number of distributed applications with different
policies and requirements.

• The end-user sees applications, not agents. In this
way, the acceptance of applications that use mobile
agents is increased since what the end user sees is the
added value functionality, not the agents.

• It is simple to program. The programmer only needs
to visually drag-and-drop the necessary components
from a component palette and configure their
properties and interconnections.

The M&M framework was implemented using the
JavaBeans component framework [20], and is centered on
the so-called Mobility Component. This component
provides the basic support for agent migration and
management, and an extensibility mechanism that allows
other components to connect to it [21]. These other
components may implement functionalities like different
inter-agent communication mechanisms, security,
persistence and others.

One very important aspect of the extensibility
mechanism is that it is based on an event model –
AgentLifecycleEvents. After a high-level service
component has registered with the Mobility Component, it
is notified whenever some state transition occurs in an
agent. For instance, when an agent arrives, there is an
onAgentArrivalEvent. Every listener is able of
examine the agent, interact with it, and can veto the
corresponding event. As an example, consider the security
component. On being notified that an agent is arriving, it
can verify its credentials and examine its state. If it finds
the agent not to be trusted, it can veto the event,
prohibiting the agent from arriving.

The complete discussion of the M&M project and its
framework is beyond the scope of this paper. Interested
readeres can refer to [11,21,22] for additional details.

3 Integrating M&M into web servers –
A first approach

3.1 Motivation
Our interest in building support for mobile agents in

web servers arouse from the necessity of validating how
easy or not was to agent-enable existing applications by
using the M&M framework. Web servers, and in
particular the creation of web-agents, appeared to be an
interesting application field because the paradigm seams
so fit for using on the web.

Our first experiences were made with the Jigsaw web
server [23]. We were interested in Jigsaw because it

provides an extensible architecture where new services
can easily be introduced by implementing a simple
adapter. In the case of our framework, this seamed to be
perfect since this adapter could be used for housing the
Mobility Component.

For this particular system, we had three requirements:

• It should be possible for the agents to behave as a
web resource (i.e. publish information). A user should
be able to use a web browser to access and interact
with the agents, that would be dynamically generating
the web pages.

• The agents should be able to query local information
present on the web server.

• If possible, the agents should be able to perform
management operations on the server. This last
requirement was based on our interest in studding the
usefulness of mobile agents for distributed network
and application management.

3.2 Architecture
To meet the above requirements we came up with the

architecture depicted in Figure 1.
Jigsaw provides a class that must be overridden for

each web-resource. This class is called an HTTPFrame.
For making a web-resource available, its corresponding
object must be associated with an URI, which is done by
configuring the Jigsaw resources.

The MobilityWrapper is a class that overrides the
HTTPFrame and houses the Mobility Component. This
wrapper also listens to the AgentLifecycleEvents.
Thus, at any given time it knows the state of every agent
in the system, and publishes this information into a URI.
This means that a user accessing the web site is able of
seeing which agents are presently running on the server.

The information published by MobilityWrapper
about each agent is accompanied by a link, which includes
the identity of the agent. Whenever a user clicks on such a
link, the agent identity is passed on the GET request to the
MobilityWrapper. It recognizes that this is a request
that is to be handled by an agent, and forwards it to the
currently running agent whose identity matches the
parameter. The wrapper is able to do this because when an
agent arrives, it receives the corresponding event and
saves a reference to it. Also, when an agent migrates or
dies, the wrapper also receives an event and is able to
garbage-collect that reference. The bottom line is that it is
possible for a user to interact with the agents currently
running on the web server by simply accessing a starting
page.

Another interesting point of this approach is that
because in the M&M framework the agents arrive and
interact with the applications from the inside, the agents
have access to the internal objects of the applications. In
our case, what this means is that it is possible for the
agents to access management information present inside

Jigsaw. This also enables the agents to perform
maintenance tasks on it from the inside. This feature is
especially important for us because one of the aims of our
project is to study the applicability of the framework for
developing distributed management applications. In fact,
one of our first prototypes was a simple management
application that used mobile agents to collect information
from the web servers, and performed simple
administration operations on them.

JIGSAW
WEB SERVER

Mobility
Component Jigsaw

Internal
Objects

Mobility wrapper

HTTPFrame interface

HTTP
request

HTTP
response

(mobile agents)

Figure 1 – Using M&M with Jigsaw

3.3 Lessons Learned
Our main conclusion from this first experience was

that it is quite straightforward to integrate mobile agents
into Jigsaw, by using M&M. Another very important point
for us was that having the agents interacting with the
applications from the inside, having access to its internal
state, opens many possibilities in terms of distributed
application management. Nevertheless, considering what
was needed to do real-world deployment of agents in web
servers, there were still two very significant shortcomings
on our approach that needed to be addressed.

The first problem was that we were “agent-enabling
Jigsaw”. The approach was not general, and was not
applicable to other web servers. As it was discussed on the
introduction, a content provider will not typically replace
its web infrastructure for simply adding a feature. We
believed that there should be a more general way of
integrating the mobile agents into the web servers.

The second problem concerned security. Although the
M&M framework provides components for security, at
this point we were making the experiments with security
turned off. The main reason for this was that Jigsaw
already has a SecurityManager instantiated and
taking care of its security. Because Java only allows one
security manager to be running at one time, we were not
sure if we could turn security on, and it would work. The
component framework was thought with that in mind, but
at that time, it was still an open issue. Nevertheless,
security was an important point that needed to be
addressed.

Finally, we realized that the way the wrapper was
interacting with the agents was not the most appropriate
one. In this implementation, the requests were directly
forward to one of the methods implemented in the agent.
The agents had no saying on if they wanted to process the

requests or not, or if they wanted to be visible on the web
site.

The above points motivated us to develop an approach
that was web server independent, but at the same time
allowed the agents to arrive and departure directly from
the server, and benefit from all the its associated
advantages. Finally, the agents should be able to register
their interest on processing HTTP requests, and be able to
examine the characteristics of those requests.

4 The Mobility Servlet Container

The key idea to build server-independent support for
mobile agents was that the HTTPFrame interface was not
providing much more than what could be provided by the
Servlet Specification [19]. The HTTPFrame is only
providing a hook for mapping an URI to an object inside
of the web server that can respond to the HTTP requests.
This can be accomplished with a servlet.

The servlet technology provides a simple mechanism
for extending the functionality of a web server, allowing
URIs to be associated with object instances. These
instances are called servlets, and are able to process HTTP
requests sent to them. Currently there are many web
servers supporting the Servlet Specification, and there are
many stand-alone servlet engines that can be connected to
the web servers for providing servlet functionality [24, 25,
26]. Thus, migrating the wrapper into a servlet container
would allow us to run the framework in any web server or
servlet engine that supported the specification. Several
issues were brought up considering this migration.

Our first concern was if it would not be too heavy to
run the framework on a servlet engine. Our expectation
was that it would not be, since the main component, which
was the one being used, has a very small footprint and
while running is also very lightweight, offering good
scalability.

The second point that we considered was that currently
there is no uniform manner by which the agents can
access the information on the web server. Making the
agents behave as data sources associated with a URI is
easy, since the servlet can forward the requests to the
appropriate agent. The problem arises when an agent has
to access the information stored locally on the web server.
The most straightforward approach, and the one that we
adopted, was to have the agents read the information as
just an ordinary HTTP client. Although there is a small
performance penalty, it is not very significant since the
agents and the data source are in the same machine, and
the loopback interface provides very large bandwidth.

4.1 Architecture
The implementation of the servlet container follows

the same base guidelines of the Mobility wrapper, but
with some important changes.

First, the web server may be decoupled from the
servlet engine, and from the servlet itself. In this case, the

function of the web server is to provide a mapping
between URIs and the resources, forwarding the requests
to the appropriate servlets. Each request that corresponds
to an interaction with an agent, is forward to the Mobility
Servlet Container, which then passes it to the appropriate
agent. Secondly, the Security Component of our
framework is instantiated and running, providing security
features for the running agents, and for the host. Figure 2
shows the approach. It should be noted that it is not
necessary to decouple the web server from the servlet
engine. If the web server supports the Servlet
Specification by itself, then the container may be installed
and configured on the web server itself.

Figure 2 – The Mobility Servlet Container

The biggest change on the architecture is not visible on
the forwarding process taking place. Rather, it is on how
the agents see and interact with web resources.

The M&M framework provides the concept of services
for agents [21]. What this means is that an agent on
arriving at a host can query which are the currently
available services, and request an object implementing
that service interface. That idea was used in our
implementation. When an agent arrives at a web server, it
may not only query the local web server, but it can also
ask for a service instance that allows it to behave as a
servlet, and publish information. When an agent requires
an object that allows it to publish information, the object
that is passed actually requires that the agent to implement
the servlet interface (Figure 3). Thus, any HTTP request
made to an agent contains the full information about the
request. This includes not only the IP of the client, MIME-
types accepted but also session information. This is
important since allows the agents to distinguish between
different clients, and act accordingly. Also, when the
agents request the service instance, they can require or
deny that they are listed online.

Figure 3 – Agents are able to behave as servlets

4.2 Security
In our container, the Security Component is

instantiated and provides several protection services for
the agents and the host.

This component allows the agents to migrate between
hosts using SSL, which prevents tampering and
eavesdropping on the contents of the agents. It also
implements a fine-grained authorization mechanism that
guaranties that only the agents with the correct
permissions can perform certain operations, like reading
directly from disk, or connect to other hosts in the
network. Finally, the component implements
cryptographic primitives that allow secure protocols for
information gathering and comparison-shopping [16], that
use mobile agents, to be implemented in an easy way.

In our approach, the main problem to be solved
concerning security is resource control. Since the Java
platform does not include any methods for this, it is a
complicated issue. We are currently investigating the
possibility of using third-party resource control libraries
with our system, and its implications in terms of runtime
penalty.

4.3 Adding new services
On interesting aspect of our system is that it allows

different services to be instantiated and made available for
the agents at runtime. Its makes the framework very
flexible for implementing different features on different
web sites.

For instance, let’s suppose that a programmer wants to
implement a marketplace for agents, where the agents
negotiate between themselves, and consult and publish
information on the web site. The programmer can use the
basic architecture described here and configure the
Mobility Component to load one or more of the different
available components that implement several inter-agent
communication mechanisms. This allows the agents to
negotiate while executing on the web site.

4.4 Current Perspective
We currently have experimented with the framework

in several web servers and servlet engines, with very
positive results. We have tested the system with W3C
Jigsaw web server [23], Apache’s Tomcat [25], Allaire’s
JRun [26] and Sun’s JWS [27]. When a servlet engine was
used, it was tested using the Apache web server [24] as
front-end. For experimenting with the framework, we
have built some prototype applications. Two of the most
interesting applications were:
• An electronic commerce portal, based on agents.

Basically, the user can login into a portal, being
authenticated, and then specify a certain number of
items that he wishes to buy. An autonomous agent is
created for that user, which navigates though several
agent-enabled web sites, collecting information
(prices) concerning those items. At any given time the

user can signoff, since it does not affect the operation
of the agent. When the user is logged on, it can see
where the agent currently is, or if the agent has
already returned home, he can see what were the
items that the agent found. For making transactions,
two modes of operation are provided: the user may
initially give a certain credit to the agent, which is
used to purchase the least expensive items of the list;
or the user does not give any credit to the agent, and
just sees the offers that the agent found. In this case,
when the agent returns home, the user can choose the
items he wants the agent to buy, re-dispatching the
agent, or make the purchases manually.

• Another application that was developed was a
distributed site-indexing system (a mobile
agent-based crawler). In this application, the user
specifies a site that he whishes to be indexed, and an
agent jumps to that site performing the indexation
locally. Because building the complete index of a site
requires that all the pages of the site to be accessed,
using an agent that performs the operations locally is
much less expensive in terms of time and bandwidth
than bringing the complete site to the local machine.
The performance results of this application are
discussed in the next section.

Our experience is that the M&M framework provides a
nice approach for integrating mobile agents into existing
web infrastructures. One of the most fascinating
characteristics of the approach is that after having the
basic infrastructure deployed (the container servlet), any
new functionality can be easily introduced into the
existing web infrastructure. All that is required is simply
to code the required agents (and/or the agents behaving as
servlets), and send them to migrate to the target web
servers.

The main limitation found with the framework has to
do with resource control. Currently the framework is only
usable in a secure way, on an intranet or on an extranet.
On these types of networks it is possible to create
accounts and use the authentication, authorization and
logging mechanisms present in M&M for holding the
users accountable. We believe that in the future resource
control mechanisms will be introduced in Java.

5 Performance Results

We will now examine some performance results of the
distributed agent-based crawler application. Although
these are not extensive tests, they are useful to show the
performance gains that can be expected by using a mobile
agent-based approach while building distributed
applications.

5.1 Experimental Setup
For understanding how well the mobile agent approach

can work in practice, we decided to setup an experimental

framework that allowed us to test the agent-based
approach vs. the client/server approach from indexing a
web site. Two identical machines where used. One was
configured as a web server, and the other one as a client.
In between, another machine was configured as a router.
In this machine, a special program [34] was installed,
which allowed the available bandwidth between the two
other machines to be controlled. For indexing the web site,
we used the indexing package from the Bddbot project
[35].

We indexed web sites ranging from 10 Mbytes to 40
Mbytes. It is important to understand that this is the size
of the text present on the site, since no other media types
are indexed. The chosen bandwidths to test were 64 Kbps,
128 Kbps and 256 Kbps. We believe these bandwidths are
representative of the values that many people nowadays
get on the internet.

5.2 Results
Figure 4 summarizes the results obtained in the several

tests. On the graphs, MAxxx refers to the use of mobile
agents over a xxx Kbps line, and CSxxx on the use of
client/server over a xxx Kbps line. Due to space
constraints, we only present the results from 64Kbps and
256Kpbs. These results show that, for this application,
mobile agents perform much better than client/server. The
performance increase ranges from 70% over client/server
when a 256 Kbps setup is used, to 160% when 64 Kbps
are being used (Figure 5).

2000

4000

6000

8000

10000

12000

10 20 30 40

Size (Mb)

T
im

e
(s

ec
) MA256

MA64

CS256

CS64

Figure 4 – Client/server vs. mobile agent performance

One interesting point is that the speedup remains more
or less constant for a given bandwidth, across all sizes. In
fact, this result was to be expected. Because the resulting
index is directly proportional to the size of the site, the
speedup is directly related to the time it takes to bring the
whole web site from the remote location to the local
machine (client/server) over the time it takes to just bring
the resulting index (mobile agents).

It is also important to note that the speedup curve
slightly declines as the size of the web site increases. This
is because when the agent migrates to a web site for
indexing it, the web server and the agent will be
processing on the same machine. This increases the
workload of the remote machine. The speedup decline is
easier to perceive on larger sites since while the agent is

processing it is necessary to create a lot more temporary
files, and to do much more intensive processing.
Nevertheless, the speedup decline is quite small. The key
points to retain from these results are:
• By using mobile agents is possible to obtain large

performance increases when compared with a
traditional client/server solution.

• Mobile agents can scale well, getting a more or less
constant speedup as the size of the work to be done
increases.

• If the agents impose a high load on the target
machine, the speedup may diminish since only one
machine will be being used, instead of two like when
a client/server approach is used.

This last point is especially important on the following
situation. If a large number of users migrate their agents
for performing operations locally on a server, there may
exist an important performance degradation. What this
means is that when one thinks about deploying an
infrastructure as this one, careful planning of resources
available on the server and the number of agents that it
will be allowed to concurrently execute must be done.

6 Related Work

To our knowledge, existing approaches for integrating
mobile agents with the world-wide-web rely on, either
building up a mobile agent platform which also supports
the HTTP protocol, building up a web server that supports
mobile agents, or putting a standard mobile agent platform
side-by-side with the web server, but having limited
integration.

In [28], Dharap discusses an approach where an agent
platform is built, and supports automated browsing of the
internet. This platform is able to receive agents that query
the local web server, according to its owner parameters,
and then forward the agents to another platform. The
objective here is simply to allow the agents to access local
web information. The agents themselves do not have the
capability of publishing information. In [29] a similar
approach is described. In this case domain experts
implemented as mobile agents, navigate through the web
sites, browsing for information. The system is to be built

on top of the MOLE mobile agent platfom [30]. In [31],
Roth describes an agent platform in which a mobile agent
is implemented to act as a web server, and also to allow
the execution of servlets. In the case of this project, this
agent is static, so it is conceptually identical to build a
web server on top of an agent platform.

On [32], Fünfrocken discusses the implementation of a
web server that is integrated with an agent platform that is
able to receive and execute mobile agents. These agents
are able to query and publish information on the web
server. As future work the authors indicate that they
intend to extend the approach for using it with other web
servers. The status of that work is not known at this time.
In [33], it is described the implementation of a web server
that among other features supports the execution of
mobile objects.

To our knowledge, our framework is the only one that
is able to integrate with any web server supporting the
Servlet Specification, allows agents to query local
information, publish information on the site and act as
ordinary servlets.

7 Conclusion

In this paper we have presented our experiences on
using the M&M framework for developing web mobile
agents. The M&M component framework can be added
into existing applications for agent-enabling them,
providing the support needed for receiving and sending
agents in an easy way. In this work, we have built an
architecture that allows any web server that supports the
servlet specification to receive agents. The main features
of the architecture are:

• Any web server that supports the Servlet
Specification is able to receive and send agents.

• The execution of the agents is restricted by proper
authentication and fine-grain authorization
mechanisms, so long as the existing security manager
has not been modified in a way that is not compatible
with the Java 2 security delegation mechanism.

• The agents are able of processing HTTP requests,
having session information, as well as acting as
regular servlets.

• It is possible to dynamically load new services,
adding new features at run time. This makes the
approach very configurable and capable of addressing
different requirements of different sites.

• It has a small footprint and a lightweight execution
environment.

Our performance measurements also show that by
using a mobile agent approach it is possible to obtain large
increases in performance and saved bandwidth.

Finally, we believe that our solution constitutes a good
approach for agent-enabling existing infrastructures.
There is still a long way to go in order to address all the
problems discussed in the first section, but at the present

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

10 20 30 40

Size (Mb)

64 Kbps

128 Kbps

256 Kbps

Figure 5 – Performance increase of using agents when

compared with client/server

time, a solution as the one presented here is quite
appropriate for being used on an intranet or extranet,
where the users can be held accountable.

Acknowledgments

This investigation was partially supported by FCT,
through the M&M project (project reference
POSI/33596/CHS1999) and CISUC (R&D Unit 326/97).

References
[1] J. White, “Telescript Technology: Mobile Agents”,

General Magic Whitepaper, in Software Agents,
AAAI/MIT Press, 1996.

[2] M. Greenberg, J. Byington, and D. Harper, “Mobile
Agents and Security,” in IEEE Communications Magazine,
vol. 36(7), pp. 76-85, 1998

[3] W. Farmer, J. Guttman, and V. Swarup, “Security for
Mobile Agents: Issues and Requirements,” in Proc.
National Information Systems Security Conference, 1996.

[4] D. Milojicic, “Trend Wars: Mobile Agent Applications,” in
IEEE Concurrency, vol. 7(3), pp. 80-90, 1999.

[5] “Mobile Agent List”, available at:
http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mol
e/mal/mal.html.

[6] Sun Microsystems Inc., “The Java 2 Platform”, available
at: http://www.javasoft.com/j2se/.

[7] F. Hohl, “A Model of Attacks of Malicious Hosts Against
Mobile Agents,” presented at the 4th Workshop on Mobile
Object Systems: Secure Internet Mobile Computations,
France, 1998

[8] T. Sander and C. Tschudin, “Towards Mobile
Cryptography,” in Proc. 1998 IEEE Symposium on
Security and Privacy, Oakland, California, 1998

[9] S. Loureiro, “Mobile Code Protection”, Ph.D. Thesis,
ENST Paris / Institut Eurecom, 2001.

[10] F. Hohl, “An approach to solve the problem of malicious
hosts,” presented at the 4th ECOOP Workshop on
Mobility: Secure Internet Mobile Computations, Brussels,
Belgium, July 1998.

[11] P. Marques, P. Simões, L. Silva, F. Boavida, J. Gabriel,
"Providing Applications with Mobile Agent Technology",
in Proc. 4th IEEE International Conference on Open
Architectures and Network Programming (OpenArch'01),
Anchorage, Alaska, April 2001.

[12] D. Milojicic, B. Breugst, I. Busse, J Campbell, S. Covaci,
B. Friedman, K. Kosaka, D. Lange, K. Ono, M. Oshima,
C. Tham, S. Virdhagriswaran and J. White, “MASIF, The
OMG Mobile Agent System Interoperability Facility,” in
Proc. of the Second International Workshop on Mobile
Agents (MA' 98), Stuttgart, Germany, 1998.

[13] Foundation for Physical Agents Organization, “The
specification repository”, available at:
http://www.fipa.org/repository/fipa2000.html.

[14] T. Gschwind, “Comparing Object Oriented Mobile Agent
Systems”, presented at 6th ECOOP Workshop on Mobile
Object Systems: Operating System Support, Security and
Programming Languages, Sophia Antipolis, France, June
2000.

[15] T. Wash, N. Paciorek, and D. Wong, “Security and
Reliability in Concordia,” in Proc. of the 31st Annual

Hawai International Conference on System Sciences,
Hawai, January 1998

[16] G. Karjoth, N. Asokan, and C. Gülcü, “Protecting the
Computation Results of Free-roaming Agents,” in Proc.
Second International Workshop on Mobile Agents (MA'
98), Stuttgart, Germany, 1998

[17] P. Marques, L. Silva, J. Silva, “Security Mechanisms for
Using Mobile Agents in Electronic Commerce”, in Proc.
of the 18th IEEE Symposium on Reliable Distributed
Systems, Lausanne, Switzerland, October 1999.

[18] “The M&M Project”, available at: http://mm.dei.uc.pt.
[19] Sun Microsystems Inc., “The Servlet Specification 2.3”,

available at: http://www.javasoft.com/servlet.
[20] Sun Microsystems Inc, “JavaBens Specification 1.01”,

available at http://www.javasoft.com/beans.
[21] P. Marques, L. Silva, J. Silva, “Addressing the Question of

Platform Extensibility in Mobile Agent Systems”, in Proc.
International ICSC Symposium on Multi-Agents and
Mobile Agents in Virtual Organizations and E-Commerce
(MAMA'2000), Wollongong, Australia, December 2000.

[22] P. Marques, L. Silva, J. Silva, “Going Beyond Mobile
Agent Platforms: Component-Based Development of
Mobile Agent Systems”, in Proc. 4th International
Conference on Software Engineering and Applications
(SEA’2000), Las Vegas, USA, November 2000.

[23] W3C Consortium, “The Jigsaw web server”, available at:
http://www.w3.org/Jigsaw/.

[24] The Apache Consortium, “The Apache web server”,
available at: http://httpd.apache.org/.

[25] The Apache Consortium, “The Jakarta project”, available
at: http://jakarta.apache.org/.

[26] Alaire Corporation, “The JRUN server”, available at:
http://www.jrun.com/Products/JRun/.

[27] Sun Microsystems Inc, “The Java Web Server”, available
at: http://www.sun.com/software/jwebserver/index.html.

[28] C. Dharap, M. Freeman, “Information Agents for
Automated Browsing,” in Proc. of the ACM CIKM’96,
Rockville, USA, 1996.

[29] W. Theilmann, K. Rothermel, “Domain Experts for
Information Retrieval in the World Wide Web”, in Proc.
2nd Int. Workshop on Cooperative Informative Agents
(CIA'98), 1998.

[30] J. Baumann, F. Hohl, K. Rothermel, and M. Strasser,
“Mole - Concepts of a Mobile Agent System,” in the
World Wide Web Journal, vol. 1(4), 1998.

[31] V. Roth, M. Jalali, R. Hartmann and C. Roland, “An
Application of Mobile Agents as Personal Assistents in
Electronic Commerce”, in Proc. 5th Conference on the
Practical Application of Intelligent Agents and Multi-
Agents (PAAM’2000), Manchester, UK, April 2000.

[32] S. Fünfrocken, “How to Integrate Mobile Agents into Web
Servers”, in Proc. IEEE ICE’97 Workshop on
Collaborative Agents in Distributed Web Applications,
Boston USA, June 1997.

[33] G. Neumann, “High-level Design and Architecture of an
HTTP-Based Infrastructure for Web Applications,” in the
World Wide Web Journal, vol. 3(1), 2000.

[34] L. Rizzo, “The Dummynet Project”, available at:
http://info.iet.unipi.it/~luigi/ip_dummynet/.

[35] T. Macinta, “The Bddbot Project”, available at:
http://www.endware.com/bddbot/.

