
Providing Applications
with Mobile Agent Technology

Paulo Marques, Paulo Simões, Luís Silva, Fernando Boavida, João Silva

CISUC, University of Coimbra, Portugal
Dep. Eng. Informática, Polo II – U. Coimbra

3030 Coimbra, Portugal

{pmarques, psimoes, luis, boavida, jgabriel}@dei.uc.pt

Abstract. Over the last couple of years we have been
working on the development of mobile agents systems and
its application to the areas of telecommunications and
network management. This work path produced positive
results: a competitive mobile agent platform was built, the
run-time benefits of mobile agents were proved, and our
industrial partners have developed practical applications
that are being integrated into commercial products.

However, despite the positive results, we feel that
mobile agent technology is still not ready to enter the path
of mainstream software development. In our perspective,
one of the main reasons for this situation arises from the
traditional approach to mobile agent technology. This
approach, based on the familiar concept of the mobile-
agent distributed platform as an extension of the operating
system, focuses too much on the mobile agents and
associated issues (mobility, agent lifecycle, security,
coordination, etc.) and provides poor support for the
development of applications where mobile agents are just
one of several available technologies.

Learning from past experience, we are now working on
a new approach where the focus is brought back to the
applications and mobile agents become just one the tools
available to develop distributed systems. This provides a
much lighter framework for application-based mobile
agent systems.

This paper presents the lessons learned from our
previous project and discusses the new concept we are
developing: application-centric mobile agent systems.

Keywords: Mobile Agents, Component Technology,
Distributed Computing, Network Management

I. INTRODUCTION

Over the last few years we have observed to the
proliferation of available mobile agent (MA) systems,
which currently reach the impressive number of
seventy-two known platforms [1]. This is a lot more
than available RPC [2] or CORBA [3] implementations.
Nevertheless, this technology is still far from the

mainstream programmer and, oddly as it seems, there
are now much more MA platforms than MA-based
applications.

In the last couple of years we were involved in the
JAMES project [4]. This project was held in consortium
with Siemens Portugal SA and Siemens AG, and the
objective was to develop a new MA platform
specifically tuned and customized for the area of
telecommunications and network management (NM).
Our industrial partners used this platform to produce a
few MA-based applications that are now being
integrated into commercial products. These applications
use mobile agents to perform management tasks
(accounting, performance management, system
monitoring and detailed user profiling) that deal with
very large amounts of data, distributed over the nodes of
GSM networks.

With this project we have learned that MA-
technology, when appropriately used, provides
significant competitive advantages to distributed
management applications. However, we have also
realized that the current status of MA technology is still
not appropriate to take those advantages to mainstream
application development.

In order to overcome some of the limitations found,
we are now working on a new approach that abandons
the classic concept of MA platforms as extensions of the
operating system. Instead, we are focusing on providing
agent mobility within application boundaries, rather
than within system boundaries.

The objectives of this paper are twofold. First, we
present a critic perspective on the status of current
mobile agent technology. This perspective is directly
influenced by the results gathered during the JAMES
project but we feel it applies to most of the current
mobile agent implementations. In the second part of the
paper we describe the approach that we are currently
undertaking to address the identified problems.



II. PLATFORM-BASED MOBILE AGENT

SYSTEMS: A CRITIC PERSPECTIVE

The JAMES project took place from March 1998 to
December 1999, and involved two teams. The first team
developed a MA infrastructure specifically tuned for
NM applications. Like other known MA
implementations, the idea was to have a set of platforms
providing an execution environment for mobile agents,
controlling their migration and lifecycle. These
platforms are seen as an extension of the host’s
operating system (typically one platform per host)
where mobile agents from different applications coexist
(see Figure 1). Following this platform-centered design
we focused on issues like performance and
robustness [5], integration with legacy management
technologies [6], infrastructure manageability [7], agent
coordination and security.

The second team used this platform to develop
management applications. Four prototypes were
produced and evaluated, and two of them have been
selected for integration into commercial products.

This separation between platform and applications,
as well as the desire to produce commercial products,
provided a good perspective on the reasons why there
are so many mobile agent infrastructures and so few real
world applications. This perspective can be described in
three dimensions: the programmer, the user (costumer)
and the application field (in our specific case network
management).

Host A Host B

MA Platform on Host A MA Platform on Host B

Application Y

Application Z

Platform-based Mobile Agent Systems

"Static"
Application

User Interface to the platform, the
agents and the agent-based

applications

User Interface to the platform, the
agents and the agent-based

applications

Interface Agent Mobile Agent

Figure 1 – Platform-based mobile agent systems

A. The Programmer

From the point of view of the programmer,
constructing an application that uses mobile agents is a

difficult process. Current mobile agents systems force
the development to be centered on the agents, many
times requiring the applications themselves to be coded
as a special type of agents – stationary agents. When
this does not happen, special interface agents (service
agents) have to be setup between the application and the
incoming agents. These agents must know how to speak
with the mobile agents and with the application.
Although the mobile agent concept – a thread that can
move to another node, is a very useful structuring
primitive, all the currently required setup to use it is an
overkill that prevents acceptance by the developers.

Since basically anything that can be done with
mobile agents can be done using simple client/server
remote method evocations, the reasoning goes: “Mobile
agents do not give me any fundamentally different (and
needed) mechanism, and at the same time force me to
develop systems in a completely different way. Why
should I bother to use them?”

The problems include: the mobile agent concept is
not readily available at the language level; the
applications have to be centered on the mobile agents;
and a complicated interface between the agents and the
applications must be written. The programmers want to
develop their applications as they currently do. Agents
will typically play a small part on the application (90-10
rule: 90% traditional development, 10% mobile agents).
Current systems force exactly the opposite.

The point is that mobile agent technology should not
necessarily force complete agent-based software design.
It should be a complement to traditional object-oriented
software development and easily available to use in
ordinary distributed applications, along other
technologies and methodologies.

B. The User

From the viewpoint of the user, if an application will
make use of mobile agents it is necessary to first install
an agent platform. The security permissions given to the
incoming agents must also be configured and the proper
hooks necessary to allow the communication between
the agents and the application must also be setup. While
some of these tasks can be automated using installation
scripts, this entire setup package is too much of a
burden. Usually, the user is not concerned with mobile
agents nor wants to configure and manage mobile agent
platforms. The user is much more concerned with the
applications than with the middleware they are using in
the background. In the currently available mobile agent
systems, the agents are central and widely visible. They
are not the background middleware but the foreground
applications.

The term mobile code also has very strong negative
connotations that make the dissemination of the MA



technology difficult. The user is afraid of installing a
platform capable of receiving and executing code
without his permission. This happens even though the
existence of mobile code is present in technologies like
Java, in particular in RMI and JINI. The fundamental
difference is that in those cases, the user is shielded
from the middleware being used. In many cases, using
mobile agents does not pose an increased security
threat, especially if proper authentication and
authorization mechanisms are in place1. However,
because the current agent platforms do not shield the
user from the middleware, the risk associated with this
technology is perceived as being higher, which causes
users to back away from applications that make use of
mobile agents.

C. The Application Field

The primary application field of the JAMES project
was network management. The mobile agent paradigm
fits very well into the conceptual foundations of
distributed and delegated network management. This is
one of the reasons why NM is so often considered one
of the most attractive demonstration fields for MA
technology. Nevertheless, in general, the NM
community is still reluctant to accept the advantages of
mobile agents, even when Active Networks [8], which
share some of the same principles and technologies, is
one of the most promising NM research areas.

One of the main reasons is that mobile agents tend to
be exclusively associated to multi-hop migration, where
an agent successively visits several network nodes,
while performing a given task. This multi-hop model is
seldom the most appropriate delegation technique for
NM applications [9,10]. Nevertheless, there are other
models for using mobile agents.

In our experience we have not found many NM
applications requiring multi-hop migration. However,
we have concluded that the mobile agent concept is a
very appropriate paradigm for deploying distributed and
delegated management services, successfully competing
with other technologies like push/pull mechanisms,
RPC, CORBA and the SNMP Script MIB [11].

The already mentioned cost of installing and
maintaining the agent support infrastructure is also a
very sensitive argument for the NM community, which
wants manageable management systems.

Poor interoperability with legacy NM architectures,
resulting in poorly integrated applications, and

1 Mobile agents do impose more complex security
problems in fully open environments where there is no
user accountability (for authentication and
authorization). Nevertheless, most applications are not
deployed in that kind of environments.

increased security risks are other relevant reasons why
mobile agents have not yet gained wide acceptance in
the NM field.

This scenario is probably similar to other application
fields and highlights some of the major problems with
the way mobile agents are perceived:
• When compared with existing solutions, mobile

agents tend to be exclusively evaluated for what
more they can do (multi-hop migration) rather than
for what can they do better.

• The security constraints are considered as
unacceptable, even though currently used
technologies (namely SNMP [12] and CORBA)
provide poorer or no security at all. Our experience
is that in the majority of application environments
mobile agent based applications can already be
used with better security than currently available
solutions.

D. Conclusions

We have discussed some of the obstacles to
widespread deployment of mobile agent systems.
Although these obstacles were identified during one
specific R&D project, we feel they are shared by the
generality of the mobile agent systems, and should be
added to the list of most commonly pointed problems of
agent technology [13]: the lack of killer applications,
security, performance and scalability. Nevertheless,
these problems are counterbalanced by the positive
conclusions from a number of mobile agent projects
(including JAMES):
• It was demonstrated that mobile agents can

provide an excellent mechanism for building
distributed applications.

• Despite all the problems it is possible to build
competitive commercial-level applications that use
mobile agent technology.

The fundamental conclusion is that the long list of
problems is more related to the way mobile agent
technology is being perceived and implemented, rather
than with the paradigm itself. Our current line of work
addresses these problems by proposing a different
perspective on mobile agents.

III. APPLICATION-CENTRIC

MOBILE AGENT SYSTEMS

A. Back to Applications

The most distinctive characteristic in our new
approach is that there are no agent platforms. Instead,
agents arrive and leave from the applications they are



part of, not from agent platforms. The applications
become agent-enabled by incorporating well-defined
binary software components [14] into their code. These
components give the applications the capability of
sending, receiving and interacting with mobile agents.
The applications themselves are developed using the
current industry best-practice software methods and
become agent-enabled by integrating the mobility
components. We call this approach ACMAS –
Application Centric Mobile Agent Systems ─ since the
applications are central and mobile agents are just a part
of the system playing specific roles (see Figure 2).

Host A Host B

Appl. Y

Mobility
related

components

Appl. Y

Mobility
related

components

Application Z

Mobility-
related

components
Application Z

Mobility
related

components

Application Centric Mobile Agent Systems

Generic
components

Application-
specific

components

User Interface
User Interface

Figure 2 – Application-centric mobile agent systems

The consequences of ACMAS are as follows:

• By using software components that agent-enable
the applications it is not necessary to design the
whole application around agents. Agents are sent
back to middleware, in pair with other distributed
programming technologies. This is quite important
since in current mobile agent technology everything
is centered on mobile agents, which makes it very
difficult to integrate other middleware (e.g. SNMP
stacks or CORBA) into the applications.

• Security is integrated with the application security
framework, rather than being completely generic
(end-to-end argument [15]). This allows security
questions to be evaluated in terms of end-points, at
the application level as a whole. In current systems
security policies must be configured both for
incoming agents and for agents that interface
incoming agents with the applications. This can be
a very error-prone procedure. Also, because all the
agents for all the applications do not to coexist in
the same platform, inter-agent attacks from
unrelated applications become a lot more difficult.

• Agents interact directly with the applications from
the inside. This eliminates the need to setup
interface agents and configure and manage their

security policies. This contributes to better
performance and scalability since the interactions
with the applications do not have to go through the
middlemen – the service agents.

• There is no agent platform to install and maintain.
Although there are still distributed applications to
install and manage, this is much simpler than
managing a separate infrastructure shared by a large
number of distributed applications with different
policies and requirements.

• The end-user sees applications, not agents. In this
way, the acceptance of applications that use mobile
agents is increased since what the user sees is the
added value functionality, not the agents nor the
agent platform to manage.

• It is simple to program. The programmer only
needs to visually drag-and-drop the necessary
components from a component palette and
configure their properties and interconnections.

In ACMAS, the applications are developed using
three different kinds of components (see Figure 3):

• Domain specific components.

• Third-party off-the-shelf components.

• Mobile-agent support components.

Migration
Support

Agent
Tracking

Agent &
Infrastruture
Management

Persistence

Mobile-agent Support Components

Hardware
Monitoring Parsers (... Others ...)

Domain Specific Components

Selection and Wiring of
the Necessary Components

Application

Graphical
Components

Network
Management

Database
Access

Messaging
Mathematical
Calculations (... Others ...)

Third-party Off-The-Shelf Components

Inter-Agent
Communication

(... Others ...)

Figure 3 – Applications are developed by wiring
different kinds of software components

Mobile-agent support components provide the basic
needs in terms of mobile-agent infrastructure. These
components provide the functionalities typically found
in agent platforms: mobility support, inter-agent
communication mechanisms, agent tracking, security
and others. Table 1 shows the components we currently
have already available for supporting mobile agents. For



developing these components we have used the
JavaBeans component model [16]. Nevertheless, we
have decided to also support ActiveX [17], making the
framework available to the much larger audience of
non-Java developers.

Third-party off-the-shelf components are
components that are commercially available from
software makers and can be used for building the
system. Currently there is a large variety of components
available for the most different things, like accessing
databases, designing graphical user interfaces,
messaging and others. All these components can be
used for building the applications without having to re-
implement the required functionalities.

Domain specific components are modules that must
be written in the context of the application domain
being considered, providing functionalities not readily
available off-the-shelf. For instance, while
implementing a particular application it may be
necessary to write special parsers for extracting
information from files, or to write supporting services
for allowing agents to monitor the hardware of a
machine. These modules can be coded as components
and incorporated into the application.

One important point in ACMAS is that while
developing an application only the components required
for that particular application domain have to be
included. Also, because the features available to the
programmer are implemented in separate binary
components, which have well-defined boundaries, it is
possible to expand the package without influencing
already developed applications. Each time a new feature
is required or a new service implemented this can be
done by creating a new component. This allows a high
degree of flexibility, since the component palette is
constantly being enriched with new components. At the
same time, the new features do not force the
applications to become heavier or bulkier since only
required functionalities are introduced in each
application.

Component Functionality

Mobility
Component

Provides the basic support for agent
mobility, agent control and
monitoring. It incorporates an
extensibility mechanism that allows
other components to interact with the
mobile agents.

Management
Component

Allows agents and the instantiated
components to be monitored and
controlled locally and remotely by
applications and by administrative
agents.

Agent Tracking
Component

Allows the agents, local and external
applications to know the location of
each agent in the distributed
application.

Security
Component

Allows agents to safely execute
inside an application. It is responsible
for the provision of authentication
and authorization services, and of
monitoring and controlling what
operations each agent is allowed to
perform.

Local
Communication
Components

Supports message exchange between
agents and applications or other
agents, using several paradigms
(message passing and publisher-
subscriber, both synchronously and
asynchronously), in the context of a
single running application.

Global
Communication
Components

Allows the agents and the
applications to exchange messages
using several paradigms (message
passing and publisher-subscriber,
both synchronously and
asynchronously), in the global
context of a distributed application.

Disconnected
Computing
Component

Provides support for disconnected
computing, allowing agents to be
stored in persistent storage if an agent
is not able to migrate to a
disconnected device, and to migrate
when the device comes back online.

Table 1 – Currently available mobile agent
support components



B. Application Domains Being Explored

In order to evaluate the strengths and weaknesses of
the ACMAS approach, when compared to the
traditional platform-based model, two application
domains have been selected:

• Accessing Information Systems in Disconnected-
Computing Environments

• Network Management

1) Accessing Information Systems in
Disconnected-Computing Environments
Over the last few years, mobile phones, laptops and

personal digital assistants (PDAs) have become
commonplace. Laptops and mobile phones are already
reshaping the way people work. As mobile devices
become more powerful, users are starting to expect to
have access to information in any place they are, by
using such devices.

To complicate maters, today’s Corporate
Information Systems (CIS) are being deployed using a
three-tier architecture [18]. Thus, accessing the
databases is no longer enough. It is becoming
increasingly important to have mechanisms that allow
mobile end-devices to access and interact with the
business logic present in the middle-tier.

Mobile agents are a very interesting approach to
software development in disconnected computing
environments [19,20]. The advantages of using mobile
agents in mobile computing include:

• Connections must only be up for receiving and
sending the agents.

• Data must not be transferred from the server to the
client: the agents just process it at the server.

• Multiple interactions occur locally at the server,
between the agents and server processes.

We are currently exploring the ACMAS approach
for building systems where mobile agents provide the
base mechanisms for allowing client applications to
interact with the business logic present on the
information systems [21]. ACMAS is especially
interesting in this context since the requirements at the
client-side are very different from the requirements at
the server-side. ACMAS provide a very flexible way of
addressing these different requirements by having
different components deployed in the applications of the
end-devices and on the server.

2) Network Management

Network Management has always been one of the
most privileged demonstration fields for MA
technology. In fact, it was during JAMES that we have
identified many of previously mentioned problems of
the platform-based approach.

While the previous application domain gives us the
opportunity to experiment directly at the application
level, for network management we are building a
domain-specific component palette that gives
applications and agents the services that we found to be
the most interesting on this application field:

• Multi-level delegation of management support.

• Distribution of management services across
unstructured topologies.

• Disconnected or very low bandwidth operation.

• Dynamic service deployment, reconfiguration and
relocation.

• On-the-fly extension of installed management
services.

• Heuristic data collection over large network
domains.

Working on a component palette for the specific
domain of network management is giving us the
opportunity to assess the limitations and strengths of the
implemented extensibility mechanism for supporting
new services [22], and it is also allowing us to evaluate
ACMAS in the context of building non-hierarchical
management meshes supported by mobile agents.

Another interesting application of ACMAS, in the
field of management, is application management. With
ACMAS it is possible to send agents directly into the
applications to be managed, where they can interact
with the application without going through static
management interfaces. In this way a much flexible
system can be achieved since the management
functionality can be changed and deployed after the
system is running without even having to shut it down.

C. Lessons Learned

From building the ACMAS component palette and
developing some prototype applications, we have
already gathered some important lessons.

When developing applications based on mobile
agents, it is a lot more easy to use components to agent-
enhance the applications than to center all the
development around agents, where complicated setups
have to be done. This is especially important if it is
necessary to use other middleware like CORBA or
SNMP. While current MA frameworks do not integrate



well with existing middleware, applications using the
mobility components can transparently use other
middleware solutions.

After presenting some demonstration applications
that are mobile-agent enabled, the reaction of the users
was very positive. One key point for this was that they
were not aware of the mobile agents but only of the
results obtained from the applications. This clearly
contrasts with our experience on presenting applications
based on classical platform-based systems, where the
use of agent-technology typically raised concerns and
some suspicion.

Developing components for supporting mobile
agents can be hard. When it comes to security, it is not
trivial to design an approach where the mobility
components do not impose restrictions on the
application. In addition, when developing distributed
network components (e.g. agent tracking support),
managing the configuration of the components becomes
complicated since there is no central point to address.
This typically requires that the configuration must be
replicated on the existing components. Technologies
like Sun’s InfoBus [23] may help to alleviate some of
these problems.

For a more complete account of the experiences we
are having while implementing the framework, please
refer to [21-22,24].

IV. CONCLUSIONS

Over the past two years we have been trying to bring
mobile agent technology to the mainstream
development of management applications. We have
gathered a strong experience on the advantages and
shortcomings of current mobile agent technology and its
deployment on real systems.

The main conclusion from that experience is that
although it is complicated to develop systems on the
current state of the technology, the mobile agent
paradigm provides important advantages in the context
of network management and other application domains.

However, a lot of work is still required before the
average programmer of distributed applications can use
off-the-shelf tools for using mobile agent technology.
We believe the ACMAS approach, which focuses
strictly on applications and simplifies the usage of
mobile agents, is one step towards this vision.

ACKNOWLEDGMENT

The JAMES project was partially supported by ADI
(Agência de Inovação) and was part of the European
Eureka Program (Σ!1921).

The research on application-centric mobile agents is
partially funded by FCT, through programs PRAXIS
XXI (scholarship number DB/18353/98) and CISUC
(R&D Unit 326/97).

REFERENCES

[1] Mobile Agent List,
http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/
mole/mal/mal.html.

[2] R. Orfali, D. Harkey and J. Edwards, "Client Server
Survival Guide - Third Edition", John Wiley & Sons
Inc., 1999.

[3] OMG, "The Common Object Request Broker
Architecture and Specification", 1995.

[4] L. Silva, P. Simoes, G. Soares, P. Martins, V. Batista, C.
Renato, L. Almeida, N. Stohr, “JAMES: A Platform of
Mobile Agents for the Management of
Telecommunication Networks”, in Proceedings of
IATA’99, Stockholm, 1999.

[5] L. Silva, G. Soares, P. Martins, V. Batista, L. Santos,
"Comparing the Performance of Mobile Agent Systems:
A Study of Benchmarking", Computer Communications,
Volume 23, Issue 8, April 2000.

[6] P. Simões, L. Silva, F. Boavida, “Integrating SNMP into
a Mobile Agent Infrastructure”, in Proceedings of
DSOM’99, Zurich, 1999.

[7] P. Simões, L. Silva, F. Boavida, "A Generic
Management Model for Mobile Agent Infrastructures",
in Proceedings of SCI'2000/ISAS'2000, Orlando, July
2000.

[8] D. Tennenhouse, J. Smith, W. Sincoskie, D. Weatherall,
G. Minden, "A Survey of Active Network Research",
IEEE Communications Magazine, Vol. 35, 1997.

[9] D. Gavalas, D. Greenwood, M. Ghanbari and M.
O'Mahony, "Advanced network monitoring applications
based on mobile/intelligent agent technology",
Computer Communications, Volume 23, Issue 8, April
2000.

[10] L. Silva, V. Batista, P.Martins, G. Soares, "Using
Mobile Agents for Parallel Processing", Proceedings of
DOA '99 - Distributed Objects and Applications,
Edinburg, 1999.

[11] D. Levi, J. Schonwalder, "Definitions of Managed
Objects for the Delegation of Management Scripts",
RFC 2592, 1998.

[12] M. Rose, "The Simple Book - An Introduction to
Management of TCP/IP-based Internets, 2nd Edition",
Prentice-Hall International Inc., 1994

[13] D. Kotz, R. Gray, “Mobile Agents and the Future of the
Internet”, in ACM Operating Systems Review, 33(3),
1999.



[14] C. Szyperski, "Component Software, Beyond Object-
Oriented Programming", Addison-Wesley, 1998.

[15] J. Saltzer, D. Reed, D. Clark, "End-To-End Arguments
in System Design", ACM Transactions in Computer
Systems, Vol. 2, No. 4, November 1984.

[16] Sun Microsystems, “JavaBens Specification 1.01”, Sun
Microsystems, 1997, available at
http://www.javasoft.com/beans.

[17] D. Rogerson, “Inside COM”, Microsoft Press, 1996
[18] R. Orfali, D. Harkey, J. Edwards, R. Crfali, “Instant

CORBA”, John Wiley & Sons Inc., 1997.
[19] D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawla, G.

Cybenko, “AGENT TCL: Targeting the Needs of Mobile
Computers”, in IEEE Internet Computing, vol. 1, 1997.

[20] A. Sahai, C. Morin, “Mobile Agents for Enabling Mobile
User Aware Applications”, in Proc. Autonomous Agents
98, Minneapolis, USA, 1998.

[21] P. Marques, L. Silva, J. Silva, “A Flexible Mobile Agent
Framework for Accessing Information Systems in
Disconnected Computing Environments”, in Proc. Third
International Workshop on Mobility in Databases and
Distributed Systems MDDS’2000, Greenwich, UK,
September 2000.

[22] P. Marques, L. Silva, J. Silva, “Addressing the Question
of Platform Extensibility in Mobile Agent Systems”, in
Proc. International ICSC Symposium on Multi-Agents
and Mobile Agents in Virtual Organizations and E-
Commerce (MAMA’2000), Wollongong, Australia,
December 2000.

[23] Sun Microsystems, “Infobus 1.2 Specification”, Sun
Microsystems, 1999.

[24] P. Marques, L. Silva, J. Silva, “Building Domain-
Specific Mobile-Agent Platforms from Reusable
Software Components”, in Proc. 2000 International
Conference on Software, Telecommunications and
Computer Networks (SoftCom’2000), Split and
Dubrovnik (Croatia), Trieste and Venice (Italy), October
2000.


