
NetTrouble: A TTS for Network Management

Luís Santos, Pedro Costa, Paulo Simões
Communications and Telematics Services Group

Department of Informatics Engineering
University of Coimbra - 3030 COIMBRA, Portugal

E-mail: lsantos@dei.uc.pt, p-jose-costa@telecom.pt, psimoes@dei.uc.pt

Abstract - Present information systems need tools that
are able to register the variety of problems that occur
in the system, co-ordinating the efforts of resolution
and keeping the experience gained in those efforts.
These applications are traditionally called Trouble
Ticket Systems (TTS). Basically, a TTS system is
expected to operate as “a hospital chart,
co-ordinating the work of multiple people who may
need to work on the problem” [1].

At the moment there is a great number of tools
corresponding to this TTS definition. Since these are
usually developed for specific environments, such as
project development, hosts administration and
helpdesk, they have very specialised information and
administrative models, lacking flexibility when
applied outside their native domains. Maybe that’s
why they still can’t get satisfactory results in systems
and network management (NM), though their good
results in other environments. NM environment
involves several issues not yet addressed by current
systems, namely the heterogeneity of data networks,
its geographic dissemination (of the managed system
and of the management team), the multi-
organisational attribute of wide area networks (with
many carriers and communication service providers
between network ends), and the decomposition (both
functional and hierarchical) of the associated tasks
and responsibilities.

This paper explains the most important results of a
project developed at the University of Coimbra that
involved the development of NetTrouble: a TTS
designed for NM that brings out new and innovative
concepts such as the use of administrative domains
(useful to deal with multi-organisational systems), the
autonomic definition of co-operation policies between
different organisations, a flexible administrative
model (going to ticket-level detail and able to involve
both local and remote human resources), and the
virtual presence of tickets belonging to remote
domains. The notification model of NetTrouble,
another interesting feature, will also be described.

1. INTRODUCTION

The TTS concept appeared in the early 80s with large
databases designed to schedule, dispatch, and

maintain job tickets. The main purpose of these
systems was to co-ordinate workgroups in a simpler
and more productive way. Today, the concept and
aims of TTSs remain nearly untouched. The most
visible changes were the deployment of the concept
trough new application areas and the use of new
technologies.

1.1. Present Systems

The analysis of present systems [2,3,4,5,6] reveals
that it is possible to identify common points that
somehow characterise a TTS, even if there is no
normalisation work in this area. The typical TTS
structure and information model will be presented in
the next subsection.

1.1.1. Structure

The usual TTS structure has three main modules: the
database (DB) where trouble tickets are kept, a middle
layer mediating the access of final users to the DB,
and the front-end providing the user interface (fig. 1).

Database

Tickets Management

User Interface

Figure 1: Typical Structure of a TTS

It is the intermediate module that lodges the most
critical units of the system: the administrative model
and the functional model. Together, they rule the
interaction between the main entity  the ticket 
and the system users: the first defines the possible
intervention ways of each team member, while the
second assures a coherent path in the ticket resolution
process.

1.1.2. Information and dataflow

The majority of existing TTSs are “closed systems”
with centralised databases, even if some of the
packages have the user interface untied to the DB,
therefore allowing remote access across the network
[2,4,6] or by e-mail [3]. The “trouble ticket”, the core

entity of stored information, is usually composed of
two main fields: the header and the body. The first has
common attributes, while the second allows flexible
storage way of specific information related to the
problem it represents.

It is also possible to point out some common aspects
for the information model of current systems: after
trouble tickets registration, human resources are
linked to them. The system then co-ordinates work at
progress, hopefully converging to the resolution of the
problem. When the problem is considered as solved,
trouble ticket life ends and all its information is
cleaned from the database (most frequent case) or
stored as acquired experience (solution provided by
sophisticated systems).

1.2. Network management specific needs

In RFC1297 [1], Johnson summarises a set of
requisites that a NM oriented TTS should include. In
a general way, he points out the importance of
integration with other NM tools and selects some
desirable characteristics of the associated
administration, operational and the information
models.

At a first glance, only at low level we can find out
some inadequacies between present solutions and the
requisites referred by Johnson. In other words, it
would suffice to make small changes to existing
systems, not affecting inherent concepts, to achieve
good results. However, a deeper look will prove that
such approach is clearly insufficient, since some of the
NM specific issues are not properly addressed by
current TTSs.

1.2.1. Geographic scattering

Apparently, existing TTSs where the user interface is
separated of the DB [2,6] could satisfactorily cope
with the geographic scattering of medium and large
organisations. However, their centralised DB would
have to be located at a single point. This results in
higher access times, latency and overloaded lines
when accessing the DB from remote locations, even if
the accessed ticket regards a “local” problem (i.e.,
concerning only the remote location).

1.2.2. Multi-organisational nature

The multi-organisational nature of certain
metropolitan and wide area networks, where several
service providers operate between the network end
points, demands new concepts in the TTS area.
Management is now handled by several organisations
participating in the process with different roles.
Current systems lack support for communication and
co-ordination between TTSs of different

organisations.

1.2.3. Hierarchical and functional decomposition

In order to maximise group efficiency, functional
division of the NM activity usually assumes an
hierarchical structure of responsibilities. The tools
provided by TTSs to cope with this decomposition are
either not existent or too inflexible.

1.3. Need for a new approach

Since current TTSs do not perform well with these
and other specific issues of NM environment,
NetTrouble development tried new approaches to the
problem:

• to solve the problems introduced by geographic
scattering, NetTrouble proposes a distributed
database concept where information is spanned
over all the branches of an organisation;

• the concept of administrative domain was
introduced to deal with the multi-organisational
nature of network management environment;

• the NetTrouble administrative model also gives
specific support to hierarchical decomposition.

Despite of the introduced innovations, traditional
concepts were not forgotten: requirements proposed
by [1] were addressed and even further explored (e.g.
the category concept and its administrative usage).

2. NETTROUBLE MAIN CHARACTERISTICS

This section will begin with the discussion of the most
relevant keystones of NetTrouble. Specific aspects,
considered innovative and interesting (even if not so
important for the overall system), will later be
presented.

2.1. General aspects

2.1.1. Administrative Domain

The administrative domain concept was introduced
as a way to deal with the multi-organisational nature
of NM environments. An administrative domain is a
self-sufficient cell supported by one NetTrouble
server. This server keeps local “trouble-tickets” and
manages local human resources. It may also
communicate with external domains (i.e., with
external NetTrouble servers) in order to share
resources. Co-operation policies with the exterior are
defined by specifying the set of co-operative domains
and, for each of them, selecting the resources to be
shared in order to solve common problems.

Although an administrative domain is usually the
representation of an organisation, it can also represent

internal cells (within a single organisation) separated
geographically or administratively. Furthermore, it
can be used to reflect hierarchical levels of
competence in the management of large metropolitan
networks.

2.1.2. Client-Server Architecture and the
Communication Protocol

The NetTrouble framework entails two distinct
contexts of communication: the communication
between an user and its domain server, and the
communication between domains. A common solution
was developed for these two contexts, using the client-
server model.

The server keeps the DB and ensures proper access to
it. On the other hand, the client will be any entity that
needs to work on the trouble tickets kept by the
server. The client might be a local user (using specific
browsing software) or a peer domain (i.e. another
server). A communication protocol was specified for
NetTrouble. This protocol (with just two primitives:
data_request and data_set) should allow, in the
future, communication with other systems (e.g.
different TTSs or the alert systems suggested by [1]).

2.1.3. Distributed Information

The NetTrouble servers create a web where each node
has complete autonomy to specify which trouble
tickets and which human resources it wants to share
with each organisation. Each ticket remains in a single
administrative domain but, if it involves more than
one organisation (a common fact in network
management) it will be virtually present in the other
involved domains. This way, each organisation has
access to all the “interesting” information, even if it is
not locally kept. Thus, it is possible to assemble a task
force to solve a given problem including managers
from distinct domains. This information and
resource decentralisation was achieved by the
forward mechanism (fig. 2).

After contact, the server determines the type of client
issuing the request. If the client is a server (another
domain), it answers only to requests about local data.
On the other hand, if the client is a local user, it
analyses the scope of the request. When external
information is requested, the server forwards the
request to the domains that keep the information
(D2,..., Dn). Then, it concatenates replies in a single
answer returned to the original client (answer=
answer1+ answer2+...+answern).

It must be noted that the access to the forwarding
mechanism comprehends only the domains for which
the user manager in question has been exported by the
local domain.

Entity@D1
Reply

Request 1
D1

Dn

D2

Request 2
Reply 2

 Reply i

Request i

Reply n Request n

........

........

........

........

Figure 2: Forward Mechanism

2.2. Specific aspects

Following, the main aspects of the internal structure of
the NetTrouble are presented. The different entities
supported by NetTrouble will be presented prior to the
description of the most relevant concepts associated to
the information core: the “trouble ticket”.

2.2.1. NetTrouble entities

NetTrouble supports the existence of several
managers for the domain. This is accomplished using
three different kinds of administrative entities (fig. 3).

The manager entity represents any technician of the
organisation. All interactions with the system will be
triggered by an entity of this kind, even in interactions
across domains, where this entity behaves as a domain
entity (due to the forward mechanism).

The manager group provides a grouping mechanism
used to simplify the management of local domain
human resources. It makes possible to group
individual managers (or even other groups) under a
single identification, thus allowing to delegate
competencies and responsibilities at group level.

Finally, the domain entity represents the concept of
administrative domain. This entity is very important
for the forward mechanism, since forwarded requests
will be made in the name of the local domain (and not
the local user). This avoids the need to register local
users in external domains.

Domain

Manager Group

Manager
Scope

Figure 3: NetTrouble Administrative Entities

2.2.2. Problem stages

Every problem tracking system has a continuously
growing database keeping information on problem
proposals, current problems and, sometimes,
information on problems already solved (therefore
acting as a knowledge base for future solving
processes).

From the functional point of view, the evolution of a
problem presented to NetTrouble is summarised in
Figure 4. Different stages are justified by the different
demands posed by the problem solving process (at the
information level and in terms of involved human
resources). This stages will be described after the
discussion of an associated concept, the categories.

Ignored Ignored

Ticket ArchiveComplaint
Proposal

Figure 4: NetTrouble Problem Evolution

Categories

Few of the analysed TTSs support the problem
categorisation feature [2] ensured by NetTrouble,
where each problem is included in one of the existing
categories at creation time. This is a way of organising
incoming information. The category scheme of
NetTrouble has an hierarchical structure (a set of
inverted trees) reflecting the usual problem
classification by type and specific aspects (fig. 5).

This concept was further extended: management of a
category is delivered to a local manager, called, in this
context, the category responsible. Obviously, a
manager may be responsible for more than one
category. The responsible for a given category may
divide it in several subcategories and delegate some of
them to another manager.

Computer
Dept.

WANLAN

backup line
to ISP

University
Campus I

RCCN
(ISP)

FO
backbone

10 Base T
Floor Distr.

Diversity

S
pecifiness

Figure 5: Hierarchical Structure of Problems Categories

These mechanisms allow the definition of an
hierarchical structure close to the real structure used
in many organisations.

The proposal

A problem is generally detected by a failure or a lack
of functionality of some management object (a
network branch, a router, a printer, a server, an
application,...) [1]. Therefore, the problem gets to the
TTS as a complaint. NetTrouble designates this
complaint as proposal since it will, potentially,
become a “trouble ticket”, though not yet treated as
one. The distinction between proposal and trouble
ticket allows the temporary storage of several
symptoms that will, probably, produce a single ticket
[1] (usually after exhaustive diagnostic).

The Trouble Ticket

The “trouble ticket” (or simply the “ticket”) is the
evolution stage where the problem resolution will take
place. Therefore, this is the stage where greater
demand will be posed to the system.

Information supported by the ticket  most TTSs
organise the trouble ticket information in two major
fields: the header and the body. The header contains a
fixed set of fields with the information pieces common
to all the tickets. On the other hand, the body (also
named description) has a flexible format where it is
possible to describe in a flexible way all the resolution
process.

The developed system also adopted this structure,
keeping in the header fields like identifier, title,
category, state and priority. In the description field,
NetTrouble takes each contribution (with freeform) as
a distinct piece of the global problem description.
Each of these pieces includes an author signature (thus
enforcing process credibility) and a time stamp. It
should be noted that NetTrouble can generate
contributions by itself when relevant header fields are
changed (further increasing the process credibility).

Associated classes  the access control to the ticket
information is based on two mechanisms: classes and
masks (extending the effect of the classes).

The responsible class represents the manager in
charge of that ticket (implicitly, the manager
responsible for the category of ticket). The
responsible has several tasks: management of the
ticket information; assignment of human resources to
solve the problem; and the definition of the access
rules for the other classes. The involved class
represents the team selected by the responsible to
solve the problem. This class may include managers

from local and remote domains. Entities inside this
class have full reading access to all the ticket
information and also permission to add descriptions to
the ticket body. Full access to header fields (and even
management of lower classes) can be granted by the
responsible by the use of masks.

The audience class allows to give some entities
permission to read the ticket information. At the
bottom of the hierarchy, the public class represents
extern people somehow affected by the problem. This
last class can include people not registered in the
TTS, since it relies on e-mail to contact its members.

Each ticket has one instance of each of this classes,
and a given entity will have access to a given ticket if
it is included in one of its classes (fig. 6). The specific
access permissions for that entity depend on the class
it belongs too and, eventually, on its access mask.

Public

Audience

Involved

Responsible

Passive
Elements

Active
Elements

Figure 6: Class Hierarchy

Functional model of the Ticket  the resolution of
the problem is a free process. Nevertheless,
NetTrouble links to the ticket an attribute  the state
 to describe the current situation (possible values:
open, suspended, blocked, solved or archived). But
the role of this field isn’t only descriptive. This state is
also used to manage the ticket evolution.

Associated priorities and time-out mechanism 
unlike usual systems, where the priority field is
merely informative, NetTrouble assigns a timer to
each ticket (the period of time depends on the
category and priority of the ticket), thus implementing
the time-out concept suggested by [1]. If by the end
of the defined period of time the ticket remains
unchanged, the responsible will receive an e-mail
notification.

Link mechanism  a failure can easily result in
several complaints apparently not related until a more
advanced stage of its resolution. Therefore, several
tickets might be directly tied to a single problem. As
soon as this is detected by the manager, it is useful to
unify the resolution of these tickets. To make this
possible, NetTrouble allows the establishment of links
between tickets. There are three types of links,
allowing a ticket to:

• accept to be consulted by entities from another
ticket;

• express to other ticket the intention of being able

to consult its information;

• temporarily block the resolution process of another
ticket.

This last feature allows managers to define
precedences in problems resolution, thus avoiding
unnecessary or even conflicting efforts.

Integrated notification mechanism  some of the
analysed TTSs have a notification scheme based upon
e-mail. Nevertheless, this scheme is always presented
as a feature associated with the browser, not with the
TTS. NetTrouble supplies an integrated notification
scheme that makes possible to send a message to a
specific class of the ticket. This is the mail to a ticket
concept (fig. 7).

NetTrouble joins, as the subject prefix, the universal
problem identification (LocalIdentifier@Domain)
and, as a message prefix, the complete signature of the
sender. It is also important to point out that it is
through this notification mechanism that becomes
possible to contact the public class of a ticket.

From Manager@Domain1
To ticket_id1@Domain1

NetTrouble
D1

Resp@Domain1

I1@Domain1

I2@Domain1

Aud_1@Domain1

To Guest1@host1

Figure 7: mail to a Ticket

The archive

The ticket ends out its active existence when the
responsible changes its state to archived. As soon as
this happens, all the administrative information is lost.
On the other hand, the information of the description
field remains available for statistical treatment and
future consult, acting as a “knowledge base” [1].

3. APLICATION FIELDS

The client-server paradigm and the used
administrative model allow NetTrouble to adapt to the
most common NM environment. In order to show
possible application fields for NetTrouble, two typical
scenarios will be presented bellow.

3.1. Horizontal structure

When several service providers operate between two
organisation branches (fig. 8), network management is
ensured by different and independent entities that

need to work together to solve common problems. A
NetTrouble server (a domain) can be placed in each
organisation. Each intervening domain will have the
opportunity to make available human resources to the
exterior (possibly to a specific set of domains). This
way, it is possible for two or more organisations to co-
ordinate their work on common problems with base
on trouble tickets.

Service Provider
Organisation X

Branch B............ Service Provider
Organisation X

Branch A

Figure 8: Multi-organisation Horizontal Structure

3.2. Hierarchical structure

Also very frequent is the case where network
management assumes a hierarchical nature (fig. 9).
This situation can also be fit by the developed system,
placing a NetTrouble server in each of the nodes.
Relationships between a section and the exterior are
processed through a single channel with its upper
node, and through multiples channels with
subordinated sections.

Headquarters

Dept. X Dept. ZDept. Y......

......

....

External Service
Providers

Figure 9: Hierarchical Structure

4. NETTROUBLE IMPLEMENTATION

In order to test the concepts and orientation lines
presented in the previous section, NetTrouble was
fully implemented and made available as public
domain software [8].

The present implementation consists of a client, a
server and an application programmers interface to
simplify the development of clients for other
architectures. The server runs in OSF/1 (using Oracle
for database purposes) and the client was developed
for SunOS (X-Windows/OpenLook environment).
Network communication uses ONC-RPC [7], making
very easy the development of clients for other
platforms.

5. CONCLUSIONS AND FUTURE WORK

This project addressed the development of a TTS well
suited to NM environments. Several new concepts
were introduced, like the administrative domain
concept; the autonomous way of defining co-operation
rules between domains; a flexible administrative
model; and the decentralised access to information
and resources.

It is also important to remember that NetTrouble
capabilities are not confined to problem management:
it could be used as a job ticket system (in project
management) or even as a news ticket system, due to
its capabilities of organising thematic discussions.

At the conceptual level, there were some unsolved
problems (like the management of links between
tickets belonging to different domains) that could
probably be handled using distributed database
techniques. It would also be interesting to improve the
specification of an open protocol for interdomain
communication.

From a more technical point of view, web-based
communication between the TTS and the users would
enhance portability and accessibility.

6. THANKS

This work is part of the FADA project, partially
sponsored by Junta Nacional de Investigação
Científica e Tecnológica.

7. REFERENCES

[1] D. Johnson, “NOC Internal Integrated Trouble
Ticket System Functional Specification Wishlist
(NOC TT Requirements)”, Request For
Comments 1297, 1992.

[2] “Problem Tracking System 1.05”, Zombie
Software, 1994.

[3] “GNU GNATS (GNU Problem Report
Management System) 3.2”, GNU.

[4] “Razor 4.0a”, Tower Concepts, Inc.
[5] “Under Control”, KJT Software, Inc.
[6] “PR-Tacker 1.2”, Softwise 1994.
[7] Sun Open Network Computing (SVR4).
[8] NetTrouble Package, http://cleo.uc.pt or

http://www.dei.uc.pt/

Publication Information:
L. Santos, P. Costa, P. Simões, "NetTrouble: a TTS for
Network Management", Proceedings of ITS'98 (SBT/IEEE
International Telecommunications Symposium), São Paulo,
Brazil, August 1998.

