
Integrating Mobile Agents into Off-the-Shelf Web Servers:
The M&M Approach

Paulo Marques, Raul Fonseca, Paulo Simões, Luís Silva, João Silva
CISUC, University of Coimbra, Portugal

pmarques@dei.uc.pt

Abstract

The mobile agent paradigm provides a new approach
for developing distributed systems. During the last two
years, we have been working on a project that tries to
overcome some of the limitations found in terms of
programmability and usability of the mobile agent
paradigm in real applications. In the M&M framework
there are no agent platforms. Instead applications
become agent-enabled by using simple JavaBeans
components. In our approach the agents arrive and
departure directly from the applications, interacting
with them from the inside.

In this paper we discuss our experiences on
integrating these components into off-the-shelf web
servers, enabling them to receive and send agents. Our
approach involves wrapping the components inside a
Java servlet that can be included in any web server
supporting the Servlet Specification. This servlet enables
the servers to receive and send agents that can query
local information, and also enables the agents to behave
as servlets themselves. This approach departs from the
current available systems because it enables any existing
web server that supports the servlet specification to send
and receive agents in a straightforward way.

1 Introduction

Mobile agents are small threads of execution that are
able to migrate from machine to machine, performing
operations locally [1]. One very interesting application
area for mobile agents is internet computing. Mobile
agents provide a very attractive paradigm for this area.
The agents can be launched from a machine, navigate
from web-site to web-site, collecting information or
performing transactions, finally returning home with the
goods or results. This scenario is especially attractive
when we consider the proliferation of wireless mobile
devices that is currently taking place. It is easy to
imagine a scenario where a user can launch a news

gathering agent into the web, shutdown the device and
reconnect hours later, collecting the results. Or even
different e-commerce scenarios where the agents find
the best deals for their users in an autonomous way.

Currently available systems that provide integration
between mobile agents and web servers follow basically
two models. The first one involves installing an agent
platform that is unaware of the web-server, or has little
integration with it [2,3,4]. The agents migrate to and
from the agent platform and interact with the web server
as if they were just normal clients, with the difference
that they are local. Although this approach is appropriate
for operations like querying information on the host, or
monitoring when certain changes happen, it quite limits
the functionality that can be implemented on the agents.
For instance, it is quite hard for the agents to publish
information on the site, or to extend the functionality of
the servers by migrating agents into them, or even
having the agents represented in a web page of the server
for their users to remotely interact with them.

The second approach consists in developing a
costume-made web server that is also able to host agents
[5,6]. The problem is that typically the web sites are
already up and running, and do not want to replace their
existing infrastructure. Also, in most cases these
agent-enhanced web servers do not have the robustness
or scalability needed for production-running sites. So, it
would be quite difficult for a web site manager to accept
replacing its industrial-strength web infrastructure for a
technology that follows one of the above approaches.

Thus, although mobile agents provide an attractive
conceptual framework for internet-based computing –
small threads migrating from server to server,
performing their functions, there are still many
difficulties that must be addressed. These difficulties are
currently preventing the widespread adoption of the
technology. Some of the key problems include: security,
user and provider psychological resistance on using
agents, infrastructure integration, interoperability and
reliability. This paper deals primarily with the
infrastructure integration problem.



During the last two years, we have been working on
a project that tries to overcome some of the limitations
found in terms of programmability and usability of the
mobile agent paradigm [7]. In the M&M framework
there are no agent platforms. Instead applications
become agent-enabled by using simple JavaBeans
components. The applications can be developed using
current object-oriented approaches and become able of
sending and receiving agents by the drag-and-drop of
binary software components. In our approach the agents
arrive and departure directly from the applications,
interacting with them from the inside.

In this paper we discuss our experiences on
integrating the framework components into off-the-shelf
web-servers, enabling them to receive and send agents.
Our approach involves wrapping the components inside
a Java servlet that can be included in any web server
supporting the Servlet Specification [8]. This servlet
enables the servers to receive and send agents that can
query local information, and also enables the agents to
behave as servlets themselves. We currently have
experimented the framework with several web servers,
inclusively having the security mechanisms of the
framework correctly running and integrated with the
security architecture of the server.

One of the most important characteristics of our
approach is that it does not force the deployment a
stand-alone agent server that is not integrated with the
web server, nor does it require a specialized costume-
made web server. We provide a framework that is able
of using existing web infrastructures, giving them the
capability of using agents in their operation.

The rest of the paper is organized as follows.
Section 2 gives an overview on the M&M framework.
Section 3 discusses the developed architecture, and
Section 4 presents the conclusions of the work.

2 M&M Overview

The most distinctive characteristic of the M&M
framework is that there are no agent platforms. Instead,
agents arrive and leave from the applications they are
part of, not from agent platforms. The applications
become agent-enabled by incorporating well-defined
binary software components [9] into their code. These
components give the applications the capability of
sending, receiving and interacting with mobile agents.
The applications themselves are developed using the
current industry best-practice software methods and
become agent-enabled by integrating the mobility
components. We call this approach ACMAS –
Application Centric Mobile Agent Systems ─ since the
applications are central and mobile agents are just a part
of the system playing specific roles.

The consequences of ACMAS are as follows:

• It is not necessary to design the whole application
around agents. Agents are sent back to middleware,
in pair with other distributed programming
technologies.

• Security is integrated with the application security
framework, rather than being completely generic.

• Agents interact directly with the applications from
the inside. This eliminates the need to setup
interface agents and configure and manage their
security policies.

• There is no agent platform to install and maintain.
Although there are still distributed applications to
install and manage, this is much simpler than
managing a separate infrastructure shared by a large
number of distributed applications with different
policies and requirements.

• The end-user sees applications, not agents. In this
way, the acceptance of applications that use mobile
agents is increased since what the end user sees is
the added value functionality, not the agents.

The M&M framework was implemented using the
JavaBeans component framework, and is centered on the
so-called Mobility Component. This component provides
the basic support for agent migration and management,
and an extensibility mechanism that allows other
components to connect to it [10]. These other
components may implement functionalities like different
inter-agent communication mechanisms, security,
persistence and others.

Our main concern was to make the core component
small and efficient, and at the same time provide a
powerful extensibility mechanism that allows higher
functionality to be connected to it. In fact, the Mobility
Component is only 56k in size, and has a very
lightweight runtime footprint. The extensibility
mechanism allows us to have a rich reusable component
palette, which provides different components that are
selectively used on each application being developed. If
there is no component that implements the functionality
needed for a certain application, it is always possible to
code it for the application, and reuse it when creating
new applications.

The complete discussion of the M&M project and its
associated framework is beyond the scope of this paper
but the interested reader can refer to [7,10,11] for
additional details.

3 Agent Enabling Web Servers

Our interest in building support for mobile agents in
web servers arouse from the necessity of validating how
easy (or not) was to agent-enable existing applications
by using the M&M framework. Web servers, and in



particular the creation of web agents, appeared to be an
interesting application field because the paradigm seams
so fit for using on the web.

In our view, the main requirements for integrating
mobile agents into web servers are:
• It should be possible for the agents to behave as a

web resource (i.e. publish information). A user
should be able to use a web browser to access and
interact with the agents, that would be dynamically
generating the web pages.

• The agents should be able to query local
information present on the web server.

• It should be possible to use the existing web-
infrastructure (i.e. the fact of using mobile agents
should not force the existing servers to be changed).

• If possible, certain agents (administration agents)
should be able to perform management operations
on the server. This last requirement was based on
our interest in studding the usefulness of mobile
agents for distributed network and application
management.

The key idea for building server-independent support
for mobile agents was to wrap the necessary
components, namely the Mobility Component and the
Security Component, inside of a servlet [8].

The servlet technology provides a simple mechanism
for extending the functionality of a web server, allowing
URIs to be associated with object instances. These
instances are called servlets, and are able to process
HTTP requests sent to them. Currently there are many
web-servers supporting the Servlet Specification [8], and
there are many stand-alone servlet engines that can be
connected to the web servers for providing servlet
functionality [12, 13, 14].

3.1 Architecture

To meet the previously discussed requirements, we
came up with the architecture depicted in Figure 1. The
servlet that encapsulates the framework components is
configured and included as a resource on the web server.
What this means is that whenever an HTTP request is
made for a certain URI, that request is forward to the
servlet (Mobility Servlet Container).

The Mobility Servlet Container, or simply container,
performs several functions. Because the M&M
extensibility mechanism is based on events, which notify
the interested components of any changes in the running
state of the agents, it is possible for the container to
know the state of every agent in the system, and to
publish that information on the web. This means that a
user is able to remotely interact and control the agents
presently running on the site.

WEB
SERVER

SERVLET
ENGINE

Dispatcher

Security
Component

HTTP
request

HTTP
response

MOBILITY SERVLET
CONTAINER

Mobility
Component

Figure 1 – The Mobility Servlet Container

The information published by the container on the
web is accompanied by a link, which includes the
identity of each agent. Whenever a user clicks on such a
link, the GET request is forwarded to the container,
which in term forwards it to the appropriate agent. The
container is able to do this because when an agent
arrives, it receives the corresponding agent and saves a
reference to it. Also, when the agent migrates or dies, the
corresponding events are fired, enabling the container to
garbage-collect the references.

One important point is that the web server may be
decoupled from the servlet engine, and from the servlet
itself. In this case, the function of the web server is
simply to provide a mapping between URIs and the
resources, forwarding the requests to the appropriate
servlets. Each request that corresponds to an interaction
with an agent is forward to the container, which then
passes it to the appropriate agent. It should be noted that
it is not necessary to decouple the web server from the
servlet engine. If the web server supports the Servlet
Specification by itself, then the container may be
installed and configured on the web server itself.

We will now discuss how the agents see their
interaction with the web server. The M&M framework
provides the concept of services for agents [10]. What
this means is that an agent on arriving at a host can
query which are the currently available services, and
request an object implementing that service interface.
That idea was used in our implementation. When an
agent arrives at a web server, it may not only query the
local web server, but it can also ask for a service
instance that allows it to behave as a servlet, and publish
information.

When an agent requires an object that allows it to
publish information, the object that is passed actually
requires the agent to implement the servlet interface.
Thus, any HTTP request made to an agent contains the
full information about the request. This includes not only
the IP of the client, MIME-types accepted but also
session information. This is especially important since
allows the agents to distinguish between different



clients, and act accordingly. Also, when the agents
request the service instance, they can require or deny
that they are listed online. The main point is that the
agents are able to seamlessly register their interest in
processing certain HTTP requests, and examine all the
characteristics of those requests.

Finally, one other interesting point of this approach is
that because in the M&M framework the agents arrive
and interact with the applications from the inside, the
agents have access to the internal objects of the
applications. In our case, what this means is that it is
possible for the agents to access management
information present inside of the web server. This also
enables the agents to perform maintenance tasks on it
from the inside. This feature is especially important for
us because one of the aims of our project is to study the
applicability of the framework for developing distributed
management applications. Although the way the agents
access the information varies from web server to web
server, the potential of having such functionality is quite
important.

3.2 Security

In our container, the Security Component is
instantiated and provides several protection services for
the agents and the host.

This component allows the agents to migrate
between hosts using SSL, which prevents tampering and
eyes dropping on the contents of the agents. It also
implements a fine-grained authorization mechanism that
guaranties that only the agents with the correct
permissions can perform certain operations, like reading
directly from disk, or connect to other hosts in the
network. Finally, the component implements
cryptographic primitives that allow secure protocols for
information gathering and comparison-shopping [15],
that use mobile agents, to be implemented in an easy
way.

The main difficulty with security is that only one
security manager can be instantiated at one time in a
JVM. Because the framework components are running
inside third-party software, which already has a security
manager running, the framework must rely on it.
Fortunately the Java 2 platform standard [16] redefined
how security is implemented and verified in Java. The
methods of the security manager no longer have to be
overridden. In the Java 2 architecture there is a
delegation mechanism that allows the runtime
permissions of the classes to be checked in an
autonomous way. Thus, as long as the servlet engines do
not change the security managers in a way that they do
not conform to the Java 2 model, our security component
is able to check the runtime permission of the agents,

and their actions. We found that this is the situation in
most of the currently available engines.

In our approach, the main problem to be solved
concerning security is resource control. Since the Java
platform does not include any methods for this, it is a
complicated issue. We are currently investigating the
possibility of using third-party resource control libraries
with our system, and its implications in terms of runtime
penalty.

3.3 Current Perspective

We currently have experimented with the framework
in several web servers and servlet engines, with very
positive results. We have tested the system with W3C
Jigsaw web server [17], Apache’s Tomcat [13], Allaire’s
JRun [14] and Sun’s JWS [18]. When a servlet engine
was used, it was tested using the Apache web server [12]
as front-end. Our main conclusion is that it is quite
straightforward to enable an off-the-shelf web server to
receive agents, as long as it supports servlets. This is the
common case on the currently available servers.

Our experience is that the M&M framework provides
a good approach for integrating mobile agents into
existing web infrastructures. The main limitation found
with the framework has to do with resource control.
Currently the framework is only usable in a secure way,
on an intranet or on an extranet. On these types of
networks it is possible to create accounts and use the
authentication, authorization and logging mechanisms
present in M&M for holding the users accountable. We
believe that in the future standard resource control
mechanisms will be introduced in Java, easing the
problem.

4 Conclusion

In this paper we have presented our experiences on
using the M&M framework for developing web-based
mobile agents. The M&M component framework can be
added into existing applications for agent-enabling them,
providing the support needed for receiving and sending
agents in an easy way. In this work, we have built an
architecture that allows any web server that supports the
servlet specification to receive agents. The main features
of the architecture are:
• Any web server that supports the Servlet

Specification is able to receive and send agents.
This allows the deployment of mobile agent
technology in existing web infrastructures.

• The execution of the agents is restricted by proper
authentication and fine-grain authorization
mechanisms, so long as the existing security
manager has not been modified in a way that is not



compatible with the Java 2 security delegation
mechanism.

• The agents are able of processing HTTP requests,
having session information, as well as acting as
regular servlets.

• It is possible to dynamically load new services,
adding new features at run time. This makes the
approach very configurable and capable of
addressing different requirements of different sites.

• It has a small footprint and a lightweight execution
environment.

We believe that our solution constitutes a good
approach for agent-enabling existing infrastructures.
There is still a long way to go in order to address all the
problems mentioned in the first section, but at the
present time, a solution as the one presented here is quite
appropriate for being used on an intranet or extranet,
where the users can be held accountable.

Acknowledgments

This investigation was partially supported by the
Portuguese Research Agency – FCT, through the
program PRAXIS XXI (scholarship number
DB/18353/98), the M&M project (project reference
POSI/33596/CHS1999), and by CISUC (R&D Unit
326/97).

References

[1] J. White, “Telescript Technology: Mobile Agents”,
General Magic Whitepaper, in Software Agents,
AAAI/MIT Press, 1996.

[2] C. Dharap, M. Freeman, “Information Agents for
Automated Browsing,” in Proc. of the ACM
CIKM’96, Rockville, USA, 1996.

[3] W. Theilmann, K. Rothermel, “Domain Experts for
Information Retrieval in the World Wide Web”, in
Proc. 2nd Int. Workshop on Cooperative
Informative Agents (CIA'98), 1998.

[4] V. Roth, M. Jalali, R. Hartmann and C. Roland,
“An Application of Mobile Agents as Personal
Assistents in Electronic Commerce”, in Proc. 5th
Conference on the Practical Application of
Intelligent Agents and Multi-Agents (PAAM’2000),
Manchester, UK, April 2000.

[5] S. Fünfrocken, “How to Integrate Mobile Agents
into Web Servers”, in Proc. IEEE ICE’97
Workshop on Collaborative Agents in Distributed
Web Applications, Boston USA, June 1997.

[6] G. Neumann, “High-level Design and Architecture
of an HTTP-Based Infrastructure for Web

Applications,” in the World Wide Web Journal,
vol. 3(1), 2000.

[7] P. Marques, P. Simões, L. Silva, F. Boavida, J.
Gabriel, "Providing Applications with Mobile
Agent Technology", in Proc. 4th IEEE
International Conference on Open Architectures
and Network Programming (OpenArch'01),
Anchorage, Alaska, April 2001.

[8] Sun Microsystems Inc., “The Servlet Specification
2.3”, http://www.javasoft.com/servlet.

[9] Sun Microsystems Inc, “JavaBens Specification
1.01”, http://www.javasoft.com/beans.

[10] P. Marques, L. Silva, J. Silva, “Addressing the
Question of Platform Extensibility in Mobile Agent
Systems”, in Proc. International ICSC Symposium
on Multi-Agents and Mobile Agents in Virtual
Organizations and E-Commerce (MAMA'2000),
Wollongong, Australia, December 2000.

[11] P. Marques, L. Silva, J. Silva, “Going Beyond
Mobile Agent Platforms: Component-Based
Development of Mobile Agent Systems”, in Proc.
4th International Conference on Software
Engineering and Applications (SEA’2000), Las
Vegas, USA, November 2000.

[12] The Apache Consortium, “The Apache web
server”, http://httpd.apache.org/.

[13] The Apache Consortium, “The Jakarta project”,
http://jakarta.apache.org/.

[14] Alaire Corporation, “The JRUN server”,
http://www.jrun.com/Products/JRun/.

[15] G. Karjoth, N. Asokan, and C. Gülcü, “Protecting
the Computation Results of Free-roaming Agents,”
in Proc. Second International Workshop on Mobile
Agents (MA' 98), Stuttgart, Germany, 1998.

[16] Sun Microsystems Inc., “The Java 2 Platform”,
http://www.javasoft.com/j2se/.

[17] W3C Consortium, “The Jigsaw web server”,
http://www.w3.org/Jigsaw/.

[18] Sun Microsystems Inc, “The Java Web Server”,
http://www.sun.com/software/jwebserver/index.ht
ml.


