
Towards Manageable Mobile Agent
Infrastructures

Paulo Simões, Paulo Marques, Luis Silva, João Silva, and Fernando Boavida

CISUC, University of Coimbra
Dep. Eng. Informática, Pólo II
P-3030 Coimbra, Portugal
{psimoes}@dei.uc.pt

Abstract. This paper addresses the problem of managing distributed
mobile agent infrastructures. First, the weaknesses of current mobile
agent implementations will be discussed and identified from the man-
ageability viewpoint. The solutions devised and experimented in order
to alleviate these weaknesses in our own agent platform will then be pre-
sented. These solutions are generic and could easily be applied to the
majority of existing mobile agent implementations. The paper will fin-
ish with the discussion of a new approach we are following in the M&M

Project, based on a rather different architecture that significantly reduces
the manageability requirements.

1 Introduction

A mobile agent (MA) is a software program that is able to migrate to some re-
mote machine, where it is able to execute some function or collect some relevant
data and then migrate to other machines in order to accomplish another task.
The basic idea of this paradigm is to distribute the processing throughout the
network: that is, send the code to the data instead of bringing the data to the
code. MA systems differ from other mobile code and agent-based technologies
because increased code and state mobility allow for even more flexible and dy-
namic solutions. Telecommunication applications and network management are
part of the broad range of application fields for MA systems [1].

Mobile agent implementations are based on some kind of distributed sup-
porting infrastructure, that provides the execution environment for the agents
in each location, controls the agent migration and lifecycle, and usually delivers
additional services such as security and multi-agent coordination. This infras-
tructure typically consists of mobile agent platforms designed as extensions of
the host’s operating system. Each network node hosts one platform where agents
from different applications and different users coexist and (hopefully) cooperate
with each other.

One of the problems with current mobile agent systems is the considerable
overhead required to properly install, configure and manage this large, dis-
tributed and remote infrastructure. This overhead often counterbalances the
advantages of applying mobile agents in the first place, and seriously affects the

usability of MA technology. For this reason, effective infrastructure management
solutions are crucial for the success of mobile agent systems.

2 Agent Management and Infrastructure Administration

Manageability of mobile agent systems includes two distinct domains: the mobile
agents themselves, and the supporting infrastructure.

Agent management is by now fairly well covered. Almost every known MA
implementation allows adequate control of the agent lifecycle, the agent location,
inter-agent coordination, migration and security. Although current implemen-
tations rely on proprietary and internal mechanisms, ongoing standardization
initiatives - like MASIF [2] and, to some extension, FIPA [3] - are expected to
provide the desired means of interoperability, as more implementations start to
comply with these standards.

The management of the supporting distributed infrastructure, on the other
way, is usually considered as a side-problem not directly related with MA tech-
nology and, therefore, not deserving the same level of attention. Although this
might be so for small-scale prototypes, when one tries to deploy real world dis-
tributed MA platforms, the costs of installation and administration easily rise
to unacceptable levels.

In the last couple of years we have developed the JAMES platform for mo-
bile agents [4, 5], which was later used by our industrial partners to produce
and deploy several MA-based applications for telecommunications and network
management. This scenario provided us with a good perspective on infrastruc-
ture manageability. Three key problems were identified in current systems: (i)
they are too much focused on mobile agents; (ii) they do not decouple the man-
agement functionality from the infrastructure itself; and (iii) they lack effective
support for remote maintenance of geographically distributed platforms.

The excessive focus on mobile agents results in the assumption that applica-
tions are 100% based on mobile agents. However, most applications should be
composed by a mix of ”static” modules (user interfaces, databases, system spe-
cific modules, etc.) and, just where appropriate, specialized mobile agents. This
excessive focus on the MA technology, instead of the overall MA-based applica-
tion, leads to a general lack of clear and powerful interfaces between the mobile
agent infrastructure, the agents and the ”static” components of agent-based ap-
plications. This results either in complicated and inefficient ad-hoc interfaces
between the agents and the applications and in unbalanced application design,
with more and more functionality pushed into mobile agents just because there
is no easy way to interface with external modules.

The lack of decoupling between the management functionality and the plat-
form itself is the second major drawback with current systems. Although they
already entail some kind of global infrastructure management, with basic moni-
toring and control, this functionality is hidden in the platform internals and, at
most, only available through closely attached user interfaces. General-purpose

management applications are thus unable to integrate the management of MA
infrastructures into its global system management framework.

The remote management factor is also an important but overlooked issue.
One of the key advantages of MA systems is the ability to dynamically upgrade
remote services installed on mobile agents. However, this advantage is depen-
dent on the robustness of the underlying agent platform, which demands sup-
port for remote operations like installation, upgrading, monitoring, rejuvenation
and tuning. With few exceptions, current platforms do not provide such services
and require either local installation and maintenance (with increased running
costs) or the usage of general remote desktop applications like Microsoft’s Sys-
tems Management Server or Intel’s Landesk, with increased complexity and poor
integration.

3 Platform Manageability in the JAMES Project

In order to tackle with these key issues, three simple but effective solutions were
introduced in the JAMES platform: a low-level service for remote upgrade and
control of MA platforms; a high-level API for external applications interfacing
with the platform or the platform’s mobile agents; and an SNMP service that
allows legacy management applications to monitor and administer the MA in-
frastructure. Fig. 1 shows the integration of these three solutions into the JAMES
framework. Their implementation uses very simple and pragmatic approaches,
and other MA systems should also be able to support this management model
without requiring major system redesign.

Users

...

Dedicated JAMES management

jrexec jrexec jrexec

Management Application
(aware of the Remote API)

Appl. Y Legacy SNMP-based
management system

Integrated systems managementApplications using MA technology

Service for infraestructure
management and control

of agent lifecycle

SNMP service for
integrated management
of the JAMES Platform

...

R
em

ot
e

lo
w

-le
ve

l
m

ai
nt

en
an

ce
 o

f a
ge

nc
ie

s

Systems Manager Systems Manager

Host A Host nHost B

Remote API SNMP Remote API SNMP Remote API SNMP

JAMES Agency n

jre
xe

c

Application X
(static modules)

JAMES Agency BJAMES Agency A

Agents of
Application X

Agents of
Application Y

Fig. 1. JAMES Threefold Support for Platform Management

3.1 Low-level Management of Remote Agent Platforms

The lower level of management for remote agent platforms (i.e. agencies) is pro-
vided by jrexec, a small and very stable service that runs at the host operating
system level and controls the execution of the MA platform providing several ser-
vices from remote locations: agency start and stop, agency rejuvenation, agency
monitoring and upgrade of the agency software. This service represents a hook
that avoids expensive local interventions, even in the case of unexpected MA
platform crashes.

The installation and operation of jrexec is dependent of the host’s operating
system. It might be installed, for instance, as an Windows NT service or a Unix
daemon. However, the interface to the management services provided by the
several versions of jrexec is homogeneous, resulting in uniform MA infrastructure
management across heterogenous networks. Since it is even possible to run the
agencies without jrexec (relying in general-purpose remote management tools
or using local interventions whenever necessary) the portability of the JAMES
platform is not affected.

3.2 Remote Interface for External Applications

JAMES includes a single unified interface for communication between the mobile
agent system and external applications. The implications of this interface, that
we name Remote API, are manifold:

– the core of the platform became much simpler. Several user interfaces for
basic operations and maintenance tasks (system monitoring, agent lifecycle
control, system maintenance), previously attached to the platform’s core,
were pushed to the outside and redesigned as standalone applications that
interact with the platform using the Remote API. In fact the current version
of the platform has no graphical user interface at all;

– interaction between mobile agents and its associated ”static” modules (ap-
plications) was enhanced. Each application directly launches, controls and
communicates with its agents in a straightforward fashion. This simplifies
the application design and allows more efficient usage of agent technology;

– and MA technology can be totally hidden bellow MA-based applications
that, through the Remote API, completely control and make use of JAMES
without requiring direct contact between the user (i.e. the customer) and
MA related technology. This opens the way for deployment of MA-based
applications into mainstream markets.

The current implementation of the Remote API is based on Java RMI, and
consists on the interface itself, on the side of platform, and a set of Java classes
to be included on the external applications (Fig. 2). These classes provide to
the application developer with a high-level interface to the agent infrastructure,
either to control/access their own agents or to manage the whole infrastructure.

The administrative model of the Remote API considers several types of en-
tities: Applications, Application Licenses, Users, Mobile Agents, Instances of

Java RMI
Corba

...

Management
Modules

S
tu

bs
 im

pl
em

en
ta

tio
n

Applications
Proxy

Agents
Administration

Proxy

Users Proxy

Event
Dispatcher

Agencies
Proxy

C
om

m
un

ic
at

io
n

M
od

ul
e

C
om

m
un

ic
at

io
n

M
od

ul
e

E
xt

er
na

l A
pp

lic
at

io
n

(s
pe

ci
fic

 c
od

e
&

 li
br

ar
ie

s)

Agents
Monitoring

Proxy
JAMES

infrastructure
and mobile agents

Internal API for
Administration

Fig. 2. Structure of the Remote API

Mobile Agents and Agencies (Fig. 3). With this model it is possible to support
coexistence of multiple applications and multiple users in a flexible manner. A
detailed security framework also allows the flexible definition of the permissions
of each entity. It should be noted that the Remote API imposes no clear distinc-
tion between infrastructure management and common usage of mobile agents.
The role played by each external application connected to the JAMES platform
only depends of its security permissions and the context of each request. The

A
p

p
lic

at
io

n
 Z

A
p

p
lic

at
io

n
 Y

Agency C

A
p

p
lic

at
io

n
 X

License X.a

Agente X.a.kAgente X.a.kLicense Instance X.a.1

Instância do
Agente X.a.j
Instância do
Agente X.a.j

Agent Instance
X.a.1.k

Agent X.a.kAgent X.a.kAgent X.a.kUser X.a.1User X.a.1User X.a.1

Agency B

Agency AUser
X.a.1

Fig. 3. Administrative Model of the Remote API

Remote API presents some similarities with MASIF [2], a CORBA-based in-
terface proposed by OMG as a standard for interoperability between different
mobile agent systems. However, while MASIF focus on the mobile agent lifecycle,
providing services for agent instantiation, control and monitoring, the Remote

API also addresses the infrastructure management, including a more elaborate
administrative model and also encompassing the maintenance of the agencies.
The Remote API could probably be designed as an extension of MASIF, since
its functionality is a superset of the functionality covered by MASIF. However,
this decision would imply the simplification of the JAMES administrative model
(in order to comply with the model of MASIF) without major interoperability
gains, since the acceptance of MASIF is still reduced.

3.3 Platform Management From Legacy Applications

The third management service included in the JAMES platform is motivated by
the desire to provide integration between MA systems and legacy management
applications based in architectures like SNMP [6]. With this goal in mind a subset
of the functionality provided by the Remote API was ”translated” into an SNMP
MIB (see Fig. 4) and made available through an AgentX-based extensible agent
[7]. In this way the mobile agent infrastructure can be treated by general-purpose
legacy management platforms like any other component of the whole system. It
should be noted, however, that due to the intrinsic limitations of the SNMP
framework this service does not provide the same level of functionality as the
Remote API, with its rich programming model and detailed security framework.
Instead, the JAMES-MIB acts as a complement directed to legacy management
applications that can not be converted to use the Remote API.

JAMES-MIB [OID 1.3.6.1.4.1.1331.10]

Users

Username
Login
Description
License

Agencies

Agency Name
Agency IpAddress
Agency ListenPorts
Agency State
Agency LastStateChange
Agency RegistryAge
Agency Owner
Agency Permissions
(other monitoring data...)

Registered Licenses

License Name
License Key
Associated Application
License Registry Age

License Instances

License Name
License Key
Instance Description
Instance Age
Instance State

Registered Mobile Agents
Agent Name
Agent Size
Agent Type
Associated Application
Agent Version
Agent Version Age
Agent Default Lifetime
Agent Associated License
Agent Registry Age

Mobile Agent Instances

Agent Name
Agent AssociatedLicense
Instance Age
Agency of Instance Creation
Instance Current Agency
Instance Currente State
Instance Id

Applications

Appl. Name
Appl. Description
Appl. Owner
Appl. Registry Age

Fig. 4. Main Components of the JAMES-MIB

4 One Step Further: Maintenance of Application-Centric
Mobile Agents

As already mentioned, the solutions devised for the JAMES platform tackle with
some of the identified problems with the maintenance of MA systems simply
by adding ad-hoc management support to an already established architecture,
common to most MA implementations. In the context of the M&M project [8] we
are now working on a new architecture for mobile agent support. The most dis-
tinctive characteristic is that in this new approach there are no agent platforms.
Instead, agents arrive and leave from the applications they are part of. The ap-
plication is central and MAs are just a part of the system playing specific roles
(see Fig. 5). The applications are able of sending, receiving and interacting with
mobile agents by using well-defined binary software components (Javabeans or
ActiveX components). Management applications are developed using the cur-
rent industry best-practice software methods and can become agent-enabled by
integrating mobility components. There is one small component that provides
the basic support for mobile agents (migration, lifecycle control) and, using a
flexible extension mechanism, more sophisticated services (agent coordination
and communication, agent tracking, security, persistence, infrastructure man-
agement, etc.) are added as components, if and where needed.

Host A Host B

Appl. Y

Mobility
related

components

Appl. Y

Mobility
related

components

Application Z

Mobility-
related

components

Application Z

Mobility
related

components

Application Centric Mobile Agent Systems

Generic
components

Application-
specific

components

User Interface

Fig. 5. The M&M Architecture for Application Centric Mobile Agents

A more detailed description of this novel perspective on mobile agents, that
brings potential advantages in several fields, is presented in [9, 10]. From a strict
manageability viewpoint, the key differences are:

– there is no agent platform to install and maintain. Although there are still
distributed applications to install and manage, this is much simpler than
managing a separate infrastructure shared by a large number of distributed
applications with different policies and requirements;

– agents interact directly with the applications from the inside. This eliminates
the need to set up interface agents and configure and manage its security
policies. This also partially eliminates the need for mechanisms like the Re-
mote API;

– for each application only the required components (including even the man-
agement services) are installed, resulting in a simpler and lighter framework
to manage.

This framework results, therefore, in a significant reduction on the specific in-
frastructure management requirements and in a shift towards the use of more
generic application management tools. The manageability problem becomes less
complex and more generic. Nevertheless, some agent and infrastructure manage-
ment services are available in the form of extension service components.

These services provide an additional service layer for managing the agent sup-
port components, available both from within the agent-enabled application and
from external applications (see Fig. 6). Available functionality includes agent
management (instantiation, monitoring, shutdown, etc.) and mobility compo-
nent control (start/shutdown, monitoring, configuration, resource management,
etc.). Additional services, such as agent tracking, are also available through sim-
ilar service components. This architecture results in a simple but very flexible

External Management Application

Agent-enabled
Application

S
ervice

S
upport E

vents

Internal
Mobility

Management

Mobility
Management

Service

A
ge

nt
Li

fe
cy

cl
e

E
ve

nt
s

Core Mobility Component
Core Mobility
Component

Core Mobility
Component

Mobility
Management

Service

Mobility
Management

Service

Java RMI Service for Remote Management

(other services)

Fig. 6. M&M Management Architecture

framework for maintenance of the mobility-related components of the applica-
tion. New interfaces (such as SNMP, Corba, WBEM or HTML) can easily be
added building new components, and the management functionality can even be
extended to entail the administration of the whole agent-enabled application.
The implementation of the M&M framework is partially available for download at
[8], including a prototype external management application for demonstration
purposes.

One important point is that the component infrastructure must be man-
ageable itself. For instance, some applications require runtime instantiation or
installation of new services. The need to change certain component parameters
at runtime (e.g. the maximum number of running agents, a listening port, or the
logging level) is also quite common. In our case this is accomplished by having
a management component service that performs several functions:

– it listens for external management requests;
– when a service instantiation is requested it analyses the Service Deploy-
ment Descriptor that was issued and then instantiates and configures the
service. This involves close interaction with the core Mobility Component
for registering the service with the appropriate configuration and security
permissions;

– when it receives a request to modify a component parameter it propagates
the request to that component. A unique identifier distinguishes each com-
ponent, and each component understands certain administration tasks. For
instance, the Mobility Component has a property named listen port, which
represents the port for the incoming agents. A request can be made to change
the mm.mob.Mobility.listenPort property to a new value. The request first
arrives at the management component, which identifies the target compo-
nent and then propagates the request to that component through a callback
interface;

– finally, the management component also allows to broadcast a property
change request to all the components. For instance, most of the compo-
nents use a property called mm.mob.logLevel that determines which calls
and actions must be sent to the log file. It is quite easy to request all the
running components to change their log level by issuing a broadcast that
will notify each of the components of the change.

Despite its simplicity, this management component provides a high degree of
flexibility. Its strength resides in its generality, that allows any changes to be
propagated to the running components, even when those components were not
known at the time of development or deployment. The management interface
of each of the components is not hard-coded in a class but propagated to the
components themselves. Each component includes and understands its specific
set of management properties and actions.

Another interesting point of the framework is that it allows the runtime
deployment of new services not only using the management interface but also
through administration agents. This means that an agent with the appropriate
permissions has the ability to examine which components are available at a
host, to modify their properties, and to change that configuration by shutting
down services or instantiating new ones. This feature is especially interesting
in applications where monitor agents roam through the network examining the
state of the machines, quickly reacting to malfunctions (e.g. crashes, failures and
environment changes) by autonomously recovering the applications.

5 Conclusions

The high costs associated with the installation and administration of distributed
mobile agent infrastructures are an important but often overlooked obstacle to
widespread deployment of mobile agents. In this paper we present two approaches
to reduce those costs. In the first approach, validated in the JAMES project,
several ad-hoc solutions are added to a classic platform-based architecture, re-
sulting in enhanced communication with external applications, integration with
legacy SNMP-based management applications and remote control of the dis-
tributed infrastructure. The second approach is based on the M&M framework,
where a significant change in the agent-system architecture results in much sim-
pler management requirements. Using the M&M integration framework, a small
management service component is available both for internal and external man-
agement of the agent-support components. In the future new interfaces can be
added - for instance for SNMP support - and new management functionality can
be provided, such as application management.

Acknowledgements

The M&M project is partially funded by CISUC (R&D Unit 326/97) and by FCT
(Project Reference POSI/33596/CHS1999). JAMES was an Eureka Project (Ref-
erence Σ!1921) partially funded by ADI (Agência de Inovacão).

References

1. Pham, V., Karmouch, A.: Mobile Software Agents: An Overview. IEEE Communi-
cations Magazine, pp. 26-37, July (1998)

2. Mobile Agent System Interoperability Facilities Specification. OMG TC Document
orbos/97-10-05 (1998)

3. Foundation for Intelligent Physical Agents, http://www.fipa.org/
4. Silva, L., Simões, P., Soares, G., Martins, P., Batista, V., Renato, C., Almeida, L.,
Stohr, N.: JAMES: A Platform of Mobile Agents for the Management of Telecom-
munication Networks. Proceedings of IATA’99, Springer-Verlag LNCS 1699 (1999)

5. University of Coimbra, JAMES Project Homepage, http://james.dei.uc.pt/
6. Simões, P., Silva, L., Boavida, F.: Integrating SNMP into a Mobile Agents Infras-
tructure. Proceedings of DSOM’99, Springer-Verlag LNCS 1700 (1999)

7. Simões, P., Lourenco, E., Pereira, P., Silva, L., Boavida, F.: J.AgentX: a Tool for
Dynamic Deployment of Open Management Services. Proceedings of 2000 Interna-
tional Conference on Software, Telecommunications and Computer Networks (Soft-
COM’2000), Split (2000)

8. University of Coimbra, M&M Project Homepage, http://mm.dei.uc.pt/
9. Marques, P., Silva, L., Silva, J.: Going Beyond Mobile Agent Platforms: Component-
Based Development of Mobile Agent Systems. Proceedings of the 4th International
Conference on Software Engineering and Applications (SEA’2000), Las Vegas (2000)

10. Marques, P., Simões, P., Silva, L., Boavida, F., Silva, J.: Providing Applications
with Mobile Agent Technology. Proceedings of the 4th IEEE International Confer-
ence on Open Architectures and Network Programming (OpenArch’01), Anchorage
(2001)

