
Automatic Conversion of VHDL Programs into
Cases1

Paulo Gomes and Carlos Bento
Centro de Informática e Sistemas da Universidade de Coimbra

Polo II – Pinhal de Marrocos, 3030 Coimbra, Portugal
{pgomes|bento}@dei.uc.pt

Abstract
Software programming is a complex task. To help the user with this task, we are
developing a case-based reasoning tool capable of suggesting code to the programmer
(software reuse). But, due to the dimension and complexity of software programs,
acquisition of the case library is a hard task in this domain.

In this paper, we show how a software program can be automatically converted
into a case, which are described at a functional and behavioural level. The conversion
rules presented here have been developed for procedural languages and enable
conversion of basic language constructs into functional and behavioural knowledge.
We also show some experimental results.

1 This work was partially funded by the Portuguese Ministery of Science and
Technology under program PRAXIS XXI

Motivations and Goals
Software programming is a hard design task, mainly due to the complexity involved in the
process. Nowadays this complexity is increasing to levels in which reuse of previous
software code is very useful to short cut the programming time. Case-Based Reasoning
(CBR) (Kolodner 1993; Maher, Balachandran, and Zhang 1995) is a useful paradigm to
develop tools for aiding software programmers in the coding phases.

The working knowledge in case-based systems is its case library. Cases can be used to
elaborate problems (Gomes and Bento 1997), solve old and new problems (Goel 1991), to do
situation interpretation (Kolodner 1993), and other tasks. These cases are part of the
corporate memory and can be reused by other company programmers, cutting down the
coding phase of software development.

Building a CBR system to do software design or just to help the software engineer in the
task of code generation passes through a first hard phase. This phase is the creation of a case
library. Software programs are big files describing what the computer system is supposed to
do. But, they are not only big; they are also complex and require the knowledge engineer (the
one responsible for the case library building) to know how each language instruction works.

In order to overcome the case library construction phase we developed a method to do the
automatic conversion of software files into case files. The goal of this method is to speed up
the construction of the case library, by short cutting the case acquisition phase. We also
developed a case representation for software design called Function-Behaviour Case
Representation (FBCR). This paper focuses on the case acquisition method, which will be
described in more detail. This method is applied in CREATOR II, a case-based reasoning
system for digital circuit design using VHDL (VSIC Hardware Description Language).
CREATOR II works in the domain of software programming (as defined by Althoff et al.
1997).

CBR can be used in the software design domain at different levels. For example, Tautz
and Althoff (1997) and Finnie et. al. (1997) use it at an organisational level, reusing the
software knowledge used in the software development process. Others, like Fouqué and
Matwin (1993) and Smyth and Keane (1995) have applied CBR to the software programming
phase, like we do.

The next chapter presents CREATOR II architecture. Then the FBCR formalism is
presented, and then we will present the case conversion method and some experimental
results.

System Architecture
CREATOR II is a Case-Based Reasoning system that helps the programmer developing
VHDL code through the reuse of previous VHDL functions. The system’s architecture is
presented in Figure 1. CREATOR II comprises four different modules: the VHDL to FBCR
converter, the FBCR to VHDL converter, the Case-Based Reasoning module, and the
Knowledge Base. In this paper we focus on the VHDL to FBCR converter and the process
involved in the automatic case acquisition.

The VHDL to FBCR converter converts a VHDL file into a FBCR case. In this process
functional and behavioural knowledge is extracted from the VHDL code and used for
indexing. The functional and behavioural knowledge is also used for case adaptation and
verification.

The Knowledge Base comprises four parts: the case library, the indexing structure, a
function taxonomy, and a data taxonomy. The indexing structure is used for problem
elaboration and case retrieval of cases in the case library. The function taxonomy is domain

knowledge used all over the system. It comprises a hierarchy of functions in the domain of
digital circuit design. The data taxonomy is a hierarchy of data types used in the VHDL
language and is also domain knowledge used by the system for reasoning tasks.

VHDL
Programs

Knowledge
Base

Case-Based
Reasoning

Module

VHDL to FBCR
Converter

FBCR to VHDL
Converter

ProgrammerCREATOR II

Figure 1 - Architecture of CREATOR II .

The programmer interacts with the system through the CBR module. The system can help
the programmer specifying the VHDL program through functional decomposition, retrieve
VHDL functions for reuse, adapt VHDL functions to the new functional specifications, and
present new solutions for VHDL program problems.

Case Representation
The Function-Behavior Case Representation (FBCR) is used for representing software
programs. This formalism is designed for description of procedural software languages,
ranging from usual languages as C, to more specific languages, as VHDL. FBCR is derived
from the Structure-Behavior-Function (SBF) models developed by Goel (1992).

Because software programs can be seen as designs, FBCR describes a software program at
functional and behaviour level. The functional level of the software program specifies the
purpose of the design. The behaviour level describes how the design functions are achieved
by the structure. In the remaining of this section, we describe how function and behaviour are
represented in FBCR.

Function
The functional description of a design in FBCR is represented by a tree of functions. Each
node of the tree represents a function, and each link represents a partonomic relation between
functions. This allows a function to be decomposed into sub-functions, providing a functional
decomposition view of the design.

A function is described by an identifier name, input data, output data, behavior, sub-
functions, class, and auxiliary data. Input, output and auxiliary data are sets of data objects.
Data objects represent memory locations and are normally language variables, constants or
parameters. Data objects are defined by an identifier, a data class (for example, the variable
data type) and a set of properties. Properties are described by the property name, value and
units. Input and output data objects are, respectively, input and output parameters of the
function. Auxiliary data represent variables and constants, local to the function. Figure 2
presents the schemas for two functions: calculator and process. Input, output and auxiliary
data contain pointers to data objects. The behavior field contains a pointer to the function
behaviors. Each function has a class to which it belongs. A function taxonomy makes part of
the system in order to do this categorization.

Function : calculator
auxiliary data :input ; result
behavior :calculator_behavior
sub-functions :read_input ;
 process; visualize
class : mathematic

Function : process
input :input_data
output :object1
auxiliary data : ...
behavior : ...
sub-functions : -
class : process_input

Figure 2 - The representation of functions calculator and process.

There are two levels of functions, corresponding to the ones that are leaves in the
functional tree, and those that are not. In a higher level of abstraction, functions have a set of
sub-functions, and may have a behavior graph. At the leaf level of the tree, functions do not
have sub-functions, being described only by their behavior graph. A software design problem
starts being described at an abstract level, down to the instruction level, and the functional
description of the FBCR supports this type of representation. Functional description starts at
the higher level of the functional tree, down to the behavior description. The process function
in Figure 2 is at a level of abstraction bellow calculator. While the calculator function is a
high level function.

Behavior
The behavior of a function is described by a graph comprising nodes and edges. Each node
represents a behavior state, and an edge represents a transition between states. The behavior
graph represents the data object transformations, from the initial state to the final state. In the
process, data object properties can be changed, or data objects can be created or eliminated.
An identifier and an initial state define a behavior graph.

A behavior state represents the state of the data objects in a temporal instant of the
system. A behavior state is defined by an identifier and by data objects.

Behavior transitions represent the causes and constraints of the state transition. An
identifier, a source state, a destination state, a set of causes and a set of constraints define
each behavior transition. Causes comprise primitive functions or functions. Primitive
functions represent the basic elements of the programming language being represented. There
are two main types of constraints: data constraints and property constraints. In the next
subsection, we describe constraints and primitive functions.

Behavior Transition Labels
Behavior transition labels can represent the constraints or the causes for a transition. In the
first case, constraints are represented by boolean expressions that must evaluate to true in
order for the transition to occur. There are two types of constraints in this category: data and
property constraints. Data constraints are defined by a data object, a relational operator and a
value, defining a Boolean expression. It states that the data object value must comply with
the constraint defined by the relational operator and the value. The relational operator and the
value are optional; in this case, the constraint means that the data object must exist. Property
constraints are defined by a data object, a property, a relational operator and a value. This
type of constraint represents a limitation that the data object property must comply with. In
case the relational operator and value are omitted, the constraint implies the existence of the
data object property.

Constraints that cause the transition are named primitive functions. These constraints are
low-level functions representing language instructions, operators or pre-defined functions.
These constraints are specific to the software language in which the program is coded. The
primitive functions play an important role in the FBCR formalism, connecting the behaviour
level with the structural level. They make possible the conversion of behaviour graphs into
software programs and vice-versa.

Converting Programs into Cases
Procedural programming languages have a set of common constructs, which can be
categorized in four main classes: declarations, statements, operators and sub-programs. These
basic constructs have been the focus of our conversion method.

Automatic case acquisition is done in the following steps:
1. Read VHDL file;
2. Perform a lexical analysis to the VHDL code;
3. Perform a syntax analysis of the tokens identified in step 2;
4. Perform a semantic analysis to the FBCR functions, data objects and data

classes created in step 3.
5. Save the FBCR functions, data objects and data classes.

The second step consists in the identification of the language tokens, such as literals,
strings, numbers, and so on. In the third step the main language constructs are identified and
converted into functions (with or without behaviour graphs), data objects, and data classes. In
the next four sub-sections, we describe in more detail the conversion of each language
construct. The third and final step comprises a coherence and consistency check of the
functions, data objects, data classes and behavior graphs. The last sub-section of this section
describes this process.

Declarations
Declarations describe data or process structure characteristics. We consider four main kinds
of declarations: variable, constant, function, and type declarations.

Variable and constant declarations are converted into data objects. Declarations have an
associated data type, which is converted into the data object’s class. If there is an
initialization value for the variable or constant, that value is transformed into the ’value’
property of that object.

Function or procedure declarations are converted into functions. Its parameters and return
value (in case of a function) are converted into input and output data objects. This is the only
knowledge that can be extracted from the function declaration, though much more can be
extracted from the function’s definition.

Type declarations are converted into data classes. The data classes are then associated
with the data types and form a taxonomy of data classes, providing domain knowledge. An
issue important regarding data classes is to insert the basic data classes corresponding to
basic data types (like integer for instance) in the taxonomy by the knowledge engineer.

Statements
Behavior knowledge is mainly encoded in the language statements and the instruction
sequence. Because each procedural language has its own instructions, we identified the main
categories of statements, and we will describe how each category can be translated into the
FBCR. The statements presented here are converted into a behavior graph, which will be
connected to other graphs, accordingly to the sequence of statements.

State 1
 data : A ; B

State 2
 data : A (value : B)

Transition 1
primitive_function(=)

(a) Simple assignment situation : A = B

State 1
 data : B ; C

State 2
 data : A ; obj1 (value
: B+C)

Transition 1
primitive_function(+)

(b) Expression assignment situation : A = B + C

State 3
 data : A (value : B+C)

Transition 2
primitive_function(=)

Figure 3 - Conversion of assignment statements.

The first category comprises assignment statements. These instructions assign a value to a
variable. The value can be another variable, an expression, or a procedural call. Assignments
in the format ’A=B’, are converted into a behavior graph with two behavior states and one
transition connecting them (see Figure 3a). Data objects involved in the statement are
referenced in the first state. The resulting state has the data object whose value has been
modified, with the correct value. Figure 3b shows a more complex situation, where the
assignment is an expression. Each operator in the expression origins a new state and
transition, linked has seen in the Figure 3b. Operator translation is described in the next sub-
section.

Test statements are the second construct category. There are two main test instructions: ’if’
and ’case’. In the first one, a test condition originates a bifurcation in the program behavior.
While in the ’case’ situation there are as many alternative paths as options in the statement.
Figure 4a shows an example of a ’if’ statement conversion. In this example, the behavior
graph is divided in two paths, one leading to the ’then’ branch and other to the ’else’ branch. In
the ’then’ transition, the test condition is added as a constraint, while the negation of this
constraint is added to the ’else’ transition. Figure 4b shows a ’case’ example, in this situation
each transition has a constraint associated to the option branch. Final states are then linked to
the behavior graph statements of the respective branch.

State 1
 data :

State 2
 data :

Transition 1
primitive_function(if)

A=B

(a) IF statement :
IF (A=B) THEN statements1 ELSE statements2

State 3
 data :

Transition 2
primitive_function(if)

A/=B

Statements 1

Statements 2

State 1
 data :

State 2
 data :

Transition 1
primitive_function(case)

A=op1

(b) CASE statement :
CASE (A)
 op1: statements 1
 ...
 opn : statements n

State n
 data :

Transition n
primitive_function(case)

A=opn

Statements 1
Statements n

...

Figure 4 - Conversion of test statements.

Loop statements compose another category of procedural language constructs. There are
three main types of loops: ’for’, ’while’, and ’until’. Loops generate a cycle in the behavior
graph, with a normal exit transition corresponding to the test condition. This test condition
originates two transitions, one that goes to the beginning of the statement loop, or one that
goes to the next statement after the loop. The difference between the three loop types is in the
position of the test condition and in the ’for’ case additional states and transitions needed to
deal with the counter variable. In Figure 5 we show the conversion of a ’for’ statement.
Notice the initialization of the variable i in states one and two. Then in state 3 there is a check
to see if the test variable (i) has run out of range. If it has, the behavior graph will link to the
next statement after the ’for’ statement. Otherwise, the behavior graph will continue in the
next behavior state of the statements inside the loop. The transition from state four to five
increments the test variable. This is the most complex loop of the three types considered.

State 1
 data : i

State 2
 data : i
(value : n)

Transition 1
primitive_function(=)

primitive_function(for)

FOR statement : FOR i = n TO m DO statements

State 3
 data :

Transition 2
primitive_function(for)

Statements
inside the FOR

State 4
 data : i

Transition 3
primitive_function(for)

Transition 6
primitive_function(for)

i <= m

Statements
after the

FOR

Transition 7
primitive_function(for)

i > m

State 5
 data : i
(value : i + 1)

Transition 4
primitive_function(=)

primitive_function(for)

Transition 5
primitive_function(for)

Figure 5 - Conversion of a ’for’ statement.

’While’ and ’until’ cycles are very similar to each other, only differing in the location of the
test condition. The ’while’ cycle tests the condition before entering the loop statements. The

’until’ statement tests the condition after the last loop statement. Figure 6a shows an example
of a ’while’ loop conversion. Note that transition one links the first behavior state associated
to the statements after the ’while’. Figure 6b presents an example of an ’until’ loop. This kind
of loop is slighter complex then the ’while’ loop. The test condition generates two transitions,
one associated with the statements outside the loop, and another with the statements inside
the loop. Depending on the loop type, one transition is associated to the true value of the
condition, and the other with the false value of it.

(a) WHILE statement : WHILE (A=B) DO statements

State 1
 data :

Statements
inside the WHILE

Transition 3
primitive_function(while)

Transition 2
primitive_function(while)

A=B

Statements
after the
WHILE

Transition 1
primitive_function(while)

A/=B

(b) UNTIL statement : DO statements UNTIL (A=B)

State 1
 data :

Statements
inside the UNTIL

Transition 2
primitive_function(until)

Transition 3
primitive_function(until)

A/=B

Statements
after the
UNTIL

Transition 4
primitive_function(until)

A=B

State 2
 data :

Transition 1
primitive_function(until)

Figure 6 - Conversion of ’while’ and ’until’ statements.

Procedural calls are a special category of language constructs. Converting procedural calls
generates a behavior graph with two states and one transition linking them. Associated with
the transition is a predicate that indicates that the cause of the state transition is a function,
whose name is an argument of the predicate. If the function has input and output parameters,
they should appear in behavior states. The input parameters must be in the preceding state,
and the output ones in the succeeding state.

Behaviour graphs resulting from the basic statements are linked in the same order as the
respective instructions sequence. The exceptions to this rule are the test, loop and some of the
special statements mentioned before. The connection of these instructions in a consistent
manner with the other statements has already been explained in the examples shown. Most of
the syntax conversion has been presented, but there are still some details in the conversion
that need to be addressed when building an automation system. For example removing null
transitions sometimes needed to keep the linking of the states coherent. Due to lack of space,
we will not address these items. Also, they are not important for the method explanation.

Operators
Operators are divided into four classes: logical, relational, arithmetic and sign operators.

Operators only need to be converted when they are part of an expression in an assignment
statement. In these situations, they are converted into behavior graphs. In this case we have to
consider two types of operators: binary operators, and unary operators (see Figure 7). Both
types of operators are converted into a behavior graph, where the arguments correspond to
data objects in the preceding state, and a new data object is created having the result of the
operation (for example obj1 in Figure 7). Operators are considered as primitive functions.

State 1
 data : A ; B

State 2
 data : obj1 (value:
A op B)

Transition 1
primitive_function(op)

(a) Binary operator : A op B

State 1
 data : A

State 2
 data : obj1 (value:
op A)

Transition 1
primitive_function(op)

(b) Unary operator : op A

Figure 7 - Conversion of binary and unary operators.

Sub-Programs
A final group of language constructs relates to sub-program definitions. These are divided

in two main types, functions and procedures. The difference is that functions always return a
value, while procedures may or may not return a value. Function and procedure definitions

are the language constructs that describe the sub-program interface and behavior, while the
declaration defines the sub-program interface. These are converted into FBCR functions.

Sub-program definitions have two different parts, a declarative part and a body part. The
declarative part is where the sub-program is declared again (if it has been declared before),
and where other declarative items are placed. Therefore, these are converted to data objects,
data classes, and sub-program declarations (if there is any). Data objects are converted into
input, output and auxiliary data objects accordingly to their functional role in the sub-
program. Data classes are added to the data class taxonomy, and new sub-program
declarations give origin to new FBCR functions.

The body part comprises the language instructions, and describes how the sub-program
behaves. These instructions are converted into a behavior graph, which is then associated to
the ’behavior’ field of the function in FBCR.

Semantic Analysis
The last step in the automatic conversion method is the semantic analysis. In this step the

functions, data classes, data objects and behavior graphs are checked for consistency and
coherence. Some language specific checks are also made in this phase. We will make an
overview on some of the important issues of this phase.

Name checking is one of the things that must be done, and is usually done in this phase.
Mainly it consists on the checking of data objects, classes or functions with the same names,
within the same scope. When the semantic analysis discovers two items with the same name,
it can take two types of actions. The first one is to signal a semantic error to the user, giving
the task of solving it to the user. The other possible action is to check if the items are
compatible and to merge them. Sometimes the same function is declared in one place, and
defined in another one. This gives place to two functions, although they are the same
function. We developed algorithms to determine if the items are the same or if they refer to
different ones. We then use these methods, and in case they can not be merged, we present
the user this situation.

Another task in the semantic analysis is checking data class coherence. This is easily done
by inspecting the links between different data classes.

Data objects automatically created by the system must be completed with the knowledge
available. For example, if a data object in a behavior state does not have a data class, the type
of primitive functions and data objects responsible for its creation can be used to infer the
data object class.

The consistency of input, output and auxiliary data in functions must also be done. Along
with the existence of the functions referenced in the behaviour transitions. There are some
other issues, but most of them relate to the specific language that is being converted.

Experimental Results
The experimental results on the automatic case acquisition obtained so far have been
encouraging. We have built a knowledge base with 98 cases describing small scale
integration circuits ranging from counters, multiplexers, flip-flops, to arithmetic and logic
units and TTL integrated circuits. After gathering the needed knowledge and VHDL files we
have built the knowledge base in one day, with the VHDL to FBCR conversion being done in
few hours with an accuracy of 100%. We have also concluded that the conversion time of
VHDL code is directly related to the complexity of VHDL statements.

We have also done scalability experiences with the VHDL to FBCR converter. We
gathered the conversion times versus the number of code lines converted (see Figure 8), and
the percentage of time spent in each phase (see Figure 9). To test it we used the same VHDL
function and replicated it with different names, this way the code being converted increases

but the type of statements stays the same. These experiments were performed in a Pentium II
233MHz, with 64MB of memory running Windows NT. CREATOR II is developed in C++.

0

5

10

15

20

0 100

200

300

400

500

600

700

800

900

1000

1100

Code Lines

S
ec

o
n

d
s

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Total

Figure 8 –Time (in seconds) spent converting VHDL files versus the number of lines of code in the VHDL file.

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000 1200
Code Lines

%
 o

f
C

o
n

ve
rs

io
n

 T
im

e

Lexical

Syntactic

Semantic

Figure 9 –Percentage of time that each phase takes when converting VHDL files, versus the number of code
lines.

From the results presented in Figure 8 we can see that the conversion time increases in
linearly. We can also see that the syntactic analysis stays almost constant, showing the
efficiency of the process. In the opposite side is the lexical analysis that increases with the
number of code lines converted. This observation comes from the constant increase of the
number of the number of tokens to be parsed. This increase is linear to which corresponds a
linear increase in the time spent doing the lexical analysis. These observations are confirmed
by the graphic of Figure 9. This graphic shows the percentage of conversion time spent in
each phase. The increase of the percentage of time spent in the lexical analysis is due to the
increase of the number of tokens, which is much higher than the increase of the number of
functions to be converted.

Conclusions and Future Work
In this paper, we presented a method for automated case acquisition in the domain of
software design. This method converts procedural programming files into cases in the FBCR.
This case description language has been developed specifically for procedural software
design. The availability of a huge number of software designs in an electronic format,
together with the automated process of case acquisition, make the development of a case
library much faster. The knowledge engineer in charge of building the case library has only
to manage the case acquisition process, instead of doing all the work.

The conversion method presented has been used successfully to convert files in VHDL
into FBCR cases. From the experimental results we can see that the method converts 1000
lines of VHDL code in less than 16 seconds, which is much faster than a human being can
do. Conversion time grows in a linear way concerning the number of lines converted.

Regarding the various phases of conversion, we can see from the experimental results that
with the increase of the number of lines of code the semantic analysis time decreases and the
lexical analysis time increases. The syntactic analysis time decreases slightly with the
number of code lines. From the experimental results we see that the lexical analysis
algorithm must be improved. The semantic analysis process takes most of the conversion
time, which is excepted due to the number of coherence checks that must be done to the
FBCR functions, data objects and data classes created.

So far we have implemented the VHDL to FBCR converter module, the Knowledge Base
creation and maintenance mechanisms, and part of the CBR module (problem definition and
elaboration, and case retrieval). We are know implementing the case adaptation module and
the next and final step is the implementation of the solution verification module.

References
Althoff, K., Birk, A., Wangenheim, C., and Tautz, C., 1997. Case-Based Reasoning for

Experimental Software Engineering. IESE-Report No. 063.97/E. Publication by
Fraunhofer IESE.

Finnie, G., Wittig, G., and Desharnais, J., 1997. Estimating Software Development Efforts
with Case-Based Reasoning. Proceedings of the International Conference on Case-Based
Reasoning (ICCBR 97), Providence - Rhode Island, EUA.

Fouqué, G., and Matwin, S., 1993. Compositional Software Reuse with Case-Based
Reasoning. Proceedings of the 9th Conference on Artificial Intelligence for Applications
(CAIA’93), Orlando, USA. IEEE Computer Society Press.

Goel, A., 1991. A Model-Based Approach to Case Adaptation. Proceedings of the 13th

Annual Conference of the Cognitive Science Society, CogSci91, Chicago, Illinois, USA.
Goel, A., 1992. Representation of Design Functions in Experience-Based Design. Intelligent

Computer Aided Design. D. Brown, M. Waldron, H. Yosnikawa (Eds.), Elsevier Science
Publishers.

Gomes, P., and Bento, C., 1997. A Case-Based Approach for Elaboration of Design
Requirements. Proceedings of the International Conference on Case-Based Reasoning
(ICCBR 97), Providence - Rhode Island, EUA.

Kolodner, J., 1993. Case-Based Reasoning. Morgan Kaufman.
Maher, M., Balachandran, M., and Zhang, D., 1995. Case-Based Reasoning in Design.

Lawrence Erlbaum Associates.
Smyth, B., Keane, M., 1995. Experiments on Adaptation-Guided Retrieval in Case-Based

Reasoning. In Proceedings of the International Conference on Case-Based Reasoning,
Sesimbra, Portugal.

Tautz, C., and Althoff, K., 1997. Using Case-Based Reasoning for Reusing Software
Knowledge. Proceedings of the International Conference on Case-Based Reasoning
(ICCBR 97), Providence - Rhode Island, EUA.

