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Abstract: In this paper the modelling capabilities of a recurrent neural network and the 
effectiveness and stability of the output regulation control theory are combined. The control 
structure consists in a neural based indirect adaptive control scheme, being the main goal to 
provide a viable practical control strategy suitable for real-time implementations. This control 
scheme was applied to the distributed solar collector field at Plataforma Solar de Almería, 
Spain. Experimental results obtained at the solar power plant are presented showing the 
effectiveness of the proposed approach. 
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1. INTRODUCTION 
The main control requirement in a solar power plant is 
to maintain the outlet oil temperature of the collector 
field at a constant pre-specified value. One of the main 
features of the plant is that its primary energy source, 
the solar radiation, can not be manipulated by the 
control system. Moreover, since the solar radiation 
changes substantially during plant operation, due to 
the daily solar cycle, atmospheric conditions such as a 
the cloud cover, humidity and air transparency, this 
leads to significant variations in the dynamics of the 
field (e.g. the response rate and time delay), 
corresponding to different operating conditions. 
Therefore, it is difficult to obtain a satisfactory 
performance over the whole operating range with a 
fixed linear controller. 

One possibility to overcome these difficulties is to use 
adaptive control schemes, on the basis of local linear 
models of the plant, which mimic changes during the 
operation and are used for self-tuning or within 
predictive control schemes (Camacho et al, 1992; 
Camacho et al, 1994; Pickhardt and Silva, 1998). The 
distributed solar collector field is a process where the 
main disturbances, the solar radiation and the inlet oil 
temperature, are measurable. Following this idea Coito 
et al (1997) have presented simulation and 
experimental results concerning the design of a 
predictive controller (MUSMAR), and Cardoso et al 
(1999) have presented a fuzzy supervisor strategy that 
takes into account this measured disturbances.  

Others have suggested intelligent control techniques, 
such as neural networks (Arahal et al, 1997) or fuzzy 
systems (Berenguel et al, 1997), (Rubio et al, 1995), 
(Oksanen and Juuso, 1999). Another possible 
alternative could be the commissioning of a switching 
controller using different models of the plant for 
different operating points. Henriques et al (1999) have 
suggested a control strategy based on a PID control 
design with a fuzzy logic-switching supervisor. The 
supervisor is built upon a Takagi-Sugeno fuzzy model 
to implement an on-line switching between several 
PID controllers according to the real time measured 
conditions.  

 
Recently, neural networks (NN) have attracted a great 
deal of attention owing to their ability to learn non-
linear functions from input-output data examples 
(Cybenko, 1989). Applied to control field, NN are 
essentially non-linear models that can be useful to 
solve non-linear control problems (Hunt and 
Zbikowski, 1997). Due to their intrinsic abilities to 
incorporate time, recurrent neural networks (RNN), 
introduced by Hopfield (1982) and further developed 
by some other authors (Rovithakis and Christodoulou, 
1997), (Poznyak et al, 1999), (Kulawski and Brdys, 
2000) have some advantages with respect to static 
NN, mainly for modelling dynamic processes purposes. 

In this paper a RNN is used to replace the unknown 
system, transforming the original problem into a non-
linear control problem suitable to be designed by non-
linear control techniques. In this context, the 
geometric approach has provided a variety of tools for 
the analysis and design of non-linear control systems.  
A well-known theory is the output regulation (OR) 
that aims to derive a control law such that the closed 
loop system is stable and, simultaneously, the tracking 
output error converges to zero. This technique leads to 
a straightforward method for solving non-linear 
control problems. However, the OR theory assumes a 
perfect model knowledge. Given the neural model 
plant mismatch, an on-line adaptation of neural 
networks weights is considered in order to improve the 
discrepancies between the output of a previous off-line 
model and the actual output of the system. By means 
of a Lyapunov analysis a stability condition for the 
weights updating is employed. 

The paper is organised as follows: section 2 gives a 
short description of the solar power plant. In section 3 
the proposed NN architecture and the associated off-
line and on-line learning laws are presented. The OR 
theory is reviewed in section 4 and the adaptive 
neural-control structure is introduced. In section 5 
some simulation and experimental results collected 
from the solar power plant are presented. Finally, 
section 6 concludes the paper. 
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2. THE SOLAR POWER PLANT 
The Acurex distributed solar collector field at 
Plataforma Solar de Almería (PSA) is quite well 
described in available literature (Kaltz, 1982; 
Camacho et al, 1992) and is located at the desert of 
Tabernas, in south of Spain. The field consists of 480 
distributed solar collectors arranged in 20 rows, which 
form 10 parallel loops. Each loop is 172 m long and 
the total aperture surface is 2672 m2. The plant is able 
to provide 1.2 MW peak of thermal power. A 
schematic diagram is shown in Fig. 1. 
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Fig. 1: Schematic diagram of the Acurex field. 

Each collector uses parabolic mirrors to concentrate 
the radiation in a receiver tube. Synthetic oil is 
pumped through the receiver tube and picks up the 
heat transferred through the tube walls. The cold inlet 
oil is collected from the bottom of the storage tank 
and is passed through the field by using a pump at the 
field inlet. The heated fluid is introduced into the 
storage tank to be used for electrical energy generation 
or feeding a heat exchanger of the desalination plant. 
The manipulated variable in the plant is the oil flow 
rate Qin being the main goal to regulate the outlet field 

oil temperature Tout at a desired value Tref. The main 

disturbances are the solar radiation Irr and the inlet oil 

temperature Tin. 

3. RECURRENT NEURAL NETWORKS 
The solar plant is assumed to be described in the form 
(1), 

xp(k+1)=ƒ ( xp(k), u(k) ) 
y(k) = C xp(k) 

(1)

where f:ℜnp×ℜnu→ℜnp defines a non-linear function. 

The vector xp∈ℜnp is the state of the process (assumed 

to be unknown and inaccessible), u∈ℜnu and y∈ℜny 
are, respectively, the process input and output.  

3.1 Proposed Recurrent Neural Architecture 
Given the approximation capabilities of RNN (Jin et 
al, 1999) it is assumed that there exist a RNN, 
described by (2) and shown in Fig. 2, that is able to 
describe the plant’s dynamics.  

xn(k)

xn(k+1) yn(k+1)

A q-1

u(k) B

D C

 
Fig. 2: Recurrent neural network structure. 

xn(k+1) = A xn(k) + D σ( xn(k) ) +B u(k) 
yn(k) = C xn(k) 

(2)

The vector xn∈ℜn is the output of the hidden layer, 

known as the network hyper-state, and yn∈ℜny is the 

network output. A∈ℜn×n, B∈ℜn×nu, C∈ℜny×n, D∈ℜn×n 
are interconnection matrices and the neural activation 
function σ(⋅) is the hyperbolic tangent function. This 
architecture can be seen as a modification of the 
original discrete time RNN proposed by Hopfield, with 
an additional exogenous input. On the other hand, 
this can be seen as a hybrid model, with a linear and a 
non-linear part.  

3.2 Parameter Estimation 
Off-line learning: As pointed out by Hagan and 
Menhaj (1994) the Levenberg-Marquardt is more 
efficient than other techniques when the network 
contains no more than a few hundred parameters. Due 
to its effectiveness this algorithm has been applied for 
the off-line training of the RNN. From this initial 
training phase results the network parameters, 
expressed in A∗, B∗, C∗ and D∗ matrices. 

On-line learning: Several training algorithms have 
been proposed to recursively adjust the network 
parameters in recurrent networks. Typical examples 
are the real time recurrent algorithm (Williams and 
Zipser, 1995), the dynamic backpropagation (Narendra 
and Parthasarathy, 1991), and the backpropagation 
trough time (Werbos, 1990). Unfortunately few 
stability studies were addressed considering the 
weights updating. Henriques et al (2001), based on 
Lyapunov stability theory, proposed a stable on-line 
learning law for the RNN based on the dual Kalman 
strategy, where both the hyper-state and the 
parameters are updated. To this aim it is assumed 
that the matrices A and C are static (off-line 

evaluated) and only the matrices B and D are to be 
updated on-line. The updating law is given by, 

∆W(k)= M(k)-1 ϕ(k)T P A C ε(k) (3)

where ε(k)∈ℜny is the identification error 

W(k)∈ℜnw =[ →B (k) →D (k) ]  is a vector consisting of 

weights (nw) of matrices B(k) and D(k) at each time 

instant k, A is assumed to be a Hurwitz matrix, 
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M(k)∈ℜnw×nw is given by (4) and P∈ℜn×n is obtained 
from the discrete time Lyapunov equation (5). 

M(k)= [ I +1
2  ϕ(k)T P  ϕ(k) ] (4)

ATP A-P=-Q (5)

ϕ(k)∈ℜn×nw is an information matrix, based on σ(xs(k)) 

and u(k). Q∈ℜn×n is a user choice positive definite 

matrix and I is an identity matrix of appropriate 
dimensions. Additionally, it is assumed that the 
hyper-state xn(k) is unknown and is to be determined 
by an observing procedure (Henriques et al, 2001). For 
this reason the pair (A, C) is assumed observable. It is 
important to stress that, the network does not 
actually behave as an observer, in the strictest sense. 
In fact, it is not expected to estimate correctly the 
system state xp (which is assumed unknown), but only 

one possible representation in state space form xn for 
the system, such that the output of the neural model 
yn converge to the actual output plant y. 

4. NON-LINEAR OUTPUT REGULATION  
The OR problem for linear systems was solved by 
Francis (1977). For non-linear discrete time systems, 
Castillo et al (1993), using the zero output constrained 
algorithm (Monaco and Normand-Cyrot, 1987), has 
shown that the solution for the problem is reduced to 
the solution of transcendental non-linear equations, 
which represent the discrete time counterpart of the 
differential and transcendental equations, found for 
the continuous time systems by Isidori and Byrnes 
(1990).  

4.1 Problem Formulation 
Given a system in the form (1) and considering an 
additional external variable w(k), the discrete time 
system is given by (6). 

x(k+1)=f { x(k), u(k, w(k) }  
y(k) = C x(k) 

w(k+1)=s { w(k) } 
e(k+1)=h { w(k), x(k) } 

(6)

The vector w∈ℜny defines the disturbances and/or the 
reference signal generated by a so-called exosystem, 

and e∈ℜny defines the output tracking error. Given 
this extended system, it is desired to find conditions 
such that a controller in the form (7), 

u(k)=γ ( x(k), w(k) )  (7) 

where γ:ℜn×ℜny→ℜnu is a smooth mapping satisfying 
the following two requirements. 

S1: The equilibrium point x=0 of dynamics  

x(k+1) = f ( x(k), γ(x(k),0) ) (8) 

is locally exponentially stable; 

S2: There exists a neighbourhood of the origin (0,0) 
such that, for each initial state (x(0),w(0)), the solution 
of the closed loop system (9), 

x(k+1) = f ( x(k), γ(x(k),w(k)), w(k) ) 
w(k+1)=s ( w(k) ) 

(9) 

satisfies the error condition (10). 

lim
k→∞  ( C x(k) - r(w(k)) )=0 (10) 

where the desired output (reference) is generated by 
the exosystem  

yd(k)= r( w(k) )  (11) 

Castillo et al (1993) have shown that the state 
feedback discrete time regulator problem is locally 
solvable if there exist two mappings x=π(w) and 

u=c(w), satisfying (12). 

π( s(w) )=f ( π(w), c(w), w ) 
0 = C π(w) - r(w)  

(12) 

Once evaluated the mappings x=π(w) and u=c(w), it 
is easy to show that the particular control law given 
by (13), satisfies both requirements S1 and S2.  

u(k)=γ(x,w)=c(w)+K ( x-π(w) )  (13) 

K is a matrix of appropriate dimensions that places 
the eigenvalues of the first order approximation of the 
non-linear state space model in desired locations. As 
given by equation (12), the solution of the output 
regulator problem is reduced to a set of non-linear 
difference equations, known as regulator equations.  

4.2 Solution of Regulator Equations 
Except in a very few cases, it is difficult to derive an 
analytical solution to the mappings x=π(w) and 

u=c(w), that solves the regulator equations. One 
possibility is to solve approximately the regulator 
equations. Castillo et al (1993) have presented and 
derived conditions for the existence of an approximate 
solution for the discrete time case based on a 
polynomial expansion. Based on a Taylor series 
expansion as well, (Huang and Rugh, 1992) have 
proposed an approximation method for the continuous 
case. The same authors have presented an alternative 
approximation (Huang and Rugh, 1999) using a type 
of RNN, analogous to a cellular network. With a 
correct choice of parameters, the RNN is able to solve 
the regulator equations, in the least square sense, by 
means of a gradient descent minimisation. 
Based on a class of RNN, Henriques et al (2000), have 
proposed an approximation method to solve the 
regulator equations. The proposed algorithm leads to a 
pole placement design ensuring that the solution to 
the regulator equations converges if the eigenvalues of 
a given matrix are chosen to be stable. 

4.3 Adaptive Control Structure 
The block diagram of the proposed control structure is 
shown in Fig. 3. Based on the identification error, 
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en(k)=yn(k)-y(k) the learning law (section 2) updates 

the neural parameters, W, and states, xn.  

u=Qin

W

y=Tout

yd=Tref

Unknow
System

xn

yn

Neural Networks

Regulator
Exosystem

Acurex Field

 
Fig. 3: Proposed control structure. 

The output regulator design for the NN ensures the 
asymptotic convergence of the neural tracking error, 
ed(k)=yn(k)-yd(k). If the parameters of the neural 
model are adapted in the presence of parametric 
variations or uncertainties in the plant dynamics, the 
system tracking error will converge to zero. In fact, the 
system tracking error, e(k)=y(k)-yd(k), can be written 
as (14) 

e(k)=y(k)-yn(k)+yn(k)-yd(k) (14) 

Since the regulator assures (15) 

lim
k→∞  ( yn(k) - yd(k) )=0 (15) 

the overall error will converge provided that the 
identification error also converges, i.e, (16). 

lim
k→∞  ( y(k) - yn(k) )=0 (16) 

5. EXPERIMENTAL RESULTS 
The experiments were carried out in the Acurex Solar 
Collectors Field of the Plataforma Solar de Almería on 
14 and 15 June 2001. The proposed control was 
implemented in C code and operates over a software 
developed at PSA (López, 1996) also in C code. The 
effectiveness of the developed approach was first tested 
using a non-linear distributed parameter model of the 
Acurex field, developed at the University of Sevilla 
(Berenguel et al, 1993). The sampling time was 15 
seconds and the output temperature (Tout) was 
considered as the maximum temperature of all the 
loops (another usual strategy is to assume the average 
value). 

5.1 Off-line Learning 
The distributed solar collector field is a process where 
the main disturbances, the solar radiation and the 
inlet oil temperature, are measurable. Therefore, it 
makes sense to use this knowledge in the design of a 
feedforward compensator. In the present work the 
relation (17), characterising the steady state 
behaviour, was used.  

Qin= 
 11423×102 Irr 

 (903-0.67 Tref) (1820+3.47 Tref ) ( Tout-Tin)
  (17) 

A schematic diagram of the compensator is shown in 
Fig. 4. 

Tout
Compensator Acurex Field

Irr Tin

Tref Qin

 
Fig. 4: Feedforward compensator. 

To obtain an initial estimation for the neural network 
parameters a number of test inputs were considered. 
The goal in designing the test inputs was to cover the 
operational range of the plant to as great and extend 
as possible. The number of training patterns, hidden 
neurons and input sequence are all chosen by an trial 
and error approach since there is still no reliable 
method available for determining these parameters 
systematically. It was found that a selection of two 
hidden neurons, n=2, is suitable to obtain a good 
model for the Acurex plant. As mentioned, the 
Levenberg-Marquardt algorithm was applied to 
obtaining an initial value for the matrices A, B, C, and 

D, defined in (2). Fig. 5 shows the off-line modelling 
results considering the experimental data set collected 
on 14 June 2001. 
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(a) Actual output versus neural output. 
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(b) Solar radiation and inlet oil temperature. 

Fig. 5: Off-line neural modelling (14 June 2001). 
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In Fig. 5 the good performance of the learning 
methodology is clearly illustrated. As can be seen the 
output of the neural model yn performs considerably 

well in tracking the actual output  y=Tout. 

5.2 Experimental results 
The present experiment was carried out on 15 June 
2001 and is intended to show the behaviour of the 
control system when several changes in the operation 
point, by setting different reference temperatures, are 
introduced. The effect of strong disturbances caused 
by large passing clouds, which produce drastic changes 
in the direct solar radiation level was tested, as well as 
the effect of inlet oil temperature variation. 
As can bee seen in Fig. 6 the control behaviour is 
quite acceptable. The response presents almost no 
oscillations neither overshoots and after an initial 
transient phase the outlet oil temperature stabilises 
close to the reference. 
The disturbance rejection capabilities of the controller 
are also acceptable, shown by a change in the inlet oil 
temperature, carried out at instant 15h00m. 
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(a) Reference, output temperature and pump flow rate. 

10 11 12 13 14 15 16
0

100

200

Time [hours]

Tin
[oC]

Irr
[w/m2]Irr

Tin

200

400

600

800

 
(b) Solar radiation and inlet oil temperature. 

Fig. 6: Experimental results obtained on 15 June 2001. 

Although, it should be expected a zero steady state 
error. The actual state steady control error is justified 
by the lower gain characteristics of the on-line learning 

procedure. Since it was not possible to adjust during 
operation both learning and controller parameters 
their choice were not the most favourable. In future 
experiments it is expected to improve the learning 
procedure by increasing the learning gain. 
In Fig. 6 the behaviour of the controlled system when 
intermittent clouds occurred (11h50m and 15h40m) 
can also be analysed. They produce changes in solar 
radiation that disturb the outlet oil temperature level 
during the operation. As observed the control results 
are very acceptable in this situation. 

From several simulations, tested using the non-linear 
distributed parameter model of the Acurex field, 
(Berenguel et al, 1993), together with the experiments 
it can be concluded that the output regulation neural 
strategy performs according to its design: by on-line 
adjusting the neural parameters it is possible to reduce 
gradually model plant mismatches contributing to the 
convergence of tracking error steady-state offsets to 
zero. Moreover, it provides a control law such that the 
closed loop system is stable. 

6. CONCLUSIONS  
A non-linear control scheme based on a recurrent 
neural network has been implemented in real-time and 
applied to a distributed collector field in a solar power 
plant. The process is characterised by different 
operating conditions, depending on the changes in 
dynamics caused by variations in the solar radiation, 
reference temperature and plant characteristics. 
The proposed strategy is a systematic one, which can 
be easily applied to a wide variety of processes with a 
small initial knowledge of the plant model. To cope 
with the inaccuracy of the off-line estimated neural 
parameters and possible changing dynamics, an 
adaptive strategy was employed providing an on-line 
scheme, ensuring stability and convergence properties. 
In this sense, the neural model can adaptively learn 
the system uncertainties and the regulator law adjusts 
the control action in order to guarantee a robust 
asymptotic error convergence. 
Experimental results confirm the simulation results 
and show that the system has robustness with respect 
to changes in solar radiation, inlet oil temperature and 
operating conditions. This experimental study has 
shown that neural networks are an important 
methodology for many industrial control applications. 
The simplicity and reliability of neuro-control gives 
high potential for the development of efficient and 
intelligent control systems.  
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