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ABSTRACT 
A neural model-based predictive control scheme is 

proposed for dealing with steady-state offsets found in 
standard MPC schemes. This structure is based on a 
constrained local instantaneous linear model-based 
predictive control methodologies together with a static 
offset pre-filter for assuring free tracking errors and 
disturbance rejection features. A non-linear state-space 
neural network architecture trained offline is used for 
modelling purposes, from which linear models are 
extracted by Taylor series expansion at each sampling 
time. Results from experiments show that this extended 
MPC scheme ensures good tracking and disturbance 
rejection performances. 

Keywords: Non-linear systems; recurrent neural 
networks; model predictive control; constrained 
optimisation. 

1 INTRODUCTION  

In recent years, there has been a growing interest in 
developing and applying model-based predictive control 
methodologies (MPC) in solving practical control 
problems, mostly in the processing industries. The 
success of MPC techniques can be attributed mainly to its 
inherent abilities to handle either multivariable input or 
multivariable output constraints [1], while requiring that 
the resulting control sequence is, in some way, optimal 
with respect to a prespecified cost function. 

In the kernel of all MPC methodologies lies the moving 
horizon approach proposed in the early 1960’s by Propoi, 
1963 [2]. However, it was not until the late 1970’s with 
the works of Richalet et al. [3] and Cutler and Ramaker 
[4] that successful implementations of model predictive 
control schemes in the processing industry were reported, 

making use of a linear model description of the 
underlying plants. Given the non-linear nature of most 
industrial processes, some research efforts have been 
placed in the last few years in building non-linear model 
predictive control (NMPC) schemes, as testified by the 
considerable number of papers found in the literature (see 
e.g. [5], [6] and [7]). 

As in many non-linear systems it is not an easy task to 
come up with an accurate enough physical model of the 
plant, which is required by MPC techniques, one may 
turn to black-box models to describe the system’s non-
linear dynamics. Among available structures [8], neural 
networks have proved to work quite well in the 
identification of non-linear systems on the basis of input-
output data [9]. Despite neural networks are well known 
universal approximators [10], [11], they are quite 
dependent on the quality of the data set. This feature 
together with a bounded number of iterations, within the 
training phase, leads inexorably to a model mismatch, 
which in turn is responsible for a static error or, in worst 
case, giving rise to the instability of the feedback system.  

In this paper we address the design of an extended 
constrained local instantaneous linear model predictive 
control (LIMPC) scheme based on state-space neural 
networks models, assuring that control errors are driven 
to zero in a finite time and, at same time, exhibiting good 
disturbance rejection performance. Within this scope, to 
prevent from static offsets a pre-filter is incorporated in 
the control loop in such a way that, particularly, in the 
vicinity of the set-points the reference signals fed to the 
MPC structure are previously changed on basis of current 
deviations. Since the control error is weighted by a 
decreasing exponential, as a function of the control error 
itself, only small errors are actually taken into 
consideration within the static offset compensator and 
thus undesirable windup effects are avoided. 
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2 RECURRENT NEURAL NETWORKS 
MODELLING 

In the wake of the recovered interest in the field of 
artificial neural networks, following a period of some 
apathy during 1970’s, Narendra and Parthasarathy in a 
seminal paper [12] have proposed to use neural networks 
in the context of identification and control of non-linear 
systems. Since then, and particularly in the last few 
years, neural networks have become a reliable conceptual 
tool for describing non-linear systems dynamics given 
input-output measurements collected from the plant. 

Neural networks essentially consists of a number of 
neurons, known also as processing element or cell unit, 
which are connected to each other by means of a linear or 
non-linear activation function. Weights playing a role 
analogous to the density of neurotransmitters in 
biological synapses being adjusted in the learning stage 
quantifies the synaptic strength between neurons. 

Topologically neural networks can be arranged in a 
feedforward or recurrent way. In a feedforward network 
synaptic signals flow via unidirectional connections 
between consecutive layers, while in the recurrent case it 
is allowed feedback loops in a number of cell units. For a 
comprehensive review on neural networks the reader is 
referred to [13], [14].  

Consider that a description of its dynamics is required 
for the general non-linear discrete-time system given in 
(1) and that is achieved by finding an appropriate non-
linear mapping on the basis of neural networks. 

( ) ( ) ( )( )
( ) ( ) ( )( )kukxgky

kukxfkx
,

,1
=

=+
 (1) 

where nmnf RRR →×:  and pmng RRR →×:  are 

appropriate non-linear functions; ( ) nkx R∈ is the current 

state vector; ( ) mku R∈  is the current control vector; 

( ) pky R∈ denotes the current output vector. 

For this purposes, we use in this paper the recurrent 
neural network architecture depicted schematically in 
Figure 1. The choice for this class of neural networks was 
made in straight connection to the fact that the 
incorporation of feedback enables to describe the plant 
dynamics and, moreover, that state-space neural 
predictors are not only less demanding with respect to the 
number of parameters than input-output neural networks 
[15] but they are also quite suitable for using within the 
MPC framework. 

As such, the problem of finding an appropriate model 
of a given system is here converted into looking for a 
convenient number of neurons for each layer and 
subsequently in learning a non-linear mapping, which is 

established in a supervised way, using input and output 
data. 
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Figure 1: Recurrent neural network architecture. 

In this architecture ( ) nk R∈ξ  is denoted the current 

neural state vector, ( ) pky R∈ˆ  is the predicted output 
vector, FDCBA WWWWW ,,,,  and HW  are weight 

matrices of appropriate dimensions, 1−q  is the backward 
shift operator and ϕ  is the hyperbolic tangent activation 
function. Its dynamics is described in the state-space 
form as follows: 
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( ) ( )kWky C ξ=ˆ  

(2) 

The neural network above is trained offline in the 
conventional supervised way by minimizing a sum of 
squared prediction errors (3) with respect to the 
network’s weights using the Levenberg-Marquardt 
algorithm. 
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According to the Levenberg-Marquardt method 
weights are updated iteratively as follows: 

( ) ( )[ ] ( )iiiiTii WJWJWJWW ∇+−= −+ 11 Iλ  (4) 

where ( )WJ  is the cost-function, ( )WJ∇  denotes its 

gradient, +∈ Rλ  and I is an identity matrix of 
appropriate dimensions. 

This algorithm has the very attractive feature that as λ  
is increased it moves towards the steepest descent method 
with the learning rate given as λ/1 , while decreasing λ  
the algorithm becomes Gauss-Newton. Therefore, the 
algorithm provides a quite interesting compromise 
between the speed of Newton’s method and the 
guaranteed convergence of steepest descent algorithm 
[16]. A straightforward strategy to select and update λ  
can be found in [17]. 



3 EXTENDED LIMPC FORMULATION 

Model-based predictive control is a discrete-time 
technique for which an explicit dynamic model of the 
plant is used to predict the system’s outputs over the 
finite prediction horizon P  when control actions are 
manipulated over the finite control horizon M . 

At time step k , the optimiser computes on-line the 
optimal open-loop control actions sequence in such a way 
that the predicted outputs follows a pre-specified 
reference while taking into account possible hard and soft 
constraints. From the computed sequence, only the 
control action ( )kku |  is actually implemented on the 
plant over the time interval [ )1, +kk  (Figure 2). Next, 
the prediction and control horizons are shifted ahead by 
one step and a new optimisation problem is solved by 
taking into consideration the most recent measurements 
from the plant, and the control actions fed to the plant in 
the previous time step, ( )kku | . 
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Figure 2: Receding horizon implementation of MPC. 

Let the first order Taylor expansion of a general non-
linear system be described in the discrete-time state-space 
form as follows: 

( ) ( ) ( )
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+Γ+Φ=+ η1  (5) 

where nn ×∈Φ R , mn ×ℜ∈Γ and np×∈Ξ R  are the state, 
input and output matrices, respectively; nkx R∈)( is the 

state vector, ( ) mku R∈  is the control vector and 

( ) pky R∈  the output vector, as mentioned above; 
nR∈η  is a constant vector related to the first term of 

the Taylor series. 

Assuming a 2-norm for the cost functional and taking 
into consideration linear constraints on the inputs and 
outputs of the system together with bounds on the rate of 
change of control actions, the open-loop optimisation 
problem can be stated as follows: 
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subject to the system dynamics (5) and to the following 
inequalities: 
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with pp
iQ ×∈ R , mm

iR ×∈ R , mm
iS ×∈ R , mu R∈∆  is 

the control increment vector and pr R∈  is the reference 
signal. 

Given the convexity of the optimisation problem above 
(quadratic objective function and linear constraints) any 
particular solution is a global optimum and, hence, the 
open-loop optimal control problem can be restated as a 
quadratic programming problem (8) and (9). 

minimise ( ) uHuuhuJ TT ~~
2
1~~ ∆∆+∆=∆  (8) 

Subject to buAT ≤∆ ~  (9) 

where ( )pPm Mm MA 24 +×∈ R , ( )pPm Mb 24 +∈ R  and 
m Mu R∈∆ ~  is denoted the extended control increment 

vector over the control horizon. The cost function 
gradient m Mh R∈  and its Hessian m Mm MH ×∈ R  are 
given by: 
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In order to prevent from the effect of model/plant 
mismatches, which are responsible for persistent offsets, 
we propose in the present paper the incorporation of a 
pre-filter (compensator) within the control loop 
according to Figure 3. 
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Figure 3: Extended MPC structure. 

This element described altogether by (13) works 
somehow as an integrator where the control error is 
previously weighted by a decreasing exponential, as a 
function of the current error, before being added up to the 
cumulative error. By affecting the control error with a 
factor like this, it enables that only in a small 
neighbourhood of the system’s current set-point the 
contribution to the cumulative error is significant. Next, 
this summation is added up to the true reference signal 
before being supplied to the MPC structure. 

Additionally, the compensator should be able to reset 
the cumulative error whenever a changing in the true 
reference takes place, to prevent the MPC structure from 
receiving an unintended compensated reference, which 
could ultimately be responsible for windup outcomes. 
This task is here accomplished by affecting the previous 
cumulative error ( )1−kϑ  with a Dirac delta function, 
δ , having as argument the difference between the 
current and next set-points. 
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where ( )ke  is the current tracking error and 0\+∈ Rα  
is the coefficient of the exponential function. The tuning 
of this parameter is performed so that only very small 
absolute errors have significant contribution on the 
cumulative error. 

4 EXPERIMENTS 

To assess the feasibility of the proposed extended 
model predictive control strategy we have carried out 
some experiments on a bench three-tanks system. The set 
of experiments included a modelling stage by means of 
state-space neural network identification procedure and 
some control studies devoted to tracking and rejection to 
non-stochastic and unknown output disturbances. 

4.1 Process Description 

The bench three-tanks system (Figure 4) consists of 
three plexiglas cylindrical tanks with identical cross-
section supplied with distilled water, in the case, whose 
liquid levels, 1h , 2h  and 3h , are measured via 
piezoresistive transducers. The tank 3T  is connected to 
the other two tanks by means of circular cross section 
pipes provided with manually adjustable ball valves. In 
tank 2T  is located the main outlet of the system, which is 
connected to the collecting reservoir through a circular 
cross-section pipe provided with an outflow ball valve, as 
well. Additionally, at each tank lies another connection 
to the reservoir, enabling the injection of particular 
disturbances under the form of leaks. Two diaphragm 
pumps are available for pumping distilled water from the 
reservoir to 1T and 2T  tanks. 

Pump 1 Pump 2

h2
h3h1

T1 T3 T2

 

Figure 4: The three-tanks system schematics. 

 
4.2 Results 

For identification purposes, open-loop experiments 
have been carried out on the bench process in order to 
collect data to be used in the parameter estimation stage. 
In these experiments, step and pseudo random binary 
signals were applied to the system, with a sampling 
interval chosen as 1 second. Two of the collected records 
were picked for training the neural network and for 
subsequent cross-validation. 



The structure of the neural network used for modelling 
purposes (Figure 1) is characterised by two neurons both 
in the input and output layers and three neurons in the 
hidden layer. After being trained, this neural model was 
able to predict fairly well the behaviour of the three-tanks 
system, as can be inferred from figures below. 
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(a) System’s outputs. 
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(b) Input signals. 

Figure 5: Validation data set. 

This non-linear neural predictor, forms thus a seed for 
all local instantaneous linear discrete-time models used 
within the model-based predictive control framework, 
which are extracted at each sampling time by means of 
Taylor series expansion. 

For control purposes of the three-tanks system, the on-
line open-loop constrained optimal control problem 
described by (8) and (9) is solved with a sampling of 1 
second and choosing the prediction horizon as 3=P  
time steps and the control horizon as 1=M  time steps. 
The weighting matrices in the objective functional (6) 
were chosen as: 
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(14) 

Given the existence of physical bounds on the flow 
rates supplied by the existing pumps and a finite 
maximum level for each of the tanks and, additionally, 
assuming upper and lower bounds in the control actions 
increments we impose the following constraints in 
solving the open-loop optimisation problem: 

[ ] [ ]TT x 6.06.06.0000 ≤≤  m 

[ ] [ ]TT u 16.685.500 ≤≤  l/min 

[ ]Tu 96.096.0≤∆ l/min 

(15) 

For assessing the true capabilities of the standard 
LIMPC without the incorporation of any offset 
compensation, a free-disturbance tracking experiment 
was conducted on the bench three-tanks system being the 
results plotted in Figure 6. As can be observed from this 
figure, the standard LIMPC scheme though guaranteeing 
a stable response with no constraints violation is not very 
impressive, at all, in terms of static offsets. These 
remnant small magnitude deviations are attributed 
mainly to modelling errors and also, most likely, with a 
comparative lesser contribution, to model degradation 
stemming from the first order Taylor expansion. 
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(a) Set-points and outputs. 
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(b) Control actions. 

Figure 6: Standard model-based predictive control. 



In order to prevent from static offsets or, at least, 
mitigate its magnitude, a pre-filter was incorporated into 
the standard LIMPC structure, according to Figure 3. 
Experimental results choosing the compensator’s 
exponential coefficient as 150=α  and considering the 
same controller’s parameters as those used in the 
standard LIMPC scheme are displayed in Figure 7. As it 
is clearly observed, the incorporation of an offset 
compensator into the control loop, by changing 
appropriately the reference signals supplied to the 
standard LIMPC structure contributes decisively to 
remove static offsets from the control system in a smooth 
way and in a finite time, as soon as the plant is brought 
to the set-point’s neighbourhood. Furthermore, since 
control actions are carried out entirely by the standard 
model predictive controller violations of constraints are 
not allowed, even if the manipulated reference were 
laying outside the admissible region, which might occur 
for reference signals close to the corresponding bounds. 
On the other hand, windup behaviours in the 
manipulated references are not expected because changes 
in the reference signals are not very significant when the 
system’s outputs are far from its set-points, due to the 
decreasing exponential factor contribution. 
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(a) Set-points and outputs. 
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(b) Control actions. 

Figure 7: Extended model predictive control– tracking. 

Next, to verify the control system’s robustness to non-
stochastic output disturbances we have carried out an 
experiment where two leaks were injected, not 
simultaneously, on tanks 1T and 2T . Thus, at time 120 
seconds, the ball valve in the circuit that connects tank 

1T  to the bottom reservoir was partially open (30°) up to 
time 170 seconds, when it was closed totally and, by this 
way ceasing the disturbance. Next, from instant 200 
seconds up to 250 seconds a similar procedure was 
carried out on tank 2T  and so an output disturbance was 
injected in this particular tank. In both cases, the set-
points were kept unchanged over the entire experiment. 
As can be observed in Figure 8, the proposed control 
scheme is quite good in rejecting non-stochastic outputs 
disturbances, regardless the output being disturbed, 
bringing the system back to the set-point without any 
oscillations and, in addition, with no constraints 
violations either in the liquid levels or in the control 
actions, as would be expected since the main control 
structure is implemented by the LIMPC. However, for 
larger magnitudes of the injected disturbances it is 
expected a steady-state offset imposed by the existing 
bounds on the flow rates pumped by both pumps. 
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(a) Set-points and outputs. 
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(b) Control actions. 

Figure 8: Extended model predictive control– disturbance 
rejection. 



5 CONCLUSIONS 

In this paper we have presented a recurrent neural 
model-based predictive control scheme assuring free or, 
at least, negligible steady-state offsets, in case of noisy 
systems, In order to mitigate steady-state offsets arising 
in standard MPC schemes due to model/plant 
mismatches and to model degradation in the linearisation 
step, a pre-filter with an integral behaviour is 
incorporated into the control loop. As control errors are 
weighted by a decreasing exponential, as a function of 
the errors themselves before entering the integrator 
section, only small errors play a significant role in 
changing appropriately the reference signal provided to 
the MPC unit. 

Results from experiments have shown that the 
incorporation of the proposed pre-filter into the control 
loop together with the MPC scheme ensures indeed good 
tracking performances, despite modelling errors and, in 
addition, is also able to reject non-stochastic output 
disturbances in a very satisfactory way. This provides 
some insights on the proposed control system’s 
robustness. 
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