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Abstract 
A neural network predictive control scheme is compared with a first 
principle model predictive control strategy when controlling a three tanks 
system. The neural network approach involves a recurrent Elman network 
for capturing the plant’s dynamics being the learning stage implemented 
on-line using a modified version of the back-propagation through time 
algorithm. In the first principle model predictive control scheme a real-
time open-loop linear constrained optimisation problem is solved with a 
standard quadratic programming algorithm. 
Experimental results collected from the non-linear plant are presented. 

Keywords: Model predictive control; Elman networks; receding horizon 
control; MIMO systems; optimisation. 

1. INTRODUCTION 

Model predictive control (MPC) has received a great deal 
of attention in the past years as valuable tool for controlling 
industrial processing plants. The fundamental concepts 
concerning model predictive control can be traced back to 
1963 and the work of Propoi where the moving horizon 
approach was for the first time proposed [2]. Yet, it was not 
until the late 1970s and the contribution of Richalet and co-
authors [3], that, for the first time, has been reported and 
succeeded a model predictive implementation in the process 
control field, particularly for linear plants. 

Recently, there have been some attempts to extend MPC 
techniques to non-linear systems. One such approach is based 
on successive linear approximations of the plant [4]. Oliveira 
[5] in order to ensure the stability of the control system 
incorporates into the optimisation problem an extra 
contraction constraint, initially proposed by Polak and Yang 
[6], leading to the so-called contractive MPC. Other possible 
way for achieving stability in the regulation problem 
considers a finite horizon terminal constraint that forces all 
states to be zero at the end of the prediction horizon, [7]. 
Another alternative approach is proposed by Nevistić and 
Morari [8] where a combination of feedback linearisation and 
model predictive control is considered. 

The success of the MPC technology is attributed to three 
relevant factors [1]. First and foremost is the incorporation of 
an explicit model into the control computation. This allows 
the controller to deal with the most significant features of the 
plant, depending on the accuracy of the mathematical model. 
Secondly, because it predicts future plant behaviour, the 
effects either of feedforward and feedback disturbances can 
be anticipated and hence adequately rejected. Finally, MPC 
methodologies have the potential of dealing with either input 

and output constraints in an explicit way during the design 
and implementation stages. 

In many cases, as result of the complexity of the non-linear 
plant, a good enough model is not available either by 
economic issues or because some parameters are not 
accessible. In this circumstances one should turn to plant 
identification methodologies in order to come up with a 
feasible model of the plant. 

Given the learning capabilities of the neural networks (NN) 
[9], these structures can be used as non-linear black-box 
models of the plant. In the context of neural predictive control 
methodologies, several works have been reported. Donat et 
al. [10] applied a multilayer feedforward neural network 
(FNN) trained with a back-propagation algorithm together 
with an optimisation problem that is solved with a sequential 
quadratic programming method. Hao et al. [11] combine a 
FNN with the one-step-ahead predictive control scheme, 
being the current and future inputs obtained by means of a 
standard Quasi-Newton non-linear optimisation algorithm. 
Temeng et al. [12] has proposed a hybrid multivariable non-
linear predictive control based on a FNN model and on the 
Fletcher variable metric method for solving the optimisation 
problem. Draeger et al. [13] incorporated a FNN for non-
linear prediction in an extended standard dynamic matrix 
control algorithm. More recently, Chen [14] has proposed a 
three-layer FNN with hyperbolic tangent functions using the 
Levenberg-Marquardt algorithm in minimising a cost 
functional. Using a FNN as well, Tan and Cauwenberghe [15] 
presented a non-linear one-step-ahead control strategy being 
the control action evaluated by a gradient descent algorithm. 

In this paper a neural predictive control is compared with a 
standard MPC scheme. The neural approach is based on a 
recurrent Elman network for modelling purposes and the 
learning procedure is performed on-line by means of a 
modified back-propagation through time algorithm. Instead of 
one-step-ahead prediction, as proposed in [15], a sequence of 
control actions is computed by extending the prediction 
outputs to a multi-step-ahead horizon. In what the first 
principle model predictive control scheme concerns, the non-
linear real plant dynamics, is linearised each discrete time. 
Next, a standard constrained quadratic programming problem 
is solved in order to obtain a sequence of current and future 
manipulated variables. In both approaches only the first 
control action is fed to the plant. 
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2. NEURAL PREDICTIVE CONTROL AND MPC 
In the MPC technique, also known as receding horizon 

control (RHC), an explicit dynamic model of the plant is used 
to predict its outputs over some specified finite prediction 
horizon P, when the control actions are accordingly changed 
over some finite control horizon M. The predictive control 
approach is a discrete time technique where, at time step k, an 
optimisation procedure computes on-line and in real-time the 
open-loop sequence of present and future control moves 
{ u(k|k), …, u(k+M-1|k} , such that the predicted outputs 
follow a predefined trajectory and taking into account 
constraints on the outputs and on the inputs. Only the control 
action u(k|k) is fed to the real plant over the time interval 
[k, k+1]. At the next sample time k+1, the prediction and 
control horizons are shifted ahead by one step and a new 
optimisation problem is solved. Thus, by repeatedly solve an 
open-loop optimisation problem with every initial conditions 
updated at each time step, the model predictive control 
strategy results in a closed-loop constrained optimal control 
technique. 

The general open-loop optimisation problem can be 
formulated as  
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fp:ℜ n×ℜ m→ℜ n and gp:ℜ n×ℜ m→ℜ q are twice continuous 

differentiable; L is the Lagrangian; u(t)∈ℜ m, y(t)∈ℜ q and 

x(t)∈ℜ n are, respectively, the inputs, outputs and states; c(⋅) 
and l(⋅) are functions characterising equality and inequality 
constraints; tk is the discrete current time. Depending on the 
cost function, the dynamic model and the constraints 
involved, several particular formulations can be stated in 
terms of the general formulation given above. 

2.1 Linear MPC Formulation 
Consider the following linear model of the plant (2): 

( ) ( ) ( ) η+Γ+Φ=+ kukxkx 1  (4)

where Φ∈ℜ n×n and Γ∈ℜ n×m are denoted the state and input 
matrices; u(k)∈ℜ m are the discrete state and control vectors; 

η∈ℜ n is the independent term vector; k is an integer sampling 
time index. 

Assuming all the states of the plant measurable and 
considering a 2-norm as a performance index and linear 
constraints on the input and states, the open-loop optimal 
receding horizon control problem can be stated as follows 
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subject to the system dynamics (4) and the following 
constraints: 
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where ||⋅||Ω is the weighted Euclidean norm; Qi∈ℜ
n×n, 

Ri∈ℜ
m×m and Si∈ℜ

m×m denote positive definite, symmetric 

weighting matrices; ∆u∈ℜ m is the predicted control action 

increment; r(k)∈ℜ n denotes the discrete reference trajectory; 
i  is the current discrete time index. This optimisation 
problem can be formulated as quadratic programming 
problem (QP) where the functional cost to be minimised is 
obtained by means of a second-order Taylor series 
approximation to J(⋅). The new optimisation problem can then 
be stated as:  

minimise  uHuuh TT ~~
2
1~ ∆∆+∆  (7)

subject to buAT ≤∆~  (8)

with A∈ℜ mM×(4mM+2nP), b∈ℜ (4mM+2nP). The gradient vector 
and the Hessian matrix of functional J(⋅) are respectively 

h∈ J(⋅)∈ℜ mM and H∈ J(⋅)∈ℜ mM×mM. The extended incremental 
input vector mMu ℜ∈∆~ is the vector of decision variables. If 
the Hessian matrix is positive definite then the QP format cost 
function is strictly convex and consequently *~u∆  is the unique 
global minimum for the optimisation problem. 

2.2 Non-linear Neural Predictive Control 
For modelling purposes the plant is described by the 

following non-linear discrete time state space equations. 
{ }kukxkx f , (k) ,)(    )1( φ=+  (9)
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where Φf:ℜ n×ℜ m×ℜ→ℜ n  and Φg:ℜ n×ℜ m×ℜ→ℜ q are non-

linear functions; u(k)∈ℜ m, y(k)∈ℜ q and x(k)∈ℜ n are, 
respectively, the inputs, outputs and states at a discrete time k. 
As in the MPC formulation, the states are assumed to be 
directly observable. 

2.2.1 Elman Networks Topology 
Recurrent neural networks comprising dynamic elements 

and feedback connections are suitable for approximating 
dynamical systems [16]. One of the useful characteristics of 
these topologies is that they can represent any order of delays 
implicitly rather than explicitly, as in feed-forward networks 
with external recurrence. For recurrent networks it was 
proved that they may be used to approximate to any arbitrary 
precision a discrete time state space description, Jin et al. 
[16]. One of the simplest RNN is the Elman network.  

Elman [17] proposed a partially recurrent network where 
the feed-forward connections are modifiable and the recurrent 
connections are fixed. Additionally to the input and the output 
units, the Elman network has a hidden unit, xh(k)∈ℜ n, and a 

context unit, xc(k)∈ℜ n. The interconnection matrices 

Wx∈ℜ n×n, Wu∈ℜ n×m and Wy∈ℜ q×n are the interconnection 
weights for the context-hidden layer, for the input-hidden 



 
 

 
 
 

layer and for the hidden-output layer. In the original 
architecture the context layer only holds a copy of the 
activation of the hidden units from the previous time step, 
being the trace of the entire history accumulated in the 
context unit. Due to practical difficulties related to the 
identification of higher order systems, some modifications 
have been proposed. In [18] a self-connection or a feedback 
gain α∈ℜ + in the context units is incorporated, as depicted in 
Figure 1, improving the dynamic memorisation ability of the 
network. 

u(k)
y(k+1

)

xc(k+1)

xh(k+1)

xh(k)

Wu
Wy

D
Wx

xc(k)

D

α

Σ

Σ

ϕ

 
Figure 1 – Block diagram of the modified Elman network. 

The dynamics of the modified Elman neural network is 
described by the difference equations (11)-(14). 
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The function f(x)=x is used for the output layer, s(k)∈ℜ n is 
an intermediate variable and ϕ(⋅) is the hyperbolic tangent 
function. If an augmented state, 2n  )( ℜ∈kx , is defined by  
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equations (11)-(14) can be rewritten as  

{ }  W, W,)( ,)(     )1( uxkukxkx ϕ=+  (16)
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These equations can be interpreted as a state space model, 
analogous to the non-linear system dynamics defined in (9) 
and (10). 

2.2.2 Learning Methodology 
Assuming that xd(k)∈ℜ n denotes the plant state at time step 

k, the goal is to find Wx and Wu (Wy is known and fixed) such 
that the squared error between the output neurons and the 
desired states in the horizon [k-N, …, k], defined is 
minimised. 

2k
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where em(k)∈ℜ n  is the modelling error at time k given by 
(19). 
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dm −=  (19)

Several training algorithms have been proposed to adjust 
the weighting values in recurrent networks. Examples of these 
methods are the Narendra’s dynamic back-propagation [19], 
the real time recurrent algorithm from Williams and Zipser 
[20] and the back-propagation through time algorithm (BTT) 

from Werbos [21], which is being considered in the present 
work. All these methods use a gradient based learning 
algorithm and involve the computation of partial derivatives 
or sensitivity functions. To updated Wx and Wu equation (20) 
is used. 
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µm∈ℜ + is a learning rate; ρm∈ℜ + is a momentum term; the 
increment ∆W is evaluated according to 

x,uikWkWkW iii =+=+∆     ),( -)1(  )1(  (21)

For evaluating Wx and Wu a simplification of the 
BTT(∞) algorithm is considered in this work by truncating the 
infinity back-propagation of information to a finite number 
(N) of prior time steps [22]. A value of α near to 1 enables the 
context unit to remember more past information and a value 
near to 0 let the context unit to forget rapidly past data, 
similarly to a forgetting factor. The BTT algorithm is based 
on an extension of the standard back-propagation for feed-
forward networks. A recurrent network is expanded into a 
multilayer FNN, being a new layer added for each time step. 
The computation of the gradient in equation (20), is 
accomplished with (22) and (23) 
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where the sensitivity to the units of the net inputs δh(k)∈ℜ + is 
computed recursively for i=k to i=k-N according to: 
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The process starts at time k  with 
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The symbol ⊗  denotes an element to element multiplication 
and ϕ′(⋅)  is the derivative of the hyperbolic tangent function. 

2.2.3 Neural Network-based Predictive Control 
The general principle underlying neural predictive control 

is the same as that of any standard MPC technique, that is, the 
existence of an explicit model of the plant and the 
computation of a manipulated variables sequence by solving 
an optimisation problem. 

The control action sequence { u(k|k), …, u(k+M-1|k}  is 
evaluated such that the predicted time response has certain 
desirable features according to a pre-defined design criterion, 
as equation (5), with Ri=0, Qi=Im and Si a constant 
weighting matrix. Since J(⋅) is non linearly dependent on the 
control action sequence, the minimisation of the criterion 
proceeds iteratively, as in the neural learning stage. For the ith 
iteration, the gradient descent algorithm is evaluated at each 
instant k, according to  
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where µp∈ℜ + is the optimisation step. The derivative of the 
cost function (31) with respect to the present and future inputs 
{ u(k|k), …, u(k+M-1|k}  is given by 
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where j=0, …, M-1; i=1, …, P; ep(k+1|k)∈ℜ n is the 
prediction error at instant k+i, given by: 

)|r(  )|(  )|( kikkikxkikep +−+=+  (33)

Based on the sequence of manipulated variables provided 
by the optimiser, the model evaluates the trajectory of the 
predicted outputs over the prediction horizon. These 
predictions are fed into the optimiser again, where the 
objective function is evaluated and a new sequence of 
manipulated variables is calculated. This iterative task 
continues until the convergence is reached. 

3. THE LABORATORY THREE-TANKS SYSTEM 
The three-tanks system used in the experiments comprises 

three plexiglas cylinders, being one of the tanks (T3) 
connected to the other two tanks by means of circular cross 
section pipes equipped with manually adjustable ball valves, 
Figure 2. At tank T2 is located the main outlet of the plant, 
which is connected to the collecting reservoir in a similar way 
by a circular cross section pipe and a outflow ball valve. 
Additionally, each tank is provided with a straight connection 
to the reservoir in order enabling the simulation of leaks. Two 
of the tanks, namely, T1 and T2, are fed with liquid, usually 
distilled water, pumped from the reservoir by two diaphragm 
pumps with fixed piston stroke and driven by a DC motor. In 
order to measure the current liquid level in each of the tanks, 
the plant is equipped with piezoresistive differential pressure 
transducers. 

Pump 1 Pump 2

T2T3T1

h2

h3
h1

1v 2v
. .

 
Figure 2 - Structure of the laboratory Three-Tank system. 

The system dynamics can be described by the following 
non-linear equations: 
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where hi, i=1,2,3, is the tank level; 21 , ,ivi =� , denotes the flow 
rate; AT and ST are the cross section of each tank and the 

interconnecting pipes cross section, respectively; ζ ij∈[ 0,1] is a 
dimensionless flow coefficient, with index j=0 identifying 
the collecting reservoir; g is the gravity; sgn stands for the 
sign of a given argument. 

4. EXPERIMENTAL RESULTS 
In order to compare the performance of both predictive 

controllers a set of experiments was carried out on the 
laboratory plant. With respect to the neural strategy, an Elman 
network with two inputs (m = 2) and three outputs (n = 2) was 
implemented. The number of hidden units and context units is 
the same as the number of the plant states, n = 3. For the 
identification task, the following parameters are chosen as: 
learning rate µm=0.02, momentum ρm=0.4, self-connection 
α=0.6, window size N=4. Concerning the neural predictive 
scheme, the prediction horizon was P=3, the control horizon 
M=1 and the optimisation step was µp=0.1. The weighting 
matrices, Qi and Si are chosen as: Qi=I3, Si=0.02×I2. In the 
first principle model-based predictive controller the weighting 
matrices Qi, Ri and Si in the objective functional (5) were 
chosen as: 
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Figure 3 – Neural predictive control; (a) set-point trajectory 
and outputs; (b) control actions. 
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Figure 4 – First principle model predictive control; (a) set-point trajectory and outputs; (b) control actions. 
 
The open-loop constrained optimal control problem, is solved 

by choosing for prediction horizon P=5 and for control horizon 
M=1. Since each pump flow rate and liquid level for each of the 
three tanks must be not only positive but also upper bounded, 
inequality constraints should be imposed in solving the optimal 
control problem. 

[ ] [ ]TT x 6.06.06.0000 ≤≤  m  
[ ] [ ] 61067.10250.9700 −×≤≤ TT u  13 −sm  

In order to prevent from excessive input changes, increments 
on the control actions are not merely penalised by the weighting 
matrix S in (5) but also constrained to 

[ ] 6101616 −×≤∆ Tu  13 −sm . 

In Figure 3 it is depicted the set-point trajectory, the plant 
outputs and the control actions for the neural network predictive 
controller while in Figure 4 it is shown the results for the first 
principle model predictive. As can be seen from these figures 
both controllers are able to follow adequately the set-point 
trajectory, regardless the set-points. However, in the first 
principle predictive controller case the control error is closer to 
zero. In addition, the transient response exhibited by this control 
system is slightly faster than the neural predictive control 
system. These features are reflected in the corresponding control 
actions, where it is observed a higher magnitude for the input 
changes. Nevertheless, this somehow nervous behaviour could 
be prevented by an adequate modification of the weighting 
matrices, particularly S. 

In order to assess the robustness of each controller, a 
disturbance at instant 90 second was implemented in tank T1 by 
opening partially the valve connecting this tank to the reservoir. 
Additionally, no previous knowledge was incorporated into the 
neural predictive controller, being the initialisation implemented 
randomly (weighting matrices ∈[ 0,1]). The control system 
response for the disturbed plant is shown in Figure 5 and Figure 
6, respectively, for the neural and first principle controllers. 
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Figure 5 – Neural predictive control; (a) set-point trajectory 
and outputs; (b) control actions. 
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Figure 6 – First principle model predictive control; (a) set-point 
trajectory and outputs; (b) control actions. 

 



 
With respect to the neural predictive controller, since no 

previous knowledge is provided there exits an initial time 
(approximately 60 second) for which the network is gathering 
updated data from the plant and gradually improving the its 
dynamics. After this initial period, the deviation from the set-
point is tiny even after the application of the disturbance. For the 
first principle model predictive controller the disturbance is also 
quite well rejected despite an higher magnitude of the input 
increments in the corresponding actuator (pump1). This 
somehow oscillating behaviour in pump 1 is not so explicitly 
observed for the neural controller due to the adaptive nature of 
this strategy.  

5. CONCLUSIONS  
In this work two finite horizon predictive techniques were 

applied to the control of a laboratory plant. One is based on an 
Elman network model for capturing the system dynamics while 
the other is based on a mathematical physical model and takes 
into account constraints on the inputs and the outputs.  

The results show that both approaches are quite viable even in 
the presence of an additional disturbance. However, for the 
operating conditions and the tuning parameters chosen, the 
neural approach leads to a smother functioning of the actuators, 
but with a slightly larger deviation, particularly for free 
disturbances. When the plant is likely to change its dynamics the 
adaptive neural network within a predictive control technique 
demonstrates to be preferable  
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