
Computational Experiments with Multicriteria Sequence

Alignment

Lúıs Paquete and João P.O. Almeida
CISUC, Department of Informatics Engineering,

University of Coimbra, Coimbra, Portugal
paquete@dei.uc.pt,jpoa@student.dei.uc.pt

Abstract

In this article we investigate the performance of multicriteria dynamic programming
algorithm for pairwise sequence alignment that maximizes the number of matches and
minimizes the number of indels or/and gaps. We give explicit recurrence relations for
a number of multicriteria score functions. In addition, we provide estimates on the
number of optimal alignments for pairs of random sequences, as well as computational
results in two benchmark datasets.

1 Introduction

In the last few years, there has been a growing interest on the multicriteria formulation of
many problems that arise in Bioinformatics [8]. Multicriteria optimization is concerned with
simultaneously optimization of two or more conflicting criteria subject to constraints (see [4,
13, 18]). On one hand, it has the advantage of offering a trade-off set of alternative solutions
to the decision maker. However, on the other hand, multiobjective optimization problems
are not only more complex to solve than their single-objective counterpart as they also need
more computational cost [3]. In this article, we focus on the multicriteria formulation of
a classical bioinformatics optimization problem, the pairwise sequence alignment problem,
and examine its tractability from a theoretical and practical point of view.

Sequence alignment is in the core of many Bioinformatics applications. It aims to identify
regions of similarity in sequences of biological data. It is mainly used for the comparison
of different sequences of the same gene, the search for a given pattern as subsequence in
a database of strings, and as subprocedures for solving other more complex problems like
the computation of approximate overlaps in DNA sequencing. They are also needed for the
comparison of DNA or protein sequences of different organisms and are used as a measure
of their relationship.

The procedure consists of inserting gaps between the residues so that similar symbols
from several sequences become aligned. Usually, practitioners use a score function that
is a convex combination of the number of matches and gaps. Efficient algorithms, such
as the Needleman-Wunsch dynamic programming algorithm [14], are able to find optimal
alignments for two sequences in an amount of time that is bounded by a polynomial function

1

on the size of the sequences. However, the current software packages depend on the definition
of coefficients in the score function. Therefore, the resulting alignment is heavily influenced
by those coefficients. This would be acceptable if the best choice of those coefficients was
clear a priori. Yet, this choice is an open problem, which depends on the functional and
structural context of the sequences under analysis. As such, a procedure that returns a
single final alignment eliminates many possible candidates that may be of interest for the
practitioner.

Our work aims to present a number of possible alternative alignments, such that no
two alignments are clearly better than each other with respect to the components of the
score function. Those alignments are called efficient. Clearly, this different formulation
brings several advantages to the practitioner: i) an optimal alignment for the scalar score
function with positive coefficients is also an efficient alignment; ii) there may be more efficient
alignments that are not optimal for any combination of coefficient values into convex score
functions; iii) the number of efficient alignments with distinct score value is linear with
respect to the size of the sequences. Therefore, multicriteria sequence alignment allows the
possibility of exploring a tractable set of alignments that are not reachable by any other
method and may give further biological insights. Moreover, it allows the practitioner to get
rid of coefficients in the score function.

Interestingly, this problem has only been tackled by Royberg et al. [16]. These authors
provide the first multicriteria formulation as well as an extension of Needleman-Wunsch
algorithm to solve this problem. In this article, we extend the work of these authors by
providing explicit recurrence equations to compute the set of optimal scores for three score
functions and providing numerical results on randomly generated instances as well as on
two well-known benchmark sets of instances. This article is organized as follows. Section
2 introduces the problem and some relevant theoretical properties. Section 3 gives the
recurrence equations for three score functions. Sections 4 and 5 describe the experimental
analysis. Finally, we conclude with Section 6.

2 Multicriteria sequence alignment

The problem of computing optimal alignments is a problem of sequences comparison. Se-
quences are aligned with each other by inserting gaps such that the aligned sequences coin-
cide with each other. Usually, the way used for scoring an alignment consists of counting
the number of matches and gaps. The optimal alignment is the one that maximizes a given
convex combination of these two quantities. Other more complex score functions penalize
the opening of gaps and/or rewards long gaps [6]. Other approaches use a scoring matrix
that assigns different scores for different symbols at the same position in the alignment [9].

Most of these approaches to the sequence alignment problem rely on the a priori defi-
nition of coefficients that are assigned to the components of the score function. However,
there is a considerable disagreement about how to weight each coefficient [6]. In order to
minimize this drawback, parametric sequence alignment has been proposed [7]. The goal is
to partition the coefficient space into convex regions such that in each region any alignment
that is optimal for some choice of coefficients inside the region is optimal in that entire
region and nowhere else. This is performed by the software package XPARAL that uses
polygonal decomposition to find such optimal alignments. Several authors showed that the

2

number of such regions is sublinear with respect to the sizes of the sequences [5].
A multicriteria formulation of the pairwise sequence alignment problem has been pro-

posed by Roytberg et al. [16]. The authors consider a vector score function in which each
component is associated to the occurrence of matches and gaps in a given alignment. Then,
an alignment is efficient if it is maximal with respect to the component-wise ordering of the
scoring of all alignments (by taking the opposite number of gaps).

More formaly, an alignment between sequences A and B is a pair of equal lenght se-
quences ϕ = (A′, B′), where A′ (respectively, B′) is obtained by inserting a space into A
(B) under the constraint that there can be no position in which both A′ and B′ have spaces.
A match is a position in which A′ and B′ have the same symbol. An indel is a position
in which either A′ or B′ has a space, while a gap is a sequence of one or more consecutive
spaces in A′ or B′. For the purpose of this article, we shall denote the number of matches,
indels and gaps in ϕ by m(ϕ), d(ϕ), and g(ϕ), respectively.

We explore the multicriteria formulation of this problem as given by Roytberg et al. [16].
For the purpose of this article we shall consider the following three score functions

Scoremd(ϕ) = (m(ϕ),−d(ϕ))
Scoremg(ϕ) = (m(ϕ),−g(ϕ))

Scoremdg(ϕ) = (m(ϕ),−d(ϕ),−g(ϕ)) .

We say that an alignment ϕ dominates an alignment ϕ′ if each score component of the
score function of ϕ is greater or equal than the corresponding score component of the score
function of ϕ′ and at least one of these inequalities is strict. Then, an alignment ϕ is
efficient if there is no other alignment that dominates it. The efficient set contains only
and all efficient alignments. We say that the image of the efficient set in the corresponding
score function space is called the nondominated set of scores.

A negative result is that the problem of finding the efficient set of alignments is in-
tractable, that is, the size of the efficient is exponentially large for any score function. We
provide an artificial example of an intractable instance of this problem. Let A and B be
two sequences where A = An and B = G(AG)2n. Then, |A| = n and |B| = 4n + 1. Note
that sequence B has 2n As. Therefore, there can be

(
2n
n

)
possible choices of matching n

As between the two sequences, and there cannot be other alignment with larger number of
matches and lesser number of indels (3n + 1 indels). The same applies to the number of
gaps (three gaps). Therefore, any of these

(
2n
n

)
alignments is efficient.

Therefore, we should expect to incur in exponential time to find the efficient set in
general. However, there exists a tractable number of nondominated scores, as shown in
[16]. Given two sequences of size m and n, the number of nondominated scores is O(n+m)
for score functions Scoremd and Scoremg and O(n+m)2 for score function Scoremdg. Note
that the number of matches is at most the size of the longest common subsequence of the
two sequences and the number of indels and gaps is at most m + n, if there is no possible
match between the two sequences[16]. Moreover, we should expect that the bound for score
function Scoremdg is not strict for most of the cases, since the increase on the number of
indels should very often correspond to an increase on the number of gaps.

Another property of this problem results from the classical result in multicriteria opti-
mization concerned with scalarized optimality [4]: an optimal alignment for the parametric
sequence alignment (with positive coefficients) is also an efficient alignment. However, not

3

20 25 30 35 40 45

4
6

8
10

12
14

Number of matches

N
um

be
r

of
 in

de
ls

●

●

●

●

●

●

●

34 36 38 40

5
10

15
20

25
30

Number of matches

N
um

be
r

of
 in

de
ls

●

●

●

●

●

●

●

●

●

Figure 1: Nondominated scores of alignments in Figures 6 (left plot) and 7 (right plot).

all efficient alignments are optimal for parametric sequence alignment. Using a real-life case
as an example, Figures 6 and 7 present the efficient alignments and corresponding nondom-
inated scores that were found for two pairs of sequences of human S100 calcium-binding
proteins, sequences P23297 and P60903, and sequences Q96FQ6 and P29034, respectively,
taken from the database UniProtKB. Figure 1 plots the corresponding nondominated scores;
the dashed line connects the scores that are located in the convex hull. Clearly, any para-
metric approach would miss the scores that do not lie in the convex hull envelope (see other
example in [16]).

These results indicate that multicriteria sequence alignment provides further information
for the pratictioner and that he should expect a small (tractable) number of nondominated
scores to analyse.

3 A multicriteria dynamic programming algorithm

Roytberg et al. [16] presented the pseudo-code of a multicriteria dynamic programming algo-
rithm that extends the classical Needleman-Wunsch algorithm to obtain the nondominated
set of scores for the score function Scoremd. This approach maintains nondominated par-
tial alignments at each iteration, similar to the Nemhauser-Ullman algorithm to solve the
knapsack problem [15] and further explored in the literature to solve multicriteria knapsack
problems [1, 11].

In the following sections, we give a more explicit recurrence equations for computing
the nondominated scores for Scoremd, Scoremg and Scoremdg. We consider two sequences
A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bm). The set S(i,j) will denote the states that
corresponds to the image of the efficient alignments for subsequences A′ = (a1, a2, . . . , ai)
and B′ = (b1, b2, . . . , bj), for i ≤ n and j ≤ m; we will say that S(i,j) contains nondominated
states. As in the Needleman-Wunsch algorithm, this algorithm starts by filling the first row
and column of an (n+ 1)-by-(m+ 1) matrix with the basis cases and it proceeds by filling it

4

row-wise according to the recurrence equations. The nondominated states are given in the
(n+ 1,m+ 1) cell.

3.1 Recurrence equations for Scoremd

For score function Scoremd, each state s in S(i,j) is represented as a pair of values as follows

s = (m = m(ϕ), d = −d(ϕ))

for the corresponding alignment ϕ. The recurrence equations to compute S(i,j) for score
function Scoremd are as follows

S(i,j) = max
(m,d)

{TA ∪ TB ∪ T0} (1)

where

TA =
{

(m, d− 1) | for all (m, d) ∈ S(i−1,j)

}
,

TB =
{

(m, d− 1) | for all (m, d) ∈ S(i,j−1)

}
,

T0 =
{(
m+ u(i,j), d

)
| for all (m, d) ∈ S(i−1,j−1)

}
and

u(i,j) =

{
1 if ai = bj

0 otherwise

with the following bases cases

S(0,0) = {(0, 0)} ,
S(i,0) = {(0,−i)} , for 0 < i ≤ n,
S(0,j) = {(0,−j)} , for 0 < j ≤ m.

Note that sets TA and TB contain the states that are obtained by incrementing the
number of indels to every nondominated state in S(i−1,j) and S(i,j−1), respectively. This
corresponds to add an indel and a symbol in the same position of a partial alignment.
Set T0 contains the states that are obtained by a conditional increment on the number
of matches to every nondominated state in S(i−1,j−1). In this case, this corresponds to
the operation of adding both symbols from the two sequences in the same position of the
partial alignment. Finally, note that the maximum operator in Eq. (1) is the componentwise
maximum over the two components. This operation can be performed by the algorithm of
Kung et al. [12]. Given that there can be O(m + n) scores at each cell, the algorithm has
O (n ·m · (n+m) log(n+m)) time complexity [16].

3.2 Recurrence equations for Scoremg

For the score function Scoremg we need to keep track of the last indel at the predecessor of
each state; for a given state s, we will denote its predecessor by pred(s). Therefore, we need
a third component to each state. We define a state s in S(i,j) as follows

s = (m = m(ϕ), g = −g(ϕ), vs)

5

where vs indicates whether pred(s) is in S(i−1,j), S(i,j−1) or S(i−1,j−1). Then, we have the
following recursive equation

S(i,j) = max
(m,g)

{TA ∪ TB ∪ T0} (2)

where

TA =
{
s = (m, g − w, vs) |

(
m, g, vpred(s)

)
∈ S(i−1,j)

}
,

TB =
{
s = (m, g − w, vs) |

(
m, g, vpred(s)

)
∈ S(i,j−1)

}
,

T0 =
{
s =

(
m+ u(i,j), g, vs

)
|
(
m, g, vpred(s)

)
∈ S(i−1,j−1)

}
,

where

w =

{
1 if vs 6= vpred(s)

0 otherwise

with the following bases cases

S(0,0) = {(0, 0, φ)} ,
S(i,0) = {(0,−1, β)} , for 0 < i ≤ n,
S(0,j) = {(0,−1, α)} , for 0 < j ≤ m,

where φ, α, and β are arbitrary distinct symbols, which indicate that the state is predecessor
of a state in S(i−1,j−1), S(i,j−1) and S(i−1,j), respectively. The componentwise maximum in
Eq. (2) is only defined over the two first components. We need to keep distinct states with
respect to the number of matches, gaps, and v values; two states with the same number of
matches and gaps and different v value may be predecessors of two distinct nondominated
states. However, in the iteration (n + 1,m + 1) we only need to keep distinct states with
respect to the two first components. The algorithm has the same complexity of the algorithm
for score function Scoremd.

3.3 Recurrence equations for Scoremdg

The three-criteria case simply consists of extending the two cases presented above. Now,
we define a state s in S(i,j) as follows

s = (m = m(ϕ), d = −d(ϕ), g = −g(ϕ), vs)

and we have the following recursive equation

S(i,j) = max
(m,d,g)

{TA ∪ TB ∪ T0} (3)

where

TA =
{
s = (m, d− 1, g − w, vs) |

(
m, d, g, vpred(s)

)
∈ S(i−1,j)

}
,

TB =
{
s = (m, d− 1, g − w, vs) |

(
m, d, g, vpred(s)

)
∈ S(i,j−1)

}
,

T0 =
{
s =

(
m+ u(i,j), d, g, vs

)
|
(
m, d, g, vpred(s)

)
∈ S(i−1,j−1)

}
,

6

with the following bases cases

S(0,0) = {(0, 0, 0, φ)} ,
S(i,0) = {(0,−i,−1, β)} , for 0 < i ≤ n,
S(0,j) = {(0,−j,−1, α)} , for 0 < j ≤ m,

Also, the componentwise maximum in Eq. (3) is only defined over the first three com-
ponents for the same reasons presented for the score function Scoremg. This algorithm
has O

(
n ·m · (n+m)2 log(n+m)

)
, if the algorithm of Kung et al. [12] is used to find the

nondominated scores at each cell.
Table 1 shows an example of the several iterations of the multicriteria dynamic program-

ming algorithm for Scoremdg for the sequence alignment of two sequences, AGGA and TAA. The
states in boldface correspond to states in set S(i,j) at each iteration (i, j). The superscripts
in the states distinguish the two paths in the matrix that generate the final nondominated
states in the bottom-rightmost entry. For the example above, the two efficient alignments
that correspond to the states (1,−1,−1) and (2,−3,−2) are(

AGGA

T-AA

)
and

(
-AGGA

TA--A

)
respectively; the symbol “-” corresponds to an indel.

4 Experiments with random sequences

We investigate the size of the nondominated set of scores for several sequences and alphabet
sizes, as well as the CPU-time taken by our implementation of the multicriteria dynamic
programming. For the bicriteria case, that is, for the score functions Scoremd and Scoremg,
we considered sequences from size 200 to 1000 with interval of 200. For score function
Scoremdg, we consider sizes from 100 to 500 with interval of 100; preliminary experiments
indicated that sizes above 500 would increase the CPU-time considerably (above 300 secs.).
For each size, we generated 30 pairs of randomly generated sequences with alphabet size 2,
4, 10, 20, 30 and 40 which amounts to 900 pairs of sequences for each of the two bicriteria
scores functions, plus 1080 for score function Scoremdg. Our implementation was coded in
Java and it is minimally optimized. We used the sweep-line algorithm from Kung et al. [12]
at each iteration to remove dominated states in loglinear time. The implementation was ran
under Ubuntu 8.10 on an computer with 2GB DDR2 and with an 1.86 GHz Intel Core2Duo
processor.

4.1 Number of nondominated scores

The top plots of Figure 2 present the average number of nondominated scores in random
sequences for score functions Scoremd (top-left plot) and Scoremg (top-right plot) for several
alphabet sizes. Two observations are noteworthly: First, the number of nondominated scores
is roughly a fixed fraction of the sequence size; secondly, the alphabet size has little effect on
the number of nondominated scores, which also holds for parametric sequence alignment [5].

7

A G G A

0 1 2 3 4

0 (0, 0, 0, φ)1 (0, -1, -1, β) (0, -2, -1, β) (0, -3, -1,β) (0, -4, -1, β)

T 1 (0, -1, -1, α)2 (0, -2, -2, α) (0, -3, -2, α) (0, -4, -2, α) (0, -5, -2, α)
(0, 0, 0, φ)1 (0, -1, -1, φ) (0, -2, -1, φ) (0, -3, -1, φ)
(0, -2, -2, β) (0, -1, -1, β)1 (0, -2, -2, β) (0, -3, -2, β)

(0, -2, -1, β) (0, -3, -1, β)

A 2 (0, -2, -1, α) (0, -1, -1, α) (0, -2, -2, α) (0, -3, -2, α) (0, -4, -2,α)
(1, -1, -1, φ)2 (0, -2, -2, α) (0, -3, -2, α) (0, -4, -2, α)

(0, -3, -2, β) (0, 0, 0, φ) (0, -1, -1, φ) (1, -2, -1, φ)
(1, -2, -2, β)2 (0, -1, -1, φ)1 (1, -2, -1, φ)

(0, -1, -1, β) (0, -2, -2, β)
(1, -3, -2, β)2 (0, -2, -1, β)

(1, -4, -2, β)

A 3 (0, -3, -1, α) (1, -2, -2, α) (0, -1, -1, α) (0, -2, -2, α) (1, -3, -2, α)
(1, -2, -1, φ) (1, -3, -3, α) (0, -2, -2, α) (1, -1, -1, φ)1

(0, -4, -2, β) (1, -1, -1, φ) (1, -4, -3, α) (1, -1, -1, φ)
(1, -3, -2, β) (0, 0, 0, φ) (2, -3, -2, φ)2

(1, -2, -2, φ) (0, -1, -1, β)
(1, -2, -2, β) (1, -3, -3, β)

(1, -3, -2, β)

Table 1: An example of the several iterations of the dynamic programming algorithm for
the score function Scoremdg.

Interestingly, the data suggests a peak on the size of the nondominated set for sequences
with alphabet size between 10 and 20.

The bottom plot of Figure 2 shows the average number of nondominated scores for score
function Scoremdg. Clearly, the size of the nondominated set is larger than for the bicriteria
case, and its relationship with the sizes of the sequences is nonlinear. We performed a
regression analysis for the number of nondominated scores in relation with the size of the
sequences for alphabet of size 20. The best fit was obtained by a square root transformation
in the response variable by following a Box-Cox procedure, which matched our expectations
with respect to the upper bound on the size of the nondominated set (see Section 2).

4.2 Computation time

The top plots of Figure 3 present the average CPU-time taken by our implementation for
both bicriteria score functions. We performed a regression analysis for the results obtained
with alphabet of size 20 for each score function. A Box-Cox procedure indicated that the
best fit would be obtained by a cubic root transformation in the response variable, which
matches the upper bound time complexity of our algorithm (see Section 3.1 and 3.2).

8

200 400 600 800 1000

0
50

10
0

15
0

20
0

Sequence size

N
um

be
r

of
 n

on
do

m
in

at
ed

 s
co

re
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

10
20
30

40

200 400 600 800 1000

0
50

10
0

15
0

20
0

Sequence size

N
um

be
r

of
 n

on
do

m
in

at
ed

 s
co

re
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

10

20

30

40

100 200 300 400 500

0
50

0
10

00
15

00

Sequence size

N
um

be
r

of
 n

on
do

m
in

at
ed

 s
co

re
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

10

20

30

40

Figure 2: Number of nondominated scores for random instances for Scoremd (top-left),
Scoremg (top-right) and Scoremdg (bottom).

We remark that our implementation for the score function Scoremg takes more time
than for the score function Scoremd. In fact, we observed that the number of partial non-
dominated alignments at each iteration is larger for score function Scoremg. Note that the
dynamic programming algorithm has to maintain distinct states with respect to three state
components at each iteration for the score function Scoremg, whereas for the score function
Scoremd only two state components are considered.

The bottom plot shows the average CPU-time taken for the score function Scoremdg.
Given the large values of CPU-time as the instance size grows, we plot the axis for CPU-
time in logarithm scale. Clearly, the plot shows that the relationship between CPU-time and
sequence size can be expressed by a polynomial function. The Box-Cox procedure suggested
that the best fit for an alphabet of size 20 is obtained with a 4-th root transformation on
CPU-time, which also matches the time complexity given in Section 3.3.

9

200 400 600 800 1000

0
5

10
15

20
25

30

Sequence size

C
P

U
 ti

m
e

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

10
20

30
40

200 400 600 800 1000

0
20

40
60

80
10

0
12

0

Sequence size

C
P

U
 ti

m
e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

10
20

30
40

100 200 300 400 500

1
2

5
10

20
50

10
0

20
0

Sequence size

C
P

U
 ti

m
e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

10
20
30
40

Figure 3: CPU-time of the multicriteria dynamic programming algorithm for random in-
stances for Scoremd (top-left), Scoremg (top-right) and Scoremdg (bottom).

5 Experiments with real data

We performed another in-depth experimental analysis with protein sequences available in
two benchmark data. The first is from the PREFAB version 4.0 that has been used for
testing algorithms for multiple sequence alignment [2]. The second benchmark is from
SABmark version 1.65 [10]. We choose 50 pairs of the largest sequences from each dataset
with sequence sizes ranging from 108 to 1132 symbols for PREFAB and from 110 to 721 for
SABmark benchmark. The sequences chosen from each benchmark were paired randomly.

10

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

Sequence size

N
um

be
r

of
 n

on
do

m
in

at
ed

 s
co

re
s

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

Sequence size

N
um

be
r

of
 n

on
do

m
in

at
ed

 s
co

re
s

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

Sequence size

N
um

be
r

of
 n

on
do

m
in

at
ed

 s
co

re
s

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

Sequence size

N
um

be
r

of
 n

on
do

m
in

at
ed

 s
co

re
s

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0
10

20
30

40

Sequence size

2
N

um
be

r
of

 n
on

do
m

in
at

ed
 s

co
re

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

0 200 400 600 800 1000

0
10

20
30

40

Sequence size

2
N

um
be

r
of

 n
on

do
m

in
at

ed
 s

co
re

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

Figure 4: Number of nondominated scores for Scoremd (top), Scoremg (center) and Scoremdg

(bottom) in PREFAB and SABmark (right) benchmarks.

11

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0

1

2

3

4

5

Sequence size

3
C

P
U

−−
tim

e

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

0 200 400 600 800 1000

0

1

2

3

4

5

Sequence size

3
C

P
U

−−
tim

e

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0

1

2

3

4

5

Sequence size

3
C

P
U

−−
tim

e

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0

1

2

3

4

5

Sequence size

3
C

P
U

−−
tim

e

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0

1

2

3

4

5

Sequence size

4
C

P
U

−−
tim

e

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

0 200 400 600 800 1000

0

1

2

3

4

5

Sequence size

4
C

P
U

−−
tim

e

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

Figure 5: CPU-time of the dynamic programming algorithm for Scoremd (top), Scoremg

(center) and Scoremdg (bottom) in PREFAB (left) and SABmark (right) benchmarks.

12

5.1 Number of nondominated scores

The plots in the top, center and bottom of Figure 4 show the number of nondominated
scores according to score functions Scoremd, Scoremg and Scoremdg, respectively. Each pair
of points connected by a line indicates the sizes of the two sequences that were tested
pairwise. The dashed line corresponds to the regression line obtained for pairs of random
sequences with alphabet size of 20.

The plots for score function Scoremd in both benchmarks (top plots) indicate that the
set of nondominated scores for most pairs of sequences is smaller than for random sequences
with similar sequence size. Furthermore, the plots for score function Scoremg (center plots)
show that the number of nondominated scores follows the same growth observed in random
sequences. Also, we computed the convex hull for set of nondominated scores, which would
correspond to the output of parametric sequence alignment. We observed that, in average,
only 30% of the efficient set is also optimal for the latter.

For the score function Scoremdg, 12 pairs of sequences from PREFAB benchmark and
two pairs from SABmark benchmark were not considered since the algorithm took more
time than the time limit of 300 seconds. The bottom plots of Figure 4 show the number
of nondominated scores for both benchmarks. We present the square root of the number of
nondominated scores in order to match the transformation suggested in Section 4.1. The
dashed line corresponds to the regression line obtained for pairs of random sequences with
alphabet size of 20. In both benchmarks, the results indicates a relationship between the
size of the smaller sequence of each pair and the number of nondominated scores.

5.2 Computation time

The top, center and bottom plots of Figure 5 show the CPU-time taken by our implemen-
tation on the score functions Scoremd, Scoremg and Scoremdg, respectively. We plot the
sequence size against the cubic-root of CPU-time for the bicriteria case and against the 4-th
root of CPU time for the three-criteria case, as well as the regression line suggested by the
regression model for random sequences (see Section 4.2). The results indicate that the same
order of magnitude holds for the sequences of both benchmark datasets.

6 Discussion and conclusions

Multicriteria sequence alignment allows the possibility of exploring a tractable set of optimal
alignments that are not reachable by any other method. Moreover, it allows the biologist
to get rid of coefficients in the score functions. However, it also brings more computational
cost. This article explored whether this computational cost is worth being payed. These
preliminary results indicate that this approach is at least feasible for small to medium
sequence sizes. We believe that further improvements in computation time can be obtained
by exploring more conditions that allow the removal of more states at each iteration.

This work can be extended to other scenarios. For instance, for local pairwise sequence
alignment, that is, to find similar regions among two sequences, it is possible to extend
Smith-Waterman algorithm [17] for the multicriteria case as done in this article, as also
shown in [16]. In this case, the number of mismatches can be defined as a third criteria to
minimize.

13

In case of more than two sequences, the current approach can be easily extended for
the Sum-of-Pairs score function, where the score component of each pair of sequences is
added to form the overall score. However, for an arbitrary number k > 2 of sequences, the
problem becomes NP-hard and the problem may not be suitable for a multicriteria dynamic
programming approach.

Acknowledgements

The authors thank Dr. Francisco Pereira for the helpful suggestions to improve this article.
J.P.O. Almeida is supported by a grant from the Fundação de Ciência e Tecnologia.

References

[1] C. Bazgan, H. Hugot, and D. Vanderpooten. Solving efficiently the 0-1 multi-objective
knapsack problem. Computers and Operations Research, 36(1):260–279, 2009.

[2] R. C. Edgar. MUSCLE: Multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research, 32(5):1792–1797, 2004.

[3] M. Ehrgott. Hard to say it’s easy - Four reasons why combinatorial multiobjective
programmes are hard. In Y. Y. Haimes and R. E. Steuer, editors, Research and Practice
in Multiple Criteria Decision Making, volume 487 of Lecture Notes in Economics and
Mathematical Systems, pages 69–81. Springer, Berlin, Germany, 2000.

[4] M. Ehrgott. Multicriteria Optimization, volume 491 of Lecture Notes in Economics and
Mathematical Systems. Springer, Heidelberg, Germany, 2000.

[5] D. Fernández-Baca, T. Seppäläinen, and G. Slitzki. Bounds for parametric sequence
alignment. Discrete Applied Mathematics, 118(3):181–198, 2002.

[6] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1997.

[7] D. Gusfield, K. Balasubramanian, and D. Naor. Parametric optimization of sequence
alignment. In Proceedings of the third annual ACM-SIAM symposium on discrete al-
gorithms, pages 432–439, 1992.

[8] J. Handl, D. B. Kell, and J. Knowles. Multiobjective optimization in bioinformatics
and computational biology. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 4(2):279–292, 2007.

[9] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks.
In Proceedings of the National Academy of Sciences of the USA, volume 89, pages
10915–10909, 1992.

[10] L. Wyns I.V. Walle, I. Lasters. Sabmark: A benchmark for sequence alignment that
covers the entire fold space. Bioinformatics, 21:1267–1267, 2005.

14

[11] K. Klamroth and M. Wiecek. Dynamic programming approaches to the multiple criteria
knapsack problem. Naval Research Logistics, 45:57–76, 2000.

[12] H. Kung, F. Luccio, and F. Preparata. On finding the maxima of a set of vectors.
Journal of the ACM, 22(4):469–476, 1975.

[13] K. Miettinen. Nonlinear Multiobjective Optimization, volume 12 of Kluwer’s Inter-
national Series in Operations Research & Management Science. Kluwer Academic
Publishers, 1999.

[14] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequences of two proteins. Journal of Molecular Biology,
48:443–453, 1970.

[15] G. L. Nemhauser and Z. Ullman. Discrete dynamic programming and capital allocation.
Management Science, 15(9):494–505, 1969.

[16] M. A. Roytberg, M. N. Semionenkov, and O. Yu. Tabulina. Pareto-optimal alignment
of biological sequences. Biophysics, 44(4):581–594, 1999.

[17] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195–197, 1981.

[18] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application.
Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, 1986.

15

S
e
q
u
e
n
c
e

P
2
3
2
9
7
:

M
P
S
Q
M
E
H
A
M
E
T
M
M
F
T
F
H
K
F
A
G
D
K
G
Y
L
T
K
E
D
L
R
V
L
M
E
K
E
F
P
G
F
L
E
N
Q
K
D
P
L
A
V
D
K
I
M
K
D
L
D
Q
C
R
D
G
K
V
G
F
Q
S
F
F
S
L
I
A
G
L
T
I
A
C
N
D
Y
F
V
V
H
M
K
Q
K
G
K
K

S
e
q
u
e
n
c
e

P
6
0
9
0
3
:

M
G
S
E
L
E
T
A
M
E
T
L
I
N
V
F
H
A
H
S
G
K
E
G
D
K
Y
K
L
S
K
K
E
L
K
E
L
L
Q
T
E
L
S
G
F
L
D
A
Q
K
D
V
D
A
V
D
K
V
M
K
E
L
D
E
N
G
D
G
E
V
D
F
Q
E
Y
V
V
L
V
A
A
L
T
V
A
C
N
N
F
F
W
E
N
S

M
a
t
c
h
e
s
:

2
1

I
n
d
e
l
s
:
3

M
P
S
Q
M
E
H
A
M
E
T
M
M
F
T
F
H
K
F
A
G
D
K
G
Y
L
T
K
E
D
L
R
V
L
M
E
K
E
F
P
G
F
L
E
N
Q
K
D
P
L
A
V
D
K
I
M
K
D
L
D
Q
C
R
D
G
K
V
G
F
Q
S
F
F
S
L
I
A
G
L
T
I
A
C
N
D
Y
F
V
V
H
M
K
Q
K
G
K
K

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|

M
G
S
E
L
E
T
A
M
E
T
L
I
N
V
F
H
A
H
S
G
K
E
G
D
K
Y
K
L
S
K
K
E
L
K
E
L
L
Q
T
E
L
S
G
F
L
D
A
Q
K
D
V
D
A
V
D
K
V
M
K
E
L
D
E
N
G
D
G
E
V
D
F
Q
E
Y
V
V
-
L
V
A
A
L
T
V
A
C
N
N
F
F
W
E
N
S
-
-

M
a
t
c
h
e
s
:

2
3

I
n
d
e
l
s
:
5

M
P
S
Q
M
E
H
A
M
E
T
M
M
F
T
F
H
K
F
A
G
D
K
G
Y
L
T
K
E
D
L
R
V
L
M
E
K
E
F
P
G
F
L
E
N
Q
K
D
P
L
A
-
V
D
K
I
M
K
D
L
D
Q
C
R
D
G
K
V
G
F
Q
S
F
F
S
L
I
A
G
L
T
I
A
C
N
D
Y
F
V
V
H
M
K
Q
K
G
K
K

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|

M
G
S
E
L
E
T
A
M
E
T
L
I
N
V
F
H
A
H
S
G
K
E
G
D
K
Y
K
L
S
K
K
E
L
K
E
L
L
Q
T
E
-
L
S
G
F
L
D
A
Q
K
D
V
D
A
V
D
K
V
M
K
E
L
D
E
N
G
D
G
E
V
D
F
Q
E
Y
V
V
-
L
V
A
A
L
T
V
A
C
N
N
F
F
W
E
N
S
-
-

M
a
t
c
h
e
s
:

2
4

I
n
d
e
l
s
:
7

M
P
S
Q
M
E
H
A
M
E
T
M
M
F
T
F
H
K
F
A
G
D
K
G
Y
L
T
K
E
D
L
R
V
L
M
E
K
E
F
P
G
F
L
E
N
Q
K
D
P
L
A
-
V
D
K
I
M
K
D
L
D
Q
C
R
D
G
K
V
G
F
Q
S
F
F
S
L
I
A
G
L
T
I
A
C
N
D
Y
F
V
V
H
M
K
Q
K
G
K
K
-

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

M
G
S
E
L
E
T
A
M
E
T
L
I
N
V
F
H
A
H
S
G
K
E
G
D
K
Y
K
L
S
K
K
E
L
K
E
L
L
Q
T
E
-
L
S
G
F
L
D
A
Q
K
D
V
D
A
V
D
K
V
M
K
E
L
D
E
N
G
D
G
E
V
D
F
Q
E
Y
V
V
-
L
V
A
A
L
T
-
-
-
V
A
C
N
N
F
F
W
E
N
S

M
a
t
c
h
e
s
:

4
4

I
n
d
e
l
s
:
9

M
P
S
Q
M
E
H
A
M
E
T
M
M
F
T
F
H
K
F
A
G
D
K
G
-
-
Y
-
L
T
K
E
D
L
R
V
L
M
E
K
E
F
P
G
F
L
E
N
Q
K
D
P
L
A
V
D
K
I
M
K
D
L
D
Q
C
R
D
G
K
V
G
F
Q
S
F
F
S
L
I
A
G
L
T
I
A
C
N
D
Y
F
V
V
H
M
K
Q
K
G
K
K

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|

M
G
S
E
L
E
T
A
M
E
T
L
I
N
V
F
H
A
H
S
G
K
E
G
D
K
Y
K
L
S
K
K
E
L
K
E
L
L
Q
T
E
L
S
G
F
L
D
A
Q
K
D
V
D
A
V
D
K
V
M
K
E
L
D
E
N
G
D
G
E
V
D
F
Q
E
Y
V
V
L
V
A
A
L
T
V
A
C
N
N
F
F
W
E
N
S
-
-
-
-
-
-

M
a
t
c
h
e
s
:

4
5

I
n
d
e
l
s
:
1
1

M
P
S
Q
M
E
H
A
M
E
T
M
M
F
T
F
H
K
F
A
G
D
K
G
-
-
Y
-
L
T
K
-
E
D
L
R
V
L
M
E
K
E
F
P
G
F
L
E
N
Q
K
D
P
L
A
V
D
K
I
M
K
D
L
D
Q
C
R
D
G
K
V
G
F
Q
S
F
F
S
L
I
A
G
L
T
I
A
C
N
D
Y
F
V
V
H
M
K
Q
K
G
K
K

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|

M
G
S
E
L
E
T
A
M
E
T
L
I
N
V
F
H
A
H
S
G
K
E
G
D
K
Y
K
L
S
K
K
E
-
L
K
E
L
L
Q
T
E
L
S
G
F
L
D
A
Q
K
D
V
D
A
V
D
K
V
M
K
E
L
D
E
N
G
D
G
E
V
D
F
Q
E
Y
V
V
L
V
A
A
L
T
V
A
C
N
N
F
F
W
E
N
S
-
-
-
-
-
-

M
a
t
c
h
e
s
:

4
6

I
n
d
e
l
s
:
1
3

M
P
S
Q
M
E
H
A
M
E
T
M
M
F
T
F
H
K
F
A
G
D
K
-
G
-
-
Y
-
L
T
K
-
E
D
L
R
V
L
M
E
K
E
F
P
G
F
L
E
N
Q
K
D
P
L
A
V
D
K
I
M
K
D
L
D
Q
C
R
D
G
K
V
G
F
Q
S
F
F
S
L
I
A
G
L
T
I
A
C
N
D
Y
F
V
V
H
M
K
Q
K
G
K
K

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|

M
G
S
E
L
E
T
A
M
E
T
L
I
N
V
F
H
A
H
S
G
-
K
E
G
D
K
Y
K
L
S
K
K
E
-
L
K
E
L
L
Q
T
E
L
S
G
F
L
D
A
Q
K
D
V
D
A
V
D
K
V
M
K
E
L
D
E
N
G
D
G
E
V
D
F
Q
E
Y
V
V
L
V
A
A
L
T
V
A
C
N
N
F
F
W
E
N
S
-
-
-
-
-
-

M
a
t
c
h
e
s
:

4
7

I
n
d
e
l
s
:
1
5

M
P
S
Q
M
E
H
A
M
E
T
M
M
F
T
F
H
-
-
-
-
K
F
A
G
D
K
G
Y
-
L
T
K
-
E
D
L
R
V
L
M
E
K
E
F
P
G
F
L
E
N
Q
K
D
P
L
A
V
D
K
I
M
K
D
L
D
Q
C
R
D
G
K
V
G
F
Q
S
F
F
S
L
I
A
G
L
T
I
A
C
N
D
Y
F
V
V
H
M
K
Q
K
G
K
K

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|

M
G
S
E
L
E
T
A
M
E
T
L
I
N
V
F
H
A
H
S
G
K
E
-
G
D
K
-
Y
K
L
S
K
K
E
-
L
K
E
L
L
Q
T
E
L
S
G
F
L
D
A
Q
K
D
V
D
A
V
D
K
V
M
K
E
L
D
E
N
G
D
G
E
V
D
F
Q
E
Y
V
V
L
V
A
A
L
T
V
A
C
N
N
F
F
W
E
N
S
-
-
-
-
-
-

F
ig

ur
e

6:
E

ffi
ci

en
t

al
ig

nm
en

ts
fo

r
tw

o
se

qu
en

ce
s

of
hu

m
an

S1
00

ca
lc

iu
m

-b
in

di
ng

pr
ot

ei
ns

.

16

S
e
q
u
e
n
c
e

Q
9
6
F
Q
6
:

M
S
D
C
Y
T
E
L
E
K
A
V
I
V
L
V
E
N
F
Y
K
Y
V
S
K
Y
S
L
V
K
N
K
I
S
K
S
S
F
R
E
M
L
Q
K
E
L
N
H
M
L
S
D
T
G
N
R
K
A
A
D
K
L
I
Q
N
L
D
A
N
H
D
G
R
I
S
F
D
E
Y
W
T
L
I
G
G
I
T
G
P
I
A
K
L
I
H
E
Q
E
Q
Q
S
S
S

S
e
q
u
e
n
c
e

P
2
9
0
3
4
:

M
M
C
S
S
L
E
Q
A
L
A
V
L
V
T
T
F
H
K
Y
S
C
Q
E
G
D
K
F
K
L
S
K
G
E
M
K
E
L
L
H
K
E
L
P
S
F
V
G
E
K
V
D
E
E
G
L
K
K
L
M
G
S
L
D
E
N
S
D
Q
Q
V
D
F
Q
E
Y
A
V
F
L
A
L
I
T
V
M
C
N
D
F
F
Q
G
C
P
D
R
P

M
a
t
c
h
e
s
:

3
3

I
n
d
e
l
s
:
5

M
S
D
C
Y
T
E
L
E
K
A
V
I
V
L
V
E
N
F
Y
K
Y
V
S
K
Y
S
L
V
K
N
K
I
S
K
S
S
F
R
E
M
L
Q
K
E
L
N
H
M
L
S
D
T
G
N
R
K
A
A
D
K
L
I
Q
N
L
D
A
N
H
D
G
R
I
S
F
D
E
Y
W
T
L
I
G
G
I
T
G
P
I
A
K
L
I
H
E
Q
E
Q
Q
S
S
S

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

M
M
-
C
S
S
-
L
E
Q
A
L
A
V
L
V
T
T
F
H
K
Y
-
S
C
Q
E
G
D
K
F
K
L
S
K
G
E
M
K
E
L
L
H
K
E
L
P
S
F
V
G
E
K
V
D
E
E
G
L
K
K
L
M
G
S
L
D
E
N
S
D
Q
Q
V
D
F
Q
E
Y
A
V
F
L
A
L
I
T
V
M
C
N
D
F
F
-
-
Q
G
C
P
D
R
P

M
a
t
c
h
e
s
:

3
4

I
n
d
e
l
s
:
7

M
S
D
C
Y
T
E
L
E
K
A
V
I
V
L
V
E
N
F
Y
K
Y
V
S
K
Y
S
L
V
K
N
K
I
S
K
S
S
F
R
E
M
L
Q
K
E
L
N
H
M
L
S
D
T
G
N
R
K
A
A
D
K
L
I
Q
N
L
D
A
N
H
D
G
R
I
S
F
D
E
Y
W
T
-
L
I
G
G
I
T
G
P
I
A
K
L
I
H
E
Q
E
Q
Q
S
S
S

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|

M
M
-
C
S
S
-
L
E
Q
A
L
A
V
L
V
T
T
F
H
K
Y
-
S
C
Q
E
G
D
K
F
K
L
S
K
G
E
M
K
E
L
L
H
K
E
L
P
S
F
V
G
E
K
V
D
E
E
G
L
K
K
L
M
G
S
L
D
E
N
S
D
Q
Q
V
D
F
Q
E
Y
A
V
F
L
A
L
-
I
T
V
M
C
N
D
F
F
-
-
Q
G
C
P
D
R
P

M
a
t
c
h
e
s
:

3
5

I
n
d
e
l
s
:
1
1

M
S
D
C
Y
T
E
L
E
K
A
V
I
V
L
V
E
N
F
Y
K
Y
V
S
K
Y
S
L
V
K
N
K
I
S
K
S
S
F
R
E
M
L
Q
K
E
L
N
H
M
L
S
D
T
G
N
R
K
A
A
D
-
-
K
-
L
I
Q
N
L
D
A
N
H
D
G
R
I
S
F
D
E
Y
W
T
L
I
G
G
I
T
G
P
I
A
K
L
I
H
E
Q
E
Q
Q
S
S
S

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|

M
M
-
C
S
S
-
L
E
Q
A
L
A
V
L
V
T
T
F
H
K
Y
-
S
C
Q
E
G
D
K
F
K
L
S
K
G
E
M
K
E
L
L
H
K
E
L
P
-
-
-
S
F
V
G
E
K
V
D
E
E
G
L
K
K
L
M
G
S
L
D
E
N
S
D
Q
Q
V
D
F
Q
E
Y
A
V
F
L
A
L
I
T
V
M
C
N
D
F
F
-
-
Q
G
C
P
D
R
P

M
a
t
c
h
e
s
:

3
6

I
n
d
e
l
s
:
1
3

M
S
D
C
Y
T
E
L
E
K
A
V
I
V
L
V
E
N
F
Y
K
Y
V
S
K
Y
S
L
V
K
N
K
I
S
K
S
S
F
R
E
M
L
Q
K
E
L
N
H
M
L
S
D
T
G
N
R
K
A
A
D
-
-
K
-
L
I
Q
N
L
D
A
N
H
D
G
R
I
S
F
D
E
Y
W
T
-
L
I
G
G
I
T
G
P
I
A
K
L
I
H
E
Q
E
Q
Q
S
S
S

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|

M
M
-
C
S
S
-
L
E
Q
A
L
A
V
L
V
T
T
F
H
K
Y
-
S
C
Q
E
G
D
K
F
K
L
S
K
G
E
M
K
E
L
L
H
K
E
L
P
-
-
-
S
F
V
G
E
K
V
D
E
E
G
L
K
K
L
M
G
S
L
D
E
N
S
D
Q
Q
V
D
F
Q
E
Y
A
V
F
L
A
L
-
I
T
V
M
C
N
D
F
F
-
-
Q
G
C
P
D
R
P

M
a
t
c
h
e
s
:

3
7

I
n
d
e
l
s
:
1
5

M
S
D
C
Y
T
E
L
E
K
A
V
I
V
L
V
E
N
F
Y
K
Y
V
S
K
Y
S
L
V
K
N
K
I
S
K
S
S
F
R
E
M
L
Q
K
E
L
N
H
M
L
S
D
T
G
N
R
K
A
A
D
-
-
-
K
-
L
I
Q
N
L
D
A
N
H
D
G
R
I
S
F
D
E
Y
W
T
-
L
I
G
G
I
T
G
P
I
A
K
L
I
H
E
Q
E
Q
Q
S
S
S

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|

M
M
-
C
S
S
-
L
E
Q
A
L
A
V
L
V
T
T
F
H
K
Y
-
S
C
Q
E
G
D
K
F
K
L
S
K
G
E
M
K
E
L
L
H
K
E
L
P
-
-
-
S
F
V
G
E
-
K
V
D
E
E
G
L
K
K
L
M
G
S
L
D
E
N
S
D
Q
Q
V
D
F
Q
E
Y
A
V
F
L
A
L
-
I
T
V
M
C
N
D
F
F
-
-
Q
G
C
P
D
R
P

M
a
t
c
h
e
s
:

3
8

I
n
d
e
l
s
:
1
7

M
S
D
C
Y
T
E
L
E
K
A
V
I
V
L
V
E
N
F
Y
K
Y
V
S
K
Y
S
L
V
K
N
K
I
S
K
S
S
F
R
E
M
L
Q
K
E
L
N
H
M
L
S
D
T
G
N
R
K
A
A
D
-
-
-
-
K
-
L
I
Q
N
L
D
A
N
H
D
G
R
I
S
F
D
E
Y
W
T
-
L
I
G
G
I
T
G
P
I
A
K
L
I
H
E
Q
E
Q
Q
S
S
S

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|

M
M
-
C
S
S
-
L
E
Q
A
L
A
V
L
V
T
T
F
H
K
Y
-
S
C
Q
E
G
D
K
F
K
L
S
K
G
E
M
K
E
L
L
H
K
E
L
P
-
-
-
S
F
V
G
E
-
K
V
-
D
E
E
G
L
K
K
L
M
G
S
L
D
E
N
S
D
Q
Q
V
D
F
Q
E
Y
A
V
F
L
A
L
-
I
T
V
M
C
N
D
F
F
-
-
Q
G
C
P
D
R
P

M
a
t
c
h
e
s
:

3
9

I
n
d
e
l
s
:
1
9

M
S
D
C
Y
T
E
L
E
K
A
V
I
V
L
V
E
N
F
Y
K
Y
V
S
K
Y
S
L
V
K
N
K
I
S
K
S
S
F
R
E
M
L
Q
K
E
L
N
H
M
-
L
-
S
D
T
G
N
R
K
A
A
D
-
-
-
K
-
L
I
Q
N
L
D
A
N
H
D
G
R
I
S
F
D
E
Y
W
T
-
L
I
G
G
I
T
G
P
I
A
K
L
I
H
E
Q
E
Q
Q
S
S
S

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|

M
M
-
C
S
S
-
L
E
Q
A
L
A
V
L
V
T
T
F
H
K
Y
-
S
C
Q
E
G
D
K
F
K
L
S
K
G
-
-
-
E
M
-
-
K
E
L
L
H
K
E
L
P
S
F
V
G
E
-
K
V
D
E
E
G
L
K
K
L
M
G
S
L
D
E
N
S
D
Q
Q
V
D
F
Q
E
Y
A
V
F
L
A
L
-
I
T
V
M
C
N
D
F
F
-
-
Q
G
C
P
D
R
P

M
a
t
c
h
e
s
:

4
0

I
n
d
e
l
s
:
2
1

M
S
D
C
Y
T
E
L
E
K
A
V
I
V
L
V
E
N
F
Y
K
Y
V
S
K
Y
S
L
V
K
N
K
I
S
K
S
S
F
R
E
M
L
Q
K
E
L
N
H
M
-
L
-
S
D
T
G
N
R
K
A
A
D
-
-
-
-
K
-
L
I
Q
N
L
D
A
N
H
D
G
R
I
S
F
D
E
Y
W
T
-
L
I
G
G
I
T
G
P
I
A
K
L
I
H
E
Q
E
Q
Q
S
S
S

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|

M
M
-
C
S
S
-
L
E
Q
A
L
A
V
L
V
T
T
F
H
K
Y
-
S
C
Q
E
G
D
K
F
K
L
S
K
G
-
-
-
E
M
-
-
K
E
L
L
H
K
E
L
P
S
F
V
G
E
-
K
V
-
D
E
E
G
L
K
K
L
M
G
S
L
D
E
N
S
D
Q
Q
V
D
F
Q
E
Y
A
V
F
L
A
L
-
I
T
V
M
C
N
D
F
F
-
-
Q
G
C
P
D
R
P

M
a
t
c
h
e
s
:

4
1

I
n
d
e
l
s
:
3
3

M
S
D
C
Y
T
E
L
E
K
A
V
I
V
L
V
E
N
F
Y
K
Y
V
S
K
Y
S
L
V
K
N
K
I
S
K
S
S
F
R
E
M
L
Q
K
E
L
N
H
M
-
L
-
S
D
T
G
N
R
K
A
A
D
-
-
-
-
K
-
L
I
Q
N
L
D
A
N
H
D
G
R
I
S
F
D
E
Y
W
T
-
L
I
G
G
I
T
G
P
I
A
K
L
I
H
E
Q
E
Q
-
-
-
Q
S
S
S
-
-
-

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|

M
M
-
C
S
S
-
L
E
Q
A
L
A
V
L
V
T
T
F
H
K
Y
-
S
C
Q
E
G
D
K
F
K
L
S
K
G
-
-
-
E
M
-
-
K
E
L
L
H
K
E
L
P
S
F
V
G
E
-
K
V
-
D
E
E
G
L
K
K
L
M
G
S
L
D
E
N
S
D
Q
Q
V
D
F
Q
E
Y
A
V
F
L
-
-
-
-
-
-
-
-
A
-
L
I
T
V
M
C
N
D
F
F
Q
G
C
P
D
R
P

F
ig

ur
e

7:
E

ffi
ci

en
t

al
ig

nm
en

ts
fo

r
tw

o
se

qu
en

ce
s

of
hu

m
an

S1
00

ca
lc

iu
m

-b
in

di
ng

pr
ot

ei
ns

.

17

