
BiMuSA: An implementation for biobjective

multiple sequence alignment problems

CISUC Technical Report TR2013/03

Sebastian Schenker1, Lúıs Paquete2

1Zuse Institute Berlin, Germany.
schenker@zib.de

2CISUC, Department of Informatics Engineering,
University of Coimbra, Portugal.

paquete@dei.uc.pt

Abstract

This report introduces BiMuSA, an implementation for solving
biobjective multiple sequence alignment problems. It outputs a se-
quence of optimal alignments, in a multicriteria sense, by solving a
sequence of integer linear programs. The formulation of the latter is
based on a graph representation. This implementation can be used
to solve small to medium sized problems with an arbitrary number of
strings and to generate upper bounds for larger problems for bench-
marking purposes.

1 Introduction

In this work, we introduce BiMuSA, an implementation for solving biob-
jective multiple sequence alignment problems. The theoretical background
and algorithmic approach concerning the multiple sequence alignment prob-
lem is based on [4]. In this work, Althaus et al. describe a branch-and-cut
framework for solving an extension of the gapped trace problem which can
be represented in graph-theoretic terms. The latter leads then to an integer
linear program which is solved via branch-and-cut or integer programming,
respectively.

There have also been several works extending algorithms for pairwise
sequence alignment for a multicriteria setting [3, 5, 8–10]; for an extensive

1



review about bioinformatics problems recast as multicriteria optimization
problems see also [7].

The biobjective problem considered in this work consists in minimizing
the number of indels or gaps, respectively, and in maximizing the num-
ber of matches minus the number of mismatches. The latter objective can
easily be extended to a more general substitution score objective (by im-
plementing a given virtual edge weight function). The working principle
of the implementation is to solve a sequence of integer linear programming
(ILP) problems within a branch-and-cut framework. The implementation
outputs the Pareto optimal alignments via incorporating an ε-constraint
method by taking the number of indels or gaps, respectively, as an addi-
tional constraint into the LP formulation. By iterating properly over these
indel/gap constraints, it is possible to generate the complete Pareto optimal
alignment set. This technique is known as ε-constraint in the multicriteria
optimization field [6].

2 Branch-and-cut framework

The solution technique to solve the ILP problem is based on the branch-
and-cut work of [4]. Each symbol in every sequence is a vertex and vertices
are connected by edges and arcs. A selection of these edges and arcs, respec-
tively, forms an alignment. In order to ensure a feasible alignment the subset
of edges and arcs needs to fulfill several constraints. These constraints can
be written such that the resulting formulation constitutes a linear program-
ming (LP) formulation with, in general, exponentially many constraints.
Since, in general, LPs with exponentially many constraints cannot be solved
efficiently, the authors tackle this problem by introducing facet-defining in-
equalities and using them within a branch-and-cut framework. Firstly, the
original inequalities are replaced by more general inequalities that are shown
to be facet-defining. Moreover, for these facet-defining inequalities efficient
separation procedures are proposed that yield the branch-and-cut approach.

The first separation approach is concerned with so-called maximal clique
inequalities. Maximal clique inequalities consider pairwise incompatible
edges and arcs that are not allowed to be chosen simultaneously in order
to achieve a feasible alignment. The structure of maximal clique inequali-
ties can be exploited or separeted, respectively, with the help of a longest
path computation in a pairgraph. The second separation approach is con-
cerned with lifted mixed cycle inequalities. A violation of these inequalities
also yields an infeasible alignment because a mixed cycle means that a cer-

2



tain symbol of one of the sequences is ambiguously aligned to symbols of
another sequence. An efficient separation of lifted mixed cycle inequalities
can be achieved by shortest path computations in a directed graph with
distances that can be computed by path computations in pairgraphs com-
puted during the maximal clique separation. The last separation approach
is concerned with general transitivity inequalities. In order to achieve a fea-
sible alignment the variables in the LP formulation need to fulfill so-called
transitivity constraints. These constraints are separated by a maximum flow
computations in an extended bipartite graph.

3 Implementation details

BiMuSa is implemented in C++. Each separation procedure is developed
as an independent class. For the computations within each separation pro-
cedure we use the (freely available) LEMON graph library [2]. For the
optimization of the (integer) linear program we use cplex and its concert
technology [1].

After reading the sequences from a given input file, the basic data struc-
tures (edges and arcs of the underlying graph) are created via the graphMsa
class. The (integer) linear program instance is established in the ilpMsa
class and incorporates in the first iteration only a basic set of assignment
constraints. These assignment equalities constrain each node of the graph,
i.e., each letter in each string, to be either assigned to another node or to be
spanned by an indel or gap, respectively, with respect to all other strings.
For further details of the underlying integer model and the separation ap-
proaches see [4].

Each solution of the relaxed integer program is checked for feasibility by
checking whether it leads to a violated maximal clique inequality, a violated
mixed cycle inequality or a violated general transitivity inequality.

The separation of maximal cliques is done in the maxClique class. For
each given pair of strings it checks whether the sum of pairwise incompatible
arcs and pairwise incompatible edges exceeds its limit. The latter value is
computed by longest path computations in a constructed pairgraph. If we
find a violated maximal clique, then the corresponding inequality is incor-
porated into the linear program and the extended linear program is solved
and rechecked.

If we cannot find a violated maximal clique constraint anymore, we check
for violated lifted mixed cycle constraints. This done via the mixedCycle
class. This separation involves shortest path computations in a correspond-

3



ing directed graph whose weights stem from maximal sets of pairwise in-
compatible edges (and can be computed in the previous maximal clique
separation). As long as there are no violated maximal clique inequalities
we check for violated lifted mixed cycles and incorporate the latter into the
linear program.

The separation of generalized transitivity inequalities is done after the
separation of maximal cliques and mixed cycles. Violated general transitiv-
ity inequalities are computed within the generalTrans class and involve the
computation of maximal flows or minimal cuts, respectively.

After finishing the separation process, we check whether the current
lp solution for integrality. If the lp solution is integer, we are done. If
the solution is fractional, we transform the linear program into a integer
program and achieve feasibility by solving the latter.

The implementation can also be used to compute upper bounds by
bounding the number of iterations with respect to the separations. This
may be relevant for benchmarking purposes, i.e. assessing the performance
of heuristic methods.

Acknowledgements

This work was support by the Fundação para a Ciência e Tecnologia, project
MOSAL - Multiobjective sequence alignment (PTDC/EIA-CCO/098674/2008)
and by FEDER, Programa Operacional Factores de Competitividade do
QREN, ref. COMPETE: FCOMP-01-0124-FEDER-010024.

References

[1] Cplex optimization studio. http://www-01.ibm.com/software/

commerce/optimization/cplex-optimizer.

[2] Lemon graph library. http://lemon.cs.elte.hu/trac/lemon.

[3] M. Abbasi, L. Paquete, A. Liefooghe, M. Pinheiro, and P. Matias. Im-
provements on bicriteria pairwise sequence alignment: algorithms and
applications. Bioinformatics, 29(8):996–1003, 2013.

[4] E. Althaus, A. Caprara, H.-P. Lenhof, and K. Reinert. A branch-and-
cut algorithm for multiple sequence alignment. Mathematical Program-
ming, Ser. B, (105):387–425, 2006.

4



[5] K.W. DeRonne and G. Karypis. Pareto optimal pairwise sequence
alignment. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 10(2):481–493, 2013.

[6] M. Ehrgott. Multicriteria optimization. Springer, 2005.

[7] Julia Handl, Douglas B. Kell, and Joshua D. Knowles. Multiobjective
optimization in bioinformatics and computational biology. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 4(2):279–
292, 2007.

[8] M.A. Roytberg, M.N. Semionenkov, and O.I. Tabolina. Pareto-optimal
alignment of biological sequences. Biophysics, 44(4):565–577, 1999.

[9] T. Schnattinger, U. Schöning, and H. Kestler. Structural rna align-
ment by multi-objective optimization. Bioinformatics, 29(13):1607–
1613, 2013.

[10] Akito Taneda. Multi-objective pairwise RNA sequence alignment.
Bioinformatics, 26(19):2383–2390, 2010.

5


