POLITECNICO DI TORINO

Facolta di Ingegneria

Corso di Laurea in Ingegneria Informatica

Tesi di Laurea

Genetic Local Search
for Job Shop Scheduling Problem

Algoritmi Genetici e Ricerca Locale per
il Problema Job-Shop

Relatore:

prof. Roberto Tadei
Candidato:
Alberto Moraglio

OTTOBRE 2000

Abstract

Job Shop Scheduling Problem is a strongly NP-hard problem of combinatorial
optimisation and one of the most well-known machine scheduling problem. Taboo
Search is an effective local search algorithm for the job shop scheduling problem, but
the quality of the best solution found depends on the initial solution used. To overcome
this problem in this thesis we present a new approach that uses a population of Taboo
Search runs in a Genetic Algorithm framework: GAs localise good areas of the solution
space so that TS can start its search with promising initial solutions. The peculiarity of
the Genetic Algorithm we propose consists in a natural representation, which covers all
and only the feasible solution space and guarantees the transmission of meaningful
characteristics. The results show that this method outperforms many others producing

good quality solutions in less time.

Acknowledgments

The most part of this thesis has been done at the Technical University of Eindhoven in
the department of computer science and mathematics, Eindhoven, The Netherlands.

In particular I would like to extend my thanks to Huub ten Eikelder who has supported
me in this work, advising and helping me constantly with a great deal of paternal
patience. I'm also grateful to Robin Schilham for being more than a colleague; always
open to fulfil any doubt I had behind a cup of coffee.

I like to mention here my “virtual” officemate, Emile Aarts, for being so quiet all the
time, and, above all, Jan Karel Lenstra who unwillingly has lent me a precious book

“until the end of time”, which unfortunately is still out of stock.

I wish to express my gratitude to my advisor at the Politecnico di Torino, Roberto
Tadei, who has given to me the great opportunity to present this work in the beautiful

city of Naples and to attend to the prestigious winter institute in Lac Noir.

With attention to my stay in The Netherlands, I retain fond memories of everyone I have
met. [really can’t mention all the friendly people, from The Netherlands and from
everywhere else in Europe, that have contributed together to make my stay in

Eindhoven such a great and unforgettable experience.

Finally, but above all, I wish to thank my dear parents and my whole family for their

moral and economic support during my study.

II

Table of Contents

Part I — Introduzione 1
Introduzione 2
1 SOIMIMATIO <.ttt ettt e ettt e e st e e ettt e s ebbee e s abeees 3
2 Un Algoritmo Genetico per il JOD Shop.......cooiiiiiiiiiiiiiieieee e 5
2.1 Appello all’ammisSibilitlccoouieiiiiiiiiiiiiiii e 5
2.2 RAPPIESENLAZIONE ..eeeeeeeeieiieeeeiiieee et te e e ettt eeeeteteeeenateeeeaaebeeeesmnteeeeanseeeeeanneeas 7
2.3 RICOMDINAZIONEeouuiieiiiiiiieiiiieeeeieeeiee ettt ettt e s 10
3 Ricerca Genetica LOCale.........oovuiiiiiiiiiiiiiiiiic e 12
3.1 Schema dell’ Algoritmo di Ricerca Genetica Locale.............ccceeeveieieriiiennnnnne. 12
3.2 Infrastruttura GENELICA.eeeiiiiietiiiiieie ettt ettt e e 13
3.3 Algoritmo di Ricerca Loacle...........coocoiiiiiiiiiiiiiiee e 14
4 Risultati ComputaZionali.........ccoeuieeiiiiiiitirniieie ittt e e 15
4.1 Panoramica Sui Parametriccoocuueeiiiiiiiiiiiiiiiiniiie e 15
A2 GTS VS TS et et e 17
4.3 Un Confronto ad AmpPio SPELIO......cceeruiiiiiriiiieeiiiiteeeiiieeeeeeteeeeiieeeenieee e 18
4.4 GTS VS SAGEN ..uutiiiiiiiiitieee ettt sttt et 18
S CONCIUSION .ttt ettt ettt ettt ettt e ettt e e st e e e snbaeeesabaeees 19
Part Il — Project Description 21
1 Introduction 22
1.1 Job Shop Scheduling Problemcoociiiiiiiiiiiniie e 22

I

1.3 Genetic Algorithms and Genetic Local Searchcccovieiiiiiiiiiniiiniicene, 23
1.4 Applying Genetic Algorithms to JOb ShOp ...cccoovvviiiiiiiiiiiiiiiiieee e 24
I TN oo) 1 PR PPTUPPPPP 24
1.6 RESUILS ..ttt ettt 25
1.7 ReAder’s GUIAEcouviiiiiiiiieiiiicee ettt et e e 25
2 Job Shop Scheduling Problem 26
2.1 INETOAUCHION. 1.ttt ettt et e st e et e s et aee e 26
2.2 Complexity and Formal Definitionccceiiiiiiiiiiniiiiiniiiciniiiee e 26
2.3 DiSJunctive GTaPhccocueiieiiiiiieeiee ettt ettt e et e e e ee e e 27
2.4 Schedules and Gantt ChartS..........c.oocuveeirriieiiiiiiieeeeee ettt e 30
2.5 Conventional HEUTISHICSccovuviiiiiiiniiieiiieiic et 33

2.5.1 Dispatching HEUTISHICS.ceeiiiiiiee ittt et 33

2.5.2 Shifting-Bottleneck HEUTIStCScceeiviiiieiiieieeiie e 35
3 Local Search and Taboo Search 37
3.1 INEFOUCLION. ...ttt ettt ettt et e st e e s bt e e saeaeees 37
3.2 Overview on Local Search Algorithmsccccceiiiiiiiiiiiiiiee e, 37

3.2.1 Tterative IMProvementcccuueiiiiiiiiiiiiiieiiieee ettt 38

3.2.2 Threshold AIZOTItRMS........ccoiiiiiiiiiiiiii it 38

3.2.3 Tab0O SEATCH.ccoiiuiiiiiiiiiiii it e 39

3.2.4 Variable-Depth Searchcccccooiiiiiiiiiiiii e 39

3.2.5 Genetic AIGOTIERIMScoouuiiiiiiiiie e 39
3.3 Focus on Taboo S€archc.cciiiiiiiiiiiiiiiiiiiiceiiec e 40
3.4 Local Search for the Job Shop Problemcccoeiiiiiiiiiiiiieiee e, 41
4 Genetic Algorithms and Evolutionary Computation 43
4.1 INEFOAUCTION. ...cnetieeiiiieiiie ettt et ettt et ettt e st eaanees 43
4.2 What are Genetic AIZOTIthMS?ccoiiiiiiiiiiiie et 44
4.3 Major Elements of Genetic Algorithmsccccooiriiiiiiiiiiiiiie e 45

4.3.1 INTHATSATION ..eeenvtiiiiiiiiiiceit ettt 45

v

.32 SEIECTION «.oevneeee et e et e e taee e et e e e e e eae e e e etaeeenanaes 46

4.3.3 RECOMDINATIONceeiiuiiiiiiiiiiieee ittt ettt ettt e e rbeee e 48
434 IMIULATIONteeiiiiiiee et ettt ettt ettt e ettt e s sttt e e bt e e s eaabeeesnbaee e e 50
4.3.5 REINSEITION ...eeeiuiiiiiiiiiitee ettt ettt ettt et e et e st eeesbeee e e 50
4.3.6 TeIrMINATIONcooutiiiiieeriiteeit ettt et ere e ettt e et e e e st e e sebee s eeaneeeas 51
4.4 Overview on Evolutionary AIZOrithms...........ccceovviiiiiiiiieiriiiiiiiiee e 51
4.4.1 Evolutionary Programming...........ccceeueieeeeiiiieenniieeeeiieeeeeeieeeeieeeeeeeee e 52
4.4.2 EVOIULION SIrAtEZY ..eouuvviieeiiiiieeeiiiiieeeiie e e et ee e ettt e e ettt e e e et e e eenee e e eeneaeeeens 52
4.4.3 Classic Genetic AIGOTItRMSc..eiiiiiiiiiiieiiie e 52
4.4.4 Genetic Programming...........ceeeeiuiieeriiieeeesitieeeeieeeeitee e et ee e ieeeeeeeeeeeeas 52
4.4.5 Order-Based Genetic Algorithms...........coovviiiiiniiiiiiiiiiiicicecieeee 53
4.4.6 Parallel Genetic AIZOTItNIMS..........oiiiiiiiiiieiie e 53
4.5 Genetic Algorithms as Meta-HeuriStiCscuiiiirriiiiiiiiiiein it e e 54
4.6 Encoding ProbIem............coooviiiiiiiiiiiiiiiieee ettt e e a e e 54
4.6.1 Coding Space and SoOlution SPace..........ccoevuueeiiriiireriiieeeiniiieeeeieee e 55
4.6.2 Feasibility and Legalityccoocuieiiiiiiiiiiiiiiiiiieee et 55
TG T\ Y] 0110 VUSSR 56
4.7 Genetic Local Searchcoooiiiiiiiiiiii e 56
4.8 Genetic Algorithms and Scheduling Problems............cccoccoiiiiiiiiiiniie e 57
4.9 Theory Behind Genetic AIZOTItNMSccuuiiiiiiiiiiiiiieeee e 59
4.9.1 Schema TheOorem..........c.ceviiiiiiiiiiiiieee e 60
4.9.2 Building Block HYpOthesiscuuiiiiiiiiiiieiiie et 60
5 Genetic Algorithms and Job Shop 62
5.1 INErOAUCTION. ... ettt et ettt eas 62
5.2 Encoding Problems and JOb ShOp........ccccuiiiiiiiiiiii e 62
5.2.1 Appeal to Feasibility.......cccceeiiiiiiiiiiiiiiiiieie e 62
5.2.2 Causes of Infeasibilitycooeeiiiiiiiiieie e 63
5.2.3 Encoding and CONSIIAINESc.uueeiiriieeirniieieeiieeeiiiteee et eeiieee e siieee e 64
5.2.4 Genetic Operators and Order Relationship.........ccccoeuveeiiiiieiinnciiniiicenne, 65
5.3 A New Genetic Representation for JOb Shopccooceeiiiiiiiinniiiiien, 67
5.3.1 String Representationccocueeeiiiiieiinniieieiiiee ettt 67

5.3.2 Formal Definition of String and Coding/Decoding Theorems....................... 70

5.3.3 Recombination Classcceerruieiiiiiieeiiniieee ettt et 72
5.4 Recombination OPETAtOTS.........eeiirurieieriiiiieeiiiieeeeiitee et e sttt e e stteeessabeeeesaraeees 76
5.4.1 Multi-Step Complete Recombination Operatorc.occveeernuieeeniiveeennnne. 78
5.4.2 Multi-Step Parallel Recombination Operatorc.ccceevveerueerneeenueeenneenns 79
5.4.3 Multi-Step Crossed Recombination Operator.............eeeevvvieeenniieeeniieeeennnne 79
5.4.4 Multi-Step Merge and Split Operator..........coccueeecuveeriieernieeniieennieeeieeeeeens 80
5.4.5 One-Step Crossed Insertion Recombination Operatorccoecueeeueeenuneens 83
5.4.6 One-Step Insertion Recombination Operator...........c.cccceeveerueernieeniieeenneenns 83
5.5 The Genetic Local Search Algorithmc.ccoooiiiiiiiniiiniieeceeeee 84
5.5.1 Genetic Local Search Templateccoooieiiiiiieiinniiiiniiieeeeieceeee e 84
5.5.2 Genetic Algorithm Frameworkccooueeiiiiiniiiniiiiiiiciicciccnc e 84
5.5.3 L0CAl OPUIMISET ..cccuuvieieiiiieeeiiiieee ettt et ettt e sttt e e ettt e et e e e beee e 85
6 Computational Results 87
6.1 INTrOAUCTION.eeeiiiiii ittt ettt e 87
6.2 Parameter SEHNEcceeuiiieeeiiieeetee et ee et e et te e ettt e e ettt e e et e e e e enneeeeeneaeeas 88
6.2.1 Overview on Parameters.........cc.ueeiiviieiiiniieiiiiiee e 88
6.2.2 Determination of a Plausible Parameter Configuration...............ccceeccuveenne.e. 90
6.3 Result Of GTS ...coiiiiiiii et 98
6.3.1 Quality and Time EXPeriment...........cccceerieireiiiieieniee e 99
6.3.2 Quality EXPETrimentcccueeeiiiiiieiiiiiee ittt et 100
6.4 COMPATISONIS ..eeeeeeiiiiiiteeeeeseiiiirteeeesesanattereeeeessaaareteeeeessssasssereaesssssasssseeeeessssnnns 101
6.4.1 GTS VS TS e 101
6.4.2 A Wide COMPATISON ...cceeiutiieiiiiieeeiiiieeeeniteee et ee e sttt e e sttt eeeiieeeeeiraeeenaes 104
6.4.3 A Specific COMPATISON.ceeiiieiieeeiiiieeeeeieeeeeeee et e e et e e e seeeeeeeeeeeaaes 105
0.5 SUIMIMATYuvieiiieeeieiiiieee e e e ettt e e e e eestbtteeeeessssatbeteteeessssanssseeeaesssasasssneeaeesesnnnnes 107
7 Conclusions 108
References 110

VI

Part 1

Introduzione

Introduzione

Il Job Shop Scheduling Problem ¢ un problema di ottimizzazione combinatoria
fortemente NP-hard ed ¢ il pit conosciuto e studiato dei problemi di schedulazione in
ambiente multi-macchina. Il Taboo Search & un algoritmo di ricerca locale molto
efficace quando applicato al Job Shop, tuttavia la qualita della soluzione migliore che
questo metodo ¢ in grado di trovare dipende molto dalla soluzione iniziale necessaria ad
avviare il processo di ricerca. Al fine di porre rimedio a questa limitazione, nel presente
documento si propone un approccio innovativo al problema che fa uso di una
popolazione di soluzioni, ottimizzate dall’algoritmo di Taboo Search al momento della
loro creazione, all’interno di un contesto algoritmico d’ispirazione genetica: 1’Algoritmo
Genetico localizza buone aree all’interno dello spazio delle soluzioni, spianando la
strada alla procedura di Taboo Search che, in tal modo, pud iniziare la ricerca
utilizzando soluzioni iniziali promettenti. La particolarita dell’algoritmo genetico
proposto, consiste in una rappresentazione naturale che copre completamente e
solamente lo spazio delle soluzioni ammissibili e che garantisce la trasmissione di
caratteristiche significative di soluzione in soluzione. Gli esperimenti computazionali
mostrano che questo metodo risulta migliore di molti altri, trovando soluzioni di buona

qualita in minor tempo.

Introduzione

1 Sommario

Il Job Shop Scheduling Problem (JSSP) ¢ un problema di ottimizzazione combinatoria
particolarmente arduo da risolvere. Poiché tale problema ha svariate applicazioni
pratiche, ¢ stato studiato da molti autori che hanno proposto un gran numero di
algoritmi risolutivi. Solo casi molto particolari sono risolvibili attraverso algoritmi
polinomiali, ma in generale il problema ricade nella classe di complessita NP-hard [9].
Il JSSP puod essere sommariamente descritto come di seguito: siano dati un insieme di
lavori ed un insieme di macchine. Ogni macchina puo lavorare al massimo un lavoro
alla volta. Ogni lavoro consiste in una sequenza di operazioni, ognuna delle quali deve
essere lavorata su una data macchina senza interruzioni per un determinato periodo di
tempo. Lo scopo ¢ quello di trovare una schedulazione, cio¢ un ordinamento nel tempo
delle operazioni su tutte le macchine, che abbia lunghezza minima.

Il Taboo Search (TS) ¢ un algoritmo di ricerca locale progettato per trovare soluzioni
quasi ottimali di problemi di ottimizzazione combinatoria [6]. La particolarita del TS &
una memoria a breve termine utilizzata per tenere traccia delle soluzioni visitate piu di
recente le quali vengono considerate proibite (tabu per I’appunto), permettendo cosi al
processo di ricerca di sfuggire dagli ottimi locali.

I1 TS si & rivelato un algoritmo di ricerca locale molto efficace nell’affrontare il Job
Shop Scheduling Problem [13, 16]. Tuttavia la soluzione migliore che il TS puo trovare
¢ influenzata da quella utilizzata per avviare il processo di ricerca. Come avviene per
molte tecniche di ricerca locale, anche il TS inizia la sua ricerca partendo da una singola
soluzione, la quale puo instradare la ricerca verso un vicolo cieco. La presenza del
meccanismo di tabu attenua tale possibilita, senza pero eliminarla. Questo accade
soprattutto quando il TS ¢ applicato a problemi di ottimizzazione combinatoria
particolarmente ostici quale il JSSP.

Gli Algoritmi Genetici (AG) sono metodi di ricerca stocastica globale che mimano
I’evoluzione biologica naturale [7]. Gli AG operano su una popolazione di soluzioni
potenziali applicando il principio di “sopravvivenza del migliore”, producendo via via
sempre migliori approssimazioni della soluzione ottima.

E’ molto difficile applicare direttamente e con successo gli AG classici a problemi di

ottimizzazione combinatoria. Per questo motivo, sono state create diverse

Introduzione

implementazioni non convenzionali che utilizzano gli algoritmi genetici come meta-
euristica [3, 10]. Percorrendo questa nuova strada si ¢ scoperto che, per un verso, gli
algoritmi genetici sono uno strumento molto efficace di ricerca stocastica globale e che,
per I’altro, permettono di essere combinati in maniera flessibile con euristiche legate al
particolare dominio dello specifico problema rendendo molto piu efficienti gli algoritmi
risolutivi cosi concepiti.

Molti autori hanno proposto varianti di algoritmi di ricerca locale che fanno uso di idee
provenienti dalla genetica delle popolazioni [1, 11, 19]. In generale, per via della
complementarieta delle proprieta di ricerca degli algoritmi genetici e delle tecniche piu
convenzionali, gli algoritmi ibridi risultano spesso superare entrambi gli algoritmi che li
compongono quando presi singolarmente.

Precedenti studi riguardanti problemi di ordinamento, come il problema del commesso
viaggiatore (TSP), hanno provato che una rappresentazione naturale del problema & la
chiave del successo dell’approccio genetico [17].

Il JSSP ¢ sia un problema di ordinamento sia un problema fortemente vincolato.
Entrambi questi aspetti, dunque, devono essere considerati al momento di individuare
una rappresentazione naturale per tale problema in ambito genetico. Rappresentazioni
genetiche per il JSSP possono essere trovate in [4, 8, 12].

Nella sezione 2 di questa introduzione, ¢ stata proposta una rappresentazione che,
appoggiata ad una particolare classe di operatori genetici, garantisce alla ricerca
genetica di coprire completamente e solamente lo spazio delle soluzioni ammissibili e
che non di meno garantisce la trasmissione di caratteristiche significative dalle soluzioni
genitrici alle soluzioni figlie. Seguono poi, la definizione della classe degli operatori
genetici accoppiata con la rappresentazione proposta e la scelta di un singolo operatore
di ricombinazione che presenta interessanti proprieta.

Nella sezione 3 di questa introduzione, & presentato un algoritmo di ricerca genetica
locale (GTS) che consiste in una particolare forma ibrida di algoritmo costituita da un
algoritmo genetico di base con l’aggiunta che ogni nuovo individuo generato &
sottoposto ad una fase di ottimizzazione attraverso 1’algoritmo di Taboo Search prima di
essere passato nuovamente al controllo dell’algoritmo genetico.

Nella sezione 4 di questa introduzione, gli esperimenti computazionali condotti

mostrano che la combinazione dell’AG con il TS si comporta meglio del TS preso

Introduzione

singolarmente. Inoltre, in una comparazione tra GTS e un’ampia gamma di algoritmi
risolutivi per il JSSP, effettuata su un parco di istanze molto note di piccola e media
taglia, il GTS risulta molto ben posizionato. Infine, da una comparazione diretta tra GTS
e un approccio simile, che perd combina gli algoritmi genetici con Simulated Annealing
(SAGen) [8], effettuata su un insieme di istanze grandi del problema, si evince che GTS
sorpassa SAGen sia in termini di tempo computazionale impiegato sia in termini di

qualita di soluzioni ottenute.

2 Un Algoritmo Genetico per il Job Shop

2.1 Appello all’ammissibilita

Al fine di applicare gli algoritmi genetici ad un problema particolare ¢ necessario
codificare una generica soluzione del problema in un cromosoma. La modalita di
codifica di una soluzione risulta essere la chiave del successo dell’AG [3]. Gli AG
classici fanno uso di una codifica binaria degli individui in stringhe di lunghezza fissa.
Tale rappresentazione non si conforma in maniera naturale a problemi in cui I’ordine
risulti essere un aspetto caratterizzante dello stesso, quali sono i casi del problema del
commesso viaggiatore e del Job Shop, in quanto non sono state trovate modalita di
codifica dirette ed efficienti che siano in grado di far corrispondere 1’insieme
comprendente tutte le soluzioni possibili a stringhe binarie [17].

La principale difficolta nella scelta di una opportuna rappresentazione per problemi di
ottimizzazione combinatoria fortemente vincolati, quale ¢ il JSSP, ¢ quella di far fronte
all’insorgere dell’inammissibilita delle soluzioni prodotte durante il processo evolutivo.
Questo problema ¢ solitamente affrontato modificando gli operatori di ricombinazione,
associando loro meccanismi di riparazione delle soluzioni o imputando penalita alle
soluzioni inammissibili agendo sulla loro funzione di fitness o, ancora, scartando le
soluzioni inammissibili quando create. L’utilizzo delle penalita o della strategia del
rifiuto risultano inefficienti se applicate al JSSP perché lo spazio delle soluzioni
ammissibili € molto pil piccolo di quello delle soluzioni possibili, e quindi I’AG perde
la maggior parte del suo tempo producendo e/o elaborando soluzioni inammissibili. Le
tecniche di riparazione risultano essere una scelta migliore per molti problemi di

ottimizzazione combinatoria perché sono facili da applicare e sorpassano in termini di

Introduzione

efficienza le strategie basate sul rifiuto e sulle penalita [14]. In ogni caso, laddove sia
possibile, il metodo di gran lunga pit efficiente e diretto rimane quello di incorporare in
maniera trasparente i vincoli nella codifica degli individui. Cosi, un punto molto
importante nella costruzione di un algoritmo genetico per il JSSP ¢ quello di concepire
insieme una rappresentazione opportuna delle soluzioni e degli operatori genetici
specifici per il problema, in maniera tale che tutti i cromosomi, sia quelli generati
durante la fase iniziale di formazione della popolazione sia quelli prodotti durante il
processo evolutivo, producano soluzioni ammissibili. Questa & una fase cruciale che
influenza in maniera decisiva tutti i passi successivi della costruzione di un algoritmo
genetico.

In questo documento sono proposti una rappresentazione e una particolare classe di
operatori di ricombinazione che, presi insieme, garantiscono che la ricerca genetica
copra completamente e solamente lo spazio delle soluzioni ammissibili nonché la
trasmissione delle caratteristiche significative alle soluzioni figlie.

Sulla base del tipo di rappresentazione delle soluzioni utilizzata, si possono verificare

due distinte cause di inammissibilita:

1. soluzioni che non rispettano il preimposto ordine di precedenza nei job

2. soluzioni che presentano cicli

La prima causa di inammissibilita ¢ legata all’esistenza dei vincoli di precedenza tra
operazioni sui job. Se si considera una rappresentazione delle soluzioni che non
imponga a priori un ordine fisso delle operazioni sui job ma piuttosto che permetta di
disporre liberamente le operazioni sia sulle macchine sia sui job, allora si possono
verificare dei conflitti tra I’ordine delle operazioni codificato in un generico cromosoma
e quello prescritto dai job.

La seconda causa di inammissibilita s’incontra se si considera una rappresentazione
delle soluzioni che ammetta di codificare anomalie di precedenza tra operazioni (cioe
che ammetta soluzioni cicliche). In una soluzione ammissibile, infatti, due generiche
operazioni possono essere esclusivamente parallele (non c’¢ alcun ordine imposto tra

N .

loro) o sequenziali (in questo caso, una precede l’altra). Non ¢ possibile che una

Introduzione

operazione, in maniera congiunta, preceda e segua un’altra, direttamente o
indirettamente (cosi formando un ciclo).

Al fine di evitare nel nostro algoritmo genetico entrambi i tipi di inammissibilita,
saranno introdotti 1) una classe di operatori di ricombinazione che evitino il problema
dei vincoli di precedenza sui job e 2) ed una rappresentazione che non risenta del
problema riguardante le soluzioni cicliche. Piu in dettaglio si vedra che potranno essere
rappresentate solo le soluzioni senza cicli. Le soluzioni cosi rappresentate perd non
rispettano necessariamente i vincoli di precedenza sui job. Al fine di gestire quest’altro
tipo di inammissibilita, ¢ sufficiente inizializzare il processo evolutivo con una
popolazione di soluzioni che rispettino tutti i vincoli di precedenza sui job e, nel corso
del processo evolutivo, applicare solo operatori di ricombinazione che lascino invariati i

vincoli di precedenza.

2.2 Rappresentazione

Al fine di applicare la cornice genetica ad un determinato problema, € necessario
definire un metodo di codifica per associare lo spazio di tutte le possibili soluzioni ad un
insieme finito di cromosomi.

Di seguito sara introdotta la rappresentazione che sara utilizzata. Dapprima si mostrera
tramite un esempio, la relazione che sussiste tra 1) una istanza del problema,
rappresentata dal suo grafo disgiuntivo, 2) una particolare soluzione per quell’istanza,
rappresentata dal rispettivo grafo, e 3) la nostra codifica a stringa per quella soluzione.

Dopodiché, saranno presentate le definizioni e i teoremi che assicurano la validita della

rappresentazione proposta.

Problema, Soluzione e Codifica

Il problema del job shop puo essere efficacemente rappresentato attraverso un grafo
disgiuntivo [15]. Un grafo disgiuntivo G = (N, A, E) ¢ definito come di seguito: sia N
I’insieme dei nodi che rappresentano le operazioni, sia A I’insieme degli archi che
connettono operazioni consecutive su uno stesso job, e sia E I'insieme degli archi
disgiuntivi che connettono le operazioni che devono essere lavorate su una stessa
macchina. Un arco disgiuntivo puod essere impostato nell’una o nell’altra orientazione

delle due possibili. La costruzione di una soluzione consiste nell’orientare tutti gli archi

Introduzione

disgiuntivi in maniera tale da determinare una sequenza di operazioni su una stessa
macchina. Una volta che ¢ stata determinata una sequenza per una macchina, gli archi
disgiuntivi che connettono operazioni che devono essere lavorate da quella macchina
devono essere rimpiazzati con degli archi orientati, vale a dire archi congiuntivi.
L’insieme E degli archi disgiuntivi pud essere decomposto in clique (sottografi
completi), uno per ogni macchina. Il tempo di elaborazione di ogni operazione puo
essere visto come un peso attaccato al nodo corrispondente. L’obiettivo del JSSP &
quello di trovare un ordinamento delle operazioni su ogni macchina, cio¢ di orientare gli
archi disgiuntivi in maniera tale che il grafo relativo alla soluzione che ne risulta sia
aciclico (non ci sono conflitti di precedenza tra operazioni) e che la lunghezza del
cammino pesato pill lungo tra il nodo iniziale e quello terminale sia minimo. Questa
lunghezza prende il nome di makespan.

La Figura [2.1] riporta il grafo disgiuntivo relativo ad una istanza del problema
composta da 3 job e 4 macchine. La Figura [2.2] riporta il grafo che rappresenta una
soluzione ammissibile per I’istanza data del problema. Questo ¢ stato derivato dal grafo
disgiuntivo sopra descritto dopo aver orientato tutti gli archi disgiuntivi e avendo avuto
cura di non creare cicli. Nel grafo della soluzione, le frecce corrispondono ai vincoli di
precedenza sui job o sulle macchine. Le linee tratteggiate indicano che due operazioni
non presentano alcun ordine di precedenza (in linea di principio tali operazioni
potrebbero essere lavorate in parallelo senza violare alcun vincolo di precedenza. In
realta il fatto che vengano effettivamente lavorate in parallelo dipende solo dal tempo di
elaborazione delle operazioni). La sequenza delle operazioni sui job ¢ unicamente
funzione dell’istanza del problema e non della particolare soluzione. Al contrario, la
sequenza delle operazioni sulle macchine dipende anche dalla particolare soluzione del
problema dato.

Si considerino ora le cose da un punto di vista differente, enfatizzando la relazione
d’ordine tra le operazioni. Il grafo disgiuntivo di Figura [2.1] rappresenta una
particolare istanza del JSSP. Questo puo essere interpretato come una relazione d’ordine
parziale tra operazioni. Il grafo della soluzione mostrato in Figura [2.2] rappresenta una
specifica soluzione dell’istanza data sopra. Anche quest’ultimo puo essere interpretato
come una relazione d’ordine parziale tra operazioni, anche se piu vincolata quando

confrontata con quella associata al grafo disgiuntivo. Ora si pud immaginare di ottenere

Introduzione

una relazione d’ordine totale tra operazioni imponendo ulteriori vincoli di precedenza
fino ad ottenere un’unica sequenza lineare di operazioni. Cosi operando otteniamo la
stringa (la sequenza di operazioni) riportata al fondo di Figura [5.3], che altro non ¢ che
la codifica di una soluzione che si andra ad usare.

Nella codifica a stringa ¢ presente tutta I’informazione necessaria per ricostruire una
soluzione vera e propria. Poiché si conosce a priori (dall’istanza data del problema) la
macchina relativa ad ogni operazione, la sequenza delle operazioni di ogni macchina &
facilmente estraibile dalla stringa. L’idea & quella di scandire la stringa da sinistra a
destra, estraendo, per l’appunto, tutte le operazioni di una data macchina e di
sequenziarle su di essa mantenendo lo stesso ordine. L’applicazione della procedura di
decodifica appena descritta alla stringa di Figura [5.3] porta ad ottenere esattamente le
stesse sequenze di operazioni sulle macchine che sono state estratte dal grafo della
soluzione.

Una particolarita molto importante della rappresentazione a stringa ¢ che essa non
ammette di rappresentare soluzioni cicliche, quindi non ¢ soggetta al secondo tipo di
inammissibilita discusso alla sezione 2.1 di questa introduzione. Tuttavia & facilmente
verificabile che una stringa codifichi sia le informazioni relative alla specifica soluzione
che rappresenta (i vincoli di precedenza sulle macchine) sia le informazioni riguardo
all’istanza del problema (i vincoli di precedenza sui job). Questo implica che una
generica stringa puo rappresentare una soluzione che non rispetti i vincoli di precedenza
sui job, quindi ¢ necessario far fronte opportunamente a questo tipo di inammissibilita,

ovvero il primo tipo di cui si ¢ discusso alla sezione 2.1 di questa introduzione.

Codifica/Decodifica delle Soluzioni

Nella Sezione [5.3.2] ¢ riportata la parte di teoria che sta dietro la rappresentazione a

stringa. Di seguito sono enunciati brevemente le definizioni ed i teoremi pill importanti.

Definizione di Stringa Legale (Definizione 1)
Una stringa ¢ legale se e solo se I’ordine di precedenza di ogni coppia di operazioni non

risulta in conflitto con I’ordine di precedenza dato sui job.

Introduzione

Teorema di Codifica (Soluzione Ammissibile = Stringa Legale) (Teorema 1)
Ogni soluzione ammissibile pud essere rappresentata attraverso una stringa legale. Puo

esistere piu di una stringa legale corrispondente alla stessa soluzione ammissibile.

Teorema di Decodifica (Stringa Legale - Soluzione Ammissibile) (Teorema 2)

Ogni stringa legale corrisponde esattamente ad una e una sola soluzione ammissibile.

2.3 Ricombinazione
La parte di teoria relativa alla ricombinazione si trova nella Sezione [5.3.3]. Di seguito

sono accennati i passi fondamentali.

Requisito di Ammissibilita per la Ricombinazione (Definizione 2)

Un generico operatore di ricombinazione per la rappresentazione a stringa ¢&
ammissibile, quando risulta che per ogni coppia di operazioni che in entrambe le
stringhe genitrici abbiano lo stesso ordine di precedenza, tale coppia mantiene lo stesso
ordine di precedenza anche nelle stringhe figlie ottenute tramite I’applicazione

dell’operatore alle stringhe genitrici.

Teorema di Trasmissione della Legalita (Stringa Legale + Stringa Legale - Stringa
Legale) (Teorema 3)
Ricombinando stringhe legali il requisito di ammissibilita per la ricombinazione, si

ottengono ancora stringhe legali.

Definizione dell’Operatore Generale di Ricombinazione (Definizione 3)

Teorema di Validita dell’Operatore Generale di Ricombinazione (Teorema 4)

L’operatore generale di ricombinazione rispetta il requisito di ammissibilita.

L’operatore di ricombinazione proposto & molto generale. Esso presenta quattro gradi di
libertd (i quattro puntatori) che possono essere guidati a piacere. Possono essere
combinati in molte differenti configurazioni cosi da ottenere operatori di

ricombinazione con caratteristiche molto differenti. Per esempio, & possibile pensare di

10

Introduzione

inibire due qualsiasi dei quattro puntatori lasciando liberta di movimento solo ai
rimanenti due. Si pud anche pensare di agire sulla sequenza casuale che guida i
puntatori al fine di ottenere ricombinazioni piu vicine al crossover uniforme piuttosto
che a quello ad un taglio o viceversa, controllando cosi la capacita di distruzione della
ricombinazione [7]. Si pud ancora pensare di combinare due operatori di
ricombinazione, che presentano caratteristiche interessanti ma complementari, durante il
processo evolutivo, applicando una volta I’'uno ed una volta I’altro, al fine di ottenere un
effetto sinergico.

In effetti sono stati studiati e confrontati in pratica un insieme di operatori di
ricombinazione selezionati seguendo per ’appunto le linee guida sopra menzionate.
Questi sono descritti estensivamente in Sezione [5.4].

MSX ¢ quello che si & rivelato essere il piu efficace nel corso degli esperimenti
computazionali. Val la pena menzionare che differenti operatori di ricombinazione
possono influenzare notevolmente le prestazioni dell’algoritmo genetico, in special
modo quando questo non sia appaiato con la ricerca locale. Nel nostro algoritmo
genetico ¢ stato utilizzato 1’operatore di ricombinazione MSX. La Figura [5.10] illustra
attraverso un esempio come MSX funzioni in pratica, la sua definizione dettagliata &
riportata nella Sezione [5.4.4].

La caratteristica principale dell’operatore MSX ¢ di produrre due stringhe figlie
complementari combinando le caratteristiche di precedenza delle stringhe genitrici e
contemporaneamente provando a minimizzare la perdita di diversita genetica
nell’accoppiamento delle stesse. Piu precisamente, data una generica coppia di
operazioni avente ordine di precedenza differente nelle due stringhe genitrici, MSX
tende per quanto possibile a trasmettere tale diversita alle stringhe figlie cosicché anche
in queste ultime 1’ordine di precedenza di quella coppia di operazioni risulti differente.
E’ importante notare che in generale tale requisito puo risultare in contrasto con quello
riguardante la non ciclicita delle soluzioni. Comunque, poiché la rappresentazione a
stringa non ammette la codifica di soluzioni cicliche, risulta spesso impossibile ottenere
una perfetta conservazione della diversita delle caratteristiche delle stringhe genitrici
sottoposte a ricombinazione.

La preservazione della diversita attraverso il processo di ricombinazione ¢ spiegabile

intuitivamente notando che nella fase di unione le caratteristiche di precedenza delle

11

Introduzione

stringhe genitrici sono mischiate ma non distrutte. Poi, nella fase di divisione, le
caratteristiche sono ripartite in due stringhe figlie e ancora non distrutte, cosi
preservando le caratteristiche originarie ma combinate in modo differente.

Un dubbio pertinente che si pud avere & se MSX rispetti o no il requisito di
ammissibilita per ricombinazioni. Dopo tutto tale requisito ¢ stato solo dimostrato per
I’operatore generale di ricombinazione che di primo acchito non sembra imparentato
con I’operatore MSX per via della sua peculiare procedura di ricombinazione suddivisa
in due fasi. Comunque & possibile immaginare una definizione alternativa dell’operatore
MSX che lo riporta ad essere assimilato alla classe degli operatori ammissibili. L’idea &
di produrre le due stringhe figlie in sede separata, ognuna delle quali in una fase
solamente, utilizzando pero la stessa sequenza casuale due volte, una volta scandendo la
sequenza casuale e le stringhe genitrici da sinistra a destra producendo la prima stringa

figlia, una volta scandendole nel senso contrario ottenendo la seconda stringa figlia.

3 Ricerca Genetica Locale

3.1 Schema dell’Algoritmo di Ricerca Genetica Locale

Da un lato, i problemi di ottimizzazione combinatoria rientrano all’interno del campo
d’azione degli algoritmi genetici. Gli algoritmi genetici, quando perd confrontati con
altre euristiche, non sembrano essere molto adatti a migliorare soluzioni che sono gia di
per se stesse molto vicine all’ottimo. Risulta quindi essenziale incorporare all’interno
degli algoritmi genetici euristiche convenzionali, che utilizzano pil da vicino la
conoscenza specifica del problema affrontato, al fine di costruire un algoritmo piu
competitivo.

D’altra parte, in generale, la migliore soluzione che un algoritmo di ricerca locale ¢ in
grado di trovare dipende dalla soluzione iniziale utilizzata. Uno schema a partenze-
multiple puo risolvere questo problema. Come ulteriore raffinamento, I’efficacia
dell’approccio iterativo a partenze-multiple puo essere migliorato utilizzando
I’informazione presente nelle soluzioni gia ottenute per guidare la ricerca nelle
iterazioni successive. Seguendo questa linea di pensiero, molti autori hanno proposto
varianti di algoritmi di ricerca locale ispirandosi ad idee proprie della genetica delle

popolazioni.

12

Introduzione

Un algoritmo di ricerca genetica locale [1] consiste in un algoritmo genetico di base con
I’aggiunta di una fase di ottimizzazione eseguita da un algoritmo di ricerca locale
applicata ad ogni nuovo individuo generato o nella fase iniziale di popolamento
dell’algoritmo genetico o durante il processo evolutivo.

Un algoritmo di ricerca genetica locale ¢ soggetto ad una interpretazione duale. Da un
lato, puo essere visto come un algoritmo genetico in cui la ricerca locale giochi il ruolo
di un meccanismo di mutazione intelligente. D’altra parte, lo stesso algoritmo puo
essere inteso come un meccanismo strutturato a partenze-multiple per la ricerca locale
in cui I’algoritmo genetico rivesta il ruolo della struttura portante.

Comunque sia, sforzandosi di avere una visione unitaria di questo approccio ibrido, si
puo dire che gli algoritmi genetici svolgono un’esplorazione globale all’interno della
popolazione, mentre alla ricerca locale ¢ affidato il compito di raffinare il piu possibile i
singoli cromosomi. Grazie alle proprieta di ricerca complementari degli algoritmi
genetici e della ricerca locale, che vicendevolmente compensano 1’'uno le debolezze
dell’altro, D’approccio ibrido supera spesso l'uno e I’altro quando applicati
singolarmente. Lo schema dell’algoritmo di ricerca genetica locale si trova alla Sezione
[5.5.1].

Si riempie ora lo schema della ricerca genetica locale con tutte le componenti necessarie
per implementare un algoritmo vero e proprio per il problema del Job Shop. Prima si
discutera delle componenti principali dell’infrastruttura genetica dell’algoritmo, poi si

focalizzera I’ attenzione sullo specifico algoritmo di ricerca locale utilizzato.

3.2 Infrastruttura Genetica

e POPOLAZIONE. La popolazione iniziale contiene un numero fisso di cromosomi
che sono generati casualmente. Durante tutto il processo evolutivo la dimensione
della popolazione rimane invariata.

e FUNZIONE DI FITNESS. Ogni cromosoma facente parte della popolazione riceve
un valore di fitness. Questo valore influenza la probabilita del cromosoma di
riprodursi. Nel nostro algoritmo il valore di fitness di un cromosoma corrisponde al
makespan della soluzione in esso codificata.

e MODALITA’ DI SELEZIONE. Vengono scelti un numero fisso di cromosomi che

saranno sottoposti a ricombinazione. La selezione ¢ fatta attraverso un semplice

13

Introduzione

meccanismo di classificazione. La popolazione ¢ costantemente mantenuta ordinata
secondo il valore di fitness (classifica). La probabilita di ogni cromosoma di essere
selezionato dipende solo dalla sua posizione in classifica e non direttamente dal
valore della sua fitness.

MODALITA’ DI REINSERIMENTO. L’insieme delle nuove soluzioni, create nella
fase di riproduzione, ¢ unito alla popolazione corrente. Successivamente la
popolazione & riportata alla sua dimensione originaria eliminando i peggiori
cromosomi presenti nella popolazione estesa.

CRITERIO DI STOP. L’algoritmo termina dopo un numero prefissato di
generazioni consecutive senza che si sia verificato alcun miglioramento della
soluzione migliore della popolazione.

RAPPRESENTAZIONE E RICOMBINAZIONE. Si utilizzano la rappresentazione
a stringa e l'operatore di ricombinazione MSX presentati nella sezione 2. Si
focalizzi I’attenzione ruolo rivestito da MSX nell’ambito dello schema GLS. Mentre
MSX tende a preservare la diversita il piu possibile, allo stesso tempo esso prova a
mischiare molto le caratteristiche delle stringhe genitrici. La sequenza casuale in
ingresso ¢ libera di saltare da un genitore all’altro in ogni singolo passo, quindi si
comporta come un crossover uniforme. Questi due aspetti della presente
ricombinazione presi insieme risultano essere particolarmente utili nel contesto della
ricerca genetica locale. Da una parte, MSX trasmette la diversita e quindi non spreca
costose informazioni, in termini di tempo di computazione, presenti nelle stringhe
genitrici ottenute attraverso la procedura di ricerca locale. D’altra parte, il ruolo
richiesto all’algoritmo genetico quando accoppiato con la ricerca locale & quello di
esplorare il piu possibile lo spazio delle soluzioni. MSX adempie a questa esigenza
mischiando il pit possibile le informazioni presenti nelle stringhe genitrici

comportandosi come un crossover uniforme.

3.3 Algoritmo di Ricerca Loacle

Qui di seguito ¢ proposto un algoritmo di ricerca locale per il problema del Job Shop

basato sul taboo search [18]. Questo ¢ utilizzato nell’algoritmo di ricerca genetica locale

nelle fasi di ottimizzazione ai punti 2 e 6. L’algoritmo di Taboo search & presentato alla

Sezione [5.5.3]. L’algoritmo di taboo search utilizzato ¢ basato su un algoritmo

14

Introduzione

proposto da Eikelder et al. Nel seguito sono riportati le principali componenti

dell’algoritmo.

e RAPPRESENTAZIONE. Per applicare la ricerca locale al problema del Job Shop si
¢ utilizzata la rappresentazione basata su grafo disgiuntivo. Una soluzione
ammissibile si ottiene orientando gli spigoli in maniera tale da ottenere un ordine
lineare delle operazioni su ogni macchina, e avendo il grafo della soluzione aciclico.

e VICINATO. E’ utilizzata la struttura di vicinato proposta da Nowicki & Smutnicki
[13]. Questa & essenzialmente basata sull’inversione dell’orientamento degli archi
relativi alle macchine sul cammino piu lungo. E’ stato dimostrato che molti tipi di
vicini possono essere omessi poiché non portano a soluzioni di costo minore. Per
esempio non risulta utile invertire archi interni a blocchi di operazioni appartenenti
al cammino piu lungo.

e STRATEGIA DI RICERCA. Il tempo necessario per visitare un vicinato dipende
dalla dimensione del vicinato stesso e dal costo computazionale in termini di tempo
per accedere ai vicini. Poiché la dimensione di un vicinato nel nostro caso ¢
piuttosto piccola si utilizzera la strategia della salita piu ripida che sebbene richieda
la generazione e valutazione di ogni vicino, ne seleziona sempre il migliore.

e TABOO LIST. La nostra taboo list consiste in una coda FIFO di mosse di lunghezza
fissa. La lunghezza della taboo list ¢ data dalla media della dimensione del vicinato
pit un valore casuale.

e CRITERIO DI STOP. L’algoritmo termina dopo un prefissato numero di passi

senza miglioramenti.

Poiché il nostro algoritmo fa uso combinato di algoritmi genetici e taboo search lo

chiameremo GTS, acronimo di Genetic Taboo Search.

4 Risultati Computazionali

4.1 Panoramica sui Parametri
Di seguito, sono individuati e discussi i parametri pitt importanti del GTS, quelli che

influenzano maggiormente le prestazioni dell’algoritmo, e la loro impostazione.

15

Introduzione

IMPEGNO COMPUTAZIONALE

Questo parametro permette un controllo qualitativo dell’impegno computazionale
impiegato nella ricerca. Pill in dettaglio, I'impegno computazionale ¢ definito come il
prodotto di due fattori; il primo ¢ il numero di iterazioni consecutive senza
miglioramenti (TS) dopo le quali ogni sessione di Taboo Search deve terminare; il
secondo fattore ¢ il numero di individui consecutivamente processati dall’algoritmo
genetico senza miglioramenti (GA) dopo i quali GTS deve terminare. Poiché entrambi i
criteri di stop sono adattivi alla complessita dello specifico problema trattato, la stessa
impostazione del parametro di impegno computazionale puo produrre risultati differenti
quando applicato a istanze del problema differenti. Comunque, in prima
approssimazione, esso consente di controllare I’impegno computazionale.

Si & trovato conveniente impostare differenti valori di tale parametro sulla base della

dimensione come riportato in Tabella [6.1].

RAPPORTO TS/GA DI COMPOSIZIONE

Questo ¢ un parametro molto importante che viene utilizzato per pesare il contributo
relativo del TS e del AG. Conoscendo I'impegno computazionale (TS*GA) ed il
rapporto di composizione TS/GA ¢ possibile risalire ai criteri di fermata per il TS e il
AG. Si ¢ notato che pil grande ¢ il problema migliore ¢ la prestazione dell’ AG rispetto
a quella del TS. Piu in dettaglio si € assegnato un rapporto di composizione TS/GA di

10:1 per piccole e medie istanze e di 1:1 per quelle grandi. Vedi Tabella [6.1].

PARAMETRI DELL’AG

E’ molto importante impostare opportunamente i parametri dell’AG al fine di garantire
un buon flusso di informazioni tra I’AG e il TS durante I’intero processo evolutivo di
ricerca, in modo tale da ottenere un’efficace cooperazione tra i due algoritmi. Si &
scoperto che i seguenti parametri influenzano la qualita del flusso informativo e quindi ¢
stata posta molta attenzione nel trovarne una buona impostazione:

¢ Dimensione della Popolazione. GTS ¢ stato messo a punto focalizzando 1’attenzione

sulle relazioni significative tra i parametri anziché operare direttamente sui valori

16

Introduzione

assoluti. Prima si € provato a scoprire adeguati rapporti tra parametri rilevanti e solo
in un secondo tempo si sono derivati indirettamente i loro valori assoluti. Seguendo
questo approccio, la dimensione della popolazione ¢ stata considerata in relazione
diretta con il numero delle generazioni, scoprendo che un buon rapporto tra questi
due parametri ¢ 1:1. I valori assoluti trovati per il parametro dimensione della
popolazione variano gradualmente da un minimo di 10 individui per piccole istanze
fino ad un massimo di 50 individui per grandi istanze.

e Salto Generazionale. Questo parametro rappresenta il numero di discendenti da
produrre ogni generazione attraverso la ricombinazione. Si ¢ trovato che dimensione
della popolazione / 2 & una buona impostazione del parametro.

® Pressione Selettiva. Questo parametro permette di controllare il livello di
competizione all’interno della popolazione. Questo ifluenza il meccanismo di
selezione basato sulla classificazione, rendendo la probabilita di selezione dei
cromosomi pil o meno dipendente dalla loro posizione nella classifica della
popolazione sulla base del valore assegnato a questo parametro. L’intervallo dei
valori validi per questo parametro varia da O (nessuna dipendenza) fino a 2
(dipendenza forte). Una pressione selettiva debole, fornisce agli individui “cattivi”
quasi la stessa possibilita di riprodursi di quelli buoni, laddove una pressione
selettiva forte favorisce molto di pit la riproduzione dei soli individui “buoni”. Nel
nostro caso si ¢ trovato che una pressione selettiva debole di 0.1 risulta appropriata.
Questo fatto non dovrebbe risultare molto sorprendente perché nel nostro AG ¢ stata
utilizzata una modalita di reinserimento degli individui che di per se ¢ gia molto
selettiva, quindi non ¢ stato reso necessario rafforzare ulteriormente la pressione

selettiva agendo su questo parametro.

42 GTS Vs TS

Nella Tabella [6.8] ¢ riportato un confronto diretto tra 1’algoritmo ibrido GTS e
I’algoritmo di TS utilizzato al suo interno. Questa investigazione risulta cruciale perché
in tal modo si pud scoprire se 1’algoritmo ibrido fornisce un reale contributo oppure se il
contesto genetico risulta avere solo una funzione ornamentale piuttosto che un merito

reale.

17

Introduzione

Al fine di effettuare un confronto equo tra GTS e TS sono stati fissati i parametri in
maniera tale che entrambi gli algoritmi possano far uso, approssimativamente, dello
stesso ammontare di tempo per la stessa istanza. Entrambi gli algoritmi sono stati testati
su un insieme di istanze ben note di varie dimensioni. I dettagli delle istanze si possono
trovare in Sezione [6.4.1]. Si pud notare che su piccole istanze GTS e TS ottengono gli
stessi buoni risultati negli stessi tempi. Al crescere delle dimensioni delle istanze GTS
trova soluzioni migliori di quelle trovate dal TS. A prima vista TS sembra pero
risparmiare del tempo sulle istanze grandi. Questo & dovuto in buona sostanza
all’adattivita dei criteri di fermata. Al fine di prevenire questa prematura terminazione, ¢
stata data la possibilita al TS di girare per pil tempo, impostando opportunamente i
parametri, in maniera tale da conferirgli la possibilita di scovare soluzioni migliori. Il
TS non risulta comunque in grado di trovare soluzioni di qualita piu elevata ed in buona

sostanza spreca semplicemente il tempo addizionale fornitogli.

4.3 Un Confronto ad Ampio Spettro

E’ stato fatto un confronto ad ampio spettro tra GTS e i migliori algoritmi risolutivi per
il JSSP appartenenti ad una varieta di differenti approcci su un insieme di istanze molto
note proposte da Vaessens. In Tabella [6.9] sono riportati i migliori risultati trovati per
GTS e per gli altri approcci. In generale si nota che GTS si comporta molto bene. Di
nuovo si vede che su grandi istanze GTS supera tutti gli altri approcci. I dettagli delle

istanze e la lista completa degli algoritmi confrontati con GTS si trovano alla Sezione

[6.4.2].

4.4 GTS Vs SAGen

Infine & stato fatto un confronto diretto tra il nostro algoritmo ibrido (basato sul taboo
search) ed un altro algoritmo ibrido proposto di recente che combina algoritmi genetici
e simulated annealing proposto da Kolonko [8].

Come di vede dalla Tabella [6.11], i due algoritmi sono stati confrontati su un insieme
di istanze difficili, quasi tutte ancora aperte, fissando i criteri di fermata in maniera tale
da privilegiare la migliore qualita rispetto al tempo impiegato. I dettagli delle istanze si

trovano alla Sezione [6.4.3]. Come si puo vedere, sia in termini di qualitd delle

18

Introduzione

soluzioni trovate sia in termini di tempo impiegato, GTS batte di gran lunga SAGen e il

pit delle volte migliora i bound conosciuti per quelle istanze.

5 Conclusioni

Questo documento descrive un algoritmo ibrido (GTS) che combina Algoritmi Genetici
e Taboo Search per risolvere il problema del Job-Shop. Gli elementi fondamentali del
nostro Algoritmo Genetico sono una rappresentazione naturale delle soluzioni che ben
si adatta allo specifico problema (la rappresentazione a stringa) ed una ricombinazione
capace di trasmettere caratteristiche significative (la relazione si ordine comune) dai
genitori ai figli. I problemi di ammissibilita riguardanti la presenza di cicli nelle
soluzioni e il non rispetto dei vincoli dei job sono stati discussi e risolti in quell’ambito.
Inoltre, ¢ stato presentato 1’operatore di ricombinazione MSX che tende a preservare la
diversita delle soluzioni genitrici trasmettendo tale diversita alle soluzioni figlie. Al fine
di combinare il nostro GA e un efficace algoritmo di TS ¢ stato utilizzato lo schema
della ricerca genetica locale. Esperimenti computazionali hanno mostrato che sulle
istanze grandi la presenza della componente genetica ¢ determinante. La miglior
composizione per le istanze grandi ¢ di 50 e 50 (secondo la definizione introdotta di
rapporto di composizione) e quindi GTS deve essere considerato a pieno titolo come un
vero algoritmo ibrido che combina efficacemente le differenti competenze dei due
algoritmi. GTS non ¢ da intendersi né come un GA modificato, né come un TS
modificato. Inoltre, GTS ¢ stato confrontato con una molteplicita di altri approcci e si
rivelato comportarsi molto bene in tale confronto. Nell’ultimo esperimento si ¢ visto che
gli algoritmi genetici risultano di gran lunga meglio combinati con il Taboo Search
piuttosto che con il Simulated Annealing. Sia in termini di tempo richiesto sia in termini
di qualita delle soluzioni trovate tra i due si & riscontrata la differenza di un ordine di

grandezza.

Per concludere, parlando della filosofia sottostante all’approccio naturale della
rappresentazione utilizzata, si nota come il punto cruciale ¢ quello di vedere le soluzioni
come relazioni d’ordine parziale tra operazioni. Non & importante che la relazione sia

fatta di contributi di precedenza provenienti dai vincoli dati con I’istanza del problema

19

Introduzione

piuttosto che da quelli relativi alla particolare soluzione di quella data istanza. I vincoli
sono visti uniformemente senza alcuna distinzione, tutti insieme formano la relazione
d’ordine tra le operazioni.

Guardando le soluzioni come relazioni d’ordine, ¢ naturale pensare alla ricombinazione
come un modo per ricombinare relazioni d’ordine parziale trasmettendo alle soluzioni
figlie la sottorelazione comune alle soluzioni genitrici. Questo sembra essere un
requisito pilt che ragionevole quando si considerino le soluzioni sotto questo aspetto.
Come apprezzato effetto collaterale di questo approccio, si ha che durante la
trasmissione delle caratteristiche significative pure la proprieta di essere una soluzione
ammissibile (una soluzione che rispetta tutti i vincoli sui job della data istanza del
problema) ¢ trasmessa dalle soluzioni genitrici alle soluzioni figlie senza porre ad essa
una attenzione speciale. Essa ¢ trattata uniformemente, come una generica caratteristica
di una soluzione. Questo effetto collaterale positivo lascia pensare che questo sia il
livello di astrazione corretto sotto il quale trattare il problema. Infine una ulteriore
conseguenza di questo approccio € che la rappresentazione a stringa e la ricombinazione
proposte non sono in nessun modo influenzati dalla particolare configurazione dei
vincoli tipica del Job Shop e quindi possono naturalmente essere estesi a problemi di

schedulazione piu generali.

20

Part 11

Project Description

Chapter 1

Introduction

1.1 Job Shop Scheduling Problem

Machine scheduling problems arise in diverse areas such as flexible manufacturing
systems, production planning, computer design, logistics, communication, and so on. A
common feature of many of these problems is that no efficient solution algorithm is
known yet for solving them to optimality in polynomial time. The Job Shop Scheduling
Problem (JSSP) is one of the best-known machine scheduling problems.

The form of the JSSP may be roughly sketched as follows: we are given a set of jobs
and a set of machines. Each machine can handle at most one job at a time. Each job
consists of a chain of operations, each of which needs to be processed during an
uninterrupted time period of a given length on a given machine. The purpose is to find a
schedule, that is an allocation of the operations to time intervals on the machines, which

has minimum length.

1.2 Local Search and Taboo Search

Local search is based on what is perhaps the oldest optimisation method known, trial
and error. In fact it is so simple that it is surprising just how well it works on a variety of
difficult optimisation problems. The basic idea behind local search is to inspect the
solutions that are close to a given solution, the so called neighbours, and to restart when
a better solution — with respect to a predefined cost function — is obtained.

Taboo Search (TS) is a local search method designed to find a near-optimal solution of

combinatorial optimisation problems [6]. The peculiarity of TS is a short term memory

22

1 - Introduction

used to keep track of recent solutions which are considered forbidden (taboo), thus
allowing the search to escape from local optima.

TS has revealed to be an effective local search algorithm for the Job Shop Scheduling
Problem [13, 16]. However, the best solution found by TS may depend on the initial
solution used. This is essentially due to the fact that, like any other local search
technique, TS starts its search from a single solution, which may lead the search to a
dead-end despite the presence of the taboo mechanism which would prevent it. This
happens especially when TS is applied to particularly hard optimisation problem like
JSSP.

1.3 Genetic Algorithms and Genetic Local Search

Genetic Algorithms (GAs) are stochastic global search methods that mimic the natural
biological evolution [7]. GAs operate on a population of potential solutions applying the
principle of survival of the fittest to produce (hopefully) better and better
approximations to a solution.

Simple GAs are difficult to apply directly and successfully into many difficult-to-solve
optimisation problems. Various non-standard implementations have been created for
particular problems in which genetic algorithms are used as meta-heuristics [3, 10]. In
this new perspective, Genetic Algorithms are very effective at performing global search
(in probability) and provide us a great flexibility to hybridise with domain-dependent
heuristics to make an efficient implementation for a specific problem.

Several authors have proposed variants of local search algorithms, using ideas from
population genetics [1, 11, 19]. Because of the complementary properties of genetic
algorithms and conventional heuristics, the hybrid approach often outperforms either
method operating alone.

A Genetic Local Search (GLS) algorithm is a particular kind of hybrid algorithm that
consists of a basic Genetic Algorithm with the addition of a local search optimisation
phase applied to every new individual created either in the initial population or during

the evolutionary process.

23

1 - Introduction

1.4 Applying Genetic Algorithms to Job Shop

In order to apply GAs to a particular problem we have to encode a generic solution of
the problem into a chromosome. How to encode a solution is a key-issue for the success
of GAs. Canonical GAs use binary encoding of individuals on fixed-length strings.
Such a representation is not naturally suited for ordering problems such as the
Travelling Salesman Problem and the JSSP, because no direct and efficient way has
been found to map all possible solutions into binary strings. Previous studies on
ordering problems as the travelling salesman problem (TSP) have proven that a natural
representation is the key-issue for the success of a GA approach [17].

The JSSP is mainly characterised by being a both highly constrained and ordering
problem. Therefore, both aspects have to be considered in order to figure out a natural
GAs representation. GA representations for JSSP can be found in [4, 8, 12].

The main difficulty in choosing a proper representation for highly constrained
combinatorial optimisation problems such as JSSP is dealing with the infeasibility of

the solutions produced during the evolutionary process.

1.5 Scope

The aim of this project is to investigate the combined use of Genetic Algorithms and
Taboo Search in order to solve the Job Shop Scheduling Problem. To this end, it is
necessary to develop an appropriate genetic representation especially suited for Job
Shop.

In this thesis, we propose a representation that, coupled with a particular class of
recombination operators, guarantees the genetic search to represent all and only the
feasible solutions and that guarantees the transmission of meaningful characteristics to
the offspring solutions. The definition of a class of recombination operators and the
choice of an operator showing interesting properties follow.

As a scheme of hybridisation, we propose a genetic local search algorithm (GTS)
consisting of a basic genetic algorithm with the addition of a taboo search optimisation

phase applied to every new individual created.

24

1 - Introduction

1.6 Results

Computational experiments show that the combination of GAs and TS performs better
than the TS alone. Moreover, a wide comparison of GTS with a variety of algorithms
for JSSP on a set of well-known instances of small and medium sizes shows that GTS is
very well positioned. Finally, a specific comparison of GTS with a similar approach
combining Genetic Algorithms and Simulated Annealing (SAGen) [8] on a set of large
size instances shows that GTS outperforms SAGen both on computational time and

solutions quality.

1.7 Reader’s Guide

The contents of the project have been arranged to be read chapter by chapter. However
if the reader is already familiar with Job Shop, Local Search and Genetic Algorithms, he
or she can skip chapter 2, chapter 3 and chapter 4, respectively, and go to chapter 5

directly. The contents of each chapter are as follows:

e Chapter I gives a general introduction of the project.

® Chapter 2 introduces the Job Shop Scheduling Problem, including a detailed
example and common heuristics.

e Chapter 3 gives an overview on Local Search especially focusing on Taboo
Search.

® Chapter 4 introduces Genetic Algorithms and other Evolutionary Techniques
with special regard to Combinatorial Optimisation.

e Chapter 5 is the core of this thesis. It proposes a new genetic representation for
the Job Shop, a set of recombination operators and the Genetic Local Search
algorithm.

® Chapter 6 describes experiments with different parameters and provides
interesting comparisons with other programs.

e Chapter 7 provides conclusions and suggestions for further research.

25

Chapter 2
Job Shop Scheduling Problem

2.1 Introduction

In this chapter we are going to give a description of different aspects of the Job Shop
Scheduling Problem. First, we consider its computational complexity and its formal
definition. In the subsequent section a smart representation of the problem, the
Disjunctive Graph, is introduced together with a working example that makes easier to
become familiar with the problem. Afterward, the different kinds of schedule are
discussed and Gantt Charts, schedule representations in time, introduced. Finally, two
well-known conventional heuristics for Job Shop, Priority Dispatching Rules and

Shifting Bottleneck, are reported.

2.2 Complexity and Formal Definition

Job Shop Scheduling Problem is considered as a particularly hard combinatorial
optimisation problem. The difficulty of this problem may be illustrated by the fact that
the optimal solution of an instance with 10 jobs and 10 machines, proposed by Fisher
and Thompson, was not found until 20 years after the problem was introduced. In terms
of computational complexity, only very special cases of the problem can be solved in
polynomial time, but their immediate generalisations are NP-hard [9].

In the chapter 1 we have proposed an informal description of the JSSP, in the sequel we

give its formal definition:

26

2 —Job Shop Scheduling Problem

e Given are three finite sets, a set J of jobs, a set M of machines and a set O of
operations.

e For each operation a there is a job j(a) in J to which it belongs, a machine m(a)
in M on which it must be processed and a processing time d(a).

¢ Furthermore for each operation a its successor in the job is given by sj(a), except
for the last operation in a job.

e The problem is to find start times s(a) for each operation a such that the cost

function Min[s(a)+d(a)l a in O] is minimal, subject to the conditions:

1. For all a, sj(a) in O: sj(a) >= s(a) + d(a)
2. Forall a, b in O with a <> b and m(a) = m(b): s(b) >= s(a) + d(a) or s(a)
>=5(b) + d(b)

2.3 Disjunctive Graph

The job shop scheduling problem can be represented with a disjunctive graph [15]. A
disjunctive graph G=(N, A, E) is defined as follows: N is the set of nodes representing
all operations, A is the set of arcs connecting consecutive operations of the same job,
and E is the set of disjunctive arcs connecting operations to be processed by the same
machine. A disjunctive arc can be settled by either of its two possible orientations. The
construction of a schedule will settle the orientations of all disjunctive arcs so as to
determine the sequence of operations on the same machine. Once a sequence is
determinate for a machine, the disjunctive arcs connecting operations to be processed by
the machine will be replaced by the oriented precedence arrow, or conjunctive arc. The
set of disjunctive arcs E can be decomposed into cliques, one for each machine. The
processing time for each operation can be seen as a weight attached to the
corresponding nodes. The JSSP is equivalent to find the order of the operations on each
machine, that is, to settle the orientation of the disjunctive arcs such that the resulting
solution graph is acyclic (there are no precedence conflicts between operations) and the
length of the longest weighted path between the starting and terminal nodes is minimal.

This length determines the makespan.

27

2 —Job Shop Scheduling Problem

JOB

MACHINE

Figure 2.1 — Disjunctive Graph (Elements of A are indicated by arrows and elements of E are
indicated by dashed lines.)

Pos 1 Pos 2 Pos 3 Pos 4
Job1 |Opl(1,Macl) Op2(2,Mac2) Op3(3, Mac3) -
Job2 |Op4(3, Mac2) Op5(1,Mac2) Op6(2, Macd) Op7(2, Mac3)
Job 3 |Op8(2, Macl) Op9(1, Mac2) Opl0(@3, Mac4) -

Table 2.1 — Example of a Three-Job Four-Machine Problem (for each operation, its
position on the job, its machine and its processing time are given)

Figure 2.1 illustrates the disjunctive graph for a three-job four-machine instance. Its
complete data are presented in Table 2.1 (for each operation, its position on the job, its
machine and its processing time are given). The nodes of N = {1, 2, 3,4,5,6,7, 8,9,
10} correspond to operations. Nodes S and T are two special nodes, starting node (S)
and terminal node (7), representing the beginning and the end of the schedule,
respectively. The conjunctive arcs (arrows) of A = {(1, 2), (2, 3), (4, 5), (5, 6), (6, 7), (8,

9), (9, 10)} correspond to precedence constraints on operations on same jobs. The

28

2 —Job Shop Scheduling Problem

disjunctive arcs (dashed lines) of E, = {(1, 5), (1, 8), (5, 8)} concern operations to be
performed on machine 1, disjunctive arcs E, = {(2, 4), (2, 9), (4, 9)} concern operations
to be performed on machine 2, disjunctive arcs E; = {(3, 7)} concern operations to be
performed on machine 3, and disjunctive arcs E, = {(6, 10)} concern operations to be

performed on machine 4.

Figure 2.2 — Solution Graph (Sequential operations are connected by arrows, parallel
operations are connected by dashed lines)

Figure 2.2 illustrates the solution graph representing a feasible solution to the given
instance of the problem. It has been derived from the disjunctive graph described above
by settling an orientation of all the disjunctive arcs having taken care to avoid the
creation of cycles. In the solution graph, arrows correspond to precedence constraints
among operations on jobs or machines. Dashed lines indicate that two operations don’t
have any precedence constraints (in principle they could be processed in parallel
without violating any precedence constraints. In fact their actual parallel processing
depends only on the processing time of operations). The sequences of operations on
jobs depend only on the instance of the problem and not on the particular solution. In

our example they are illustrated in Table 2.2.

29

2 —Job Shop Scheduling Problem

Pos 1 Pos 2 Pos 3 Pos 4
Jobl Opl Op2 Op3 -
Job2 Op4 Op5 Op6 Op7
Job3 Op8 Op9 Opl10 -

Table 2.2 — Sequences of operations on jobs

On the contrary, the sequences of operations on machines also depend on the particular

solution to the given problem. In our example they are illustrated in Table 2.3.

Pos 1 Pos 2 Pos 3
Macl Op8 Op5 Opl
Mac?2 Op4 Op2 Op9
Mac3 Op3 Op7 -
Mac4 Op6 Opl10 -

Table 2.3 — Sequences of operations on machines

2.4 Schedules and Gantt Charts

Once we have a feasible schedule, we can effectively represent it in time by Gantt
charts. There are two kinds of Gantt charts: machine Gantt chart and job Gantt chart.
Coming back to our example, Figure 2.3 shows the schedule corresponding to the
solution graph in Figure 2.2 from the perspective of what time the various jobs are on
each machine, while Figure 2.4 shows the same schedule from the perspective of when
the operations of a job are processed. In both charts, the operations belonging to the

critical path are marked with a star.

30

2 —Job Shop Scheduling Problem

Machine-Oriented

M1 8 5% I*

M2 4% 2% 9

M3 3% T*

M4 6 10

time

Figure 2.3 — Machine Gantt chart

Job-Oriented

1 1* 2% 3*

12 4% 5% 6 T*

I3 8 9 10

v

time

Figure 2.4 — Job Gantt chart

In principle, there are an infinite number of feasible schedules for a job shop problem,
because superfluous idle time can be inserted between two operations. We may shift the
operations to the left as compact as possible. A shift in a schedule is called local left-
shift if some operations can be started earlier in time without altering the operation
sequence. A shift is called global left-shift if some operations can be started earlier in

time without delaying any other operation even though the shift has changed the

31

v

2 —Job Shop Scheduling Problem

operation sequence. Based on these two concepts, three kinds of schedules can be

distinguished as follows:

e Semi-active schedule. A schedule is semi-active if no-local left-shift exists.
® Active schedule. A schedule is active if no global left-shift exists.
® Non-delay schedule. A schedule is non-delay if no machine is kept idle at a time

when it could begin processing some operations.

The relationship among active, semi-active and non-delay schedules is shown in the
Venn diagram in Figure 2.5. Optimal schedule is within the set of active schedules. The
non-delay schedules are smaller than active schedules, but there is no guarantee that the

former will contain an optimum.

oPT

Non-delay — |

Active

Semi-active

All
schedules

Figure 2.5 — Venn diagram of schedule relationship

32

2 —Job Shop Scheduling Problem

2.5 Conventional Heuristics

2.5.1 Dispatching Heuristics

Job shop scheduling is a very important everyday practical problem. Since job shop
scheduling is among the hardest combinatorial optimisation problems, it is therefore
natural to look for approximation methods that produce an acceptable schedule in useful
time. A simple heuristic is building a single complete solution by fixing one operation
in the schedule at a time based on priority dispatching rules. There are many rules for
choosing an operation from a specified subset to be scheduled next. This heuristic is fast
and usually finds solutions that are not too difficult. In addition, this heuristic may be
used repeatedly to build a more complicated multi-pass heuristic in order to obtain
better schedules at some extra computational cost.

Priority rules are probably the most frequently applied heuristics for solving scheduling
problems because of their ease of implementation and their low time complexity. The
algorithms of Giffler & Thompson [9] can be considered as the common basis of all
priority-rule-based heuristics. Giffler & Thompson have proposed two algorithms to
generate schedules: active schedule and non-delay schedule generation procedures. A
non-delay schedule has the property that no machine remains idle if a job is available
for processing. An active schedule has the property that no operation can be started
earlier without delaying another job. Active schedules form a much larger set and
include non-delay schedules as a subset. The generation procedure of Giffler &
Thompson is a tree-structured approach. The nodes in the tree correspond to partial
schedules, the arcs represent the possible choices, and the leaves of the tree are the set
of enumerated schedules. For a given partial schedule, the algorithm essentially
identifies all processing conflicts (i.e. operations competing for the same machine), and
an enumeration procedure is used to resolve these conflicts in all possible ways at each
stage. By contrast, heuristics resolve these conflicts with priority dispatching rules, that
is, they specify a priority rule for selecting one operation among those conflicting.
Generation procedures operate with a set of schedulable operations at each stage.
Schedulable operations are unscheduled operations with immediately scheduled

predecessors; this set can be simply determined from the precedence structure. The

33

2 —Job Shop Scheduling Problem

number of stages of the procedure is equal to the number of operations m x n. At each
stage, one operation is selected to be added into the partial schedule. Conflicts among
operations are solved by priority dispatching rules. For a given active partial schedule,
the potential start time is determined by the completion time of the direct predecessor
on job of the current operation and the latest completion time on the machine required
by the current operation. The larger of these two quantities is therefore the potential
start time of the current operation. The potential finishing time is the sum of the

processing time of the current operation with its potential start time.

Priority Dispatching Heuristic (Active Schedule Generation)
Let PS; be a partial schedule containing ¢ scheduled operations; let S; the set of
schedulable operations at stage ¢, corresponding to a given PS;; Let s(i) and c(i) the

earliest time at which operation i€ S; could be respectively started and completed.

1. Set =0 and begin with PS; as the null partial schedule. Initially S, includes all
operations with no predecessors.

2. Determine the minimum completion time c* in the set S, of schedulable
operations and the machine m* on which c¢* could be realized.

3. For each operation i€ S, that requires machine m* and for which its earliest start
time s(i) is lesser than c*, calculate a priority index according to a specific
priority rule. Find the operations with the smallest index and add this operation
to PS; as early as possible, thus creating a new partial schedule PS,. ;.

4. For PS,,;, update the data set as follows:

a. Remove operation i from S,.
b. Form S,,; by adding the direct successor of operation i to ;.
c. t=t+l

5. Go to step 2 until a complete schedule is generated.
With minor modifications the above algorithm can generate a non-delay schedule. The

remaining problem is to identify an effective priority rule. Table 2.4 consists of some of

the priority rules commonly used in practice.

34

2 —Job Shop Scheduling Problem

Rule Description

SPT Shortest Processing Time
LPT Longest Processing Time
MWR Most Work Remaining
LWR Least Work Remaining
MOR Most Operations Remaining
LOR Least Operations Remaining
EDD Earliest Due Date

FCFS First Come, First Served
RANDOM Random

Table 2.4 — Commonly used Job Shop dispatch rules

2.5.2 Shifting-Bottleneck Heuristics

At the present time, the shifting bottleneck heuristic [9] is probably the most powerful
procedure among all heuristics for the job shop scheduling problem. It sequences the
machines one by one, successively, taking each time the machine identified as a
bottleneck among the machines not yet sequenced. Every time after a new machine is
sequenced, all previously established sequences are locally re-optimised. Both the
bottleneck identification and the local re-optimisation procedures are based on
repeatedly solving a certain one-machine scheduling problem that is a relaxation of the
original problem. The method of solving the one-machine problems is not new in this
context. The main contribution of this approach is the way to use the relaxation to
decide upon the order in which the machines should be sequenced. This is based on the
classic idea of giving priority to bottleneck machines. A brief statement of the shifting

bottleneck procedure is as follows:

35

2 —Job Shop Scheduling Problem

Shifting Bottleneck Heuristic
Let M’ be the set of machines already sequenced (M’ is empty at the start).

1. Identify a bottleneck machine m among the machines ke M \ M’ and sequence it
optimally. Set M” =M’ {m).

2. Re-optimise the sequence of each critical machine k€ M’ in turn, while keeping the

other sequences fixed. Afterward if M’ = M then stop, otherwise go to step 1.

36

Chapter 3

Local Search and Taboo Search

3.1 Introduction

In this chapter we are going to give a broad overview on local search algorithms, paying
special attention to Taboo Search. Genetic Algorithms are mentioned in here, since they
can be seen as a particular local search technique. However, since they are of central
importance in this project, we prefer dedicate more room to Genetic Algorithms and
other Evolutionary techniques in chapter 4. Moreover, local search representations and

neighbourhood functions for Job Shop are discussed.

3.2 Overview on Local Search Algorithms

Many combinatorial optimisation problems have been proved NP-hard, and it is
consequently believed that they cannot be solved in polynomial time. In practice this
means that solving large instances of such problems to optimality (by optimisation
algorithms) requires impracticable running times. To avoid this, one often resorts to
approximation algorithms that try to find near-optimal solutions within acceptable
running times.

From an application point of view, approximation algorithms range from tailored
algorithms, designed for a specific problem type, to general algorithms, which can be
applied to a broad range of problem types. For the latter, it is often more appropriate to
speak of algorithmic templates (or meta-heuristics) since in many cases the problem
specific details still need to be filled in to obtain an operational algorithm. Local search

is an example of such an algorithmic template for combinatorial optimisation.

37

3 — Local Search and Taboo Search

Local search employs the idea that a given solution may be improved by making small
changes. Solutions are changed over and again, and better and better solutions are

found. In the sequel, we present the most famous local search techniques.

3.2.1 Iterative Improvement

The basic local search algorithm to find a local optimum is called iterative
improvement. Starting at some initial feasible solution, its neighbourhood is searched
for a solution of lower cost. If such a solution is found, the algorithm is continued from
there, otherwise a local optimum has been found.

The quality of the local optimum depends on the initial solution, on the neighbourhood
function, and on the method of searching the neighbourhoods. An initial solution may
be obtained by generating it randomly or by applying a heuristic rule. The choice of a
good neighbourhood is often difficult. There is a clear trade-off between small and large
neighbourhoods: if the number of neighbours is larger, the probability of finding a good
neighbour may be higher, but looking for it takes more time. There are several
alternatives for searching the neighbourhood: one may take the first neighbour found of
lower cost (first improvement), or take the best neighbour in the entire neighbourhood
(best improvement), or take the best of a sample of neighbours, provided it is an
improving one.

Often, the problem remains. The local optima obtained may be of poor quality.
Therefore, several variants of iterative improvement have been proposed. The main
variants can be divided into threshold algorithms, taboo search algorithms, variable-

depth search algorithms and genetic algorithms.

3.2.2 Threshold Algorithms

In threshold algorithms, a neighbour of a given solution becomes the new current
solution if the cost difference between the current solution and its neighbour is below a
certain threshold. There are three different kinds of threshold algorithms.

In classical iterative improvement the thresholds are 0, so that only true improvements
are accepted. In threshold accepting the threshold are nonnegative. They are large in the

beginning of the algorithm’s execution and gradually decrease to become 0 in the end.

38

3 — Local Search and Taboo Search

General rules to determine appropriate thresholds are lacking. In simulated annealing
the thresholds are positive and stochastic. Their values depend on a control parameter
called ‘temperature’, whose value gradually decreases in the course of the algorithm’s
execution according to a ‘cooling schedule’, and on a uniform random variable. Each
time a neighbour is compared with the current solution the random variable is drawn
again. Under certain mild conditions simulated annealing is guaranteed to find an

optimal solution asymptotically.

3.2.3 Taboo Search

In taboo search one selects from a subset of permissible neighbours of the current
solution a solution of minimum cost. In basic taboo search a neighbour is permissible if
it is not in the ‘taboo list” or satisfies a certain ‘aspiration criterion’. The taboo list is
recalculated at each iteration. It is often implicitly defined in terms of forbidden moves
from the current solution to a neighbour. The aspiration criterion expresses possibilities
to overrule the taboo status of a neighbour. We will consider this approach more in

detail in the section 3.3.

3.2.4 Variable-Depth Search

In variable-depth search one starts from an initial solution and generates a sequence of
subsequent neighbours by making relatively small changes. From this sequence one
solution is selected to serve as the initial solution for a next sequence. Often, each time
the sequence is extended, the set from which a neighbour is to be chosen is restricted by
a sort of taboo list; this list may again be defined implicitly in terms of forbidden

moves. Each time a new sequence is started, the list is emptied.

3.2.5 Genetic Algorithms

Genetic Algorithms are based on an extended notion of neighbourhood function. A
hyper-neighbourhood function defines for each vector of variables, representing a
solution, a set of neighbouring solutions, called hyper-neighbours. At each iteration a
set of solutions, often called ‘population’, is given. From this population several subsets

consisting of ‘parents’ are selected, and for each of such subset some hyper-neighbours,

39

3 — Local Search and Taboo Search

called ‘offspring’, are determined by operations called ‘recombination’ and ‘mutation’.
This set of hyper-neighbours and the current population are then combined and reduced
to a new population by selecting a subset of solutions. We will consider extensively

Genetic Algorithms and other Evolutionary techniques in chapter 4.

3.3 Focus on Taboo Search

The taboo search is a meta-heuristic approach designed to find a near-optimal solution
of combinatorial optimisation problems. This method has been suggested by Glover et
al. [6]. TS can be briefly sketched as follows. At the beginning a fundamental notion
called move is defined. The move is a function which transforms a solution into another
solution. For any solution, a subset of moves applicable to it is defined. This subset
generates a subset of solutions called neighbourhood. TS starts from an initial solution.
At each step the neighbourhood of a given solution is searched in order to find a
neighbour (usually the best in the neighbourhood). This move, leading us to the best
neighbour, is performed and then the newly obtained solution is set as the primal for the
next step. In order to prevent cycling and to lead the search to “good” regions of the
solution space the search history is kept in the memory and employed in the search.
There are at least two classes of memory: a short-term memory for the very recent
history and a long-term memory for distant history. Among many memory structures
established in TS, a class of short-term memory called taboo list plays a basic role. This
list does not permit to turn back to the solutions visited in the previous maxt steps,
where maxt is a given number. In practice the list stores forbidden moves (or their
attributes) or attributes of forbidden solutions rather than forbidden solutions. Quite
often, the taboo list 7 is interpreted as a limited queue of length maxt containing
forbidden moves; whenever a move from a solution to its neighbour is made we put the
inverted move at the end of 7 and remove the first element from 7 if the queue is
overloaded. Of course, it may happen that an interesting move is taboo. Nevertheless in
order to perform such a move, an aspiration function must be defined. This function
evaluates the profit in taking a forbidden move. If this profit is acceptable, then the
taboo status of the move is dropped and the move can be performed. The stopping rule

can be defined as an instance: 1) we found a solution which is close enough to the given

40

3 — Local Search and Taboo Search

lower bound (in case of minimisation) of the goal function value; 2) we performed
maxiter moves without improving the best solution obtained so far, where maxiter is a
given number; and 3) the time limit ran out.

It should be noted that any implementation of TS is problem-oriented and needs
particular definitions of structural elements such as the move, neighbourhood, memory
structures, aspiration function, neighbourhood searching strategy, stopping rules, the
initial solution, and values of several tuning parameters such as maxt, maxiter, and the
level of aspiration. The final numerical characteristics of an algorithm (the performance,
speed of convergence, and running time) depend both on structural elements and tuning

parameters. A template of the taboo search procedure is presented in Section 5.5.3.

3.4 Local Search for the Job Shop Problem

A crucial ingredient of a local search algorithm is the definition of a neighbourhood
function in combination with a solution representation. Quite a number of basic
representations and neighbourhood functions have been introduced for job shop
scheduling problem. For most threshold and taboo search algorithms, only left-justified
or active schedules are represented. This is done by specifying the start times of the
operations or, equivalently, the corresponding machine orderings of the operations.
Other representations are used too, especially in combination with genetic algorithms.
Several neighbourhood functions have been proposed in the literature [20]. Most of
these are not defined on a schedule itself but on the corresponding orientation (i.e.
disjunctive graph). If this is changed into another feasible orientation, the corresponding
schedule is a neighbour of the original schedule. In this way neighbours of a given
schedule are always left-justified.

The following properties are helpful in obtaining reasonable neighbourhood functions:

1. Given a feasible orientation, reversing an oriented edge on a longest path in the
corresponding digraph results again in a feasible orientation.

2. If reversing an oriented edge of a feasible orientation that is not on a longest
path results in a feasible orientation, then the corresponding schedule is at least

as long as the original schedule.

41

3 — Local Search and Taboo Search

3. Given a feasible orientation, reversing an oriented edge between two internal
operations of a block results in a feasible schedule at least as long as the original
schedule. A block is a maximal sequence of size at least one, consisting of
adjacent operations that are processed on the same machine and belong to a
longest path. An operation of a block is infernal if it is neither the first nor the
last operation of that block.

4. Given a feasible orientation and reversing the oriented edge which connects the
first two operations of the first block of the longest path where the second
operation is internal, it results a feasible schedule at least as long as the original
schedule. The same is true in case the two operations considered are the last two

of the last block of a longest path where the first operation is internal.

In view of these properties, the simplest neighbourhood functions are based on the
reversal of exactly one edge of a given orientation. So a neighbour may be obtained by
interchanging two adjacent operations of a block, or more selectively, making the same
interchanges except those involving two internal operations, or yet excluding also the
interchange of the first two operations of the first block when the second is internal and
the interchange of the last two operations of the last block when the first is internal.

Several neighbourhood functions may reverse more than one edge; other neighbourhood
functions are not based on adjacent interchanges but rather on jumps of operations on
the same machine; others may completely change one machine ordering or yet change

several machine orderings at the same time.

42

Chapter 4
Genetic Algorithms and

Evolutionary Computation

4.1 Introduction

In this chapter we are going to introduce Evolutionary Computation techniques starting
from the most known, Genetic Algorithms, and emphasise their application to
combinatorial optimisation problems. First, we discuss the classic genetic algorithms
and their major elements. Afterward, we give a broad overview on other evolutionary
computation techniques, parallel genetic algorithms are also mentioned, and discuss
their peculiarities and differences. Subsequently, a different perspective on genetic
algorithms is proposed, emphasising their role as a meta-heuristics. This naturally leads
us to pay special attention to the their application to combinatorial optimisation
problems. In particular, we will consider different aspects of non-conventional genetic
representations and the opportunity to hybridise them with other search techniques. The
genetic local search scheme is therefore introduced. Since in this project we apply
genetic algorithms to scheduling problems, we will dedicate some space also to this
topic in here. Finally, we provides some theoretical background that try to explain why

genetic algorithms work.

43

4 — Genetic Algorithms and Evolutionary Computation

4.2 What are Genetic Algorithms?

Genetic Algorithms (GAs) [7] are stochastic search methods that mimic the metaphor of
natural biological evolution. GAs operate on a population of potential solutions
applying the principle of survival of the fittest to produce better and better
approximations to a solution. At each generation, a new set of approximations is created
by the process of selecting individuals according to their level of fitness in the problem
domain and breeding them together using operators borrowed from natural genetics.
This process leads to the evolution of populations of individuals that are better suited to
their environment than the individuals that they where created from, just as in natural

adaptation. Figure 4.1 shows the structure of a simple genetic algorithm.

YES
GENERATE EVALUATE
INITIAL »| OBJECTIVE ARE OPTIMISATION BEST
POPULATION FUNCTION CRITERIA MET? INDIVIDUALS
A
NO RESULT
START
A\ 4
SELECTION
GENERATE
NEW
A\ 4
POPULATION
RECOMBINATION
A\ 4
MUTATION

Figure 4.1 - Structure of a Genetic Algorithm

Genetic Algorithms, differing from conventional search techniques, start with an initial

set of random solutions called population. Each individual in the population is called a

44

4 — Genetic Algorithms and Evolutionary Computation

chromosome, representing a solution to the problem at hand. A chromosome is usually,
but not necessarily, a binary bit string. The chromosomes evolve through successive
iterations, called generations. During each generation, the chromosomes are evaluated,
using some measure of fitness. To create the next generation, new chromosomes, called
offspring, are formed by merging two chromosomes from current generation using a
crossover operator or modifying a chromosome using a mutation operator. A new
generation is formed by selecting, according to the fitness values, some of the parents
and offspring and rejecting others so as to keep the population size constant. After
several generations, the algorithm converges to the best chromosome, which hopefully
represents the optimum or sub-optimal solution to the problem.

Genetic Algorithms differ substantially from more traditional search and optimisation

methods. The most significant differences are:

e GAs search a population of points in parallel, not a single point.

® GAs do not require derivative information or other auxiliary knowledge; only
the objective function and corresponding fitness levels influence the directions
of search.

® (GAs use probabilistic transition rules, not deterministic ones.

¢ GAs can provide a number of potential solutions to a given problem; the final

choice is left to the user.

4.3 Major Elements of Genetic Algorithms

This section describes, one by one, the major elements of genetic algorithms.

4.3.1 Initialisation

There are many ways to initialise and encode the initial generation. The traditional
Holland’s encoding method is as a binary fixed-length string. At the initial stage, the
system just randomly generates bits of each chromosome and encodes all the
chromosomes as a population, then decodes and evaluates the chromosomes for using in
reproduction and selection of the first generation. For a detailed discussion on

representation see Section 4.6.

45

4 — Genetic Algorithms and Evolutionary Computation

4.3.2 Selection

Selection determines which individuals are chosen for mating (recombination) and how
many offspring each selected individual produces. The selection phase may be
decomposed into two logically separated steps, fitness assignment and sampling
respectively. Fitness assignment concerns the task of giving to an individual a value,
which characterises its performance within the population. Sampling consists in the
actual selection task where parents are selected according to their fitness for

recombination.

Fitness assignment

The first step is fitness assignment. The most commonly used schemes are:

¢ Proportional fitness assignment

¢ Rank-based fitness assignment

Following the proportional fitness assignment, each individual in the population
receives a reproduction probability depending on its own objective value and the
objective value of all other individuals in the population. This fitness is used for the
actual selection step afterwards.

In rank-based fitness assignment, the population is sorted according to the objective
values. The fitness assigned to each individual depends only on its position in the
individuals rank and not on the actual objective value.

There are many advantages in using rank-based fitness assignment. Rank-based fitness
assignment overcomes the scaling problems of the proportional fitness assignment
(stagnation in the case where the selective pressure is too small or premature
convergence where selection has caused the search to narrow down too quickly). The
reproductive range is limited, so that no individuals generate an excessive number of
offspring. Ranking introduces a uniform scaling across the population and provides a
simple and effective way of controlling selective pressure. Rank-based assignment

behaves in a more robust manner than proportional fitness assignment.

46

4 — Genetic Algorithms and Evolutionary Computation

Let us consider linear ranking more in detail. Let N be the number of individuals in the
population, Pos the position of an individual in this population (least fit individual has
Pos=1, the fittest individual Pos=N) and SP the selective pressure. The fitness value for

an individual is calculated as:

Pos —1
N -1

Fitness(Pos)=2—SP+2(SP —1)x

Linear ranking allows values of selective pressure in [1.0, 2.0].

Sampling

The actual selection may be performed by means of one of the following algorithms:

e Roulette-wheel selection

e Stochastic universal sampling

The simplest selection scheme is roulette-wheel selection, also called stochastic
sampling with replacement. This is a stochastic algorithm and involves the following
technique:

The individuals are mapped to contiguous segments of a line, such that each
individual’s segment is equal in size to its fitness. A random number is generated and
the individual whose segment spans the random number is selected. The process is
repeated until the desired number of individuals is obtained (called mating population).
This technique is analogous to a roulette wheel with each slice proportional in size to
the fitness.

Stochastic universal sampling is fairer than the roulette-wheel selection; it ensures a
selection of offspring, which is closer to what is deserved than roulette wheel selection.
The individuals are mapped to contiguous segments of a line, such that each
individual’s segment is equal in size to its fitness exactly as in roulette-wheel selection.
Here equally spaced pointers are placed over the line as many as there are individuals to

be selected. Consider N the number of individuals to be selected, then the distance

47

4 — Genetic Algorithms and Evolutionary Computation

between the pointers are I/N and the position of the first pointer is given by a randomly

generated number in the range [0, I/N].

4.3.3 Recombination

Recombination produces new individuals combining the information contained in the
parents. The traditional representation of solutions (individuals) is by means binary
string. Traditional recombination defined on binary string is known as crossover. We

consider three different types of crossover operator:

¢ Single-point crossover
e Multi-point crossover

e Uniform crossover

Single-point Crossover

In single-point crossover one crossover position k in [1, L-1] where L is the length of an
individual, is selected uniformly at random and the variables (bits) exchanged between
the individuals about this point, then two new offspring are produced. An example of

single-point crossover is shown in Figure 4.2.

Multi-point Crossover

For multi-point crossover, m crossover positions are chosen at random with no
duplicates and sorted in ascending order. Then, the variables between successive
crossover points are exchanged between the two parents to produce two new offspring.
The section between the first variable and the first crossover point is not exchanged

between individuals.

Uniform Crossover
Single-point crossover defines a cross-point where an individual can be split. Uniform
crossover generalises this scheme to make every position a potential crossover point. A

crossover mask of the same length as the individual structure is created at random and

48

4 — Genetic Algorithms and Evolutionary Computation

the parity of the bits in the mask indicates which parent will supply the offspring with
which bits.

For each variable the parent who contributes its variable to the offspring is chosen
randomly with equal probability. The first offspring is produced by taking the bit from
the first parent, if the corresponding mask bit is 1; from the second parent, if the
corresponding mask bit is 0. The second offspring is created using the inverse of the

mask.

[,
[,
[,

Parent 1: 1 10 1

Parent 2: 1 1 .10

N -
o O

Son 1: 1 10 1

.

Son 2: 1 1 1 .01 11

Individual: 1 0.0 111 1

Mutated Individual: 1 0.0 1 0 1

Figure 4.2 — Single-Point Crossover and Mutation for fixed —length
binary string encoding

The idea behind multi-point crossover, uniform crossover, and indeed many of the
variations on the crossover operator, is that parts of the chromosome representation that
contribute to the most to the performance of a particular individual may not necessarily

be contained in adjacent substrings. This helps to overcome the bias in single-point

49

4 — Genetic Algorithms and Evolutionary Computation

crossover towards short substrings without requiring precise understanding of the
significance of the individual bits in the individual representation. Further, the
disruptive nature of multi-point and uniform crossover appears to encourage the
exploration of the search space, rather than favouring the convergence to highly fit

individuals early in the search, thus making the search more robust.

4.3.4 Mutation

After recombination every offspring undergoes mutation. Offspring are mutated by
small perturbations with low probability. For binary valued individuals, mutation means
flipping of variable values (see also Figure 4.2). For every individual the variable value
to change is chosen uniform at random. The effect of the mutation depends on the actual

coding.

4.3.5 Reinsertion

Once the offspring have been produced by selection, recombination and mutation of
individuals from the old population, the fitness of the offspring may be determined. If
less offspring are produced than the size of the original population, the offspring have to
be reinserted into the old population. Similarly, if not all offspring are to be used at each
generation or if more offspring are generated than needed a reinsertion scheme must be
used to determine which individuals should be inserted into the new population.

Different schemes of reinsertion exist:

® Produce as many offspring as parents and replace all parents by the offspring
(pure reinsertion).

® Produce less offspring than parents and replace parents uniformly at random
(uniform reinsertion).

e Produce less offspring than parents and replace the worst parents (elitist
reinsertion).

¢ Produce more offspring than needed for reinsertion and reinsert only the best

offspring (fitness-based reinsertion).

50

4 — Genetic Algorithms and Evolutionary Computation

Pure reinsertion is the simplest reinsertion scheme. Every individual lives one
generation only. However, it is very likely, that very good individuals are replaced
without producing better offspring and thus good information is lost.

The elitist reinsertion prevents this losing of information. At each generation, a given
number of the least fit parents are replaced by the same number of offspring.

The fitness-based reinsertion scheme implements a truncation selection between
offspring before inserting them into the population (i.e. before they can participate in
the reproduction process). On the other hand the best individuals can live many
generations. However, every generation some new individuals are inserted.

In the uniform reinsertion scheme, it is not checked whether the parents are replaced by
better or worse offspring. Because parents may be replaced by offspring with a lower

fitness, the average fitness of the population can decrease.

4.3.6 Termination

Because the GA is a stochastic search method, it is difficult to formally specify
convergence criteria. As the fitness of a population may remain static for a number of
generations before a superior individual is found, the application of conventional
termination criteria becomes problematic. A common practice is to terminate the GA
after a pre-specified number of generations and then test the quality of the best members
of the population against the problem definition. If no acceptable solutions are found,

the GA may be restarted or a fresh search initiated.

4.4 Overview on Evolutionary Algorithms

Evolutionary Algorithms is an umbrella term used to describe computer-based solving
systems, which use computational models of natural evolution as key elements in their
design. Genetic algorithms are the most well known among evolutionary algorithms, but
other techniques exist as well. In the course of years, Genetic Algorithms have
incorporated good features that in origin were peculiar of other techniques. In the

following we give a broad overview on evolutionary algorithms.

51

4 — Genetic Algorithms and Evolutionary Computation

4.4.1 Evolutionary Programming

Evolutionary Programming (EP), arising from the desire to generate machine
intelligence, typically uses a representation tailored to the problem domain. For
example, in a numerical optimisation vectors of real-valued numbers would be used and
in combinatorial problems would employ ordered lists. Given a population size of N, all
N individuals are selected as parents and a representation specific mutation operator is
used to generate N offspring. The N offspring would then be evaluated and the next
generation selected using a fitness-based probabilistic function on these 2N individuals.
The mutation operator in EP is often adaptive and different adaptation rates may be used

for each decision variable within an individual.

4.4.2 Evolution Strategy

Evolution Strategy (ES) employs real-valued representation for individuals,
recombination, mutation and selection. Parents are randomly selected and
recombination and mutation used to produce more than N offspring. Selection is then
used to select either the N best offspring or the N best individuals from the parents and
offspring to make up the next generation. Unlike EP, recombination is an important

operator in ES.

4.4.3 Classic Genetic Algorithms

Genetic Algorithms (GA) traditionally use the more domain independent binary
representation although other representations are now being employed. Selection of
parents is probabilistic, based on a fitness function and N children are produced from
the N parents using mutation and recombination operators. These offspring are then the
new population. In GA recombination is considered to be the primary operator and

mutation a background process.

4.4.4 Genetic Programming
Genetic Programming (GP) applies evolutionary search to the space of tree structures,
which may be interpreted as computer programs in a language suitable to modification

by mutation and recombination. The dominant approach to genetic programming uses (a

52

4 — Genetic Algorithms and Evolutionary Computation

subset of) LISP programs as genotype space, but other programming languages

including machine code are also used.

4.4.5 Order-Based Genetic Algorithms

Order-based genetic algorithms were proposed to search the space of permutation
directly rather than using complex decoding functions for mapping binary strings to
permutations and preserving feasible permutation under mutation and crossover. They
apply specialised recombination (such as order crossover or partially matched
crossover) and mutation operators (such as random exchanges of two elements of the

permutation), which preserve permutations.

4.4.6 Parallel Genetic Algorithms

The GA may be parallelised in a number of ways. Indeed, there are numerous variations
on parallel GA, many of which are very different from the original GA. Most of the
major differences are encountered in the population structure and the method of
selecting individuals for reproduction.

The motivation for exploring parallel GA is manifold. One may wish to improve speed
and efficiency by employing a parallel computer, apply the GA to larger problems or try
to follow the biological metaphor more closely by introducing structure and geographic
location into a population. The benefits of using parallel GA, even when run on a
sequential machine, can be more than just a speed up in the execution time.

Due to the structure of the population and the use of local selection rules, parallel GA
offer an attractive mechanism for allowing diversity to exist within a population without
affecting the convergence characteristics of the GA.

There are three main ways of exploiting parallelism in genetic algorithms. The first is
the Global Genetic Algorithm, which treats the entire population as a single breeding
unit and aims to exploit the algorithmic parallelism inherent in the GA. A second
possibility is the Migration Genetic Algorithm, which divide the population into a
number of subpopulations, each of which is treated as a separate breeding unit under the
control of a conventional GA. To encourage the proliferation of good genetic material
throughout the whole population, individuals migrate between the subpopulations from

time to time. The third and last way is the Diffusion Genetic Algorithm, which treats

53

4 — Genetic Algorithms and Evolutionary Computation

each individual as a separate breeding unit, the individuals it may mate with being
selected from within a small local neighbourhood. The use of local selection and
reproduction rules leads to a continuous diffusion of individuals over the population. It
can be shown that this last model of parallel genetic algorithms is a subclass of cellular

automata.

4.5 Genetic Algorithms as Meta-Heuristics

At first, genetic algorithms were created as a generic tool useful for many difficult-to-
solve problems. Much of the early works of genetic algorithms used a universal internal
representation involving fixed-length binary strings with binary genetic operators to
operate in a domain-independent fashion at the level without any knowledge of the
phenotypic interpretation of the strings. This universality was reflected in a strong
emphasis on the design of robust adaptive systems with a broad range of applications.

However, simple GAs are difficult to apply directly and successfully into many
difficult-to-solve optimisation problems. Various non-standard implementations have
been created for particular problems in which genetic algorithms are used as meta-
heuristics [3, 10]. In this new perspective, Genetic Algorithms are very effective at
performing global search (in probability) and provide us a great flexibility to hybridise
with domain-dependent heuristics to make an efficient implementation for a specific
problem. Section 4.7 proposes one of the most common forms of hybrid genetic
algorithms, Genetic Local Search. In a wider sense, genetic algorithms can also be seen
as a framework, which has to be adapted to the problem at hand designing a suitable
representation together with a set of genetic operators applicable to it. In Section 4.6,

problems arising during the design of the encoding for a given problem are discussed.

4.6 Encoding Problem

How to encode a solution of the problem into a chromosome is a key issue for genetic
algorithms. In Holland’s work, encoding is carried out using binary strings. For many
GA applications, especially for problems from industrial engineering world, the simple
GA was difficult to apply directly because the binary string is not a natural coding.

Various non-string encoding techniques have been created for particular problems, for

54

4 — Genetic Algorithms and Evolutionary Computation

example real numbering coding for constrained optimisation problems and integer
coding for combinatorial optimisation problems. Choosing an appropriate representation
of candidate solutions to the problem at hand is the foundation for applying genetic
algorithms to solve real world problems and it affects all the subsequent steps of genetic
algorithms. For any application case, it is necessary to perform analysis carefully to
ensure an appropriate representation of solutions together with meaningful and

problem-specific genetic operators.

4.6.1 Coding Space and Solution Space

One of the basic features of genetic algorithms is that they work on coding space and
solution space alternatively: genetic operations work on coding space (chromosomes),
while evaluation and selection work on solution space. Natural selection is the link
between chromosomes and the performance of their decoded solutions. For the non-
string coding approach, three critical issues emerged concerning with the encoding and
decoding between chromosomes and solutions (the mapping between phenotype and

genotype):

¢ Feasibility of chromosomes
o Legality of chromosomes

¢ Uniqueness of mapping

4.6.2 Feasibility and Legality

Feasibility refers to the phenomenon of whether a solution decoded from a chromosome
lies in the feasible region of a given problem. Legality refers to the phenomenon of
whether a chromosome represents a solution to a given problem.

The infeasibility of chromosomes originates from the nature of the constrained
optimisation problem. All methods, conventional ones or genetic algorithms, must
handle the constraints. For many optimisation problems, the feasible region can be
represented as a system of equalities or inequalities (linear or non-linear). For such
cases, many efficient penalty methods have been proposed to handle infeasible

chromosomes. In constrained optimisation problems, the optimum typically occurs at

55

4 — Genetic Algorithms and Evolutionary Computation

the boundary between feasible and infeasible areas. The penalty approach will force the
genetic search to approach the optimum from both feasible and infeasible regions.

The illegality of chromosomes originates from the nature of encoding techniques. For
many combinatorial optimisation problems, problem-specific encodings are used and
such encodings usually yield to illegal offspring by a simple one-cut-point crossover
operation. Because an illegal chromosome cannot be decoded to a solution, it means
that such chromosomes cannot be evaluated; thus the penalty approach is inapplicable
to this situation. Repairing techniques are usually adopted to convert an illegal
chromosome to a legal one. For many combinatorial optimisation problems, it is
relatively easy to repair an infeasible or illegal chromosome; the repair strategy does

indeed surpass other strategies such as rejecting strategy or penalising strategy.

4.6.3 Mapping
The mapping from chromosomes to solutions (decoding) may belong to one of the

following three cases:

¢ 1-to-1 mapping
® n-to-1 mapping

¢ 1-to-n mapping

The 1-to-1 mapping is the best one among three cases. The 1-to-n mapping (a single
solution corresponds to n chromosomes) is undesired because the coding space is bigger
than the solution space and therefore the search may be slowed down. The n-to-1
mapping (more than one solution may correspond to the same chromosome) is
undesired as well because a chromosome doesn’t refer to a precise solution, and
therefore it can’t be easily evaluated. We need to consider these problems carefully

when designing a new coding so as to build an effective genetic algorithm.

4.7 Genetic Local Search

On one hand, problems from combinatorial optimisation are well within the scope of

genetic algorithms. Nevertheless, compared to conventional heuristics, genetic

56

4 — Genetic Algorithms and Evolutionary Computation

algorithms are not well-suited for fine-tuning structures which are very close to optimal
solutions. Therefore it is essential to incorporate conventional heuristics into genetic
algorithms to construct a more competitive algorithm.

On the other hand, in general the best solution found by local search algorithm may
depend on the initial solution used. However, a multi-start scheme may overcome this
problem. As a further refinement, the effectiveness of multi-start iterative approach
may be improved by using the information available from the solutions obtained in the
individual cycles. Following this line, several authors have proposed variants of local
search algorithms, using ideas from population genetics.

A Genetic Local Search (GLS) algorithm [1] consists of a basic Genetic Algorithm with
the addition of a local search optimisation phase applied to every new individual created
either in the initial population or during the evolutionary process.

We can give to the GLS algorithm a dual interpretation. On one hand, we can see it as a
Genetic Algorithm where Local Search is intended as a smart mutation mechanism. On
the other hand, we can see it as structured multi-start mechanism for Local Search
where the Genetic Algorithm plays the role of the structure.

However, by seeing the hybrid approach as a whole, Genetic Algorithms are used to
perform global exploration among population while Local Search is used to perform
local exploitation around chromosomes. Because of the complementary properties of
Genetic Algorithms and Local Search, which mutually compensate their points of
weakness, the hybrid approach often outperforms either method operating alone. A

Genetic Local Search outline is presented in Chapter 5.

4.8 Genetic Algorithms and Scheduling Problems

Scheduling problems are highly computationally complex problems, which often have
highly domain-dependent features (i.e. they are strongly constrained). Genetic
Algorithms have been successfully applied to ordering problems, as the travelling
salesman problem (TSP), and to scheduling problems like Flow-Shop, Job-Shop, Open-

Shop and more general machine scheduling problems.

57

4 — Genetic Algorithms and Evolutionary Computation

During the past years a number of representations for job-shop scheduling problem have

been proposed. In the following we list of the most common representations:

e Operation-Based Representation [3]
e Preference-List-Based Representation [4]
¢ Disjunctive-Graph-Based Representation [12]

¢ QGantt-Chart-Based Representation [8]

These representations can be classified into two basic encoding approaches, direct
approach and indirect approach. In the direct approach, a schedule (the solution of
JSSP) is encoded into a chromosome, and genetic algorithms are used to evolve those
chromosomes to determine a better schedule. In the indirect approach, a sequence of
dispatching rules for job assignment (i.e. a schedule) is encoded into a chromosome,
and genetic algorithms are used to evolve those chromosomes to determine a better
sequence of dispatching rules. A schedule then is constructed with the sequence of
dispatching rules. Other ways to classify different representations for job-shop are

considered in the following:

Lamarckian Property. The Lamarckian property for a coding technique concerns the
issue whether a chromosome can pass on its goodness to future populations through a

common genetic operation.

Complexity of Decoder. In principle, there are an infinite number of feasible schedules
for a given job-shop scheduling problem. Generally, three kinds of schedules can be
distinguished as follows: semiactive schedule, active schedule, and nondelay schedule.
An optimal schedule is within the set of active schedules. The set of nondelay schedules
is smaller than that of active schedules, but there is no guarantee that it will contain an
optimum. Thus we hope that a schedule decoded from a chromosome would be an
active one. All of the coding techniques proposed for the job-shop scheduling problem
can generate an active schedule by use of the decoder. The degree of complexity of the

decoder can be classified into the following four levels:

58

4 — Genetic Algorithms and Evolutionary Computation

e No decoder. All burdens are put on genetic operators.
¢ Simple mapping relation.
e Simple heuristic.

e Complex heuristic.

The Property of Coding Space and Mapping. As we can see for any coding technique,
through a decoding procedure, a chromosome always corresponds to a legal, feasible,
and active schedule and the mapping relation is one-to-one. But the coding space of
these methods can be classified into two classes: one contains only feasible solution
space, whereas the other includes illegal solution space.

In addition, the spaces of some representations may correspond only to the partial space

of whole solution space.

Memory Requirements. For an n-job m-machine problem, if we define the standard
length for a chromosome as with n x m genes, the codings for the job-shop problem can

be classified as follows:

e The coding length is less than standard length. Note that, in this case, the coding
space corresponds to only part of the solution space, but not the whole solution
space. Thus there is no guarantee for finding the optima with the coding
techniques.

e The coding length is larger than standard length. The representation is highly
redundant.

e The coding length is equal to standard length.

4.9 Theory Behind Genetic Algorithms

There is no accepted “general theory” which explains exactly why GAs have the
properties they do. Nevertheless, several hypotheses have been put forward which can
partially explain the success of GAs [7]. These can be used to help us implement good

GA applications.

59

4 — Genetic Algorithms and Evolutionary Computation

4.9.1 Schema Theorem

Holland’s schema theorem was the first rigorous explanation of how GAs work. A
schema is a pattern of gene values which may be represented (in a binary coding) by a
string of characters in the alphabet {0, 1, #}. A particular chromosome is said to contain
a particular schema if it matches that schemata, with the “#” symbol matching anything.
So, for example, the chromosome “1010” contains, among others, the schemata “10##”,
“#O#0”, “##1#” and “101#”. The order of a schema is the number of symbols different
from “#” which that schema contains (2, 2, 1, 3 respectively in the example). The
defining length of a schema is the distance between the outermost symbols different
from “#” (2, 3, 1, 3 respectively in the example).

The schema theorem explains the power of the GA in terms of how schemata are
processed. Individuals in the population are given opportunities to reproduce and
produce offspring. The number of such opportunities an individual receives is
proportional to its fitness, hence the better individuals contribute more of their genes to
the next generation. It is assumed that an individual’s high fitness is due to the fact that
it contains good schemata. By passing on more of these good schemata to the next
generation, we increase the likelihood of finding even better solutions.

Holland showed that the optimum way to explore the search space is to allocate
reproductive opportunities to individuals in proportion to their fitness relative to the rest
of population. In this way, good schemata receive an exponentially increasing number
of trials in successive generations. This is called the schema theorem. He also showed
that, since each individual contains a great many different schemata, the number of
schemata which are effectively being processed in each generation is in the order of n’,
where n is the population size. This property is known as implicit parallelism, and is one

of the explanations for the good performance of GAs.

4.9.2 Building Block Hypothesis
According to Goldberg [7], the power of GA lies in its being able to find good building

blocks. These are schemata of short defining length consisting of bits which work well
together, and tend to lead to improved performance when incorporated into an
individual. A successful coding scheme is one which encourages the formation of

building blocks by ensuring that:

60

4 — Genetic Algorithms and Evolutionary Computation

1. Related genes are close together on the chromosome

2. There is a little interaction between genes

Interaction between genes means that the contribution of a gene to the fitness depends
on the value of other genes in the chromosome. In fact there is always some interaction
between genes in multi-modal fitness functions. This is significant because multi-modal
functions are the only sort of any real interest in GA research, since uni-modal functions
can be solved more easily using simpler methods.

If these rules are observed, then a GA will be as effective as predicted by the schema
theorem. Unfortunately, conditions (1) and (2) are not always easy to meet. Genes may
be related in ways, which do not allow all closely related ones to be placed close
together in a one-dimensional string. In many cases, the exact nature of the relationship
between the genes may not be known to the programmer, so even if there are only
simple relationships, it may still be impossible to arrange the coding to reflect this.
Condition (2) is a precondition for (1). If the contribution to overall fitness of each gene
were independent of all other genes, then it would be possible to solve the problem by
hill-climbing on each gene in turn. Clearly this is not possible in general. If we can
ensure that each gene only interacts with a small number of other genes and these can be
placed together on the chromosome, then condition (1) and (2) can be met. But if there
is a lot of interaction between genes, then neither condition can be met. Clearly, we
should try to design coding schemes to conform to Goldberg’s recommendations, since

this will ensure that the GA will work as well as possible.

61

Chapter 5
Genetic Algorithms and Job Shop

5.1 Introduction

In this chapter we are going to present the main contribution of this project, that is, a
new genetic representation for job shop together with a suitable class of recombination
operators. First, we consider the encoding problems that arise when we have to deal
with job shop. Moreover, we try to make clear what is the effect of genetic operators
when applied to permutation representation. The infeasibility problem is here of central
importance, therefore it is identified and discussed. Subsequently, we propose the string
representation that, coupled with a particular class of recombination operators,
guarantees the genetic search to represent all and only the feasible solutions and that
guarantees the transmission of meaningful characteristics to the offspring solutions. The
definition of a suitable class of recombination operators follows. Next, a set of potential
recombination operators, which show interesting characteristics, is introduced. Finally,
we propose a genetic local search algorithm making use of the genetic framework

introduced.

5.2 Encoding Problems and Job Shop
5.2.1 Appeal to Feasibility

In order to apply GAs to a particular problem we have to encode a generic solution of
the problem into a chromosome. How to encode a solution is a key-issue for the success
of GAs [3]. Canonical GAs use binary encoding of individuals on fixed-length strings.

Such a representation is not naturally suited for ordering problems such as the

62

5 — Genetic Algorithms and Job Shop

Travelling Salesman Problem and the JSSP, because no direct and efficient way has
been found to map all possible solutions into binary strings [17].

The main difficulty in choosing a proper representation for highly constrained
combinatorial optimisation problems such as JSSP is dealing with the infeasibility of
the solutions produced during the evolutionary process. This problem is typically
addressed by modifying the breeding operators, associating them with repair methods,
or providing penalties on infeasible solutions in the fitness function, or yet discarding
infeasible solutions when created. However, the use of penalty functions or a rejecting
strategy is inefficient for JSSP because the space of feasible schedules is very small
compared to the space of possible schedules, therefore the GA will waste most of its
time producing and/or processing infeasible solutions. Repairing techniques are a better
choice for many combinatorial optimisation problems since they are easy to apply and
surpass strategies such as rejecting strategy and penalising strategy [14]. However,
whereas it is possible, the most efficient and direct method remains to embed
constraints in the coding of individuals. Thus, a very important issue in building a
genetic algorithm for JSSP is to devise an appropriate representation of solutions
together with a problem-specific genetic operator so that all chromosomes generated in
either the initial phase or the evolutionary process will produce feasible schedules. This

is a crucial phase that affects all the subsequent steps of GAs.

5.2.2 Causes of Infeasibility
Let us spend few words on the nature of infeasibility. On the basis of what kind of
solution representation for the JSSP we consider, two different causes of infeasibility

may occur:

e Schedules non-respecting all job precedence constraints

e Solutions with cycles

Because of the existence of the precedence constraints of operations on jobs, if we
consider a solution representation which doesn’t presuppose a fixed order of operations
on jobs, but rather which can freely dispose operations both on machines and jobs, then

mismatches between the order of operations encoded in a generic chromosome and the

63

5 — Genetic Algorithms and Job Shop

prescribed order of operations on jobs may arise. Therefore this is a first cause of
infeasibility.

In a schedule, two generic operations are allowed to be either processed in parallel
(there is no precedence among them) or processed sequentially (in this case, one
precedes the other one). What is not possible is that one operation both precedes and
follows the other one. If we consider a representation of solutions which allow to
encode precedence conflicts between operations like the one just mentioned (i.e. cycling

solutions), then we encounter the second cause of infeasibility.

5.2.3 Encoding and Constraints

In the previous chapter we have already discuss about the problems which may arise
when we try to define a mapping between solution space and coding space. These are
mainly due to the constrained aspect of the problem at hand. Here we are interested in
figure out the properties of the relationship among coding space and solution space,
together with the related problems, for the particular case of JSSP.

In order to apply the GA framework we need to define an encoding method to map the
search space of all possible solutions into a set of finite chromosomes. Because of the
constraints, it is not always trivial to get a perfect mapping; we can meet the following

problems related with the expressiveness of the encoding:

¢ Infeasible solutions can be represented
e [llegal solutions can be represented

e The optimum solution cannot be represented

An infeasible solution and an illegal solution are both non-valid. The former respects
the constraints of the problem but it is a non-acceptable solution because of the nature
of the problem. The latter doesn’t respect the constraints. However, this distinction is
quite vague and very depending on the particular problem applied. In the particular case
of JSSP, we find convenient to define infeasible solutions those presenting cycles and
illegal solutions those non-respecting the job constraints. In Figure 5.1 five cases of

interest are illustrated.

64

5 — Genetic Algorithms and Job Shop

Acyclic

Cyclic

Respecting
Constraints

—

—

l

Non-respecting
Constraints

oPT

¢

/

-

Case A — Acyclic Solutions

Case C — Illegal Solutions

Case E — Non-Delay Schedules

Case B — Acyclic and Legal Solutions

Case D — Active Schedules

Figure 5.1 — Relationship among Representation Covering and

Type of Solutions

65

5 — Genetic Algorithms and Job Shop

5.2.4 Genetic Operators and Order Relationship

JSSP is a problem for which the order relationship among operations seems to be
important. Here we want to clarify the effect of recombination operators under an
ordering point of view. Let us consider two generic operations, A and B. Those
operations are present in both of parents and in both of children produced by applying a
recombination operator. On the basis of the order relationship among A and B in the
parents and those ones in the children, we can distinguish four cases of interest, which

are illustrated in Figure 5.2.

Parents A->B A—>B

b

Case A — Preservation of Community Case B — Mutation

Case C — Preservation of Diversity Case D — Loss of Diversity

Figure 5.2 — Effects of Recombination on Order Relationship

66

5 — Genetic Algorithms and Job Shop

5.3 A New Genetic Representation for Job Shop

In this section we propose a representation and a particular class of recombination
operators that together guarantee the genetic search to cover all and only the space of
feasible solutions and the transmission of meaningful characteristics to the offspring
solutions.

In order to avoid both kinds of infeasibility presented above, we define a class of
recombination operators that solves the problem with job constraints and a
representation that solves the problem concerning cycling solutions. More in detail, we
will see that only solutions without cycles can be represented, thus eliminating the
cycling problem. Unfortunately the schedules so represented do not necessarily respect
job precedence constraints. However, to manage this second kind of unfeasibility, it
suffices initialising the evolutionary process with a population of schedules respecting
all job precedence constraints and applying recombination operators that leave the job

precedence constraints invariant.

5.3.1 String Representation

In order to apply the GA framework, we need to define an encoding method to map the
search space of all possible solutions into a set of finite chromosomes.

In the sequel we introduce the representation we will use. First, we will show, by means
of an example, the relationship among a problem instance, represented by its disjunctive
graph, a particular solution for that instance, represented by its solution graph, and our
string coding for that solution. Afterward, we will present definitions and theorems that
assure the validity of the representation proposed.

Figure 5.3 illustrates the derivation of the string representation. At the top of the figure
there is a disjunctive graph for a three-job four-machine instance, already presented in
chapter two. Just below the solution graph representing a feasible solution to the given
instance of the problem is reported. It has been derived from the disjunctive graph by
settling an orientation of all the disjunctive arcs having taken care to avoid the creation
of cycles. In the solution graph, arrows correspond to precedence constraints among
operations on jobs or machines. Dashed lines indicate that two operations don’t have

any precedence constraints.

67

5 — Genetic Algorithms and Job Shop

Let us see things emphasising the precedence order relationship among operations. The
disjunctive graph represents a particular instance of JSSP. We can see it as a partial
order relationship among operations. The solution graph shown represents a specific
solution of the above JSSP instance. We can see it still as a partial order relationship
among operations, even if more constrained when compared to the relationship
associated with the disjunctive graph. We can now force a complete order by imposing
further precedence constraints and eliminating all the redundant arcs so that obtaining a
linear sequence of operations, the string shown at the bottom of Figure 5.3, which is the
encoding of a solution we will use.

In the string is present all information we need to decode it into an actual schedule.
Since we know a priori (from the problem instance) the machine which a given
operation belongs to, the sequence of operations on each machine is easily determinable
from the string. The idea is to scan the string from left to right, extract all the operations
of a given machine and sequencing them keeping the same order. Considering again our
example, if we apply the decoding procedure just described to the string at the bottom
of Figure 5.3, it is easy to see that we obtain exactly the same sequences of operations
on machines of the solution graph. The lower part of Figure 5.4 shows that the string
representation contains all information we need to reconstruct the order of operations on
each machine.

A peculiarity of the string representation is that it doesn’t admit cyclic solutions. It is
therefore not subject to the second kind of infeasibility we have discussed previously.
However, we can notice that a string codifies both information about the solution it
represents (precedence constraints on machines) and information about the instance of
the problem. In fact, the upper part of Figure 5.4 shows that the string representation
contains also all information about precedence constraints on jobs. This implies that a
generic string may represent a solution, which does not respect the precedence
constraints on jobs, therefore we still have to deal with this kind of infeasibility, that is

the first kind discussed previously.

68

5 — Genetic Algorithms and Job Shop

Figure 5.3 — Derivation of the String Representation (Complete precedence order among all operations)

69

5 — Genetic Algorithms and Job Shop

Figure 5.4 — Decoding Information from a String

5.3.2 Formal Definition of String and Coding/Decoding Theorems

In the following we give the formal definition of string representation. Then, in order to
show that the string representation is a valid encoding for schedules, we formulate two

theorems.

70

5 — Genetic Algorithms and Job Shop

Definition 1. String Representation.

Let us consider three finite sets, a set J of jobs, a set M of machines and a set O of
operations. For each operation a there is a job j(a) in J to which it belongs, a machine
m(a) in M on which it must be processed and a processing time d(a). Furthermore for
each operation a its successor in the job is given by sj(a), except for the last operation in
a job. The representation of a solution is a string consisting of a permutation of all

operations in O, i.e. an element of the set:

StrRep={s O"In=I10land i,jwithl1Ci<jCn:s(i) s(j)}

Now we can define legal strings. Formal for s in StrRep:

Legal(s)= a,sj(a) O:a~<sj(a)

where a ~< b means: a occurs before b in the string s.

Theorem 1. (Feasible Solution = Legal String)

Every feasible solution can be represented by a legal string. More than one legal string
corresponding to the same feasible solution may exist.

Proof.

Every feasible solution can be represented by an acyclic solution graph, say C.

Every acyclic solution graph S can be transformed in a legal string by means of the

following construction procedure:

1. Set § as the current graph C
2. Calculate the transitive closure graph TC of the current graph C
3. WHILE the transitive closure 7C doesn’t define a total order in O DO
4. Select two nodes in O still not linked by an arc in 7C
5. Link them by an arc obtaining a new acyclic graph that becomes the new current
graph C
6. Calculate the transitive closure graph TC of the current graph C

7. Convert the transitive closure graph TC in its corresponding string Str

71

5 — Genetic Algorithms and Job Shop

The previous procedure:
e always produces a total order in O and never a cyclic graph. Therefore the
conversion of TC in Str in step 7 is immediate
® is non-deterministic in step 4 and 5 and consequently it may produce different
strings starting from the same acyclic solution graph S
® always produces a legal string since the initial solution graph S is still a sub-

graph of the final transitive closure graph 7C
|

Theorem 2. (Legal String - Feasible Solution)

Every legal string corresponds exactly to one feasible solution.

Proof.

A generic legal string Str can be interpreted as a complete order relationship among
operations and consequently can be associated with an acyclic graph TC.

Let us consider the set of (directed) arcs A and the set of (undirected) edges E defined in

the disjunctive graph. By eliminating from 7C every arc notin A E, we obtain a new

graph S representing the solution.
Moreover since arcs of the form [a, sj(a)] are present in the graph TC and these arcs are
not removed in the elimination process, the resulting solution graph S has the correct job

arcs, i.e. it corresponds to a feasible solution.

5.3.3 Recombination Class
In order to cope with the unfeasibility regarding job precedence constraints we propose
the following requirement on the recombination operators allowed that guarantees both

the respect of job constraints and the transmission of meaningful characteristics.
Definition 2. Feasibility Requirement for Recombination.

We say that a generic recombination operator for the string representation is feasible, if

for every generic pair of operations a and b such as a ~<b in both parent strings then

72

5 — Genetic Algorithms and Job Shop

also a ~<b must hold in the child strings produced by its application to the parent

strings.

Legal Legal

Sa Ss

Common Order Preservation

Legal

Sc

Figure 5.5 — Preservation of Legality through Recombination

Theorem 3. (Legal String + Legal String - Legal String)

By recombining legal strings following the feasibility requirement for recombination,
we still obtain a legal string. See Figure 5.5.

Proof.

Let s and ¢ be two legal parent strings. Let offspring u be obtained by a recombination
that respects the feasibility requirement. By definition we have to show that a~<sj(a) for
all operations a in string u. Since s and ¢ are legal strings, this property holds for s and 7.
From the feasibility requirement we immediately conclude that also a~<sj(a) for all

operations a in string u.

73

5 — Genetic Algorithms and Job Shop

In the following we propose a recombination operator that respects the feasibility

requirement.

Definition 3. Recombination Operator.
Let SEQ be a vector of n elements randomly chosen in the set {1, 2, 3, 4}, where n=I10I.
We use it as input of the following procedure that produces from two parent strings a

single offspring string:

1. Initialise the left scan pointers P77 and P12 at the beginning (on the left side) of
parent strings PARI and PAR?2. Initialise the right scan pointers P73 and P74 at
the end (on the right side) of the parent strings PARI and PAR2. Let the result
(son) be a string consisting of n blanks. Initialise the left write pointer P/ at the
beginning of the result string and initialise the right write pointer P2 at the end
of the result string. Set all operations as unmarked.

2. Consider the first number appearing in the sequence SEQ

3. Slide the corresponding scan pointer to the first unmarked operation (left scan
pointers slide from left to right, right scan pointers slide from right to left)

4. If the pointer in step 3 was a left pointer, copy the current operation at the left
write pointer and increase that pointer by 1. Otherwise copy the current
operation at the right write pointer and decrease it by 1. Mark the current
operation in the parents as already processed (see Figure 5.6 and Figure 5.7)

5. Take out the number at the beginning of SEQ

6. If SEQ is empty then stop otherwise go to step 2

- 1 3 <«
\ 4 A\ 4
Parl: A B
) 4 | <
\ 4 A\ 4
Par2: A B
—» -«
\ 4
Son: A B

Figure 5.6 — Common order preserving recombination

5 — Genetic Algorithms and Job Shop

Theorem 4. Validity of Recombination Operator.

The recombination operator defined above respects the feasibility requirement.

Proof.

Let us consider the two parent strings in Figure 4. To transmit a generic operation from
a parent to the son, that operation must be reached by one of the four scan pointers
(indicated in Figure 5.6 with numbers from 1 to 4). Therefore, to transmit operations A
and B both must be reached by a pointer, one for each. A pair of pointers (x, y) defines a

way to transmit operations A and B by means of the following procedure:

o First, the x pointer slides in its prescribed direction until it reaches operation A or
operation B and transmits it to the son
e Then, the y pointer slides in its prescribed direction until it reaches the operation

which among A and B is not yet assigned to the son

In Table 5.1 all possible pairs of pointers are grouped in four classes of equivalence

following two lines of symmetry.

Same Parent Different Parent
Same Side (1,1)2,2)3,3) 44 (1,2)2,1)3,4) 4, 3)
Different Side | (1,3)(3,1)(2,4)(4,2) (1,4 4,1)(2,3)(3,2)

Table 5.1 — Symmetries of the recombination

Let us consider only one pair for every class, since the other pair in the same class will

produce the same result:

e C(Case (1, 1). The pointer 1 gets first A and puts it in the son. The same pointer
then gets B and puts it in the son more to the right respect to A. This is because
the pointer used in the son slides in the same direction as pointer 1. We obtain in

this way A~<B in the son string.

75

5 — Genetic Algorithms and Job Shop

e Case (1, 2). The pointer 1 gets A and puts it in the son by the left pointer. Later,
the pointer 2 meets A and skips it, then it gets B and transmits it to the son using
the left pointer and consequently we obtain A~<B in the son string.

e Case (1, 3). The pointer 1 gets A and the pointer 3 gets B. A is posed in the son
more to the left respect to B because A is inserted using the left pointer in the
son, B using the right pointer and the write pointers cannot cross each other.
Then, we get A~<B in the son string.

e Case (1, 4). First, the pointer 1 gets A and put it in the son by the left write
pointer. Then, the pointer 4 gets B and put it in the son by the right write pointer.
As the write pointers cannot cross each others, then it must be A~<B in the son
string.

|

5.4 Recombination Operators

The recombination operator proposed is very general indeed. It has four degrees of
freedom (the four pointers) we can drive following our wishes. We can combine them in
many different configurations so that obtaining recombination operators with very
different behaviours. For example, we can think to inhibit a generic combination of two
pointers letting free to move only the remaining two. We can think also to bias the
random sequences which drive the pointers in order to obtain something more close to
the uniform crossover rather than to the one-point crossover or vice versa, biasing in
this way the destruction capability of the recombination [7].

In fact we will present and compare in practice a set of recombination operators selected
following the guidelines mentioned above. In the following we show all the
recombination operators we test in the computational experiments. However, we report
a complete description of only two of them, the most general one, already described in
the previous section, and the one that has revealed to be the most effective in our
computational experiments. The recombination operators we propose are listed in the

following:

76

5 — Genetic Algorithms and Job Shop

Multi-step Complete
Multi-step Parallel

Multi-step Crossed

Multi-step Merge-Split (MSX)

One-step Crossed Insertion

AN o e

One-step Insertion

The recombination operator at the top of the list is the most general. Its formal
description is given in the Definition 3, its behaviour in practice is illustrated through an
example in Figure 5.7.

In our genetic algorithm the Merge and Split recombination (MSX) operator has been
used. In Section 5.4.4 is illustrated by an example how MSX works in practice, its
detailed definition follows.

The other recombination operators are illustrated by an example in the following
sections. Now, we propose two different classifications of the set of recombination

operators in order to point out the characteristics they combine together.
Considering only one child at a time, we can distinguish two classes:
1. Recombination operators which keep separated (do not mix but merely put in
sequence) the operations inherited from different parents in the children
2. Recombination operators which merge (interleave) operations inherited from

one parent with those ones inherited from the other parent in the children.

Multi-step Complete, Multi-step Parallel and Multi-step Merge-Split belong to the class

2, the others belong to class 1. Those in class 1 are less destructive than those in class 2.

Considering both children at the same time, we can distinguish other two classes:

1. Recombination operators which redistribute perfectly the operations of the

parents in the children (if a child receives a given operation from one parent, the

other child receives the same operation from the other parent)

77

5 — Genetic Algorithms and Job Shop

2. Recombination operators which don’t redistribute perfectly the operations of
parents in the children (the same parent may transmit the same operation to both

of children)
Multi-step Merge-Split, One-step Insertion and One-step Crossed insertion belong to the

class 1, the others belong to class 2. Those in class 1 preserve diversity better than those

in class 2.

5.4.1 Multi-Step Complete Recombination Operator

1 3

Y

Parl: A Bl C|D]|E F | G
2

4

Y

Par2: B|IFIC|IG|A|E|D

Son: A B F | E G D’

SEO: 1143234

Figure 5.7 — Multi-Step Complete Recombination Operator

78

5 — Genetic Algorithms and Job Shop

5.4.2 Multi-Step Parallel Recombination Operator

Parl: A B C | D > \3\
Par2: HB’\ F’ J G J E’ ﬁS’\

Sonl: A B FFl|C|G&G|D|E

SEO: 1121212

Parl: \B\ C E|F |G

ParQ: B’) 17 \37\ A’ Jﬂ D)

Son2: B|C|A|E|[D]|F|G

SEO: 3343434

Figure 5.8 — Multi-Step Parallel Recombination Operator

79

5 — Genetic Algorithms and Job Shop

5.4.3 Multi-Step Crossed Recombination Operator

Parl: A B C \D\ F \G\
Par2: \B’\ 2 | R

Sonl: A|lB|C|F |G |E|D

SEO: 1141414

3
Parl: A \8\ D|E|F \G\

Par2: B’ (| C’ E’\ A’ ’ \3’\

Son?2: Bl |&|D E F G

SEO: 3323232

Figure 5.9 — Multi-Step Crossed Recombination Operator

80

5 — Genetic Algorithms and Job Shop

5.4.4 Multi-Step Merge and Split Operator

SEO: 11212122211221

\
Parl: A|lB|c|D|E|F|aG
2
\
Par2: B|lF|lCc|lel|a|E|D
Merge: AlB|B|c|P|D|C|o|AN|E|F|FE|D|G
Sonl: A B C F D G E Son?2: B | C | A F E| D’ G’

Figure 5.10 — Merge and Split Recombination (MSX)

Definition 4. Merge and Split Recombination (MSX).

Let SEQ be a vector of 2-n elements randomly chosen in the set {1, 2} such as both
elements 1 and 2 occur n times each and where 7 is the length of strings. We use it as
input of the following procedure that produces from two parent strings two offspring

strings:

1. Initialise pointers PTI and P72 at the beginning (on the left side) of parent strings
PARI and PAR?2. Set all operations as unmarked.

2. Consider the first number appearing in the sequence SEQ

3. Slide to the right the corresponding pointer to the first unmarked operation

4. Copy the current operation in the Merge string in the first position available to the

left and mark that operation as already processed

81

5 — Genetic Algorithms and Job Shop

5. Take out the number at the beginning of SEQ

6. If SEQ is empty then go to step 7 otherwise go to step 2

7. Scan the Merge string operation by operation from the left-most to the right-most.
The first time an operation is met it is assigned to Sonl, the second time the same

operation is met it is assigned to Son2 filling them from left to right.

The main peculiarity of MSX consists in getting two complementary sons by combining
the precedence characteristics of their parents meanwhile trying to minimise the loss of
diversity. More precisely, if the generic operations a and b have a different order in the
parents, such as in parent one a precedes b and in parent two b precedes a, MSX tends
as much as possible to transmit this diversity to the sons so that in one son a will
precede b and in the other one b will precede a. It is important to notice that in general
this requirement may contrast with the requirement regarding cycling solutions.
Therefore, since the string representation doesn’t allow to encode cycling solutions, it
turns out to be often impossible to get a perfect preservation of parental characteristics
through the recombination.

Intuitively, the preservation of diversity through the recombination is roughly
explainable by noticing that in the merge phase the precedence characteristics of parents
are mixed but not destroyed. Then, in the split phase, the characteristics are
repartitioned in two sons and still not destroyed, so that obtaining the original
characteristics preserved but combined in a different way.

A pertinent doubt one may have is whether MSX respects the feasibility requirement for
recombination stated in Definition 2. After all we have only proven the feasibility for a
class of recombination operators (Theorem 4) which seems not to include MSX because
of its way of recombining strings in two phases. However we can imagine an alternative
definition for MSX such that it results to match the form of the feasible class. The idea
is to produce the two twin sons separately, each one in one phase, using the same
random sequence twice, once scanning the input sequence and the parent strings from
left to right producing one son, once scanning them in the other sense producing the

other one.

82

5 — Genetic Algorithms and Job Shop

5.4.5 One-Step Crossed Insertion Recombination Operator

Parl:

Par2:

Sonl:

Son2:

_f“____B__ 9 D E F G
plrlclalaleln
v
Blc|Fla | AR | D

Figure 5.11 — One-Step Crossed Insertion Recombination operator

5.4.6 One-Step Insertion Recombination Operator

Parl:

Par2:

Sonl:

Son2:

alelelnlelrls
B | Frlole|N || D
e
B|C|A]}D | E|F |G

Figure 5.12 — One-Step Insertion Recombination operator

83

5 — Genetic Algorithms and Job Shop

5.5 The Genetic Local Search Algorithm

We propose a genetic local search algorithm (GTS) consisting of a basic genetic
algorithm with the addition of a taboo search optimisation phase applied to every new

individual created.

5.5.1 Genetic Local Search Template

In the following a GLS outline is presented.

Genetic Local Search Template
1. Generate initial population
2. Execute for every individual an initial optimisation by applying local search
3. Assign fitness to every individual
4. Select individuals for recombination
5. Apply the recombination operator producing a new generation of offspring
6. Optimise every new offspring by applying local search
7. Insert the offspring in the population and reduce it to the original size

8. Repeat the steps from 3 to 7 until a stop criterion is met

Let us now fill the Genetic Local Search template presented above with all the
components we need to implement an actual algorithm for JSSP. First, we will discuss
about the major components of the Genetic Algorithm framework, then we will focus

our attention on the specific Local Search algorithm we have used.

5.5.2 Genetic Algorithm Framework
e POPULATION. The initial population contains a fixed number of chromosomes
which are generated at random. During all the evolutionary process the
population size remains constant.
e FITNESS FUNCTION. Every chromosome in the population receives a fitness
value. It biases the probability of the chromosome to reproduce. In our case the

fitness value of a chromosome is the makespan of its encoded solution.

84

5 — Genetic Algorithms and Job Shop

e SELECTION SCHEME. A fixed number of chromosomes which will undergo
recombination are selected. The selection is done via a simple ranking
mechanism. The population is always kept sorted according to the fitness. The
probability of each chromosome to be selected depends only on its position in
the rank and not on the actual fitness value.

e REINSERTION SCHEME. The set of offspring is merged with the population.
Then the population is reduced to its original size by eliminating the worst
chromosomes.

e STOP CRITERION. The algorithm stops after a fixed numbers of consecutive
generations without improvement of the best solution in the population.

o REPRESENTATION & RECOMBINATION. We use the string representation
and the MSX recombination operator presented in Section 2. Let us now spend
few words on the role played by MSX in the GLS framework, focusing again on
its behaviour. Meanwhile MSX tends to preserve diversity as much as possible,
it tries as well to mix parent characteristics a lot. The input sequence is randomly
allowed to switch from one parent to the other in every step, therefore it behaves
like a uniform crossover. These two aspects of the recombination taken together
are particularly welcome in a genetic local search framework. On one hand,
MSX transmits the diversity and therefore doesn’t trash expensive information
present in the parents gathered by local search, the most time-consuming GLS
component. On the other hand, the role of the GA paired with local search is to
explore as much as possible the solution space. MSX stresses it just shuffling the

information present in the parents at most behaving like a uniform crossover.

5.5.3 Local Optimiser

The TS algorithm here proposed is an effective local search algorithm for JSSP. We use

it in the above GLS algorithm as a local search optimisation phase in steps 2 and 6.

Taboo Search Algorithm
1. Current Solution := Initial solution
2. Best Solution := Initial Solution

3. Taboo List := Empty

85

5 — Genetic Algorithms and Job Shop

4. Consider the neighbourhood of the current solution and select one of them not in
the Taboo List following a Search Strategy

5. Insert the current solution in the Taboo List and, if it is full, make room taking out
the solution ahead of the list

6. Update the best solution found so far

7. Make the selected neighbour as the new current solution

8. Repeat steps 4-7 until a Stop Criterion is met

More in detail, the Taboo Search we use is based on an algorithm proposed by Eikelder
et al [18]. In the following we discuss the major components of the algorithm.

e REPRESENTATION. To apply local search to JSSP we use the disjunctive
graph representation. A feasible solution is obtained by orienting the edges such
that there is a linear ordering of the operations that have to be processed on one
machine, and the resulting graph is acyclic.

e NEIGHBOURHOOD. We use the neighbourhood structure of Nowicki &
Smutnicki [13]. It is based on reversing machine arcs on a longest path.
However, they have shown that several types of neighbours can be omitted
since they cannot have lower costs. For instance it is not useful to reverse
internal arcs of a block of operations belonging to a longest path.

o SEARCHING STRATEGY. The time needed to search a neighbourhood
depends on the size of the neighbourhood and on the time complexity of the
computational cost of neighbours. Since the size of a neighbourhood is rather
small we use the steepest neighbour search strategy that even if it requires
evaluating every neighbour, it selects the best one.

e TABOO LIST. We use a taboo list consisting of a FIFO queue of moves of fixed
length. The length of the taboo list is the average neighbourhood size plus a
random value.

e STOP CRITERION. The algorithm stops after a fixed numbers of steps without

improvement.

Because of the combined use of Genetic Algorithms and Taboo Search we will denote

our algorithm with GTS, acronym of Genetic Taboo Search.

86

Chapter 6

Computational Results

6.1 Introduction

In this chapter we are going to show the results we have obtained applying in practice
the hybrid algorithm introduced in Chapter 5. First, we try to figure out what are the
right questions to pose in order to design a proper set of computational experiments.
Afterward, we illustrate all the relevant parameters of the hybrid algorithm, describe the
procedure to determine a plausible parameter setting and discuss the values so found.
We pass then to actually test the performance of the algorithm. We propose two
experiments: the first, the quality and time experiment, is meant to test our algorithm on
a set of little and medium instances, trying to find out a good trade-off between quality
of solutions found and time required; the second, the quality experiment, is intended to
test our algorithm on a set of bigger instances, most of them still open, trying to
improve the best bound known so far or approximate as much as possible the known
optimum, no matter how much the time required is. Next, we propose three interesting
comparisons: the hybrid algorithm versus its local search core, the hybrid algorithm in a
wide comparison with a variety of good algorithms for Job Shop and finally a specific
comparison of our algorithm, which is hybridised with taboo search, with a similar

approach combining genetic algorithms and simulated annealing.

QUESTIONS

In this chapter we want to try to answer to the following questions:

87

6 — Computational Results

1. What is the most successful composition of Genetic Algorithms and Taboo
Search?

2. What is the architecture which guarantees a good flow of information between
Genetic Algorithms and Taboo Search in our hybrid algorithm?

3. Which among the recombination operators proposed work better?

4. How much better does our hybrid algorithm perform compared to its basic
components taken separately?

5. How are performances of our hybrid algorithm compared with those of other
algorithms?

6. What kind of instances does our hybrid algorithm work better on?

The first three questions are investigated in the parameter setting section. Although
these questions are of central importance, in our algorithm they take a simple form of
parameters to be properly tuned.

The last 3 questions are investigated in the remaining part of the chapter dedicated to

performance testing and comparisons.

6.2 Parameter Setting

In the sequel, we present and discuss the most important parameters of GTS (our hybrid

algorithm), the ones that affect more the performance of the algorithm and their settings.

6.2.1 Overview on Parameters

COMPUTATIONAL EFFORT

This parameter permits a qualitative control of the computational search effort. More in
detail, we define the computational effort as the product of two factors, where the first
factor is the number of consecutive iterations without improvement (75) after that each
run of Taboo Search has to stop, and the second factor is the number of consecutive
individuals processed by the GA without improvement (GA) after that GTS has to stop.
Since both 7S and GA stop criteria are adaptive to the complexity of the specific

problem treated, the setting of the computational effort parameter produces different

88

6 — Computational Results

effects applied on different instances. However, although roughly, it gives a way to

control the computational effort.

TS/GA MIXING RATE
This is a very important parameter that is used to weigh the relative contribution of TS
and GA. Knowing the Computational Effort (TS*GA) and the 7'S/GA ratio we then can

determine the stop criteria for TS and GA.

GA PARAMETERS

It is very important to set the GA parameters properly in order to guarantee a good flow
of information between GA and TS during all the evolutionary process so as to obtain
an effective cooperation between them. We have found that the following parameters
affect the quality of the flow of information and therefore we have paid great attention

in finding a good setting:

® Population Size. We tuned GTS focusing on meaningful relationship among
parameters rather than on their absolute values, trying first to find out good
ratios among relevant parameters and only later deriving indirectly their absolute
values. Following this approach, we have considered the Population Size being

in direct relationship with the Number of Generations.

e Generational Gap. This parameter represents the number of offspring to produce

every generation through recombination.

o Selection Pressure. This parameter permits to control the competition level in
the population. It bias the ranking selection mechanism, making the selection
probability of chromosomes more depending or less depending on their rank in
the population on the basis of the parameter value. The range of the selection
pressure varies from O (no dependency) to 2 (strong dependency). A weak

selection pressure, therefore, gives a bad individual almost the same chance to

89

6 — Computational Results

reproduce as a good individual, whereas a strong selection pressure strongly

favours the reproduction of only good individuals.

RECOMBINATION TYPE

The recombination operators we test are listed in the following:

Multi-step Complete
Multi-step Parallel

Multi-step Crossed

One-step Insertion

Multi-step Merge-Split (MSX)

One-step Crossed Insertion

N o vk w D

Multi-step Parallel + Multi-step Crossed

The operators from 1 to 6 are those introduced in the previous chapter and therefore
don’t require further comments. The recombination operator number 7 is not an actual
new operator; rather, it consists of a combination of two recombination operators
(number 2 and 3, respectively), which present complementary aspects, during the
evolutionary process; the idea is applying once the one, once the other, in order to

obtain a synergic effect.

6.2.2 Determination of a Plausible Parameter Configuration

The purpose of a parameter setting is finding a good trade-off among different aspects
of the algorithm in such a way as a result of it we obtain a parameter configuration that
allows the algorithm to get good solutions in a reasonable amount of time independently
from the specific instance of the problem which is applied on.

Our algorithm has got many parameters and consequently to apply a fine-tuning would
require a big amount of time. We follow then a different approach, very less time-
consuming, that produces a reasonable parameter configuration. The idea is to set the
parameters evaluating only few problem instances and to check the performance of our

algorithm only on combinations of parameters that we think strongly related avoiding in

90

6 — Computational Results

this way to check every possible combination but focusing our attention only on those
interesting.
In the following we illustrate, step by step, the way we follow to find our parameter

configuration.

e Selection of test instances

e Determination of the computational effort

e Determination of the TS/GA mixing rate

e Choice of the type of recombination

e Whether to apply a saving time stop criteria

e Determination of a good relation among Gen/Pop, Gap/Pop and Selection

Pressure

SELECTION OF TEST INSTANCES

Later, in Section 6.3, we test our program on two sets of instances; the first one contains
instances ranging from little to medium-big and the second set contains bigger
instances. We select 3 instances belonging to the first set, one little, one medium and

one big as our test-set to tune up the parameters. The instances we chose are:

e LAO2 (10 jobs * 5 machines)
e [.A25 (15 jobs * 10 machines)
e [.A29 (20 jobs * 10 machines)

The LAO2 instance has revealed too little to give a real contribution in the setting of
parameters. Almost every parameter configuration brings the algorithm to find the

optimum solution. Therefore we don’t report it here.

DETERMINATION OF THE COMPUTATIONAL EFFORT

The first thing to do is to determine for every problem instance the quantity of search

(i.e. time) we want to spend in order to solve it. Under-sizing this parameter will bring

91

6 — Computational Results

the program to get sub-optimal solutions; over-sizing it will hopefully lead to find the
best solution it can get, but at the cost of wasting time.

In order to properly set this parameter we have run more times the simply TS algorithm
for increasing values of the computational effort parameter, ranging from a minimum
value up to the first value which allows the algorithm to get a good quality solution.

Following this method we have found for out test-set:

e LAO02 (10000)
e LA25 (100000)
e LA29 (100000)

DETERMINATION OF THE TS/GA MIXING RATE

In order to determine a proper TS/GA mixing rate, we keep constant the computational
effort (TS*GA) for any given instance we test, varying only the TS/GA composition
(i.e. ratio). From one hand, this method is not very precise since the stop criteria for the
TS and GA components are not constant, though it is acceptable for our purpose. On the
other hand, the stop criteria have the good property to be adaptive to the complexity of
the specific problem instance.

To be able to actually run the program we should provide values also to the other
parameters (i.e. GA parameters), not only to the mixing rate and computational effort.
The trick is to choose these values as neutral as possible, taking values positioned in the
middle of their defining range. In Table 6.2 and Table 6.3 various TS/GA compositions
are presented together with comparisons of the different types of recombination.

Further investigations following this line have brought us to set a different
computational effort on the basis of the size of the instance treated as shown in Table
6.1. We have seen also that the bigger the problem is the better GA performs compared
with TS. More in detail we have assigned a 7S/GA ratio of 10:1 for little and medium

size instances and 1:1 for large size instances (see Table 6.1).

92

6 — Computational Results

Size of instances TS*GA |TS/GA
Little instances (up to 150 operations) 10000| 10:1
Medium instances (around 200 operations) 100000| 10:1

Medium-large instances (around 300 operations) 500000| 10:1

Large instances (around 500 operations) 1000000| 1:1

Table 6.1 — Computational Effort and Mixing Rate

CHOICE OF THE TYPE OF RECOMBINATION

From Table 6.2 and Table 6.3, we see that the best recombination operator related to the

chosen TS/GA ratio of 10:1 is the number 5, the MSX recombination operator.

STOP CRITERIA

During the course of early experiments, we have noticed that most of the times, when
all the individuals in the current population reach the same makespan, the search hardly
can make further improvement to the best solution found so far, even letting the
algorithm run for much longer time. This suggests us to stop the algorithm as soon as
this uniformity in the population is reached, even if the criterion based on the number of
generation without improvement would continue the search. This adjunctive stop

criterion has revealed very precious in saving time.

DETERMINATION OF THE GA PARAMETERS

Now we have to determine a good balance among GA parameters. In order to do it, first
we fix the values of the parameters previously illustrated and then we test systematically

all the combinations of three relevant values for each of the following terms:
¢ Number of Generation without Improvement / Population Size (Gen/Pop)

e Generational Gap Size / Population Size (Gap/Pop)

e Selective Pressure

93

6 — Computational Results

Once we have got good values for those, we can easily determine the values to assign to

Population Size, Number of Generation without Improvement (Gen) and Generational

Gap Size. Table 6.4 shows the results for every combination of values considered.

In the following the settings found are discussed:

Population Size. Following this approach, we have considered the Population
Size being in direct relationship with the Number of Generations, obtaining that
a good ratio is 1:1. The absolute values we have found for the Population Size
parameter vary gradually from 10 individuals for small size instances up to 50

individuals for large size instances.

Generation Gap. We have found Population Size / 2 to be a good setting for this

parameter.

Selection Pressure. We have found a weak selection pressure of 0.1 being
appropriate for our algorithm. This should not be so surprising because in our
GA we use a reinsertion scheme which is already very selective itself, thus
making it not necessary to strengthen too much further the selection pressure

through this parameter.

DISCUSSION ON THE SETTING FOUND

The main impression we have got meanwhile setting parameters is that the

performances of the algorithm are not very dependent on a specific parameter setting, in

other words, the architecture of the algorithm is robust. Therefore, even if the parameter

setting so obtained has been produced by testing extensively only few instances, we

conjecture that this setting will go well also for other instances. As we will see, this

configuration produces satisfying results.

94

6 — Computational Results

INSTANCE: LAW25
DIMENSION: 15 jobs * 10 machines
OPTIMUM: 977

Crossover | Makespan Iterations
Best Average | Worst Termination Up to Makespan
Average Worst Average Worst
TS * GA = 100000 * 1
- | 977 981 | 984 | 156930 | 246380 | - | -
TS * GA = 10000 * 10
5 | 977 978 | 980 | 221082 | 331978 | 110930 | 265385
TS *GA = 1000 * 100
1 977 980 984 165570 236775 102180 204998
2 977 979 982 178607 | 271260 86093 176715
3 977 979 984 167028 289113 101393 207150
4 977 980 984 155562 257041 92573 169202
5 977 979 988 167055 231271 96652 160939
6 977 980 984 135045 271767 85623 208311
7 977 978 984 186265 338639 107614 238930
TS *GA =100 * 1000
1 977 981 984 114332 178040 82970 149901
2 977 978 984 105182 136541 78613 116648
3 977 982 990 178597 | 319452 127106 288533
4 977 983 986 99860 158258 73906 124461
5 977 979 984 122221 219667 88712 161295
6 977 982 986 101708 135444 73189 97040
7 977 978 984 133105 178891 87781 138114
TS *GA =10 * 10000
2 | 978 985 | 992 | 86547 | 131416 | 61804 | 91943
TS *GA =1*100000
1 1219 1317 1389 - - - -
2 1097 1110 1123 - - - -
3 1146 1166 1220 - - - -
4 1163 1202 1322 - - - -
5 1080 1102 1130 - - - -
6 1080 1167 1234 - - - -
7 1089 1113 1136 - - - -

Table 6.2 — Crossovers and Mixing Rates comparison on a medium size instance

95

6 — Computational Results

INSTANCE: LAW29

DIMENSION: 20 jobs * 10 machines
OPTIMUM: 1142 - 1153

Crossover | Makespan Iterations
Best Average | Worst Termination Up to Makespan
Average Worst Average Worst
TS * GA = 100000 * 1
- | 1167 | 1172 | 1176 | 204496 | 384934 | - | -
TS *GA =10000 * 10
5 | 1167 | 1170 | 1177 | 295992 | 352754 | 201536 | 292609
TS *GA =1000 * 100
1 1164 1171 1175 305970 398333 229499 306309
2 1165 1169 1179 313345 452170 217820 414679
3 1164 1169 1176 329263 428066 | 247444 311194
4 1162 1170 1183 260764 | 334916 | 202696 283227
5 1164 1168 1174 303584 | 398809 235348 307897
6 1164 1170 1185 238538 370420 187000 330256
7 1164 1168 1180 315262 483902 235568 375211
TS *GA =100 * 1000
1 1167 1174 1184 199088 265840 168670 209345
2 1164 1171 1186 222270 375458 177974 272027
3 1167 1175 1184 216489 327733 174437 327733
4 1165 1176 1190 182118 | 245572 154242 221896
5 1167 1177 1186 163288 | 252929 131514 236874
6 1167 1177 1211 150157 | 218479 128711 199856
7 1163 1167 1177 213121 297958 174559 241925
TS *GA =10 * 10000
7 | 1164 | 1184 | 1201 | 143317 | 168048 | 128722 | 153557

Table 6.3 — Crossovers and Mixing Rates comparison on a medium-big size instance

96

6 — Computational Results

INSTANCE: LAW29

DIMENSION: 20 jobs * 10 machines

OPTIMUM: 1142 - 1153

Parameters Makespan Iterations
Gen/ | Gap/ | Sel Best Average | Worst Termination Up to Makespan
Pop Pop | Pres Average Worst | Average Worst
1/1 1/10 | 1/10 1164 1172 1177 | 442593 598290 338232 | 506557
1/1 1/10 Y2 1163 1169 1174 | 464005 545349 370564 | 445646
1/1 1/10 | 9/10 1163 1169 1174 | 424787 534874 338066 | 450742
1/1 Y2 1/10 1157 1166 1174 | 375081 596267 301296 | 508339
1/1* Y2 1/10 1157 1166 1174 | 405048 596267 307943 | 508339
11 Y2 Y2 1160 1167 1172 | 287037 421732 218760 | 352683
11 Y2 9/10 1163 1168 1174 | 271303 364578 225962 | 337994
11 9/10 | 1/10 1164 1169 1174 | 314614 481887 245344 | 371310
11 9/10 Y2 1164 1169 1178 | 274574 328368 221452 | 271953
11 9/10 | 9/10 1163 1169 1178 | 246853 349110 206293 | 299532
Yo 1/10 | 1/10 1165 1170 1179 | 437464 544087 330372 | 461014
Yo 1/10 Yo 1164 1171 1176 | 401468 482358 298445 | 373785
Y2 1/10 | 9/10 1160 1168 1176 | 416474 496671 316467 | 414207
Yo Y2 1/10 1163 1168 1175 | 401425 508677 302145 | 419871
Y2 Y2 Yo 1163 1167 1171 413079 562796 314497 | 431981
Yo 12 9/10 1164 1170 1176 | 347672 464374 255857 | 399083
Y2 9/10 | 1/10 1164 1166 1174 | 413148 499425 340952 | 425640
Y2 9/10 Y2 1163 1166 1171 360866 455410 287535 | 379620
Y2 9/10 | 9/10 1164 1169 1177 | 335463 453518 267831 397910
2/1 1/10 | 1/10 1163 1168 1178 | 386650 563336 295754 | 466286
2/1 1/10 Yo 1164 1170 1176 | 316763 458172 229818 | 374987
2/1 1/10 | 9/10 1162 1169 1178 | 309395 418545 239207 | 348135
2/1 Y2 1/10 1167 1169 1173 | 242978 345128 190429 | 241957
2/1 Y2 Yo 1166 1170 1176 | 212491 303804 169513 | 256231
2/1 Y2 9/10 1161 1169 1180 189888 261951 156033 | 243929
2/1 9/10 | 110 1167 1172 1184 195663 268337 152062 | 195217
2/ 9/10 Y2 1167 1171 1180 154350 245035 123683 | 212370
2/1 9/10 | 9/10 1164 1171 1178 162014 205733 135073 | 185658

Table 6.4 — GA Parameter Setting

97

6 — Computational Results

6.3 Result of GTS

We have tested GTS on two different sets of problem instances posing two different
questions. The two sets differ in the average size of the instances involved and in their
difficulty to be solved. More in detail, the first set contains little-medium instances and
for most of them the optimal value is known; the second set contains medium-big
instances and for most of them the optimal value in still unknown. We have tested GTS
on both sets of instances substantially maintaining the parameter setting proposed
earlier; however, in order to conduct two different experiments, we have adjusted
consequently the computational effort parameter.

The first experiment consists in determining how good GTS is in relation to the quality
of solutions it gets taking in consideration also the computational time spent to get
them; we name it the quality and time experiment. In order to save time the idea is that
of assigning a little value of computational effort for little instances, and as the size of
instances is increasing assigning bigger values of this parameter.

The second experiment consists in determining how good GTS is, emphasizing the
quality of solutions it gets and taking only in minor consideration the computational
time consumed; we name it the quality experiment. In order to let GTS the possibility
to get good quality solutions we assign a big value to the computational effort parameter
for every instance. Since the size of instances involved in this second experiment is
bigger than that in the first, we have felt to give a chance more to the GA part setting a
TS/GA ratio to 1/1 against the previous 10/1. This is motivated by the believed
conjecture that the bigger the problem is the better GA performs when compared with
TS.

98

6 — Computational Results

6.3.1 Quality and Time Experiment
In Table 6.5 the results of the Quality and Time Experiment are shown. The results refer

to 10 runs. The values of the computational effort parameter are as follows:

e For the little instances 1a02 ... 1la25 the stop criterion is set to 10000
¢ For the medium instances 1a27 ... 1a40 the stop criterion is set to 100000

e For the big instances abz07 ... abz(09 the stop criterion is set to 500000

Problem | Makespan Iterations Time Deviation
Termination Up to Makespan
OPT Best Average | Worst | Average Worst Average Worst

10 jobs * 5 machines

1a02 655 | 655 | 655 | 655 | 40189 | 51158 |22177| 30695 | 0:51 | 0.00

10 jobs * 10 machines

ft10 930 930 933 944 167797 266250 88755 164186 11:15 0.00

l1a19 842 842 842 843 104733 156187 22179 92733 6:48 0.00

15 jobs * 10 machines

la21 1046 1047 1050 1055 228292 322453 156541 279007 19:28 0.09
la24 935 938 943 944 161029 216436 51800 112387 14:10 0.32
la25 977 977 978 984 167060 232609 75564 152942 15:11 0.00

20 jobs * 10 machines

1a27 1235 1235 1240 1244 305040 393452 213943 344058 42:50 0.00

1a29 114271153 1157 1166 1174 375081 596267 301296 508339 52:40 1.31

15 jobs * 15 machines

l1a36 1268 1268 1274 1278 200689 367788 108900 278463 30:44 0.00
1a37 1397 1403 1410 1418 249471 347744 167014 270693 38:09 0.43
la38 1196 1201 1202 1208 188884 236997 123136 163134 29:45 0.42
1a39 1233 1233 1239 1250 242348 384043 171993 329833 34:35 0.00
1a40 1222 1226 1231 1234 207696 293530 111162 238411 32:00 0.33

20 jobs * 15 machines

abz07 656 658 662 668 1268445 | 1750338 | 988141 | 1413208 | 4:54:00 0.30
abz08 645 /669 670 672 679 1312418 | 1682689 | 952923 952923 | 4:12:58 3.87
abz09 669 /679 682 687 688 1022050 | 1294914 | 731401 997224 | 3:28:23 1.94

Table 6.5 — Quality and Time Experiment

99

6 — Computational Results

6.3.2 Quality Experiment

In Table 6.6 the results of the Quality Experiment are shown. The results refer to 3 runs.

The value of the computational effort parameter is set to 1000000 for every instance.

Problem | Makespan Iterations Time Improve Deviation
ment
Termination Up to Makespan
OPT Best Average Worst | Average Worst Average Worst

20 jobs * 10 machines
swv0l 1392/ 1418 1430 1430 1430 [2853003 | 3712723 | 2254395 | 2996206 1:41:42 0.0 2.73
swv02 1475/ 1491 1481 1484 1487 | 2534814 | 3434302 | 1933733 | 2401064 1:32:34 62.5 0.41
swv03 1369 /1398 1418 1425 1431 | 2436463 | 3120710 | 2222742 | 2935175 1:45:06 0.0 3.58
swv04 1450/ 1493 1482 1488 1500 [3010062 | 3840404 | 2457313 | 3534180 1:55:44 25.6 221
swv05 1421/ 1448 1441 1447 1453 [2427608 | 3227094 | 1908645 | 2365998 1:36:12 259 141

20 jobs * 15 machines
swv06 159171718 1701 1710 1720 | 2748054 | 3196472 | 2552314 | 2988581 2:56:47 63.0 6.91
swv07 1446/ 1652 1625 1626 1629 [3210262 | 3693342 | 2897878 | 3378399 3:39:43 13.1 12.38
swv08 1640/ 1798 1774 1781 1788 [3125954 | 3450466 | 2890025 | 3159401 3:25:16 15.2 8.17
swv09 1604 /1710 1675 1686 1697 | 2712672 | 3102098 | 2439335 | 2811873 3:03:20 33.0 443
swv10 1631 /1794 1775 1780 1784 | 4080180 | 5197313 | 3798737 | 4805452 4:37:48 11.7 8.83

50 jobs * 10 machines
swvll 2983 /3047 3019 3025 3037 | 5340847 | 5806889 | 4750793 | 5426844 | 11:03:06 43.7 121
swvl2 297273045 3040 3071 3091 [6053560 | 8059171 | 5787063 | 7823797 | 13:21:26 6.8 2.29
swvl3 3104 /3173 3107 3116 3123 [5959718 | 6853422 [5574620 | 6464213 | 12:01:00 95.6 0.10
swvl4 2968 2968 2971 2977 | 4983429 | 5707095 | 4343219 | 5149200 9:07:34 0.0 0.00
swvl5 2885 /3022 2918 2929 2938 | 6181398 | 8309943 | 5726330 | 7958352 | 13:58:39 75.9 1.14

Table 6.6 — Quality Experiment

100

6 — Computational Results

6.4 Comparisons

6.4.1 GTS vs TS

GTS is a hybrid algorithm which combines GA with TS. It is important to understand
whether such a combination is fruitful. The first question is therefore whether GTS
performs better than its two components taken separately. From the literature is well-
known that TS over-performs GA. Moreover, to effectuate a fair comparison between
GTS and GA we should effectuate a fine-tuning of GA parameters and it would require
a lot of time. Therefore, we prefer comparing GTS only with its TS core and conjecture
that TS alone works better than GA alone.

In Table 6.7 a comparison among different mixing rates is presented. This shows clearly
how a different composition of TS and GA may affect the performance of the hybrid
algorithm.

In Table 6.8 a direct comparison between the hybrid algorithm GTS and its TS core is
presented. This investigation is of crucial importance since we will find out whether the
hybridisation is worthy or the genetic framework has just an ornamental function rather
than a real merit.

In order to effectuate a fair comparison between GTS and TS we have set parameters in
such a way both algorithms get approximately the same amount of time for the same
instance. We have applied both algorithms to a set of well-known JSSP instances of
various sizes. This set includes the benchmark set introduced by Vaessens, which
comprises the hard-to-solve Lawrence instances, two of the easier ones and the famous
Fisher & Thompson 10x10 instance. Moreover, we test the two algorithms also on three
bigger instances, the abz-problems from the test library JSPIib (obtainable via ftp from
mscmga.ms.ic.ac.uk). We report the results we have obtained from 10 runs on a Sparc
station 5 (110Mhz). The CPU time is expressed in seconds. We can notice that on little
instances GTS works as well as TS finding the same quality of solutions and using the
same amount of time. As the size of instances increases the GTS works better than TS
finding better quality solutions. At first glance TS seems saving time on large instances.
This is substantially due to the adaptive stop criteria. In order to overcome this

premature termination, we tried to compensate the time difference setting TS in such a

101

6 — Computational Results

way it takes more time, therefore giving it the chance of getting better solutions. TS gets

stuck anyway without improving the solution quality, thus wasting all the additional

time we gave to it.

INSTANCE: LAW29
DIMENSION: 20 jobs * 10 machines
OPTIMUM: 1142 - 1153
Makespan Iterations
Best Average Worst Termination
Average Worst
TS * GA = 100000 * 1
1167 1177 | 1229 | 179775 | 325064
TS * GA = 200000 * 1
1167 1177 | 1229 | 298570 | 471723
TS * GA = 300000 * 1
1167 1175 | 1229 | 565878 | 982318
TS * GA = 400000 * 1
1167 1175 | 1229 | 665878 | 1082318
TS * GA = 500000 * 1
1167 1175 | 1229 | 765878 | 1182318
TS * GA = 10000 * 10
1167 1170 | 1177 | 295992 | 352754
TS * GA = 1000 * 100
1164 1168 | 1174 | 303584 | 398809
TS * GA =100 * 1000
1167 1177 | 1186 | 163288 | 252929
TS * GA =10 * 10000
1164 1184 | 1201 | 143317 | 168048
TS * GA =1* 100000
1352 1389 | 1420 | - | -

Table 6.7 — Comparison among different mixing rates

102

6 — Computational Results

Problem OPT BEST AVG BEST AVG AVG TIME | AVG TIME
(UB) GTS GTS TS TS GTS TS
10 jobs * 5 machines = 50 operations
1a02 655 I 655 | 655 I 655 | 663 I 5 I 9
10 jobs * 10 machines = 100 operations
ft10 930 930 933 930 933 67 65
lal9 842 842 842 842 842 41 47
15 jobs * 10 machines = 150 operations
la21 1046 1047 1050 1048 1063 117 122
la24 935 938 943 942 943 85 140
la25 977 977 978 977 978 91 190
20 jobs * 10 machines = 200 operations
1a27 1235 1235 1240 1255 1264 257 140
1a29 (1153) 1157 1166 1167 1177 316 233
15 jobs * 15 machines = 225 operations
la36 1268 1268 1274 1268 1276 184 197
1a37 1397 1403 1410 1415 1420 229 208
la38 1196 1201 1202 1199 1204 178 275
la39 1233 1233 1239 1233 1247 207 220
la40 1222 1226 1231 1229 1232 192 211
20 jobs * 15 machines = 300 operations
abz07 (656) 658 662 666 663 1764 975
abz08 (669) 670 672 680 681 1518 931
abz09 (679) 682 687 688 689 1250 1114

103

Table 6.8 — GTS Vs TS

6 — Computational Results

6.4.2 A Wide Comparison

We have done a wide comparison on well-known instances among GTS and the best
algorithms belonging to a variety of approaches proposed by Vaessens [20]. Table 6.9
gives the best costs found by GTS and other methods. In general we see that GTS
behaves very well. Again we see that with big instances GTS outperforms all the other

approaches. In the following we list the programs we have considered:

e RGLS-5 — Reiterated Guided Local Search by Balas and Vazacopoulos [2]

e TS-B — Taboo Search and Backtracking by Nowicki and Smutnicki [13]

e SA1 - Simulated Annealing by Van Laarhoven, Lenstra and Ulder [1]

e SB-GLS - Shifting Bottleneck and Guided Local Search by Balas and
Vazacopoulos [2]

® GA-SB - Genetic Algorithms and Shifting Bottleneck by Dondorf and Pesch [5]

Problem OPT GTS RGLS-5 | TS-B | SA1 | SB-GLS | GA-SB
1a02 655 655 655 655 - 666 -
ft10 930 930 930 930 - 930 -
la19 842 842 842 842 - 852 848
la21 1046 1047 1046 1047 1053 1048 1074
la24 935 938 935 939 935 941 957
1a25 977 977 977 977 983 993 1007
la36 1268 1268 1268 1268 - 1268 1317
1a37 1397 1403 1397 1407 - 1397 1446
la38 1196 1201 1196 1196 1208 1208 1241
1a39 1233 1233 1233 1233 - 1249 1277
la40 1222 1226 1224 1229 1225 1242 1252
1a27 1235 1235 1235 1236 1249 1243 1269
1a29 1142/ 1153 1157 1164 1160 1185 1182 1210

Table 6.9 — Wide Comparison

104

6 — Computational Results

6.4.3 A Specific Comparison

Finally we have done a specific comparison between our hybrid algorithm (Taboo
Search Based) and another recent hybrid genetic algorithm based on Simulated
Annealing proposed by Kolonko [8].

As we can see in Table 6.10, we have compared these two algorithms on a set of small
and medium instances, la and abz instances, setting the stop criteria trying to set a
proper trade-off between quality and time. We report the results of 10 runs. We can see
that considering the quality of the solutions found, GTS behaves good as SAGen, but it
is 18 times faster.

As we can see in Table 6.11, we have compared these two algorithms on the set of
difficult swv instances from JSPlib, almost all still open, setting the stop criteria
preferring quality against time. We report the results of 3 runs for both algorithms, on a
Sparc station 5 (110Mhz) for GTS and on Pentium 120/166Mhz for SAGen. The time is
expressed in seconds. As we can see both on the quality and time GTS strongly

outperforms SAGen and most of the times GTS breaks the known bound for those

instances.
Problem | OPT BEST AVG GTS | BEST AVG AVG AVG
GTS SAGen SAGen TIME GTS | TIME
SAGen
10 jobs * 10 machines = 100 operations
1al9 | 842 | s42 | 842 | s42 | 844 41 I35
15 jobs * 10 machines = 150 operations
la21 1046 1047 1050 1047 1051 117 549
1a24 935 938 943 938 940 85 570
l1a25 977 977 978 977 979 91 644
20 jobs * 10 machines = 200 operations
1a27 1235 1235 1240 1236 1244 257 3651
1a29 1130/1153 | 1157 1166 1167 1169 316 4494
15 jobs * 15 machines = 225 operations
la36 1268 1268 1274 1268 1270 184 4655
la37 1397 1403 1410 1401 1413 229 4144
1a38 1196 1201 1202 1201 1202 178 5049
1a40 1222 1226 1231 1226 1229 192 4544
20 jobs * 15 machines = 300 operations
abz07 656 658 662 658 660 1764 28487
abz08 645 / 669 670 672 670 670 1518 28195
abz09 669 / 679 682 687 683 686 1250 26202

Table 6.10 — GTS Vs SAGen on small and medium instances

105

6 — Computational Results

Problem OPT BEST AVG BEST AVG AVG TIME AVG TIME
LB /UB GTS GTS SAGen SAGen GTS SAGen

20 jobs * 10 machines = 200 operations

swv0l 1392 /1418 1430 1430 1427 1428 2034 47828
swv02 147571491 1481 1484 1487 1490 1851 43089
swv03 1369 /1398 1418 1425 1422 1428 2102 40684
swv04 1450 /1493 1482 1488 1487 1490 2315 44257
swv05 1421 /1448 1441 1447 1449 1453 1924 40045

20 jobs * 15 machines = 300 operations

swv06 159171718 1701 1710 1697 1703 3536 112647
swv07 1446 /1652 1625 1626 1627 1630 4394 97504
swv08 1640 /1798 1774 1781 1773 1776 4105 56781
swv09 1604 /1710 1675 1686 1665 1682 3667 24474
swv10 1631 /1794 1775 1780 1791 1794 5556 44467

50 jobs * 10 machines = 500 operations

swvll 2983 /3047 3019 3025 3075 3081 13262 117454
swvi2 2972 /3045 3040 3071 3108 3115 16029 124549
swvl3 3104 /3173 3107 3116 3177 3178 14420 92756
swvl4 2968 2968 2971 3010 3013 10951 104088
swvl5 2885 /3022 2918 2929 3004 3004 16773 161365

Table 6.11 — GTS Vs SAGen on big instances

106

6 — Computational Results

6.5 Summary

We have started this chapter with some key-questions, now we want to summarise the

answers we have found.

1. What is the most successful composition of Genetic Algorithms and Taboo Search?
COMPOSITION TS/GA. The combination of GA and TS is more effective than GA

and TS taken separately. The best composition of them seems to be half and half.

2. What is the architecture which guarantees a good flow of information between
Genetic Algorithms and Taboo Search in our hybrid algorithm?
ARCHITECTURE OF THE GA. The architecture of GA that guarantees a good flow
of information is squared-shape, half population generational gap and a little level of

competition.

3. Which among the recombination operators proposed work better?
TYPE OF RECOMBINATION. There is no such a big difference in terms of
performance among the recombination operators proposed. However, in our

computational experiments we have used the MSX operator.

4. How much better does our hybrid algorithm perform compared to its basic
components taken separately?

GTS VS TS. GTS works better than TS on big instances.

5. How are performances of our hybrid algorithm compared with those of other
algorithms?
PERFORMANCES. The performances of GTS compared to those of other

algorithms are good.
6. What kind of instances does our hybrid algorithm work better on?

INSTANCES. GTS seems to work better on big instances with more jobs than

machines.

107

Chapter 7

Conclusions

This paper describes an hybrid algorithm (GTS) combining Genetic Algorithms and
Taboo Search for the JSSP. The ingredients of our GA are a natural representation of
solutions (the string representation) and a recombination capable of transmitting
meaningful characteristics (the common order relationship) from parents to children.
The problems of feasibility regarding cycling and job constraints have been discussed
and solved in that framework. Moreover, the MSX recombination operator that tends to
preserve the diversity of the parent schedules in the offspring schedules has been
presented. The Genetic Local Search scheme has been used to hybridise our GA with an
effective TS algorithm for JSSP. Computational experiments have shown that on large
size instances the GA counterpart makes indeed the difference. The best mix of TS and
GA for those instances is half and half (following our mix definition) and therefore GTS
has to be considered as a real hybrid, neither a modified TS nor a modified GA. GTS
has been compared with a variety of other approaches and it has revealed to perform
very well in the comparison. The last experiment has shown that GAs are far more
profitably hybridised with Taboo Search than with Simulated Annealing. As a matter of
fact both on time required and solution quality a difference of one order of magnitude

has been found.

Let us spend some more words on the philosophy underlying the natural approach we
use. The crucial point is that we see a schedule as a partial order relationship among
operations. It is not important that the relationship is made of contributes from

precedence constraints given with the problem instance and those ones given with the

108

7 — Conclusions

particular solution to that problem. We see all the constraints uniformly without any
distinction, all forming the relationship among operations.

By seeing schedules like relationships, it is natural to think about recombination as a
way to recombine partial order relationships transmitting to son schedules the common
sub-relationship of parent schedules. This seems a natural requirement as we are
considering schedules at this level. As a welcome side effect of this approach, we obtain
that in the transmission of meaningful characteristics to sons even the feasibility
property (intended as the job precedence constraints of the problem instance) is
transmitted from parents to sons without paying special attention to it. We treat it
uniformly as a generic characteristic of a schedule. This positive side effect leaves us
thinking we are approaching the problem at the right level of abstraction without being
misled by the syntactical details of the representation used. Finally a further
consequence of the way we approach the problem is that the string representation and
the recombination proposed do not depend on a particular configuration of the
constraints and therefore they can be naturally extended to more general scheduling

problems.

109

References

[1] EH.L. Aarts, P. J. M. van Laarhoven, J. K. Lenstra, N. L. J. Ulder — A
computational study of local search algorithms for job shop scheduling — In: ORSA
Journal on Computing Vol. 6, No. 2, Spring 1994.

[2] E. Balas and A. Vazacopoulos — Guided Local Search with Shifting Bottleneck for
Job Shop Scheduling — In: Management Science Research Report #MSRR-609,
Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh,

Pennsylvania.
[3] L.D. Davis — Handbook of Genetic Algorithms — Van Nostrand Reinhold, 1991.

[4] F. Della Croce, R. Tadei, G. Volta — A Genetic Algorithm for the Job Shop Problem
— In: Computers and Operations Research Vol. 22, No. 1, 1995, pp. 15-24.

[5] U. Dorndorf and E. Pesch — Evolution Based Learning in a Job Shop Scheduling
Environment — Computer and Operations Research 22, 1995, pp. 25-40.

[6] F. Glover, C. McMilan and B. Novick — Tabu Search, Part I — ORSA J. Computing,
1, 3, 1989, pp. 190-206.

[7]1 D.E. Goldberg — Genetic Algorithms in Search, Optimisation and Machine Learning
— Addison Wesley Publishing Company, January 1989.

[8] M. Kolonko - Some new results on simulated annealing applied to the job shop

scheduling problem — In: European Journal of Operational Research Vol. 113, No. 1,
1999, pp. 123-136.

110

References

[9] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys. — Sequencing and
scheduling: Algorithms and complexity. — In: S.C. Graves, A.H.G. Rinnoy Kan and P.

Zipkin, editors, Handbooks in Operations Research and Management Science 4, North-
Holland, 1993.

[10] Z. Michalewicz — Genetic Algorithms + Data Structures = Evolution Programs —
Springer-Verlag, Al Series, New York, 1996.

[11] H. Miihlenbein, M. Gorges-Schleuter and O. Kridmer — Evolution Algorithms in
Combinatorial Optimisation — In: Parallel Computing 7, 1988, pp. 65-85.

[12] R. Nakano, T. Yamada — Conventional genetic algorithm for job shop problems —
Proceedings 0f4’h ICGA, 1991, pp. 474-479.

[13] E. Nowicky and C. Smutnicki - A fast taboo search algorithm for the job shop
problem — In: Management Science Vol. 42, 6, June 1996.

[14] J.T. Richardson, M.R. Palmer, G.E. Liepins, M.R. Hilliard — Some guidelines for
genetic algorithms with penalty functions — In: J.D. Shaffer editor, Proceedings of the
third international conference on genetic algorithms, Morgan Kaufmann, 1989, pp.
191-197.

[15] B. Roy, B. Sussmann - Les problemes d’ordonnancement avec contraints
disjonctives — Note DS 9 bis, SEMA, 1964, Paris, France.

[16] E. Taillard — Parallel taboo search techniques for the job shop scheduling problem
— ORSA J. Computation, 6, 1994, pp. 108-177.

[17] A.Y.C. Tang and K.S. Leung — A Modified Edge Recombination Operator for the
Travelling Salesman Problem — In: H.-P. Schwefel and Manner editors, Parallel
Problem Solving from Nature III, Springer-Verlag, 1994, pp. 180-188.

[18] H.M.M. ten Eikelder, B.J.M. Aarts, M.G.A. Verhoeven, E.H.L. Aarts — Sequential
and Parallel Local Search Algorithms for Job Shop Scheduling — In: S. Voss, S.
Martello, I.H. Osman and C. Roucairol, editors: Meta-Heuristics, Advances and Trends

in Local Search Paradigms for Optimization, Kluwer, 1999, pp. 359-371.

111

References

[19] N.L.J. Ulder, E.H.L. Aarts, H-J. Bandelt, P.J.M. van Laarhoven and E. Pesch —
Genetic Local Search for the Travelling Salesman Problem — In: Lecture Notes in

Computer Science 496, Springler, 1990, Berlin, pp. 109-116.

[20] R.J.M. Vaessens, E.H.L. Aarts and J.K. Lenstra - Job shop scheduling by local
search — In: INFORMS Journal on Computing Vol. 8, No. 3, Summer 1996, pp. 302-
317.

112

