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Abstract. This paper extends a geometric framework for interpreting
crossover and mutation [4] to the case of sequences. This representation
is important because it is the link between artificial evolution and bio-
logical evolution. We define and theoretically study geometric crossover
for sequences under edit distance and show its intimate connection with
the biological notion of sequence homology.

1 Introduction

Evolutionary algorithms (EAs) mimic, in a simplified manner, natural evolution.
However, very few theoretical results are available which apply equally well to
both forms of evolutionary search.

One important cause of the lack of connection between evolutionary compu-
tation theory and evolutionary biology is that they focus on different kinds of
genotypes (different solution representations), namely DNA strands (variable-
length strings or sequences) and binary strings. Most importantly, even if DNA
strands and binary strings appear to be very similar at a first sight, the crossover
operator for binary strings is just a caricature of the biological recombination
acting on DNA strands. The main difference is that DNA strands align on the
basis of their contents (at meiosis) before exchanging genetic material and do not
align only positionally as it is the case for binary strings. Such an alignment is
flexible in that two DNA strands can stretch and fold to better align with each
other. Moreover, DNA strands do not need to be aligned on the extremities.
After alignment, the two DNA strands cut in one or more regions in which they
match well and exchange DNA segments. This last phase is present in crossovers
for EAs, in which, however, typically no alignment process based on content
takes place.

Geometric crossover and geometric mutation [4] are representation-independent
search operators that generalise by abstraction many pre-existing search oper-
ators for the major representations used in EAs, such as binary strings, real
vectors, permutations and syntactic trees. They are defined in geometric terms
using the notions of line segment and ball. These notions and the corresponding
genetic operators are well-defined once a notion of distance in the search space
is well-defined. This way of defining search operators as function of the search
space is opposite to the standard way [5] in which the search space is seen as a
function of the search operators employed. This viewpoint greatly simplifies the
relationship between search operators and fitness landscape and allows different
search operators to share the same search space thereby clarifying their roles.
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Is biological recombination geometric? In this paper we are able to answer
this question in the affirmative by extending the geometric framework mentioned
above to sequences under edit distance. This has the remarkable consequence
that the theory of geometric crossover applies to biological crossover as well,
bridging the gap between biological evolution and artificial evolution. Our results
reveal a deep connection between crossover for binary strings and biological
recombination, showing that standard EA crossover is less of a caricature than
it appears at first.

The paper is organised as follows. In section 2, we introduce the geometric
framework. In section 3, we show that in the case of sequences endowed with
edit distances geometric crossover is a form of homologous crossover which per-
forms the alignment on sequence contents before mixing genetic material. We
prove various properties of this crossover and, in section 4, extend it to weighted
alignments and alignment with gaps. In section 5 we argue that biological re-
combination is geometric and discuss the consequences of this.

2 Geometric framework

2.1 Geometric preliminaries

In the following we give necessary preliminary geometric definitions and extend
those introduced in [4] and [2]. The following definitions are taken from [6].

The terms distance and metric denote any real valued function that con-
forms to the axioms of identity, symmetry and triangular inequality. A simple
connected graph is naturally associated to a metric space via its path metric:
the distance between two nodes in the graph is the length of a shortest path be-
tween the nodes. Similarly, an edge-weighted graph with strictly positive weights
is naturally associated to a metric space via a weighted path metric.

In a metric space (S, d) a closed ball is the set of the form B(x; r) = {y ∈
S|d(x, y) ≤ r} where x ∈ S and r is a positive real number called the ra-
dius of the ball. A line segment (or closed interval) is the set of the form
[x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are called extremes of
the segment. Metric ball and metric segment generalise the familiar notions of
ball and segment in the Euclidean space to any metric space through distance re-
definition. These generalised objects look quite different under different metrics.
Notice that a metric segment does not coincide to a shortest path connecting
its extremes (geodesic) as in an Euclidean space. In general, there may be more
than one geodesic connecting two extremes; the metric segment is the union of
all geodesics.

We assign a structure to the solution set by endowing it with a notion of
distance d. M = (S, d) is therefore a solution space and L = (M, g) is the
corresponding fitness landscape. Notice that d is arbitrary and need not have
any particular connection or affinity with the search problem at hand.
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2.2 Geometric crossover definition

The following definitions are representation-independent therefore crossover is
well-defined for any representation. It is only function of the metric d associated
with the search space being based on the notion of metric segment.

Definition 1. (Image set) The image set Im[OP ] of a genetic operator OP is
the set of all possible offspring produced by OP with non-zero probability.

Definition 2. (Geometric crossover) A binary operator is a geometric crossover
under the metric d if all offspring are in the segment between its parents.

Definition 3. (Uniform geometric crossover) Uniform geometric crossover UX
is a geometric crossover where all z laying between parents x and y have the same
probability of being the offspring:

fUX(z|x, y) =
δ(z ∈ [x; y])
|[x; y]|

Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y].

A number of general properties for geometric crossover and mutation have been
derived in [4].

2.3 Geometric crossover landscape

Geometric operators are defined as functions of the distance associated to the
search space. However, the search space does not come with the problem itself.
The problem consists only of a fitness function to optimise, that defines what
a solution is and how to evaluate it, but it does not give any structure on the
solution set. The act of putting a structure over the solution set is part of the
search algorithm design and it is a designer’s choice. A fitness landscape is the
fitness function plus a structure over the solution space. So, for each problem,
there is one fitness function but as many fitness landscapes as the number of
possible different structures over the solution set. In principle, the designer could
choose the structure to assign to the solution set completely independently from
the problem at hand. However, because the search operators are defined over
such a structure, doing so would make them decoupled from the problem at
hand, hence turning the search into something very close to random search.

In order to avoid this one can exploit problem knowledge in the search. This
can be achieved by carefully designing the connectivity structure of the fitness
landscape. For example, one can study the objective function of the problem and
select a neighbourhood structure that couples then distance between solutions
and their fitness values. Once this is done problem knowledge can be exploited
by search operators to perform better than random search, even if the search
operators are problem-independent (as in the case of geometric crossover and
mutation).

Under which conditions is a landscape well-searchable by geometric oper-
ators? As a rule of thumb, geometric mutation and geometric crossover work
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well on landscapes where the closer pairs of solutions, the more correlated their
fitness values. Of course this is no surprise: the importance of landscape smooth-
ness has been advocated in many different context and has been confirmed in
uncountable empirical studies with many neighbourhood search meta-heuristics
[7].

3 Geometric crossover for sequences

In this section, we extend the geometric framework to the case of sequences. In
particular we will focus on edit distances that associate with sequence homology.

3.1 Preliminaries: sequences, edit distance and alignments

A sequence is a variable length string of characters. In particular, DNA strands
are sequences of characters from the alphabet Σdna = {a, c, t, g}. The edit dis-
tance between two sequences is defined as the minimum number of edit oper-
ations – insertions, deletions, and substitutions – needed to transform the first
string into the second. The edit distance is a metric in that it respects all the
metric axioms. Hence, the space of sequences endowed with edit distance is a
metric space. There are a number of extensions to the simple edit distance such
as weighted edit distance, block-edit distance, reversals and transpositions dis-
tances (see Sections 4 and 5 for a discussion on their use). The edit distance
between two sequences is a measure of their syntactic dissimilarity. This syntac-
tic dissimilarity is intimately connected with the notion of sequence alignment.

An alignment of two sequences is obtained by first appropriately inserting
spaces (which we represent with dashes), either into or at the ends of the two
sequences, and then placing the two resulting sequences one above the other
so that every character or space in one sequence is aligned with a character or
space in the other sequence. The score of an alignment is the number of aligned
characters that are different in the two sequences. There may be more that one
optimum alignment between two sequences. The score of an optimum alignment
of two sequences equals their edit distance. Changing the scoring system, one can
obtain optimal alignments associated to weighted edit distances and block-edit
distances. Edit distances and optimal alignments can be computed efficiently
using dynamic programming.

The (edit) transcript T associated to an alignment q is a vector that specifies
what edit move to apply to parent 1 to reach parent 2 for each position. For
each alignment q there is only one transcript T and vice versa. For example,

T = (RIMDMDMMI) and q =
(
v-intner-
wri-t-ers

)
, where R, I and D stand for replace,

insert, delete and match, respectively, while M is a just place holder.

3.2 Homologous Crossover and Geometric Crossover

Homologous crossover for sequences has been introduced by [8] in the context of
linear GP. We formalise and generalise it, we prove that it is geometric crossover
and then list some of its properties.
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Definition 4. (Alignment-based homologous crossover operators)

1. Let Q be the set of all optimal alignments of two sequences S1 and S2 under
simple edit distance. Homologous crossover picks a random optimal align-
ment q ∈ Q with a given probability distribution over Q. Let S1 and S2 be
the two sequences aligned with gaps according to q.

2. Let l be the length of q and m be a mask drawn from {0, 1} with a given
probability distribution. m specifies for each position of q from which parent
to copy the corresponding character to produce an aligned offspring S3

3. The actual offspring S3 is obtained by remove the dashes from S3.

Example 1. If S1 = agcacaca and S2 = acacacta and the chosen optimal align-

ment is q =
(
agcacac-a
a-cacacta

)
then l = 9, S1 = agcacac-a and S2 = a-cacacta.

If m = 111100000 we obtain the offspring S3 = a-cacac-a. After gap removal
we obtain S3 = acacaca.

Theorem 1. All alignment-based homologous crossover operators are geometric
crossovers under edit distance.

Proof. An optimal edit transcript T contains a smallest set E of edit moves to
transform u in v. |E| = d(u, v). The edit moves in E are independent because
they can be applied in any order and transform u into v. Any intermediate
sequence z obtained by applying a subset E′ ⊆ E of edit moves to u is on a
shortest path between u and v because z is d(u, z) = |E′| moves away from u
and d(z, v) = |E \ E′| moves to v hence d(u, z) + d(z, v) = d(u, v). A mask m
selects a subset of edit moves Em ⊆ E from the transcript T to apply to u and
produce the offspring z. Hence z is on the shortest path.

Theorem 2. Every sequence O in the segment between two sequences P1 and P2
under edit distance is reachable by homologous alignment-based crossover applied
to the parent sequences P1 and P2.

Proof. We need to prove that for each O ∈ [P1, P2]ed there exists an optimal
alignment q of P1 and P2 and a mask m that applied to a gives O. We prove it
by constructing q and m given any O.

If O ∈ [P1, P2]ed then there exists a shortest path sp between P1 and P2 in
the search space of sequences endowed with the edit distance such that O ∈ sp.
Then there exists a transcript T such as all the edit moves in T are the same of
the set of edit moves that generate sp. The transcript T may comprise also one
or more M characters that do not correspond to any edit move. The transcript
T is optimal by construction because the number of edit moves in T (non-M
characters) is exactly ed(P1, P2).

Given T , P1 and P2, it is possible to build the unique alignment q of P1 and
P2 associated with T . The alignment q is optimal because T is optimal. Consider
now the crossover mask m of the same length of the transcript T obtained by
setting at 1 the loci corresponding to those edit moves in the transcript T that in
the path sp transform P1 into O. The crossover mask m applied to the optimal
alignment q produces O.
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Theorems 1 and 2 establish that a crossover is an alignment-based homolo-
gous crossover if and only if it is a geometric crossover under simple edit distance.

3.3 Optimal alignments and segment subsets

The family of crossovers introduced in the previous section can be seen as an
extension to sequences of the family of alignment-based crossovers for fixed-
length binary strings. [4] proved that for binary strings, uniform crossover, where
crossover masks are obtained by flipping n times a unbiased coin, picks offspring
with uniform probability distribution on the line segment between parents un-
der Hamming distance. In this section we introduce a generalisation of uniform
crossover based on masks for sequences and show that, unlike the binary string
case, this crossover, surprisingly, does not pick offspring uniformly in the segment
between parents under edit distances.

Definition 5. (Uniform alignment-based homologous crossover) Uniform ho-
mologous crossover is an alignment-based crossover operator that chooses opti-
mal alignments and crossover masks with uniform probability.

In Table 1, we enumerate all possible offspring under homologous crossover
of the sequences “vint” and “writ”. For these sequences there are three possible
optimal alignments. The edit distance between the sequences is 3. This can be
seen also from the edit transcript associated to each optimal alignment in which
there are 3 non-M characters. These characters describe the edit operations
and the location of their application on the alignment to transform the first
sequence into the second one. In the first column, all the possible crossover masks
are shown. For space limitations we report only the bits corresponding to the
three non-M symbols, thereby obtaining 8 effective crossover masks. The entry
at the intersection of a row (effective crossover mask) and a column (optimal
alignment) contains the offspring obtained by the application of the mask on
the alignment. Alignment-based uniform crossover returns any of the offspring
in the table at random with uniform probability ( 1

24 ). However, some offspring
can be generated by more than one alignment, and so they have higher chances
to be picked. “vint” and “writ”, for example, are produced with a probability
3
24 , while “vit”, “wrint”, “vrit” and “wint” are returned with probability 2

24 .
The image set of an optimal alignment q is the set of offspring that can be

generated by homologous crossover using any mask m over q.

Theorem 3. Consider the image sets Im(q1) . . . Im(qn) of homologous crossover
applied to all optimal alignment q1 . . . qn of the sequences P1 and P2. The union
of Im(q1) . . . Im(qn) is [P1, P2] but they do not form a partition of [P1, P2].

Proof. For theorem 1, the image set of any optimal alignment is subset of the
segment. For theorem 2, any sequence z in the segment [P1, P2] can be generated
by homologous crossover. Hence, there must exist at least an alignment such
as its image set includes z. This means that every point in the segment is at
least in Im(qi), hence the union of all Im(qi) is the segment [P1, P2]. Proof by
counterexample: example 2 shows that all Im(qi) do not form a partition of the
segment [P1, P2] because their intersections are non-empty.
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Table 1. Possible offspring under uniform alignment-based homologous crossover.

Alignment 1 Alignment 2 Alignment 3
mask mm*m* mm*m* mmm*

transcript IRMDM RIMDM RRRM

parent 1 -vint v-int vint

parent 2 wri-t wri-t writ

000 -vint v-int vint

001 -vi-t v-i-t viit

010 -rint vrint vrnt

011 -ri-t vri-t vrit

100 wvint w-int wint

101 wvi-t w-i-t wiit

110 wrint wrint wrnt

111 wri-t wri-t writ

Theorem 4. Uniform alignment-based homologous crossover is not the uniform
geometric crossover under edit distance.

Proof. Proof by counterexample: example 2 shows that the frequency of some
offspring sequences under uniform homologous crossover is higher than others.
So the probability is not uniformly distributed over the segment.

The non-uniformity of this crossover is the result of the same offspring se-
quence being generated by multiple different optimal alignments. Parent se-
quences, for example, are in this category because they can be generated by
all optimal alignments using masks 0...0 and 1...1. Other offspring sequences can
be generated more than once when two optimal transcripts share non-M charac-
ters at the same positions. For example, if two transcripts have a D at position
1, then the mask 0X...X where X...X is either 0...0 or 1...1 will produce the same
offspring with both alignments. The mask 1X...X will have the same effect.

3.4 Bounds on offspring size

In this section we explore how offspring and parent sizes are related in homolo-
gous crossover.

Theorem 5. Given two parent sequences P1 and P2 of length l1 and l2 with
l1 ≤ l2 and edit distance ed, the length l3 of any offspring sequence O obtained
by homologous recombination is bounded as follows:

1. Edit distance ed known: (l1 + l2 − ed)/2 ≤ l3 ≤ (l1 + l2 + ed)/2
2. Edit distance ed not known: l1/2 ≤ l3 ≤ l1/2 + l2
3. Parents of same length l1 = l2 = l: l/2 ≤ l3 ≤ 3l/2
4. Non-empty parents imply non-empty offspring

Proof. Trivial edit distance bounds: (i) d(a, b) ≥ |l(a) − l(b)| and (ii) d(a, b) ≤
max(l(a), l(b)). From bound (i) applied to P1 and P3: d(P1, P3) ≥ |l1− l3| that
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breaks into two cases: (1) l1−l3 ≤ 0 → l1 ≤ l3 ≤ d(P1, P3)+l1 (worst case upper
bound) (2) l1 − l3 ≥ 0 → l1 − d(P1, P3) ≤ l3 ≤ l1 (worst case lower bound).
Analogously, applying bound (i) to P2 and P3 we obtain other two alternative
cases: (3) l2 − l3 ≤ 0 → l2 ≤ l3 ≤ d(P2, P3) + l2 (worst case upper bound) (4)
l2 − l3 ≥ 0 → l2 − d(P2, P3) ≤ l3 ≤ l2 (worst case lower bound).

Let us consider the upper bound for l3. Both the conditions (1) and (3) must
hold true, so 2l3 ≤ d(P1, P3) + d(P2, P3) + l1 + l2. For all P3: d(P1, P3) +
d(P2, P3) = d(P1, P2) = ed. Hence for all P3: l3 ≤ (l1 + l2 + ed)/2. If the
distance ed between parents P1 and P2 is unknown we can use bound (ii) to
bound it: ed ≤ max(l1, l2) → ed ≤ l2. Hence for all P3 in the worst case we
have: l3 ≤ l1/2 + l2. In case l1 = l2 = l we have for all P3: l3 ≤ 3l/2.

Let us consider the lower bound for l3. Both the conditions (2) and (4) must
hold true, so l1 + l2 − (d(P1, P3) + d(P2, P3)) ≤ 2l3. For all P3: d(P1, P3) +
d(P2, P3) = d(P1, P2) = ed. Hence for all P3: (l1 + l2 − ed)/2 ≤ l3. If the
distance ed between parents P1 and P2 is unknown we can use bound (ii) to
bound it: ed ≤ max(l1, l2) → ed ≤ l2. Hence for all P3 in the worst case we
have: l1/2 ≤ l3. In case l1 = l2 = l we have for all P3: l/2 ≤ l3.

Homologous crossover cannot produce empty offspring from non-empty par-
ents. This can be shown by using the second inequality: l1/2 ≤ l3 ≤ l1/2 + l2.
Independently from the distance between parents the minimum lower bound of
the length of any offspring is half of the length of the shortest parent. When
such parent is not empty (l1 ≥ 1) then l3 ≥ 1/2. Since the length is an integer
we have l3 ≥ 1. So even for parents of length 1 the offspring are non-empty.

Under geometric crossover, the more different the parents are, the more “un-
related”, or “innovative”, the offspring become. From the previous theorem, the
size of the offspring is bounded by: (l1 + l2−ed)/2 ≤ l3 ≤ (l1 + l2 +ed)/2. Hence,
the bigger the difference between the parents the bigger the range of the size of
possible offspring. Note, however, that when using weighted edit distances it is
possible to create situations were an empty offspring can be returned.

4 Extensions of Homologous Crossover

4.1 Weighted Edit Distances and Geometric Crossover

Extending homologous crossover to the case of weighted edit distances is cru-
cial to capture more realistic details of real biological sequences. Weighted edit
distances allow to specify relative preferences in the alignment before recombina-
tion such as character mismatches vs. sequence interruptions (spaces), positional
preferences (for example, matches at the extremities vs. matches at the centre of
the sequences) or preferences on the mismatching pairs (for example, preferring
a mismatch (a, t) to a mismatch (a, c)).

The following theorem is a very general and useful result that connects
weighted edit moves for any solution representation and metric spaces.1

1 This is a fairly simple result. However, it appears that this is not been proved in pub-
lished literature, leading to significant confusion, particularly in the bio-informatics
literature, in which edit distances and scoring matrices are extensively used.
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Theorem 6. Any weighted edit distance with strictly positive weights on edit
moves is a metric.

Proof. A space of configurations endowed with an edit distance with strictly
positive weights can be represented by a weighted graph in which nodes are
syntactic configurations and weighted edges represent (reversible) weighted edit
moves transforming one configuration into neighbour configuration. Any graph
with strictly positive weights on edges is a metric space [6] hence an edit distance
with strictly positive weights on edit moves, that is isomorphic to such a graph,
is a metric.

The cost of a weighted alignment is the sum of the weights associated to each
character alignment. The weight of each couple of characters is symmetric and
matching characters have weight 0. An optimal alignment is an alignment with
minimal cost. The cost of the optimal weighted alignment between two sequences
equals their weighted edit distance where the edit moves allowed correspond to
the set of couple of characters corresponding with their alignment weights.

The following theorem extend the geometricity result of homologous crossover
to weighted edit distances and weighted alignments.

Theorem 7. Alignment-based homologous crossover on the optimal alignments
under weighted edit distance dw is geometric crossover under dw.

Proof. An optimal edit transcript T contains a set E of edit moves to transform
u in v whose cost w(E) =

∑
e∈E we is minimal. The weighted edit distance

is dw(u, v) = w(E). The edit moves in E are independent because they can
be applied in any order and transform u into v. Any intermediate sequence z
obtained by applying a subset E′ ⊆ E of edit moves to u is on a shortest weighted
path between u and v because dw(u, z) = w(E′) and d(z, v) = w(E \E′)=w(E)-
w(E’) hence d(u, z) + d(z, v) = d(u, v). A mask m selects a subset of edit moves
Em ⊆ E from the transcript T to apply to u and produce the offspring z. Hence
z is on the shortest path.

4.2 Gaps and Geometric Crossover

In this section we extend homologous crossover to the case of edit distances
based on replacement move and a block ins/del move. This edit distance allows
to specify preference to few big gaps against many small gaps in the alignment
before recombination and allows to model loops in the alignments.

Theorem 8. Alignment-based homologous crossover with one locus for each en-
tire gap on the optimal alignments under weighted edit distance with block moves
dbw is geometric crossover under dbw with convex weight gap model.

Proof. Let us consider a weighted block ins/del edit move such as its weights
depends only on the length of the block in a way that shorter blocks have smaller
cost per length unit: l1 < l2 → w(l1)/l1 > w(l2)/l2. An optimal edit transcript
must necessarily comprise the largest block ins/del edit move. The crossover
mask has to treat each edit move as a unity: for block edit moves there must be
only one locus in the crossover mask. The rest follows from theorem 7.
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5 Bridging natural and artificial evolution

In this section we discuss the feasibility of homologous crossover as a model of
biological recombination and its implications.

Is biological recombination geometric? Most of pre-existing recombination
operators for the most-used representations are geometric. So this geometric
property unifies by abstraction across representations the notion of ”crossoverness”
emerged experimentally over the year. The importance of being geometric for
a crossover relies in the fact that all geometric operators do the same type of
search (convex search). Plus, the connection between geometric crossover and
fitness landscape is very intuitive. This question if answered affirmatively would
show a deep unity in the way EAs and biological evolution do the search and
would allow to apply the geometric framework to study both natural and ar-
tificial evolution jointly casting a computational and geometric perspective on
natural evolution.

All the details of real biological recombination are unknown and it is focus
of active research to elicit them. There are various models for studying different
aspects of biological evolution at different levels of granularity.

At genetic level, the model of homologous recombination based on fixed-
size strings used in population genetics, is a simple extension of the traditional
crossover for binary strings to the multi-valued case and it is geometric under
Hamming distance. Unequal crossover at a genetic level happens when the ho-
mologous alignment of the strands is not perfect. This can be due to an error in
the alignment due to environmental noise (this can be considered as a mutation)
or being one of the possible best inexact alignments under edit distance at level
of genes. In this case unequal crossover would be geometric.

The reason why strands tend to align according to the edit distance can be
understood at a molecular level. Our working hypothesis is that an edit dis-
tance, weighted and based on edit moves such as insertion/deletion (to model
frame-shift), replacement (to model base mismatch), block-insertion/deletion
(to model folds/loops), block-reversal (to model subsequence inversion) and
block-transposition (to model subsequence transposition), is expressive enough
to model the resulting configuration obtained at the equilibrium of all the forces
that lead to the inexact homologous alignment of two chromosomes at a molec-
ular level (before crossing over). The notion of minimum distance connects nat-
urally with the notion of optimal alignment (best trade-off among all forces
involved, or chemical equilibrium) of two macromolecules (chromosomes) that
as any other chemical reaction tends to evolve toward the state of ”minimum
free energy”. In summary:

1. the geometric crossovers associated with edit distances naturally capture the
notion of homology, or inexact alignment based on the sequences contents

2. there is a natural parallel between weighted edit distances and DNA pairing
up at a molecular level because the weighs on edit moves can be interpreted
in chemical terms as attraction and repulsion forces
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3. there are a variety of edit distances that allow to show that pre-existing
model of biological crossovers and many variants are still geometric. This
shows that assuming that biological recombination is geometric is a realistic
assumption even in the lack of full-knowledge about all its details

Is the natural landscape smooth? The natural adaptive landscape of a pop-
ulation is not static but changes over time in response to environmental changes
and in response to the change in the population composition adapting to the
new environment due to the evolutionary forces. Evolution (adaptation) hap-
pens when the adaptive landscape becomes non-flat due to a fitness change in
response to a change in the environment.

Despite the inherent fluidity of the natural adaptive landscape, it has a
smooth trend: most of the mutations are neutral (Kimura), do not affect the
phenotype or quasi-neutral in that affect the phenotype marginally and so its
fitness. Very rarely a single mutation is lethal, creating ”cracks” in the landscape.
The landscape may be rugged and may present various neutral paths but the
overall trend is smooth and when evolution (adaptation) in progress, non-flat.
Hence, we can safely state that closer genotypes under edit distance (mutation)
have more correlated fitness values. Indeed, this is the same principle on which
bio-informatics is firmly based upon: similarity of genotypes allows to infer sim-
ilarity in the phenotype (hence, in fitness) without doing any experimental work
just by searching databases of known genotypes by homology [1].

Geometric biological operator + smooth natural landscape = quick
adaptation What is the fitness function to optimise in case of natural evolution?
Natural evolution, seen as a search algorithm, is trying to optimise the fitness
function that is obtained from the adaptive landscape by removing the space
structure (see section 2). While doing this optimization, the fitness function
is constantly changing, because the adaptive landscape is constantly changing
under the effect of population change due to evolution (optimization) itself. The
evolution (optimization) ends2 when the fitness landscape reaches a flat-shape
and the fitness function becomes constant. This means that the population is
completely adapted to the environment. Hence, the performance of biological
evolution, seen as a search algorithm, is in terms of speed of adaptation.

Since we have seen that biological recombination is geometric under edit
distance and that smoothness of the landscape is the condition we need to en-
force to the landscape to be well-searched by geometric crossover and geometric
mutation, we conclude that the biological recombination and mutation are well-
matched with the natural fitness landscape. So their performance in terms of
adaptation is expected to be much better than pure random search. This is to
say that biological evolution is very efficient at doing adaptation.3

2 evolution may also never end because of red-queen dynamics
3 This offers an answer to the anti-evolutionist William Dembski that has used the

no free lunch theorems to criticise the theory of evolution, stating that the No Free
Lunch theorems demonstrate that evolution is no better than random chance at
selecting optimal outcomes.
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Why are biological recombination and natural landscape well-matched? In-
deed, it could have been the case that fitness landscape and search operators were
unmatched making adaptation non-efficient. But, so is not. How happened? We
leave this as an open question and will investigate it in future work.

6 Conclusions

In this paper we have extended the geometric framework to the important case
of sequences. We have given a number of theoretical results and started investi-
gating the hypothesis that biological recombination is geometric and discussed
its consequences.
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